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Abstract

Model discrimination procedures are useful tools for selection of the best mathematical models to be used to represent a specific chemical
process. The present paper presents and discusses a new sequential discrimination procedure, which makes use of model probabilities and
concentrates the efforts on models with higher probabilities. Model probabilities are determined based on simple statistical arguments. Four
numerical examples illustrate the application of the proposed discrimination procedure. The obtained results indicate that the new procedure is
able to discriminate kinetic models with fewer experiments when compared to other procedures and also indicates when model discrimination
is not possible and, thus, when the sequential design must be halted. Furthermore, the speed of the proposed discrimination procedure can
be controlled by tuning a design parameter which reflects the analyst’s mood (confidence) towards the discrimination problem and allows for
increase or decrease of the number of experiments required for model discrimination during the sequential procedure.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Mathematical models are widely used to represent scientific
theories and process behavior. Models can be applied for sim-
ulation, process design and/or improvement of the current un-
derstanding about a specific phenomenon. Frequently, several
models can be developed to represent the same phenomenon.
Rate equations in heterogeneous catalysis constitute a typical
example (Froment, 1975). Then, very frequently the analyst has
to define which model is the most suitable one for a particular
application, as the final results and conclusions usually depend
on the model used to perform the simulations and provide the
interpretation of the analyzed problem. Sometimes, it is not
possible to make a proper choice based solely on the available
information, because the collected experimental data can be ex-
plained adequately by more than one model. In this case, one
should perform new experiments for selection of one of the ri-
val models. This procedure, called model discrimination, can
be performed in accordance with different strategies. However,
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in all cases the experimental design is based on a criterion that
indicates the experimental conditions where additional exper-
iments should be performed in order to maximize the model
discrimination capacity.

Frequently the model discrimination procedure is performed
sequentially. Fig. 1 illustrates the steps of a typical sequential
design procedure, where a single experiment is designed at each
iteration. In Fig. 1, the main difference among alternative dis-
crimination strategies is the criterion used to determine which
experimental condition should be regarded as the best one and,
therefore, should be used to perform the next experiment.

Hunter and Reiner (1965) proposed a very simple design
criterion for sequential model discrimination. After perform-
ing N preliminary experiments, a new experimental condition
x should be selected in order to maximize the model discrimi-
nation function, defined as

D(x) = [ŷ1(x) − ŷ2(x)]2, (1)

where ŷ1 and ŷ2 are the expected model responses for Models
1 and 2, respectively. Eq. (1) assumes that model discrimina-
tion is improved when the difference between model responses
increases. For discrimination among M models, Hunter and
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Fig. 1. Sequential experimental procedure for model discrimination.

Reiner’s criterion can be extended as follows:

D(x) =
M−1∑
m=1

M∑
n=m+1

[ŷm(x) − ŷn(x)]2. (2)

These very simple criteria do not take into account that model
performances may not be the same throughout the experimental
region. Model performances may be properly taken into con-
sideration if the variances of model predictions are inserted into
the design criteria, as pointed out by Box and Hill (1967). This
may avoid the selection of experimental conditions where the
differences among model responses are high, but model uncer-
tainties and experimental errors are also high. In these cases,
it would not be possible to distinguish model predictions even
when model responses are not similar because of the large un-
certainties associated with model predictions.

Based on the information theory and using a Bayesian ap-
proach, Box and Hill (1967) developed a different sequential
design procedure for model discrimination. Since entropy can
be used as a measure of the amount of available information
about a particular system, additional experiments should be se-
lected in order to maximize the expected change of entropy,
thus maximizing the amount of information obtained about the
investigated system after conduction of the additional experi-
ments. Entropy can be defined as

S = −
M∑

m=1

Pm,N ln Pm,N , (3)

where Pm,N is the probability that model m is the best model
after N experiments. Maximization of the expected change in
entropy can be attained through maximization of the following

equation:

D(x) =
M−1∑
m=1

M∑
n=m+1

Pm,NPn,N

×
{ [

�2
m(x) − �2

n(x)
]2[

�2(x) + �2
m(x)

] [
�2(x) + �2

n(x)
]

+ [ŷm(x) − ŷn(x)]2
(

1

�2(x) + �2
m(x)

+ 1

�2(x) + �2
n(x)

)}
, (4)

where �2 is the experimental variance of the experimental re-
sponse and �2

m is the prediction variance of model response
ŷm at experimental condition x. Model probabilities can be up-
dated after conduction of the selected experiment with the aid
of the Bayes’ Theorem as

Pm,N+1 = Pm,Npm(x)∑M
n=1Pn,Npn(x)

, (5)

where pm(x) is the probability density function associated with
the (N + 1)th experimental observation. Assuming that model
m is correct and that model deviations follow the normal dis-
tribution

pm(x) = 1√
2�
[
�2(x) + �2

m(x)
]

× exp

(
−
[
yN+1(x) − ŷm,N+1(x)

]2
2
[
�2(x) + �2

m(x)
]

)
, (6)

where yN+1 is (N + 1)th experimental value.
The designed experimental condition should maximize

Eq. (4) and the current status of the analyzed models should
be updated with Eq. (5). The procedure should be repeated
iteratively and halted when the probability of one of the rival
models becomes higher than a certain threshold value (for
instance, 0.95). A very interesting feature of this procedure is
that experimental design and model evaluation are performed
simultaneously (Hill, 1978), since posterior model probabil-
ities can be used both for design and model evaluation. One
problem normally associated with Bayesian approaches is that
they force the selection of one of the rival models, even when
all models are bad (Atkinson, 1978). For this reason, model
performances should be critically evaluated at each particular
iteration of the experimental design.

Dumez et al. (1977) and Atkinson (1978) commented that
extensive simulation studies failed to reveal any systematic dif-
ference between experimental plans designed with either Box
and Hill’s or Hunter and Reiner’s criteria. For this reason,
Eq. (2) is usually preferred because of its simplicity.

Buzzi-Ferraris and Forzatti (1983) raised an interesting point
about the performance of sequential experimental designs for
model discrimination. They showed that results obtained with
the Box and Hill’s criterion depend on how experimental ob-
servations are ordered because of the recursive law that is used
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to update model probabilities. This is unacceptable, as model
probabilities should depend on the available information and
not on the particular order used to present the data. They also
noted that experiments can be selected in regions where differ-
ences of prediction variances are large (and not where differ-
ences of model responses are large) because of the structure of
Eq. (4).

Atkinson and Fedorov (1975a) developed T-optimum designs
for discrimination between two rival models when one of the
two models is assumed to be the true model. This procedure was
later extended for discrimination among M models (Atkinson
and Fedorov, 1975b) and application of this procedure to ki-
netic problems can be found in Atkinson et al. (1998). The ex-
perimental conditions are then selected in order to maximize
the noncentrality parameters, given as

�2(x, �1) = maxx

{
min�2

N∑
k=1

[y1(x, �1) − y2(x, �2)]2

}
, (7)

which is the noncentrality parameter for Model 2 when Model
1 is true. As can be seen in Eq. (7), the parameters of Model 2
are estimated for every set of experimental conditions and the
selected set of experimental conditions is the one that leads to
the higher value of the noncentrality parameter. This may be an
interesting way to initialize an experimental design, since an
initial set of experiments is not required for the design. How-
ever, during sequential designs, when an initial set of experi-
ments is available, this procedure becomes similar to the orig-
inal Hunter and Reiner’s procedure, as described in Eq. (1).

The assumption that one of the models is the true one is
unrealistic for most practical situations, as models are always
simplifications of complex phenomena and are based on certain
simplifying hypotheses. To overcome this limitation, Ponce de
Leon and Atkinson (1991) made use of prior probabilities and
assumed that any of the rival models could be the true one,
in accordance with a specified set of model probabilities, so
that the new experimental condition should be selected through
maximization of

D(x) =
M∑

m=1

M∑
n=1
n�=m

Pm�n(x, �m), (8)

where �n(x, �m) is the noncentrality parameter for model n
when model m is assumed to be the true one, as defined in Eq.
(7), and Pm is the probability that model m is the true one.
The application of this design criterion may lead to extensive
computations, since the parameters of the untrue models have
to be estimated for every set of experimental conditions, based
on the responses of the true model with known parameters.
This may constitute a serious drawback for practical use of this
design criterion.

Buzzi-Ferraris and Forzatti (1983) proposed a sequential
model discrimination procedure where the new experimental
conditions should maximize

D(x) =
∑M−1

m=1
∑M

n=m+1 [ŷm(x) − ŷn(x)]2

(M − 1)
[
M�2(x) +∑M

m=1�
2
m(x)

] . (9)

Eq. (9) can be obtained as the ratio between the variance of
model deviations and the mean value of the model prediction
variances. For discrimination between two rival models, Eq. (9)
becomes

Dm,n(x) = [ŷm(x) − ŷn(x)]2

2�2(x) + �2
m(x) + �2

n(x)
. (10)

Eqs. (9) and (10) can be interpreted in terms of the classical
F-statistics, so that maximization of D is equivalent to maxi-
mization of the capacity to discriminate between two distinct
variance terms. Different from Box and Hill’s criterion, this
criterion does not lead to selection of experimental conditions
where differences in prediction variances are large and differ-
ences in model responses are not. Besides, the discrimination
procedure defined by Eqs. (9) and (10) is not affected by the or-
der of the experimental observations, as it should be expected.
However, it is necessary to rely on additional statistical tests
to evaluate the model adequacy after each discrimination step,
which is not necessary when the original Box and Hill’s proce-
dure is used, as model probabilities are updated automatically
during the experimental design.

It is possible to eliminate the worst models faster if the ex-
perimental conditions are designed to maximize Eq. (10), in-
stead of Eq. (9). In Eq. (9), as also happens in Eqs. (2) and (4),
a new set of experimental conditions can be selected in regions
where the divergence among all rival models is not very large.
In practice, it may be preferable to select the experimental con-
ditions in experimental regions where at least one of the models
can be discriminated from the rest and, therefore, eliminated
from the set of plausible models.

Eqs. (9) and (10) were extended to allow for analysis of
models that contain multiple responses (Buzzi-Ferraris et al.,
1984). The design criterion consists in finding the experimental
conditions that maximize

Dm,n(x) = [ŷm(x) − ŷn(x)]TV−1
m,n(x)[ŷm(x) − ŷn(x)], (11)

where m and n stand for the reference models, ŷm is a vector
of response variables for model m and Vm,n is defined as

Vm,n(x) = 2V(x) + Vm(x) + Vn(x), (12)

where V is the matrix of experimental variances of the measured
response variables and Vm is the matrix of prediction variances
of responses calculated from model m.

Buzzi-Ferraris et al. (1990) presented an improved version
of Eq. (11) for discriminating among rival multiple response
models. The new set of experimental conditions should be se-
lected in order to maximize the expected value of the diver-
gence, given by

Dm,n(x) = [ŷm(x) − ŷn(x)]TV−1
m,n(x)[ŷm(x) − ŷn(x)]

+ tr
(

2V(x)V−1
m,n(x)

)
. (13)

In order to evaluate whether it would be possible to discrimi-
nate among the rival models, Buzzi-Ferraris and Forzatti (1983)
and Buzzi-Ferraris et al. (1984, 1990) suggested that the opti-
mum discriminant value obtained from Eqs. (9), (11) or (13)
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should always be smaller than the number of model responses;
otherwise, the procedure should be halted. This is because the
discriminant values are expected to follow the �2-distribution
when the model performances are similar.

Although the criteria developed by Buzzi-Ferraris and
Forzatti (1983) and Buzzi-Ferraris et al. (1984, 1990) do over-
come the difficulties observed during actual implementation of
the original Box and Hill’s procedure, the fact is that the use of
model probabilities is appealing for a number of reasons. First,
model analysis and comparison of model responses become
much simpler and unambiguous when a quantitative measure
of model adequacy can be assigned to the analyze models.
Second, it sounds reasonable to say that efforts should be con-
centrated on the discrimination of the most probable models,
and not on discrimination of the least probable ones. There-
fore, the divergence criterion should be somehow weighted by
model probabilities.

For this reason, a new procedure for model discrimination
is sought here, based on the definition of model probabilities.
However, model probabilities should not depend on how the
experimental observations are ordered. Therefore, the use of
iterative procedures should be avoided for assignment of model
probabilities.

Another interesting point regards the interaction between the
analyst and the discrimination problem. According to the previ-
ously published criteria, the sequence of designed experiments
depends solely on the experimental responses, so that the de-
signed experiments do not reflect the analyst’s confidence to-
wards the discrimination problem. For instance, experimental
designs for discrimination among empirical rival models should
be small and should not require too much effort. However,
when rival models are based on distinct mechanistic theories
and model performances are used to select the “true” mecha-
nism, one may be very cautions about discarding a model from
the discrimination procedure. This shows that the analyst may
be liable to accept different levels of “risk” during the discrim-
ination procedure and that the design criterion should reflect
the analyst’s mood towards the discrimination problem.

The main purpose of this work is to introduce a new pro-
cedure for model discrimination, which makes use of the �2-
distribution to estimate probabilities for each model. The prob-
abilities are calculated using the Tsallis’ concept of entropy
(Tsallis, 1988), where a certain parameter (Z) controls the de-
gree of risk that the analyst is ready to accept during the dis-
crimination procedure. The procedure reported here is an im-
proved version of the one developed by Oliveira (1997) and
used by Dariva et al. (1998) for discrimination among thermo-
dynamic models.

2. Methodology

2.1. Model probabilities

Let us assume that model m is indeed a perfect model, e.g.
prediction errors can be explained in terms of the experimental
inaccuracies and that residuals follow a standard normal distri-
bution and are not correlated. In this way, the weighted sum of

the squares of the residuals for the model m, defined by

SSm ≡
N∑

j=1

NY∑
i=1

(
yi,j (x) − ŷi,j,m(x)

�i,j (x)

)2

(14)

approximately follows a �2-distribution with � = NE − NPm

degrees of freedom, where NE is the number of experimental
points and NPm is the number of parameters of model m. Of
course, this is an approximation because, even when model m
is perfect, experimental data may be corrupted by errors that do
not necessarily follow the normal distribution. Similarly, model
parameters and predictions are also corrupted to some extent.
Besides, the assumption of independence is questionable, al-
though the validity of these hypotheses can be rarely checked
without intensive replication work. If data are not independent,
Eq. (14) can be extended in a straightforward manner to in-
clude correlations, which is not pursued here for the sake of
simplicity.

The very basic idea behind the use of the �2-distribution is
that “bad” models are likely to exhibit large values of SSm. In
other words, if the model behaves well, one should not expect
to obtain high values of SSm. Then, a value can be assigned to
each model as

�m ≡ 1 − p
[
�2
� �SSm

]
, (15)

where �2 represents the chi-square distribution with � degrees
of freedom. Eq. (15) quantifies the adequacy of model m to
represent the available experimental data. In other words, the
better the model adequacy, the lower the value of SSm. Relative
probabilities are calculated from �m for each model as

Pm ≡ �m∑M
n=1�m

. (16)

Pm can be regarded as quantitative measures of model ad-
equacy and as weights during the experimental design. One
should observe that model probabilities are not sensitive to the
order of experimental data. Therefore, an unambiguous set of
model probabilities can be obtained for each set of experimen-
tal data, regardless of the history of the sequential experimental
design.

2.2. Design criterion

The discriminating function to be maximized can be defined
as

Dm,n(x) = (PmPn)
z [ŷm(x) − ŷn(x)]2

2�2(x) + �2
m(x) + �2

n(x)
, (17)

where m and n vary from 1 to M, where M is the number of rival
models. Experimental conditions that lead to the highest value
of Dm,n, for any pair of models, are selected for the next exper-
iment. This way, bad models can be eliminated soon during the
sequential design which may be seen as an important feature
of the proposed procedure. This criterion comprises two con-
tributions: a product of model probabilities, determined solely
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from past experience, and a variance-weighted divergence term,
which also depends on previous data (through model param-
eters) and selected experimental conditions for the next ex-
periment. Note that, in general, experimental and predictions
variances may be a function of the experimental settings. One
should also observe that Dm,n follows a classical �2-statistics
under assumptions of normal fluctuations. Again, Eq. (17) can
be extended in a straightforward manner for multiple response
models when model responses are correlated:

Dm,n(x) = (PmPn)
z[ŷm(x) − ŷn(x)]TV−1

m,n

× [ŷm(x) − ŷn(x)], (18)

where Vm,n is defined by Eq. (12).
Eqs. (17) and (18) are similar to Eqs. (10) and (11), respec-

tively, but the inclusion of the probability factors tends to con-
centrate the experimental efforts on the discrimination of the
most probable models.

The parameter Z introduced in Eq. (17) resembles Tsallis’
parameter used for generalization of the entropy and informa-
tion content (Tsallis, 1988). Values of Z > 1 accentuate model
differences and therefore may be used to bias the sequential
procedure towards discrimination of the best models. Values
of Z < 1 tend to equalize the model probabilities and to ne-
glect the model performance during the experimental design.
In a certain sense, Z can be used to fit the risk that the user
is liable to accept during the model selection. High values of
Z tend to increase the bet on the selection of the best models,
leading to model selection with fewer experiments. Therefore,
large Z-values correspond to acceptance of higher risks. Low
values of Z tend to decrease the bet on selection of the best
models, usually leading to large experimental data sets. There-
fore, low Z-values correspond to a conservative mood towards
the discrimination problem.

2.3. Termination criteria

Some of the models are expected to be discarded along the
discrimination procedure. This should occur when, after the ex-
ecution of the additional experiment and re-estimation of model
parameters, the relative model probability falls below a pre-
defined value (typically in the range of 1–5%). Initial relative
probabilities can be calculated using an initial set of available
experiments. The maximum of Dm,n(x) can be searched with
the help of suitable optimization routines, although acceptable
designs can be achieved by direct search on a discretized ex-
perimental grid.

The experimental design procedure terminates when, after
execution of the k-th experiment, one of the models reaches a
relative probability that is higher than a predefined value (e.g.
95%). This is a desirable scenario, since one of the models is
selected as the best among all proposed models. The discrim-
ination procedure should also be halted when further discrim-
ination between two or more models is not possible. This can
be checked by calculating the ratio between model divergence

and prediction variances, as

Rm,n(x) = [ŷm(x) − ŷn(x)]2

2�2(x) + �2
m(x) + �2

n(x)
(19)

for single response models. For multiresponse models this ratio
is defined as

Rm,n(x) = [ŷm(x) − ŷn(x)]TV−1
m,n[ŷm(x) − ŷn(x)]. (20)

As done by Buzzi-Ferraris and Forzatti (1983) and
Buzzi-Ferraris et al. (1984, 1990), when the value of Rm,n in
Eqs. (19) and (20) is smaller than the number of model re-
sponses, the discrimination procedure should be halted, since
it becomes impossible to discriminate between the remaining
models on solid statistical arguments.

3. Numerical examples and discussion

In the following examples, one of the models is always
assumed to be the true model, and data are generated from
it. Model responses are perturbed with a normally distributed
experimental error computed with the help of the software
Statistica (1995). When one model reaches a relative probabil-
ity higher than 97.5%, the discrimination procedure is success-
fully finished with one model selected as the best one. Besides,
if one model assumes a relative probability less than 2.5% dur-
ing model discrimination procedure, this model is discarded
from the experimental design.

3.1. Example 1: methanol synthesis

This example has been reported by Buzzi-Ferraris and
Forzatti (1983), and regards the conversion of synthesis gas to
methanol in a differential reactor. The discrimination procedure
is performed to select the best model among five alternative
kinetic models, which were derived assuming different kinetic
mechanisms. The five derived models derived are listed below:

Model 1:

y1 = x1x
2
2 − x3/Keq

(K1,1 + K2,1x1 + K3,1x2 + K4,1x3)
2 , (21.a)

Model 2:

y2 = x1x
2
2 − x3Keq

(K1,2 + K2,2x1 + K3,2x2 + K4,2x1x2)
, (21.b)

Model 3:

y3 = x1x
2
2 − x3/Keq

(K1,3 + K2,3x3 + K3,3x2 + K4,3x3/x2)x
2
2

, (21.c)

Model 4:

y4 = x1x
2
2 − x3/Keq

x2(K1,4 + K2,4x1 + K3,4x3/x2 + K4,4x3)
2 , (21.d)

Model 5:

y5 = x1x
2
2 − x3/Keq

(K1,5 + K2,5x2 + K3,5x1x2 + K4,5x3)
2 , (21.e)
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Table 1
Eight preliminary experiments in Example 1

Run x1 x2 x3 y (102)

1 17 210 6.0 1.051
2 23 210 6.0 1.553
3 17 240 6.0 1.982
4 23 240 6.0 2.355
5 17 210 9.0 0.132
6 23 210 9.0 0.791
7 17 240 9.0 0.843
8 23 240 9.0 1.235

where yi is the reaction rate from model i, x1, x2 and x3 are
the pressures of carbon monoxide, hydrogen and methanol,
respectively.

Model 5 is assumed to be the correct model. Experimental
data were corrupted with a normal deviation with zero mean
and variance 4 × 10−6. Actual parameters used to generate the
experimental data were K1,5 =1704, K2,5 =4.25, K3,5 =0.241,
K4,5 = 444.6, Keq = 1.7 × 10−5, inside the experimental re-
gion: 15�x1 �25, 200�x2 �250, 5�x3 �10. Eight prelimi-
nary experiments are used for initial parameter estimation. Ex-
perimental design is performed over the three-dimensional grid
defined for variables x1, x2 and x3 which were divided, respec-
tively, in 10, 50 and 50 subintervals. The initial experiments
were defined in accordance with a full 23 factorial design, as
usually performed in similar tests, as shown in Table 1. Se-
quentially designed experiments are presented in Tables 2 and
3 for Z equal to 0 and 1, respectively.

After execution of the preliminary experiments, the poste-
rior probability of Models 2 and 3 are very low, which means
that Models 2 and 3 will probably be discarded after execution
of additional experiments. When Z is set to zero, the model
probabilities are not taken into account during experimental de-
sign and an experiment is selected for discrimination between
Models 2 and 3, which are the least probable models. This in-
dicates that the use of model probabilities can be very helpful
for experimental design. After the execution of the first de-
signed experiment, Model 2 is discarded from the experimen-
tal design, since its probability becomes smaller than 2.5%.
The two sequentially designed experiments were then selected
for discrimination between Models 3 and 5. The probability of
Model 3 oscillates and after three sequentially designed experi-
ments, the procedure is halted because R value becomes smaller
than 1.

When Z is set to 1, all designed experiments are selected for
discrimination between Models 3 and 5. Again, after one de-
signed experiment, Model 2 is discarded from the discrimina-
tion procedure, although no specific experiments are designed
for discrimination of Model 2. Again, after three designed ex-
periments, the procedure is halted because R becomes smaller
than 1.

This is an example where model discrimination is not achiev-
able. The procedure promptly indicates that discrimination pro-
cedure should be stopped. Consequently, the problem should be
reviewed and/or the experimental region should be modified. In

addition, parameter estimates do not show any statistical sig-
nificance, as it can be seen in Table 4. Experiments for precise
parameter estimation should also be performed in this case.

This problem was first analyzed by Buzzi-Ferraris and
Forzatti (1983). Based on the design criterion defined in
Eq. (9), they showed that it was necessary to design three
experiments to conclude that the discrimination among these
models was not achievable, with the exception of Model 2,
which could be discarded. For the sake of comparison, using the
eight preliminary experiments from Buzzi-Ferraris and Forzatti
(1983), the procedure developed here leads to presented results
in Tables 5 and 6, for Z values of 0 and 1, respectively.

When Z was set to 0, three additional experiments were de-
signed: two of them were selected for discrimination between
Models 2 and 3, the worse models. But when Z was set to 1, just
two designed experiments were necessary, both for discrimina-
tion between Models 3 and 4. However, when Z was set to 1,
Model 2 could not be discarded after execution of the two de-
signed experiments. Anyway, probabilities of Models 2 and 3
were much smaller than the probabilities of the others models,
indicating that these two models are likely to be the worse ones.

This example shows that the procedure developed here is
able to select the best experiment in the grid of available ex-
periments for model discrimination and can promptly halt the
discrimination procedure when the discrimination among mod-
els is not possible. When the termination criterion R leads to
interruption of the sequential design, the experimenter can re-
view the experimental setup and the design region in order to
improve the precision of model predictions and enhance model
differences.

3.2. Example 2: multiresponse models

Discrimination is now performed with four chemical ki-
netic models, each having two responses, as proposed by
Buzzi-Ferraris et al. (1984):

Model 1:

y1 = K1,1x1x2

1 + K3,1x1 + K4,1x2
, y2 = K2,1x1x2

1 + K3,1x1 + K4,1x2
,

(22.a)

Model 2:

y1 = K1,2x1x2

(1 + K3,2x1 + K4,2x2)
2 , y2 = K2,2x1x2

(1 + K3,2x1)
2 , (22.b)

Model 3:

y1 = K1,3x1x2

(1 + K3,3x2)
2 , y2 = K2,3x1x2

(1 + K4,3x1)
2 , (22.c)

Model 4:

y1 = K1,4x1x2

1 + K3,4x1 + K4,4x2
, y2 = K2,4x1x2

1 + K3,4x1
. (22.d)

In this case data is generated from Model 1 with parameters
K1,1=0.1, K2,1=0.01, K3,1=0.1 and K4,1=0.01. Experimental
variances are set to 0.35 for y1 and 2.3×10−3 for y2. The errors
of experimental responses are assumed to be independent from
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Table 2
Sequentially designed experiments in Example 1 with Z = 0

Run x1 x2 x3 y (102) R (m, n) P1 P2 P3 P4 P5

1–8 – – – – – 27.3 10.2 6.9 27.3 28.2
9 15 212 10.0 0.374 4.5 (2,3) 26.6 0.2 17.9 27.5 27.8

10 25 236 5.2 2.872 1.1 (3,5) 29.5 0.0 9.7 30.2 30.5
11 15 243 5.2 1.655 1.2 (3,5) 26.4 0.1 19.3 27.8 26.4
12 15 250 5.0 – 0.3 (3,5) – – – – –

Table 3
Sequentially designed experiments in Example 1 with Z = 1

Run x1 x2 x3 y (102) R (m, n) P1 P2 P3 P4 P5

1–8 – – – – – 27.3 10.2 6.9 27.3 28.2
9 15 200 10.0 0.051 3.1 (3,5) 28.7 0.6 11.4 29.4 29.9

10 25 237 5.3 2.786 1.3 (3,5) 30.6 0.3 6.5 31.2 31.4
11 15 243 5.0 1.792 2.6 (3,5) 28.7 0.6 12.5 29.6 28.6
12 25 237 5.0 – 0.4 (3,5) – – – – –

Table 4
Parameter estimates and standard deviation for all five models in Example 1

Model 1 Model 2 Model 3 Model 4 Model 5

K1 3736 249268000 −3997 180.73 4610
�1 2954 449355000 8704 47.68 2740
K2 41.01 −8866530 −865 2.62 −7.72
�2 25.81 20610100 1303 1.68 10.51
K3 −4.10 −953378 16.54 10910 0.17
�3 11.16 1868370 35.96 6433 0.11
K4 466.8 40137 240959 −15.53 467.2
�4 136.18 85959 318644 26.83 136.7
K5 1.79 1.45 2.47 1.83 1.80
�5 0.28 0.15 1.11 0.32 0.28

Table 5
Sequentially designed experiments starting with data from Buzzi-Ferraris and Forzatti (1983) and with Z = 0

Run x1 x2 x3 y (102) R (m, n) P1 P2 P3 P4 P5

1–8 – – – – – 24.2 17.3 2.8 30.9 24.8
9 15 209 10.0 0.039 3.7 (2,3) 29.3 3.4 5.6 31.4 30.3

10 25 237 5.2 2.762 2.5 (2,3) 30.2 0.4 7.7 31.4 30.3
11 15 232 5.0 1.518 1.5 (3,4) 29.2 0.7 10.6 30.3 29.2
12 15 236 5.3 0.4 (3,5) – – – – –

Table 6
Sequentially designed experiments starting with data from Buzzi-Ferraris and Forzatti (1983) and with Z = 1

Run x1 x2 x3 y (102) R (m, n) P1 P2 P3 P4 P5

1–8 – – – – – 24.2 17.3 2.8 30.9 24.8
9 15 206 10.0 0.001 2.2 (3,4) 29.4 3.0 5.6 31.5 30.5

10 15 228 5.5 1.090 1.0 (3,4) 26.0 5.7 13.7 27.9 26.8
11 25 241 5.2 – 0.8 (3,4) – – – – –
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each other. Five initial experiments are performed in accordance
with a standard 22 full factorial design, as shown in Table 7. The
sequentially designed experiments (Tables 8 and 9) are selected
from an extended experimental grid where 5.0�x1 �55.0
and 5.0�x2 �55.0 and divided in 250 intervals for each
variable.

After the execution of the five initially designed experiments,
Models 1 and 4 present similar probabilities. When parameter
Z is set to 0, the first designed experiment is selected to perform
discrimination between Models 2 and 4. With six experiments,
Model 4 assumes the higher probability and Model 2 assumes
the lower probability among all models. The next designed
experiment is selected again for discrimination between Models
2 and 4 and the execution of this experiment leads to rejection
of Model 4. The discrimination power between Models 2 and 4
as a function of the experimental conditions after execution of
five preliminary experiments is shown in Fig. 2. After execution
of the first additional experiment the discrimination power is
changed, as shown in Fig. 3.

Fig. 4 shows the discrimination power as a function of the
experimental conditions after execution of two designed exper-
iments. In this case, the next designed experiment is selected
to perform discrimination between Models 1 and 2. After ex-
ecution of this experiment, Model 1 reaches a probability that
is very close to 100% and the discrimination procedure is ter-
minated.

When parameter Z is set to 1 (Table 9) the first designed ex-
periment is selected to perform discrimination between Models
1 and 4, which are the models with highest probabilities among
all models. After execution of this experiment Model 1 reaches

Table 7
Sequence of preliminary experiments for Example 2

Run x1 x2 y1 y2

1 20.0 20.0 13.443 1.299
2 30.0 20.0 13.817 1.433
3 20.0 30.0 17.809 1.885
4 30.0 30.0 21.139 2.118
5 25.0 25.0 16.039 1.635

Table 8
Sequence of designed experiments with Z = 0

Run x1 x2 y1 y2 R (m, n) P1 P2 P3 P4

1–5 – – – – – 30.4 23.7 16.4 29.5
6 55.0 43.2 34.507 3.420 2.96 (2,4) 37.0 8.2 11.0 43.9
7 5.0 55.0 13.954 1.309 14.4 (2,4) 61.3 24.8 13.8 0.1
8 28.4 55.0 35.485 3.553 21.7 (1,2) 100.0 0.0 0.0 0.0

Table 9
Sequence of designed experiments with Z = 1

Run x1 x2 y1 y2 R (m, n) P1 P2 P3 P4

1–5 – – – – – 30.4 23.7 16.4 29.5
6 18.0 55.0 28.989 2.902 2.84 (1,4) 100.0 0.0 0.0 0.0

a probability that is very close to 100%, and the discrimination
procedure terminates. Fig. 5 shows the discrimination power
as a function of experimental conditions for discrimination of
Models 1 and 4. It can be seen that the values of D when the
parameter Z is equal 1 are lower because the variance weighted
term is multiplied by the model probabilities, which does not
happen when the parameter Z is equal to 0.

With the proposed procedure it is possible to discriminate
among the rival models with three additional experiments, when
Z is set to 0. The procedure is accelerated when Z is set to
1 and the discrimination is obtained with only one additional
experiment. The use of higher values of parameter Z leads to
discrimination of Models 1 and 4, as in the previously analyzed
example. This example was first reported by Buzzi-Ferraris et
al. (1984) using the criteria defined in Eq. (11), with nine initial
experiments and more 10 designed experiments.
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Fig. 2. Discrimination power between Models 2 and 4 after execution of the
preliminary experiments in Example 2 with Z equal to 0.
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Fig. 3. Discrimination power between Models 2 and 4 after execution of the
first designed experiment in Example 2 with Z equal to 0.
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Fig. 4. Discrimination power between Models 1 and 2 after execution of the
second designed experiment in Example 2 with Z equal to 0.

3.3. Example 3: water–gas shift reaction

The water–gas shift reaction (WGSR) constitutes a very im-
portant industrial process and finds applications in many fields,
such as synthesis of ammonia (Levent, 2001), the development
of fuel cell (Choi and Stenger, 2003; Koryabkina et al., 2003)
and production of hydrogen (Amadeo and Laborde, 1995). This
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Fig. 5. Discrimination power between Models 1 and 4 after execution of the
preliminary experiments in Example 2 with Z equal to 1.

reaction combines carbon monoxide and water to produce car-
bon dioxide and hydrogen according to the stoichometric equa-
tion

CO + H2O�CO2 + H2.

Due to the wide range of operations conditions (temperature,
pressure and reagent concentration) in which the WGSR occurs,
a large number of models can be found for description of the
reaction rate. Some of the models reported in literature (Amadeo
and Laborde, 1995; Levent, 2001; Choi and Stenger, 2003;
Koryabkina et al., 2003) are listed below:

Model 1:

r = kpCOpH2O(1 − �)

(1 + KCOpCO + KH2OpH2O + KCO2pCO2 + KH2pH2)
2 ,

(23.a)

Model 2:

r = kpCOpH2O(1 − �)

1 + KCOpCO + KH2OpH2O + KCO2pCO2 + KH2pH2

,

(23.b)

Model 3:

r = kpCO
√

pH2O(1 − �)

1 + KCOpCO + KH2OpH2O + KCO2pCO2 + KH2pH2

,

(23.c)

Model 4:

r = kpCOpH2O(1 − �)

1 + KH2OpH2O + KCO2pCO2

, (23.d)
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Table 10
Preliminary experiments in Example 3

Run pCO pH2O pCO2 pH2 r (103)

1 0.25 0.25 0.25 0.25 3.6908
2 0.25 0.25 0.50 0.50 1.8486
3 0.25 0.50 0.25 0.50 4.9220
4 0.25 0.50 0.50 0.25 4.3712
5 0.50 0.25 0.25 0.50 2.9268
6 0.50 0.25 0.50 0.25 4.3868
7 0.50 0.50 0.25 0.25 6.3938
8 0.50 0.50 0.50 0.50 4.2412

Model 5:

r = kpCO(1 − �)

1 + KH2CO2pH2pCO2/pH2O + KH2pH2 + KH2OpH2O + KCO2pCO2

,

(23.e)

Model 6:

r = kpH2O(1 − �)

1 + KpH2O/pH2

, (23.f)

Model 7:

r = k1k2pCOpH2O(1 − �)

k1pCO + k2pH2O + k3pCO2

, (23.g)

Model 8:

r = k1k2pCOpH2O(1 − �)

k1pCO + k2pH2O + k3pCO2 + k4pH2

, (23.h)

Model 9:

r = kpCOpH2O(1 − �)

KpH2O + pCO
, (23.i)

Model 10:

r = kpH2O(1 − �)

KpH2O + pCO
, (23.j)

Model 11:

r = k1p
m
COpn

H2Op
p
CO2

p
q
H2

(1 − �), (23.k)

Model 12:

r = k1p
m
COpn

H2O(1 − �), (23.l)

Model 13:

r = k1pCOpH2O(1 − �), (23.m)

where � measures the proximity of the equilibrium, defined as

� = pCO2pH2

pCOpH2OKeq
(24)

and the equilibrium constant Keq is calculated with a simplified
equation (Choi and Stenger, 2003):

Keq = exp(4577.8/T − 4.33). (25)

Models 1–6 are Langmuir type rate expressions, Models
7–10 are derived from redox mechanisms, Models 11 and 12
are power-law type equations and Model 13 is an elementary
rate expression.

For the purpose of model discrimination, Model 1 is as-
sumed here as the true model. The model parameters are
presented by Amadeo and Laborde (1995) as functions of
temperature. In this example, temperature is fixed at 200 ◦C
and the parameter values are k = 0.352 mol g−1 s−1 atm−2,
KCO =2.726 atm−1, KH2O =0.559 atm−1, KCO2 =0.532 atm−1

and KH2 = 1.459 atm−1. The calculated rate is given in
mol g−1 s−1 and all partial pressures are given in atm. Exper-
iments are simulated from Model 1 and output variables are
corrupted with a normal deviation with zero mean and variance
of 1 × 10−6. Preliminary experiments are shown in Table 10
and follow a standard 23 full factorial design.

The sequentially designed experiments are selected from a
discrete experimental grid, where each variable (pCO, pH2O,
pCO2 and pH2 ) is allowed to vary from 0.05 to 1.00, in steps of
0.05. Eq. (18) is evaluated at every point within the discrete ex-
perimental grid and for every pair of models. The new selected
experimental condition is the one where Eq. (18) achieves its
highest value for a particular pair of models.

Table 11 shows the sequentially designed experiments when
Z is set to 0. In this case, the relative probabilities of models
are not considered in the design of the experiments and are
only used for model evaluation, as shown in Table 12 . The
underline indicates that the analyzed model was removed from
the design because of the low probabilities.

Models 4, 10 and 13 were discarded after the execution of
the preliminary experiments. Model 6 was discarded after exe-
cution of the first designed experiment. Model 5 was discarded,
after three designed experiments. Model 9 was discarded after
execution of the fourth designed experiment, which was se-
lected for discrimination between Models 1 and 9. Models 7
and 12 were discarded only after execution of seven designed
experiments. Model 11 was discarded after one additional ex-
periment and, subsequently, Model 3, which had the highest
relative probability, was discarded after execution of the ex-
periment selected for discrimination between Models 1 and 3.
After execution of two additional experiments, both selected
for discrimination between Models 1 and 8, the discrimination
procedure is terminated with the indication of Model 1 as the
best one.
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Table 11
Sequentially designed experiments in Example 3 with Z = 0

Run pCO pH2O pCO2 pH2 r (×103) R (m, n)

9 0.05 1.00 0.05 0.65 1.323 32.5 (5,6)
10 0.55 0.65 0.05 1.00 6.699 21.2 (5,9)
11 1.00 0.45 0.35 0.30 6.668 10.6 (1,5)
12 1.00 1.00 1.00 1.00 7.254 6.9 (1,9)
13 0.10 0.20 0.05 0.05 2.739 7.2 (2,11)
14 0.95 1.00 0.30 0.55 10.901 5.0 (8,12)
15 0.60 0.80 0.05 0.05 17.130 7.5 (1,12)
16 1.00 0.35 0.05 0.05 6.456 8.4 (8,11)
17 0.05 1.00 0.05 0.05 4.428 15.6 (1,3)
18 0.30 0.75 0.15 0.20 9.702 1.7 (1,8)
19 1.00 1.00 0.75 1.00 6.744 1.5 (1,8)

Table 12
Relative probabilities of the models along the sequentially designed experiments in Example 3 with Z = 0

Run P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

8 12.6 10.5 13.7 0.7 9.1 4.8 8.5 7.2 9.2 1.5 13.7 7.8 0.8
9 15.5 13.5 13.7 1.2 9.9 0.0 9.8 9.5 11.1 0.2 9.2 5.3 1.2

10 15.2 15.0 11.3 1.2 3.1 0.0 11.3 12.1 13.2 0.0 9.7 7.4 0.5
11 15.2 15.9 13.0 0.0 0.0 0.0 12.3 13.3 13.9 0.0 8.5 8.0 0.0
12 23.2 22.9 21.2 0.1 0.1 0.0 3.0 4.1 2.0 0.0 14.8 8.7 0.0
13 25.9 9.8 24.2 0.1 0.0 0.0 3.2 5.8 2.0 0.0 18.2 10.8 0.0
14 27.4 12.8 25.0 0.1 0.1 0.0 4.6 5.3 2.3 0.0 18.8 3.6 0.0
15 33.2 3.3 30.8 0.0 0.0 0.0 0.0 3.3 0.0 0.0 29.4 0.0 0.0
16 49.6 6.7 36.0 0.0 0.0 0.0 0.0 7.0 0.0 0.0 0.7 0.0 0.0
17 88.1 5.9 0.8 0.0 0.0 0.0 0.0 4.9 0.0 0.0 0.4 0.0 0.0
18 91.5 4.7 0.3 0.0 0.0 0.0 0.0 3.5 0.0 0.0 0.0 0.0 0.0
19 96.8 1.7 0.3 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0

Table 13
Sequentially designed experiments in Example 3 with Z = 1

Run pCO pH2O pCO2 pH2 r (×103) R (m, n)

9 1.00 0.45 0.30 0.35 6.960 19.4 (3,5)
10 1.00 1.00 1.00 1.00 7.254 7.1 (9,11)
11 0.10 0.20 0.05 0.05 2.739 9.6 (2,11)
12 1.00 0.70 0.10 0.10 12.654 3.7 (11,12)
13 0.05 1.00 0.05 0.05 4.428 9.2 (3,11)
14 0.50 1.00 0.15 0.20 14.792 7.2 (1,11)
15 1.00 1.00 0.05 1.00 9.089 9.7 (1,7)
16 0.30 0.85 0.05 0.30 12.380 2.4 (1,8)

Table 14
Relative probabilities of the models along the sequentially designed experiments in Example 3 with Z = 1

Run P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

8 12.6 10.5 13.7 0.7 9.1 4.8 8.5 7.2 9.2 1.5 13.7 7.8 0.8
9 12.4 13.1 14.2 0.0 0.0 2.0 11.0 10.1 10.8 0.2 16.2 9.9 0.0

10 18.7 19.5 22.2 0.0 0.1 0.3 2.4 2.2 0.8 0.0 23.5 10.1 0.0
11 22.7 6.2 24.8 0.0 0.1 0.5 3.9 3.7 0.8 0.0 23.8 13.5 0.0
12 25.5 7.6 27.1 0.0 0.1 0.8 5.9 5.6 0.0 0.0 27.4 0.0 0.0
13 26.3 8.4 23.7 0.0 0.0 0.0 7.3 7.1 0.0 0.0 27.2 0.0 0.0
14 55.1 10.5 7.9 0.0 0.0 0.0 14.2 11.2 0.0 0.0 1.1 0.0 0.0
15 68.9 10.3 9.1 0.0 0.0 0.0 0.0 11.4 0.0 0.0 0.3 0.0 0.0
16 99.6 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
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Table 15
Sequentially designed experiments in Example 3 with Z = 5

Run pCO pH2O pCO2 pH2 r (×103) R (m, n)

9 0.05 1.00 0.15 0.10 3.367 4.8 (3,11)
10 0.05 0.30 0.05 0.05 3.673 3.0 (1,2)
11 1.00 1.00 1.00 1.00 7.254 9.1 (1,2)
12 1.00 0.15 0.05 0.05 2.438 1.8 (3,11)
13 0.40 0.80 0.10 0.05 14.466 2.7 (1,3)
14 1.00 1.00 0.35 0.20 14.588 3.5 (1,2)
15 0.30 0.80 0.05 1.00 4.882 14.7 (1,7)
16 1.00 1.00 0.40 1.00 7.417 1.5 (1,2)
17 0.30 0.70 0.10 0.30 10.386 1.6 (1,2)

Table 16
Relative probabilities of the models along the sequentially designed experiments in Example 3 with Z = 5

Run P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

8 12.6 10.5 13.7 0.7 9.1 4.8 8.5 7.2 9.2 1.5 13.7 7.8 0.8
9 15.7 14.0 12 0.3 1.6 3.4 11.0 10.1 10.2 1.6 10.2 9.8 0.3

10 19.1 13.1 15.5 0.1 0.4 1.7 9.7 8.8 7.7 2.5 13.8 7.7 0.0
11 20.2 6.9 26.6 0.2 0.0 0.4 2.9 2.1 1.7 0.2 23.9 14.8 0.0
12 26.8 10.9 24.7 0.0 0.0 0.4 4.8 3.7 2.3 0.4 9.7 16.5 0.0
13 59.3 18.1 0.8 0.0 0.0 0.0 10.8 9.9 0.0 0.0 1.2 0.0 0.0
14 54.1 18.0 0.7 0.0 0.0 0.0 14.4 10.8 0.0 0.0 2.1 0.0 0.0
15 60.4 23.4 0.7 0.0 0.0 0.0 0.0 12.9 0.0 0.0 2.7 0.0 0.0
16 80.5 10.5 1.0 0.0 0.0 0.0 0.0 3.8 0.0 0.0 4.2 0.0 0.0
17 98.7 0.9 0.2 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0

As shown in Tables 11 and 12, 11 additional experiments are
necessary for complete discrimination. Besides, it is important
to observe that the designed experiments were at most times
selected from a pair of models where one of the models pre-
sented a low relative probability level. This happened because
the parameter Z is set to 0 and, in this case, the model prob-
abilities did not affect the design of experiments. In order to
concentrate efforts in discriminating among the most probable
models, Z values of 1 and 5 are used. Table 13 shows the se-
quentially designed experiments when Z is equal to 1, while
Table 14 shows the relative model probabilities as the experi-
ments are executed.

When Z is made equal to 1, the first designed experiment
is selected for discrimination between Models 3 and 5 (Table
13). However, when Z was set to 0, the first designed experi-
ment was selected for discrimination between Models 5 and 6
(Table 11). Therefore, when Z is equal to 1, discrimination be-
tween Models 3 and 5 is preferred because the relative probabil-
ity of Model 3 is higher than the relative probability of Model
6. After execution of this experiment Models 5 and 6 are dis-
carded. After design and execution of the second experiment,
the relative probabilities of Models 7–9 fall below the thresh-
old value of 2.5%, but Models 7 and 8 are reconsidered in the
procedure after of the third designed experiment. Model 11 has
a high relative probability and five experiments were selected
for discrimination of Model 11 from the others. But when one
experiment is selected for discrimination between Model 1 and
11 (Experiment 14), Model 11 is discarded from the proce-

dure, Model 1 assumes a high relative probability level and
more two experiments are sufficient to complete the discrim-
ination procedure, as expected, with Model 1 selected as the
best one.

Tables 15 and 16 show the results obtained when Z is equal
to 5. Observe that all designed experiments are selected for
discrimination between the pair of models with higher relative
probabilities.

When Z was set to 5 (or higher) all designed experiments
were selected for discrimination between models with the high-
est probabilities. Seventeen experiments were necessary to in-
dicate that Model 1 is the best one, one more than used in the
case of Z equal to 1. Although the total number of experiments
in the two cases are not very different, this certainly indicates
that increasing Z beyond a certain limit does not cause any sig-
nificant impact on the discrimination procedure, as experiments
are performed to discriminate the models with the highest prob-
abilities in all cases. As observed through many simulations,
this practical limit is around the value of Z = 2.

Again the procedure proposed here is able to select the cor-
rect model among the initially proposed ones. It is also impor-
tant to observe that this procedure apparently does not privi-
lege the models with more adjustable parameters, since Model
8 has four parameters (the best one has five) and in all cases
it were only discarded after execution of the last designed
experiment.

In this example, the increase of parameter Z from 0 to 1
reduced the number of sequentially designed experiments, but
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Table 17
Sequentially designed experiments in Example 4 with Z = 0

Run pCO pH2O pCO2 pH2 r (×103) R (m, n)

9 0.05 1.00 0.05 0.65 2.165 35.6 (5,6)
10 0.45 0.90 0.05 1.00 7.676 19.1 (5,9)
11 1.00 0.20 1.00 0.10 2.224 3.2 (2,11)
12 0.65 1.00 1.00 1.00 6.222 5.6 (3,9)
13 0.80 1.00 0.15 0.60 11.614 4.0 (8,12)
14 1.00 0.60 0.05 0.20 10.481 3.6 (9,11)
15 0.05 0.25 0.05 0.05 2.903 3.1 (2,11)
16 0.25 0.45 0.05 0.05 8.372 3.8 (3,7)
17 1.00 0.40 0.05 0.05 8.956 4.9 (8,11)
18 0.65 1.00 0.15 0.25 13.684 4.5 (8,11)
19 0.10 1.00 1.00 0.05 2.112 5.9 (3,11)
20 1.00 1.00 0.45 0.15 12.425 2.8 (3,8)
21 0.25 0.90 0.05 0.20 13.113 2.9 (2,3)
22 1.00 0.15 0.05 0.05 2.543 3.1 (3,8)
23 0.05 1.00 0.05 0.05 4.110 3.3 (2,3)
24 1.00 0.15 0.05 0.05 4.101 3.3 (3,8)
25 0.05 0.25 0.05 0.05 1.765 1.1 (2,8)
26 1.00 1.00 0.10 0.05 17.632 3.0 (3,8)
27 0.05 0.25 0.05 0.05 – 0.4 (2,8)

Table 18
Relative probabilities of the models along the sequentially designed experiments in Example 4 with Z = 0

Run P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

8 12.1 15.7 0.8 10.4 5.5 9.7 8.2 10.5 1.7 15.7 8.9 0.9
9 15.3 17.0 0.9 7.1 0.0 12.1 11.1 12.7 0.6 13.7 8.5 1.1

10 17.4 13.8 1.2 2.2 0.0 12.4 13.6 14.4 0.0 14.0 10.6 0.3
11 22.6 14.0 0.9 0.0 0.0 16.4 17.4 18.5 0.0 3.5 6.6 0.1
12 33.1 21.1 2.0 0.0 0.0 11.2 15.8 5.4 0.0 7.0 4.5 0.0
13 34.5 21.5 2.1 0.0 0.0 14.3 17.1 2.7 0.0 7.2 0.7 0.0
14 33.5 23.8 0.1 0.0 0.0 15.9 18.5 0.7 0.0 7.3 0.2 0.0
15 30.1 28.6 0.0 0.0 0.0 10.9 21.1 0.4 0.0 8.8 0.1 0.0
16 28.6 35.3 0.0 0.0 0.0 0.3 26.2 0.0 0.0 9.6 0.0 0.0
17 30.7 38.7 0.0 0.0 0.0 0.3 24.6 0.0 0.0 5.7 0.0 0.0
18 33.9 40.2 0.0 0.0 0.0 0.1 21.5 0.0 0.0 4.4 0.0 0.0
19 36.1 41.3 0.0 0.0 0.0 0.2 22.3 0.0 0.0 0.1 0.0 0.0
20 36.5 48.4 0.0 0.0 0.0 0.3 14.6 0.0 0.0 0.2 0.0 0.0
21 24.5 59.1 0.0 0.0 0.0 0.0 16.4 0.0 0.0 0.0 0.0 0.0
22 31.4 46.6 0.0 0.0 0.0 0.0 22.0 0.0 0.0 0.0 0.0 0.0
23 73.7 2.9 0.0 0.0 0.0 0.0 23.4 0.0 0.0 0.0 0.0 0.0
24 74.9 2.4 0.0 0.0 0.0 0.0 22.8 0.0 0.0 0.0 0.0 0.0
25 64.0 3.8 0.0 0.0 0.0 0.0 32.2 0.0 0.0 0.0 0.0 0.0
26 65.2 1.3 0.0 0.0 0.0 0.0 33.5 0.0 0.0 0.0 0.0 0.0

when Z was increased from 1 to 5, the number of experiments
increased, showing that there is an optimal value of Z with
respect to the number of experiments.

3.4. Example 4: water–gas shift reaction (in absence of the
true model)

In all the three examples presented before, the model used to
perform the simulations and generate the “experimental data”
(the true model) was one of the analyzed rival models. In this
forth example, discrimination among rival kinetic models for

the WGSR is considered again, as described in the Example 3.
However, although Model 1 is used to generate the “experimen-
tal data”, it is not included in the set of plausible rival models.
Therefore, the set of model candidates does not include the true
model. The initial set of experiments used in this example was
the same one used in Example 3 (Table 10). The Z parameter
was allowed to assume the values 0, 1 and 5. Although Model
1 was excluded from the set of possible models, the nomencla-
ture used to represent the models was the same one presented
in Eqs. (23.a–m).

Tables 17 and 18 show the designed experiments and the
relative model probabilities obtained when Z was set to 0.



5804 M. Schwaab et al. / Chemical Engineering Science 61 (2006) 5791–5806

Table 19
Sequentially designed experiments in Example 4 with Z = 1

Run pCO pH2O pCO2 pH2 r (×103) R (m, n)

9 1.00 0.45 0.30 0.35 6.135 16.4 (3,5)
10 0.05 1.00 1.00 0.75 0.250 30.9 (3,6)
11 1.00 1.00 1.00 1.00 7.646 10.6 (9,11)
12 0.15 0.10 0.05 0.05 2.373 3.0 (2,3)
13 1.00 0.15 0.05 0.05 3.868 3.9 (2,11)
14 1.00 1.00 0.50 1.00 8.796 3.6 (3,7)
15 1.00 1.00 1.00 0.50 8.789 3.1 (3,8)
16 0.05 1.00 0.05 0.05 5.729 2.1 (3,11)
17 0.10 0.45 0.05 0.05 5.891 2.2 (2,3)
18 1.00 1.00 0.20 0.25 14.022 5.0 (3,8)
19 1.00 1.00 0.05 0.05 18.786 2.7 (2,3)
20 1.00 0.15 0.05 0.05 3.054 3.9 (2,3)
21 0.25 1.00 0.05 1.00 6.231 21.3 (2,7)
22 0.10 1.00 1.00 0.05 2.265 4.9 (2,11)
23 0.10 0.30 0.05 0.05 3.885 1.3 (2,8)
24 0.05 0.30 0.05 0.05 – 0.7 (2,8)

Table 20
Relative probabilities of the models along the sequentially designed experiments in Example 4 with Z = 1

Run P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

8 12.1 15.7 0.8 10.4 5.5 9.7 8.2 10.5 1.7 15.7 8.9 0.9
9 14.8 17.3 0.0 0.0 4.5 11.7 10.3 12.2 0.6 17.7 11.0 0.0

10 19.8 22.4 0.0 0.0 0.0 13.7 12.0 13.6 0.0 14.8 3.6 0.0
11 31.7 30.0 0.0 0.1 0.0 7.4 6.8 3.9 0.0 13.2 6.9 0.0
12 17.8 34.6 0.0 0.1 0.0 8.1 7.9 3.9 0.0 17.9 9.6 0.0
13 18.3 39.9 0.0 0.0 0.0 8.5 9.0 3.7 0.0 9.0 11.7 0.0
14 20.3 38.0 0.0 0.0 0.0 3.5 10.5 4.2 0.0 10.9 12.6 0.0
15 18.6 37.5 0.0 0.0 0.0 4.7 5.7 5.2 0.0 13.6 14.7 0.0
16 23.7 42.3 0.0 0.0 0.0 3.6 8.5 0.0 0.0 18.7 3.3 0.0
17 24.5 45.0 0.0 0.0 0.0 3.0 9.4 0.0 0.0 17.5 0.7 0.0
18 33.0 31.0 0.0 0.0 0.0 4.5 12.0 0.0 0.0 19.5 0.0 0.0
19 38.5 18.8 0.0 0.0 0.0 3.3 16.5 0.0 0.0 22.9 0.0 0.0
20 50.3 4.6 0.0 0.0 0.0 5.3 23.5 0.0 0.0 16.4 0.0 0.0
21 51.6 4.7 0.0 0.0 0.0 0.0 25.6 0.0 0.0 18.1 0.0 0.0
22 57.8 6.3 0.0 0.0 0.0 0.0 31.2 0.0 0.0 4.7 0.0 0.0
23 54.6 6.5 0.0 0.0 0.0 0.0 33.7 0.0 0.0 5.2 0.0 0.0

After exclusion of Model 1 from the set of model can-
didates, the designed experiments (Table 17) became differ-
ent from the ones presented in Example 3 (Table 11). Af-
ter the execution of 18 designed experiments (run 26) only
Models 2 and 3 presented relative probabilities higher than
2.5%. The sequential procedure was halted at this point be-
cause no further discrimination would be possible between
these two models. It is interesting to observe that Models 2 and
8 were the last ones to be discarded in Example 3, when Z was
set to 0.

The results obtained when Z is set to 1 are presented in
Tables 19 and 20. These tables show that the sequential
procedure is halted after 15 additional experiments (run 23)
without discrimination among Models 2, 3, 8 and 11. The last
designed experiment (run 24) is selected for discrimination be-
tween Models 2 and 8 (Table 19), which are the models with the
highest relative probabilities. However, further discrimination

is not possible because R becomes lower than 1. The results
obtained when Z is set to 5 (Tables 21 and 22) are similar to
the ones obtained when Z is set to 1 (Tables 19 and 20) and the
sequential procedure is halted after 14 additional experiments
without discrimination among Models 2, 3, 8 and 11.

In the last two cases, with Z set to 1 (Tables 19 and 20) and
5 (Tables 21 and 22), the number of remaining models at the
end of the discrimination procedure was higher then observed
in the case with Z set to 0 (Tables 17 and 18). Besides, the total
number of designed experiments when Z is set to 0 was higher
than in the other cases. When the Z value is set to 0, the rela-
tive model probabilities are not taken into consideration during
the discrimination procedure and experiments are designed for
discrimination between models that present low relative proba-
bilities. This allows for fast elimination of these “bad” models.
However, when Z is different from 0, models with low rela-
tive probabilities exert a minor impact on the discrimination
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Table 21
Sequentially designed experiments in Example 4 with Z = 5

Run pCO pH2O pCO2 pH2 r (×103) R (m, n)

9 0.05 1.00 0.15 0.10 4.443 2.5 (3,11)
10 0.05 0.30 0.05 0.05 3.266 3.4 (2,11)
11 0.35 1.00 0.35 1.00 6.735 4.5 (7,11)
12 1.00 1.00 0.90 0.45 8.964 5.0 (3,8)
13 0.05 1.00 1.00 1.00 0.103 4.0 (3,12)
14 1.00 0.50 0.10 0.05 10.785 2.0 (3,11)
15 0.20 1.00 0.10 0.10 12.467 1.9 (3,9)
16 1.00 1.00 0.20 0.20 15.397 2.9 (2,3)
17 1.00 0.15 0.05 0.05 4.449 3.9 (2,3)
18 1.00 0.15 0.05 0.05 2.991 3.0 (2,3)
19 0.10 0.50 0.05 0.05 6.345 2.3 (2,3)
20 1.00 0.10 0.50 0.50 1.747 2.7 (2,3)
21 0.15 0.95 0.05 1.00 4.471 8.1 (2,7)
22 1.00 0.10 0.50 0.50 0.113 2.7 (2,3)
23 0.05 0.30 0.05 0.05 – 0.3 (2,8)

Table 22
Relative probabilities of the models along the sequentially designed experiments in Example 4 with Z = 5

Run P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

8 12.05 15.67 0.78 10.35 5.54 9.69 8.23 10.47 1.72 15.72 8.92 0.86
9 16.04 14.77 0.28 0.01 5.31 12.11 11.43 10.46 2.68 14.90 11.97 0.04

10 11.94 16.18 0.07 0.00 4.39 13.03 12.61 10.42 2.54 16.91 11.90 0.00
11 17.08 19.26 0.05 0.00 0.48 3.62 17.25 4.26 0.80 20.52 16.66 0.00
12 11.22 22.37 0.10 0.01 0.75 4.86 7.93 5.71 0.00 25.70 21.36 0.00
13 15.91 32.23 0.25 0.02 0.00 6.86 12.19 1.61 0.00 28.15 2.78 0.00
14 15.71 36.74 0.00 0.03 0.00 6.83 15.05 0.00 0.00 25.49 0.14 0.00
15 21.60 43.01 0.00 0.01 0.00 10.03 19.62 0.00 0.00 5.73 0.00 0.00
16 19.92 47.35 0.00 0.00 0.00 7.63 16.34 0.00 0.00 8.76 0.00 0.00
17 19.61 48.08 0.00 0.00 0.00 7.07 14.73 0.00 0.00 10.51 0.00 0.00
18 30.81 26.09 0.00 0.00 0.00 12.00 23.72 0.00 0.00 7.39 0.00 0.00
19 30.01 22.27 0.00 0.00 0.00 13.53 25.58 0.00 0.00 8.61 0.00 0.00
20 30.97 18.03 0.00 0.00 0.00 14.63 26.54 0.00 0.00 9.82 0.00 0.00
21 38.92 23.98 0.00 0.00 0.00 0.00 33.34 0.00 0.00 3.75 0.00 0.00
22 47.43 6.66 0.00 0.00 0.00 0.01 41.16 0.00 0.00 4.75 0.00 0.00

procedure. This allows for fast identification of discrimination
problems, which explains the lower number of experiments in
the last two sequences of experiments and, as a consequence,
the higher number of model candidates at the end of the dis-
crimination procedure. The interesting point here is to observe
that the use of higher Z values lead to faster identification of
discrimination problems and the absence of a best true model
in the set of model candidates.

4. Conclusions

A new model discrimination procedure is proposed here,
which makes use of the model probabilities based on the �2-
distribution. It also makes use of Tsallis’ concept of entropy,
introducing the parameter Z that controls the degree of risk that
the analyst is ready to accept. This procedure is an improved
version of the one developed by Oliveira (1997) and used by
Dariva et al. (1998).

Differently from Box and Hill’s work, the discrimination
procedure proposed herein does not depend on the particular

sequence in which the experiments are executed. The relative
probabilities of each model are calculated directly from the
maximum likelihood estimator, which assembles all informa-
tion to generate an approximate �2- statistic.

Large experimental and predictions variances are always of
major concern. As clearly shown in Example 1, this effect be-
comes more critical whenever rival models have similar re-
sponses or many adjustable parameters. Nevertheless, other ap-
proaches are also limited by this fact.

Experimenter is prompted to review his experimental setup if
the R-criterion fails. It is possible to overcome this drawback by
extending the experimental region beyond its original bounds,
or by refining the experimental technique in order to reduce the
experimental error.

The Z-value gives flexibility to the procedure such that when
the experimenter feels confident in the progress of the sequen-
tial design, fewer experiments will be necessary to confirm his
results. On the other hand, a conservative position will delay
the procedure until more information validates one particular
model.
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In all experimental problems analyzed in our group until
now (Oliveira, 1997; Dariva et al., 1998 and this work), values
of Z in the range 0 < Z < 5 always led to similar conclusions.
Therefore, it seems that the use of large Z values should be en-
couraged, as shown in Example 3 of this work. One should be
aware, however, that conclusions could be made based on few
experiments and the risk of these conclusions can be prema-
ture. Anyway, statistical tests can be always used to check the
conclusions in each stage of the discrimination procedure.

Notation

D value of design criteria
Dm,n value of design criteria between models m and n
K, k model parameters in Examples 1, 2 and 3
Keq equilibrium constant in Example 3
M number of models in discrimination procedure
N number of experimental data points
NPm number of parameters in model m
NY number of response variables
pm probability density function defined by Eq. (6)
Pm relative probability of model m defined by Eq.

(16)
Pm,N probability of model m after N experimental ob-

servations
r kinetic rate in Example 3, mol g−1 s−1

Rm,n ratio between models divergence and prediction
variances of model m and n

S entropy defined by Eq. (3)
SSm sum of squares for model m defined by Eq. (14)
T temperature, K
V variance–covariance matrix of experimental er-

rors
Vm variance–covariance matrix of predictions by

model m
Vm,n variance–covariance matrix defined by Eq. (12)
x vector of independent variables
ŷm vector of predictions by model m
Z discrimination procedure parameter

Greek letters

� significance level
� approach to equilibrium, defined by Eq. (24)
�2 variance of experimental response
�2

m variance of prediction by model m
� degrees of freedom
�m model adequacy defined by Eq. (15)
�2 chi-square probability density function
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