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Abstract-The equations used to design experiments for parameter estimation are modified to take relative 
uncertainties in model parameters into consideration. It is shown that parameter-oriented design criteria 
(SC, SSC, @TC) are slightly changed by this relative formulation, while prediction-oriented design criteria 
(VC, WC, YTC) remain the same. It is also shown that parameters obtained using the relative method are 
generally associated with the smallest relative uncertainties and have a more uniform distribution of relative 
deviations. The relative B-trace design criterion seems to be the best criterion for sequential experimental 
design for parameter estimation among those criteria analysed. 

INTRODUCTION 

In a previous paper, Pinto et al. (1990) presented 
a general view of the area of sequential experimental 
design for parameter estimation. In this work they 
introduced two novel strategies and analysed the per- 
formance of six different design criteria when applied 
to three different problems. The criteria studied were 
the simple volume (SVC), the volume (VC), the simple 
shape @SC), the shape (SC), the B-trace ( DC) and the 
y-trace (YTC) design criteria. According to the results 
obtained and to the analysis performed, the authors 
concluded that the p-trace design criterion was the 
best among them. Pinto et al. (1990) showed in par- 
ticular that most of the time the use of simple design 
criteria cannot be justified, because they lead to less 
significant parameters and are computationally equi- 
valent to the others. The authors also showed that 
prediction-oriented methods, such as the volume and 
y-trace design criteria, may lead to worse model pre- 
dictions since parameter estimates may be obtained 
with significant bias. 

The main objective of this paper is to reformulate 
the general approach to the parameter estimation 
problem presented by Bard (1974) in terms of the 
relative uncertainties in the model parameters and to 
verify the results presented by Pinto et al. (1990) under 
these new conditions. It is shown that parameter- 
oriented design criteria, such as the shape and /?-shape 
design criteria, are slightly changed by the relative 
formulation while prediction-oriented design criteria 
remain the same. 

THEORY 

Let 

y = f(x, fl (1) 

be the functional relationship between the output 
variables, vi (i = 1, . , n) and the input variables 
x.(u=l,... , m) and a set of parameters 8, (4 = 1, 
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. . . , p), where y, x, and p are respectively n-dimen- 
sional, m-dimensional and p-dimensional real vectors 
and f is an n-dimensional vector of real smooth 
functions. 

Let G,, (&, Vi) be a Gaussian distribution that rep 
resents the present knowledge of /?, after j experiments. 
If 1 additional experiments are now performed and if 
G;,(O, VI,) is a normal distribution that represents 
experimental deviations sir, where sk is given by 

e& = yk - f(xk, jj) 12) 

and xk and yk are measured in the kth experiment 
(k =j + I,. . . , j + I), then the new Gaussian distri- 
bution G, a_soc$ted with the parameter vector lp will 

be- G~,+~(~,+r,Vj+t), where Vj+r is the posterior 
covariance matrix of parameter, approximated by 
(Bard, 1974) 

II 

j+l 1 -I ?,+r Z c B:V,‘Bk +V,-’ (3) 
k=j+l 

where Bk = [bi,] is the sensitivity matrix evaluated at 
x = xk and fi = &, with 

Therefore, we may write 

Vi+1 = Vj+,(Xj+ 1,. 1 . , xj+I). (5) 
A 

The posterior covariance matrix V,+, is symmetric, 
positive-definite and can be associated with the hy- 
perellipsoid in the parameter space 

^ 1 
KB - h+rFVi;:(P - &+,)I < z (6) 

where z depends on the number of degrees of freedom, 
the confidence level and the experimental error (Bard, 
1974). This region in the parameter space is the joint 
confidence region-the greater this region, the smaller 
the confidence in the estimated parameters. 

The basic idea of Box and Lucas (1959) and Box 
and Hunter (1965) was to perform the 1 experiments 
that would minimize the volume of the hyperellipsoid 
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defined by eq. (6). Defining and 

iij+l = P,:+~,oj+tP,>‘,. 

and 

rBj+l 1 

(8) 

Bard (1974) shows that it is equivalent to carrying out 
the I experiments that either 

(a) maximize det (B’rn- iB’ + V,: l), or 
(b) maximize det(n + B’VjB’r). 

This is the volume design criterion. With additional 
assumptions (Pinto et al., 1990), it can be concluded 
that the best set of I experiments is that which 
maximizes det B”B’. This is the simple volume design 
criterion. 

Hosten (1974) proposed that the chosen set of 
e_xperiments should minimize the largest eigenvalue of 
Vj+l, so that the confidence region would be as round 
as possible. If Vi+! is calculated from eq. (3), this 
criterion will be called the shape design criterion. If 
the eigenvalues are computed from the matrix B’rB’, 
according to Hosten’s original scheme, it will be called 
the simple shape design criterion. 

Pinto er ni. (1990) proposed that the best set of 
experiments should be that which maximizes the sum 
of the eigenvalues of 6. 
maximizing the trace of g.” 

Since it is equivalent to 
,+1, it was called the /l-trace 

design criterion. They also showed that maximization 
of the sum of the eigenvalues of B’VjB’r, so that the set 
of output variables is placed in the least known region 
of the output space, could be computationally advant- 
ageous and equivalent to the VC. This criterion was 
called the y-trace design criterion. 

Equation (6) can be rewritten as 

where P, + l is a diagonal matrix of parameters defined 
hv 

a-,==*, i,q= l,...) p BiBg (14) 

and uiq is the covariance between the ith and qth 
parameters after j + I experiments. 

The vector rj+I is a vector of relative deviations or 
relative uncertainties in the parameters of the model. 
Its elements are given by 

Therefore, there exists a hyperellipsoid in the space 
of relative deviations that represents the present 
knowledge of the parameters. It can be obtained from 
the original hyperellipsoid in the parameter space 
after some proper transformations, according to eqs 
(9)-( 15). The new hyperellipsoid is centered at the 
origin and can be completely different from the 
original one. 

Combining eqs (3) and (13), an approximation of 
Ri+l can be written as j+r -1 

Rj+i E Py+\ 
[ 

c B;V,iBk + V,Ti 1 P,Zl , 
k-j+1 

(16) 
Equation (16) can be rearranged to yield 

Rj+t z 1 tPj+rBTV,lBJ’j+r) 
[ 

j+i 

r=j+ 1 

-’ + Pj+lVj”Pj+i 1 (17) 

j+l 1 -1 

R,+I z c S;V, ‘Sk + Rj i (18) 
k=j+l 

where 

Sk = BhPj+r z BkPj. (19) 
The approximation used in eqs (18) and (19) implies 

that the elements of the matrix P are ( &)j. Equation 
(18) is very similar to eq. (3), where V was replaced by 
R and B by S. Sk = [a] is the matrix of relative 
sensitivities computed at x = X~ and J? = bj, with 

-, 

(10) 
aA afi 

Siq=&8'=&, i=l,..., n q=l,..., p. 

Equation (9) can be cast in the form 

IrjTtlii,'+\rj+ll <Z 

where 

rj+r = P,::l(/J - bj+,) 

(20) 
According to eq. (20), it can be said that S, carries 

(11) much more information about the model parameters 
than does B,, since relative sensitivities may be 
compared to each other no matter how large or how 

(12) small the parameters are. 
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It is now proposed that a,+., and eq. (18) be used to 
design experiments for parameter estimation instead 
of qj+t and eq. (3), since it seems more reasonable 
to obtain parameters with equivalent relative un- 
certainties than with equivalent absolute uncertain- 
ties. For example, the set of parameters (0.1 + 0.04, 
1.0 + 0.4) may be considered better evaluated than 
the set (0.1 + 0.2, 1.0 + 0.2) most of the time. The six 
different design criteria presented before will be used 
to analyse this proposal. 

PRELIMINARY ANALYSIS 

It can easily be shown that if the model parameters 
have approximately the same value the results 
obtained will be the same, no matter which method, 
“absolute” [eq. (3)] or “relative” [eq. (IS)], is used. 
The same cannot be said when the magnitude of at 
least one of the parameters is different from the mag- 
nitudes of the others [see Appendix]. Thus, the relat- 
ive method may be considered to be a proper correc- 
tion of the absolute method to take into account that 
the uncertainties of parameters with different mag- 
nitudes cannot be compared directly. 

If the relative method is used and the VC is chosen 
as the proper criterion, it can be written that 

det @j + t = det P,,2, det vj + 1 det Pi;, (211 

However, det P;+$ can be computed from 

detP,‘+: 2 det Pi' = fi 
[ 1 4 q=l /3, j WI 

and it does not depend on the experimental condition 
that is being analysed. Thus, if the VC is to be used, it 
does not matter which method is chosen to design the 
experiments for parameter estimation. Likewise, the 
same can be said about the WC. 

If one chooses the relative method and the YTC, we 
can write 

tr (Sj+lRjST+,) E tr(Bj+~PjPJ~‘V,PJ~‘PTB~+I) 

= tr (Bj+,VjB,‘,,). (23) 
Thus, if the YTC is to be used, it does not matter 

which method is chosen to design the experiments for 
parameter estimation. 

From the last two paragraphs it can be concluded 
that prediction-oriented design criteria cannot be 
modified to take relative uncertainties in parameters 
into consideration. This result could already be 
expected because the main concern of prediction- 
oriented criteria is to give good predictions and not to 
provide well-evaluated parameters. 

The bchaviour of parameter-oriented design cri- 
teria is quite different. For example, if the jlTC is to be 
used, we can write 

So, the minimization of tr Pi+, is an operation com- 
pletely different from the minimization of trQ,+,_ 
Depending on the differences of magnitude among the 

parameters, the minimization of tr@,+, can lead to 
experimentation in a region of the experimental grid 
far from that chosen by the minimization of tr?,+!. 
The same can be said about the SC and the SSC. 
Therefore, whenever parameter-oriented design cri- 
teria are used, it must be clearly stated which method 
was chosen for the experimental design. 

EXPERIMENTS AND RESULTS 

Three examples are presented below. The first 
example is a simulation prepared to show the main 
differences between the absolute and relative methods, 
the second is a study of the solubility of VCM (vinyl 
chloride) in PVC (polyvinyl chloride) and the third is 
a classical study of the dehydrogenation of ethanol. 

A general version of the algorithm presented by 
Anderson et al. (1978) was used for parameter estima- 
tion. A slight modification of the algorithm presented 
by Law and Bailey (1963) was used to assure con- 
vergence. 

Example 1 
Let a mathematical model be represented by 

Yl = BllXl 

Y2 = I%,. 

Supposing that this system is homoscedastic and 
that errors are normally distributed with standard 
deviations equal to u, = 0.025 and o2 = 0.25 and with 
zero mean value, a set of three experiments was gener- 
ated for PI = 1.00 and j12 = 10.0 (see Table 1) using 
the appropriate Statgraf subroutine. 

Using these experimental data, the following results 
can be obtained: 

fil = 1.017 * 0.04 (95%) 

82 = 9.973 * 0.40 (95%) 
(26) 

V 
3 

_ 3.784022 x 1O-4 

[ 

0 
0 3.784022 x lo-’ 1 ’ It can be seen that the absolute uncertainty as- 

sociated with /12 is much larger than that associated 
with bl. However, it cannot be concluded that /?I is 
better evaluated than f12 because the relative devid- 
tions are equal to 4% in both cases. 

Based on the experimental grid shown in Table 2, 
five different criteria were used to design two new 
experiments for parameter estimation with the 
absolute and relative methods. The results obtained 
are presented in Tables 3 and 4. The SVC was not 

Table 1. Initial set of experiments, example 1 

Xl Yl Y2 

O.SCCO 
1.0000 
2.ooQo 

2.0494 
1.0055 
0.47 19 

5.0198 
10.1141 
19.8662 
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analysed because it is not sensitive to changes in the 
value of x 1, since 

det BTB = 1 (27) 

det STS = p:p:. (28) 

Example 2 
Following Berens (1975), the solubility of VCM in 

PVC can be represented by 

&!M In- 
P 

=1n(l-0vz)+t7L+& (29) 
981 

v2=1 lf- i( loooP2 SN 

PI 
(30) 

SE = ;:p;y 
VCM 

s = SN + Sfl 

s+ =exp(g+g 

(31) 

where PVCM and P,, are, respectively, the partial pres- 
sure and the saturation pressure of VCM at the 
temperature T, v2 is the polymer volume fraction in 

Table 2. Experimental grid, example 1 

Xl 

0.1000 
0.2500 
0.5000 
0.7500 
1.0000 
1.3333 
2.oooo 
4.OlKm 

lO.OOW 

YI YZ 

10.0147 0.7483 
3.9832 2.5074 
1.9719 5.4336 
1.3222 7.7467 
1.0291 10.1396 
0.7981 13.1940 
0.4919 20.1519 
0.2366 39.5177 
0.0676 100.5524 

the VCM-swollen PVC phase, pI and p2 are, respect- 
ively, the densities of monomer and polymer in the 
polymeric phase, S, and SH are contributions from 
different processes to S, the global solubility of VCM 
in PVC, and x, b’ and S* are model parameters, the 
latter being temperature dependent. 

Using eqs (29)-(33) and the experimental data pres- 
ented by Berens (1975), the four unknown parameters 
(x, b’, AE, AS) were estimated. To evaluate the para- 
meters, four different design criteria were used, with 
both the relative and the absolute methods. Only the 
WC and the SSC were not used since the matrix BTB 
is singular everywhere, as can easily be shown. 

The first five experiments of all different sequences 
were the same to provide a common starting point of 
analysis (Table 5). The sequences df experiments that 
resulted from the application of each design criterion 
are presented in Table 6. The parameters evaluated 
after each sequence of experiments and the relative 
uncertainties are presented in Table 7. Table 8 shows 
the predictive capacity of each set of parameters when 
all the experiments presented by Berens were ana- 
lysed. The evolution of relative uncertainties in the 
parameters is presented in Fig. 1. 

Temperature and solubility were chosen as the in- 
dependent variables to accelerate the computational 
work. Although this choice does not agree with the 
real experimental procedure, it does not modify any of 
the general results and conclusions presented here. 

Example 3 
Experimental data on the dehydrogenation of 

ethanol, i.e. 

CH3CH20H + CH&HO + H2 (34) 

A R S 

Table 3. Experiments designed for parameter estimation, example 1 

Method of analysis 

Criterion 

!F 

vc 
YTC 
ssc 

Absolute 

4th cxp. 5th exp. 

x1 10 = 10 x1 10 = 10 

10 0.10 
10 10 

1.00 1.00 

Relative 

4th exp. 5th exp. 

x1 1.00 = 10 x1 1.00 = 0.10 

10 0.10 
10 10 

0.25 0.25 

Table 4. Results obtained after carrying out 5 experiments, example I 

Criterion B, (95%) Rel. error P2 (95%) Rcl. error 

Rel. SC. 
Abs. SSC 

YTC, 
Abs. DC 
Abs. SC 

1.0205 * 0.022 2.2% 10.0187 * 0.22 2.2% 

1.0159 * 0.034 3.4% 10.0531 * 0.055 0.55% 

vc, rel. /TTc 1.0022 * 0.008 0.8% 10.0509 + 0.08 0.8% 

Rel. SSC 0.9988 k 0.012 1.2% 9.9740 k 0.32 3.2% 
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in the presence of water vapour presented by As the reactor was approximately a PFR, the total 
Franckaertz (1963) and Franckaertz and Froment conversion could be written as 
(1964) are analysed in this example. 

s 

w r 
XT = -du, (35) 

Table 5. Initial set of experiments, a FAO 

example 2 with 

Experiments 

T WI hTM/PW 

kCPA - (PRPS/K)l r = (1 + KAPA + KRPR)Z (36) 

303 0.78 135 
313 0.38 53 
323 0.025 5.50 333 0.95 225 
343 0.060 6.85 

and 

- 
K exp 14,159.g = + 25.2681 T > (37) 

where Pi are the partial pressures, Ki are the adsorp- 

Table 6. Sequences of experiments obtained with each design criterion, example 2 

Experiments 
BTC, SC 

(abs.) vc YTC 

1 
S 
T 

45 45 45 
303 3:: 303 303 

hMIp.., 0.20 0.20 0.20 0.20 

S 7.7 4.4 8.25 55 
2 T 343 323 323 303 

PVCM i P,, 0.070 0.016 0.050 0.27 

S 7.2 202 8 162 
3 T 343 333 343 333 

PVCSJP,, 0.065 0.90 0.077 0.84 

S 98 8 55 75 
4 T 303 343 303 303 

&CM /Pm, 0.64 0.077 0.27 0.48 

S 75 2.8 162 202 
5 T 303 323 333 333 

PvcmIPaat 0.48 0.008 0.84 0.90 

Table 7. Parameter estimates and relative uncertainties, example 2 

Criterion x (95%) b’ (95%) AE (95%) AS (95%) 

BTA”d ; 
S 

flc, SC 
(Rel.) 

vc 

YTC 

1.066 & 0.089 0.235 f 0.209 
(8.3%) (88.9%) 

1.010 + 0.070 0.157 f 0.131 
(6.9%) (83.4%) 

1.012 + 0.086 0.255 + 0.286 
(8.5%) (112.2%) 

1.004 i 0.072 0.205 f 0.233 
(7.2%) (113.7%) 

12,299 + 1,324 
(10.8%) 

13,843 f 2,029 
(14.7%) 

14,118 + 2,340 
(16.6%) 

- 33.88 f 4.40 
(13.0%) 

- 39.04 + 6.56 
(16.8%) 

- 39.71 f 7.88 
(19.8%) 

13,235 & 2,505 - 36.98 f 8.37 
(18.9%) (22.6%) 

Table 8. Predictive capacity of model parameters, example 2 

Criterion lxlt IAx%l Max AX Max Ax% 

BTC, SC 
(abs.) 

BTC, SC 
(rel.) 

vc 

YTC 

0.023 0.03 1 8.0% 0.077 11.6% 

0.017 0.023 7.4% 0.075 10.9% 

0.016 0.023 7.3% 0.071 11.1% 

0.017 0.024 8.8% a.074 13.6% 
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tion constants, k is the rate constant and T is meas- 
ured in Kelvin. 

The procedure used to estimate the parameters was 
similar to that presented by Pinto et al. (1990). The 
parameters k, KA and K, were evaluated at 225”C, 
250°C and 275°C and afterwards they were expressed 
in accordance with the Arrhenius equation. At each 
temperature, the #ITC and the SC, both with the 
relative method, were used to simulate a sequential 

O7 6 

Experiment 

lOI I 

5 6 7 8 9 IO 

experimental design for parameter estimation. As in 
the previous paper, the SSC was not used since the 
matrix B’B was singular everywhere. The results ob- 
tained for sets of eight experiments are presented in 
Tables 9-15. The sequences of experiments obtained 
are presented in TabIes 10 and 11. The parameters 
evaluated are shown in Tables 12 and 13. Tables 14 
and 15 show the predictive capacity of each set of 
parameters, when all experiments carried out by 

5 6 7 8 9 IO 

Expcnment 

35 

30 
% 

25 

20 

Expenment Experiment 

Fig. 1. Evolution of relative uncertainties. Legend: ( -) flC, SC (abs.); (- - -) PC, SC (tel.); (. . .) 
YTC;(- .-.-]VC. 

Table 9. Initial set of experiments, example 3 

Temperature W/F,, P X.4 XW XR XT 

1.60 7 
0.80 4 

225°C 0.40 3 
1.00 1 

1.60 7 
0.80 4 

250°C 0.40 3 
1.00 1 

1.60 7 
0.80 4 

275°C 0.40 3 
1.00 1 

0.865 
0.865 
0.865 
0.865 

0.865 
0.865 
0.865 
0.865 

0.865 
0.865 
0.865 
0.865 

0.135 
0.135 
0.135 
0.135 

0.135 
0.135 
0.135 
0.135 

0.135 
0.135 
0.135 
0.135 

0.0 
0.0 
0.0 
0.0 

ii:): 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 

0.066 
0.08 3 
0.055 
0.1 I8 

0.149 
0.157 
0.108 
0.218 

0.254 
0.262 
0.200 
0.362 
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Table 10. Sequence of experiments obtained with relative DC, example 3 

Temperature VF,o P XA XW XR XT 

3135 

0.20 1 
1.00 1 

225°C 0.40 1 
1.00 7 

1.00 1 
0.40 1 

250°C 0.85 3 
0.60 1 

0.20 1 
4.22 1 

275°C 0.40 1 
0.20 10 

0.865 0.135 0.000 0.035 
0.672 0.145 0.183 0.048 
0.865 0.135 0.000 0.060 
0.865 0.135 0.000 0.065 

0.672 0.145 0.183 0.123 
0.865 0.135 0.000 0.111 
0.796 0.158 0.046 0.147 
0.865 0.135 O.OOtl 0.152 

0.865 0.135 0.000 0.116 
0.865 0.135 0.000 0.590 
0.865 0.135 0.000 0.196 
0.865 0.135 0.000 0.100 

Table 11. Sequence of experiments obtained with relative SC, example 3 

Temperature K’F,o P X* XW XII XT 

0.40 1 
0.80 3 

225°C 0.85 3 
1.00 1 

1.60 3 
0.20 1 

250°C 1.00 1 
0.60 1 

1.60 3 
0.20 3 

275°C 0.60 1 
4.54 1 

0.865 0.135 0.000 0.060 
0.796 0.158 0.046 0.068 
0.796 0.158 0.046 0.072 
0.672 0.145 0.183 0.048 

0.865 
0.865 
0.672 
0.865 

0.865 
0.865 
0.796 
0.865 

0.135 
0.135 
0.145 
0.135 

0.135 
0.135 
0.158 
0.135 

0.000 0.202 
0.000 0.065 
0.183 0.123 
0.000 0.152 

0.000 0.352 
0.000 0.140 
0.046 0.243 
0.000 0.600 

Table 12. Parameter estimates, example 3 

Temperature k (95%) K, (95%) K, (95%) Criterion 

225°C 

250°C 

275°C 

0.58 f 0.24 0.71 + 0.28 6.15 + 3.31 /JWZ (rel.) 
0.48 + 0.22 0.61 k 0.31 4.60 k 2.76 SC (ret.) 

0.90 f 0.12 0.54 * 0.10 3.03 * 0.64 DC (rel.) 
1.03 + 0.28 0.60 + 0.18 3.86 + 2.72 SC (rel.) 

1.77 * 0.40 0.43 * 0.13 3.05 f 1.03 BTC (rel.) 
2.33 + 0.50 0.48 kO.11 4.15 * 1.02 SC (rel.) 

TabIe 13. Parameter estimates according to Arrhenius equation, example 3 

Parameter AE (cal/mol) AS (cal/mok K) Criterion 

k’ 13,323 
17,898 

- K* 5,478 
- 2,382 

- 9,484 K, 
- 1,252 

‘k = exp (- AE/R T + AS/R). 

25.41 OTC (rel.) 
34.32 SC (rel.) 

- 11.66 pTC (rel.) 
- 5.71 SC (rel.) 

- 15.50 grC (rel.) 
0.46 SC (rel.) 
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Table 14. Predictive capacity of model parameters without using Arrhenius equation, example 3 

Temperature 

225°C 

250°C 

275°C 

Criterion - IAxrl zz T IAXTl % Max &+I Max IAxrI % 

BTC (rel.) 0.009 0.010 4.5% 0.030 6.1% 
SC (rel.) 0.007 0.010 3.7% 0.030 5.4% 

PC (rel.) 0.008 0.010 6.5% 0.030 8.4% 
SC (rel.) 0.007 0.009 7.3% 0.027 9.7% 

PTC (rel.) 0.005 0.007 10.5% 0.018 14.4% 
SC (rel.) 0.00s 0.007 9.7% 0.021 12.8% 

Table 15. Predictive capacity of model parameters on using Arrhenius equation, 
example 3 

IAxrl xi2 T IAx#/h Max lAxTl Max IAxrI% Criterion 

0.009 
0.007 

0.010 
0.008 

8.8% 
7.2% 

0.028 
0.028 

19.0% 
14.7% 

flC (rel.) 
SC (EL) 

Table 16. Relative uncertainties in model parameters, example 3 

Relative uncertainty 

Temperature k KA KR Criterion 

56% 55% 56% 
92% 47% 149% 

225°C 44% 47% 58% 
41% 40% 54% 
46% 51% 60% 

250°C 

16% 
42% 
14% 
13% 
27% 

15% 
32% 
16% 
19% 
36% 

24% 
83% 
21% 
21% 
71% 

22% 31% 33% VC, YTC 
27% 30% 59% svc 

275°C 21% 40% 26% SC, ,9TC (abs.) 
22% 30% 34% PC (rel.) 
22% 23% 25% SC (rel.) 

vc, YTC 
svc 

SC, DC (abs.) 
flC {rel.) 
SC (rel.) 

VC, YTC 
svc 

SC, L?TC (abs.) 
PC (rel.) 
SC (rel.) 

Franckaertz were analysed. Table 16 shows the 
relative uncertainties in each parameter obtained with 
the application of the different design criteria ana- 
lysed, including those studied by Pinto et nl. (1990). 

DISCUSSION 
The main objective of example 1 was to show that 

the absolute method may be inadequate to design 
experiments for parameter evaluation, since the 
relative uncertainties associated with the final estim- 
ates can be quite different. It can be seen from Table 
4 that the best parameter estimates were obtained 
with the VC and the relative PC, when final relative 
deviations were not only similar but also very small. 
However, these relative deviations for /32 were larger 
than those given by the YTC, the absolute /3TC and 
the absolute SC, showing that the concept of best 
solution is not unique. 

Example 2 was a practical application of sequential 
experimental design to a thermodynamic study. As 
can be seen from Table 6, the relative PC and the 
relative SC provided the widest exploitation of the 
experimental grid, selecting experiments leading to 
both high and low amounts of VCM in PVC. Table 
7 and Fig. 1 show that the parameter estimates given 
by the /WC and the SC, both absolute and relative, 
may be considered better than those given by VC and 
YTC, since they are associated with the smallest 
relative uncertainties. Particularly for b’, the para- 
meter which could not be properly evaluated and so 
could be considered as a good test for the criteria, the 
relative ,9TC and the relative SC gave the best results. 

As can be seen from Table 8, the predictive capacity 
of all different sets of parameters may be considered 
similar, although the results provided by the absolute 
/3TC and the absolute SC were a little poorer than the 
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others. This result could be expected because those 
criteria are parameter oriented. It must be stressed, on 
the other hand, that the relative /JTC and the relative 
SC led to predictions as good as those given by the 
prediction-oriented criteria. 

Example 3 was an application of sequential experi- 
mental design to a kinetic study and can be con- 
sidered a continuation of the work of Pinto et al. 
(1990), who analysed the absolute method. Both the 
relative /?TC and the relative SC provided a good 
exploitation of the experimental grid, selecting experi- 
ments at different pressures, with different feed com- 
position and residence times, as it can be seen in 
Tables 10 and 11. Comparing the results in Tables 
12-15 with those presented by Pinto et al. (1990), it 
can be seen that the predictive capacity of the new sets 
of parameters may be considered equivalent to that 
observed before in Pinto et al. (1990). However, with 
the use of the relative DC, the relative uncertainties 
associated with the parameter estimates were gener- 
ally smaller than those presented in the previous 
paper. The results are summarized in Table 16. 

CONCLUSION 

According to the results presented, the relative 
method may be effectively used to design experiments 
for parameter estimation. The parameters so obtained 
are expected to be associated with the smallest relative 
uncertainties (when compared with those obtained 
with the absolute method) and to have a more uni- 
form distribution of relative deviations (when the 
parameters are compared with each other). 

It can also be seen that the relative b-trace design 
criterion led almost always to the best set of para- 
meter estimates. This result is in accordance with the 
analysis presented in a previous work by Pinto et al. 
(1990), where these authors show that trace design 
criteria should be advantageous. 

It is important to notice that the use of parameter- 
oriented design criteria did not prejudice the 
predictive capacity of the models studied as already 
pointed out in the previous work. 

For all these reasons, the relative p-trace design 
criterion seems to be the best criterion for sequential 
experimental design for parameter estimation among 
those criteria analysed. 

b’ 
B 
B 
f 
F A0 
G 

G, 

k 
Ki 

NOTATION 

parameter of Langmuir isotherm 
sensitivity matrix 
matrix defined by eq. (8) 
vector of smooth real functions 
feed rate of ethanol, mol/h 
Gaussian distribution associated with ex- 
periments 
Gaussian distribution associated with the 
parameters 
kinetic constant, mol/(h g cat atm) 
adsorption constant of i, atm- ’ 

K 
m 
n 

P 
P 
pi 
P 
Pvcu 
P 881 
I 
r 

: 
ii 

9, 
s 

SN 

SH 
S 
s* 
T 
“2 
"iq 

V 
0 
V, 
X 

2 c; 
Y 

equilibrium constant, atm 
number of input variables 
number of output variables 
number of parameters 
pressure, atm 
partial pressure of i, atm 
diagonal matrix of parameters 
partial pressure of VCM 
saturation pressure of VCM 
rate of reaction, mol/(h g cat) 
vector of relative deviations of parameters 
relative deviation between the parameters 
relative covariance matrix of parameters 
posterior relative covariance matrix of para- 
meters 
relative covariance between the parameters 
global solubility of VCM in PVC, mg 
VCM/g PVC 
contribution of the normal dissolution pro- 
cess 
contribution of the hole-filling process 
matrix of relative sensitivities 
parameter of Langmuir isotherm 
absolute temperature, K 
polymer volume fraction 
covariance between the parameters 
covariance marix of parameters 
posterior covariance matrix of parameters 
covariance matrix of output variables 
vector of input variables 
total conversion of ethanol 
molar fraction of i 
mass of catalyst, g 
vector of output variables 

Greek letters 
B vector of parameters 
AX difference between measured and calculated 

values 
& vector of experimental deviations 
L. vector of eigenvalues 
l-I matrix defined by eq. (7) 

Pl density of monomer in the polymeric phase 
Pz density of polymer in the polymeric phase 
x polymer-solvent interaction parameter 

Subscripts 
A ethanol 
R etbanal 
S hydrogen 
W water 

Superscripts 
T transpose 

estimate 
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