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Abstract-Six different strategies for sequential design for parameter estimation are analysed. Two of them 
have not been described before. According to the examples studied, the B-trace design criterion, based on 
the minimization of the trace of the posterior covariance matrix of parameters, seems to be the best. This 
criterion did not present most of the drawbacks presented by the other five criteria and provided the most 
accurate parameter estimates. 

INTRODUCTION 

Experiments are normally conceived and carried out 

to establish qualitative and quantitative relationships 
among the variables of a specific problem. However, 
as experiments are often expensive and time-consum- 
ing, their choice must be somehow optimized to re- 
duce the number of experiments necessary to 
accomplish a specific task. 

Generally, the qualitative analysis of a problem is 
related to the investigation of functional relationships 
among those variables. This analysis is often called 
model discrimination. Box and Hill (1967) were the 
first to establish a formal criterion for discriminating 
among mechanistic models. An interesting review on 
this subject is presented by Hill (1978). More recent 
results are presented by Ferraris and Forzatti (1983) 
and Ferraris et al. (1984). 

When functional relationships among those vari- 
ables are already known, experiments are usually per- 
formed for some model parameters to be evaluated. 
This is the so-called parameter evaluation (or para- 
meter estimation) problem. Box and Lucas (1959) and 
Box and Hunter (1965) pioneered the formal develop- 
ment of optimal strategies for parameter estimation of 
mechanistic models. Their basic idea was to perform 
experiments sequentially, minimizing the volume of 
the confidence region formed by the estimated para- 
meters in the parameter space. Afterwards, their orig- 
inal scheme was adapted to the evaluation of a subset 
from the original set of parameters by Hill and Hunter 

(1974). 

Hill et al. (1968) presented a general criterion for 
sequential experimental design for both parameter 
estimation and model discrimination. However, ac- 
cording to Hill (1978), the method leads to worse 

parameter estimation and worse model discrimina- 
tion. 

Other design criteria for parameter evaluation were 
presented by Hosten (1974) and Pritchard and Bacon 
(1978). Hosten proposed choosing the experiment that 
would minimize the largest axis of the joint confidence 

‘Author to whom correspondence &o&d be addressed. 

hyperellipsoid, rather than minimizing its volume, as 
the next experiment to be performed. It is a shape 
design. Pritchard and Bacon proposed minimizing the 
correlation among the estimated parameters. How- 
ever, according to Agarwal and Brisk (1985), these 
methods are not better than Box and coworkers’ 
original one. 

Practical applications of some of these methods to 
kinetic studies can be found in Froment (1975), 
Froment and Bischoff (1979) and Agarwal and Brisk 
(1985). Sequential experimental designs suited to dy- 
namical systems are presented by Hosten and Emig 
(1975), Murray and Reiff (1984) and Kalogerakis and 
Luus (1984). Most of the basic theory can be found in 
Fedorov (1972). 

In this work, two new criteria, based on the original 
scheme of Box and Lucas (1959), are developed and 
compared with existing ones. The various design cri- 
teria are applied to two simple examples and to a clas- 
sical kinetic study of ethanol dehydrogenation by 
Franckaertz and Froment (1964). It is shown that 
difficulties can arise from the application of simplified 
criteria and that- better results can be obtained with 
shape designs. 

THEORY 

Let 

Y = f(% b) (1) 

be the functional relationship among the output 
variables, yi (i = 1, . . , n), the input variables, 
x, (u = 1,. . . , m), and a set of parameters, 
/I4 (4 = 1, . . , p), where y. x and /J are, respectively, 
n-dimensional, m-dimensional and p-dimensional real 
vectors, and f is an n-dimensional vector of real 
smooth functions. 

Let G,(Bj, vi) be a Gaussian distribution that 
represents the present knowledge of /I, after j experi- 
ments. If I additional experiments are now performed 
and if Gsk (0, v,,) is a normal distribution that repres- 
ents experimenta deviations e,, where sk is given by 

sk = Yk - f(xkv b^,) (2) 
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and x* and yk are measured in the kth experiment 
(k = j + 1,. _ _ , j + I), then the new Gaussian distri- 
bution G, a_ssociated with the parameter vector p will 
be G~j+~(fij+l,~j+l), where Tj+, is the posterior 
covariance matrix of parameters, given by (Bard, 
1974) 

j+l 

yj+lg 

( 

1 Bf,V,*'@,+yy' -' 

> 

(3) 
k=j+l 

where l3, = (b,) is the sensitivity matrix evaluated at 
x = x, and fI = Bj, with 

b. =af,’ 
‘4 ap,' (4) 

Therefore it may be written as 

qj+, = Ej+l(Xj+lT . . .1 Xj+l) (5) 

The posterior covariance matrix Tj+l is symmetric, 
positive-definite and can be associated with the hy- 
perellipsoid in the parameter space: 

where z depends on the number of degrees of freedom, 
the confidence level and the experimental error (Bard, 
1974). This region in the parameter space is the joint 
confidence region. The greater the region, the smaller 
the confidence in the estimated parameters. 

The basic idea of Box and Lucas (1959) and Box 
and Hunter (1965) was to perform the 1 experiments 
that would minimize the volume of the hyperellipsoid 
defined by eq. (6). As this volume is proportional to 
the square root of the determinant of yj+,, the chosen 
1 experiments must be those which either minimize 
det (tj+l) or maximize det (y;+‘,). According to Kiefer 
(1959) this criterion is a D-optimum criterion. 

If one makes 

/ Yej+l I> .‘. o\ 

and 

/ Bj+l\ 

(8) 

then eq. (3) can be written as 

Ej*l 2 [B”D_lB’+ y,:I]-I. (9) 

After some rearrangement (Bard, 1974), it follows that 

det(y,y+‘,) g det(~J’)det(~-‘)det(IJ + ~‘~j~‘). 

(10) 

Thus, the 1 experiments that must be performed are 

those which either: 

(a) maximize det(,‘t,-lF + v,:‘) 

Or 

(b) maximize det (Q + B’V.B”). _ -I- 

According to Bard (1974) the matrix 
(EJ’Q - ‘B’ + vJT ’ ) is related to the confidence in the 
parameter estimates, while the matrix (Q + B’VjFt) 
is related to the confidence in the estimated- output 
variables. From now on, both criteria (a) and (b) will 
be called the volume criterion (VC) without any dis- 
tinction, since both of them lead to the same results. 

Assuming that: 

(1) f is linear in regard to the model parameters; 

(2) VEk is diagonal, homoscedastic and does not 
depend on the experimental conditions (so it is inde- 
pendent of k); 

(3) the elements of vj are large enough; 

then it can be concluded that the best set of experi- 
ments is that set that maximizes det (B”B’). Although 
these conditions are rather restrictive, this is the cri- 
terion most often used in kinetic studies. From now 
on, it will be called the simple volume criterion (SVC). 

As the axes of the joint confidence hyperellipsoid 
generated by eq. (6) are proportional to the square 
roots of the elgenvalues of vj+l, these eigenvalues give 
a good measure of the confidence in the parameters. 
Hosten (1974) proposed that the chosen set of experi- 
ments should minimize the largest eigenvalue of Tj+ I, 
so that the confidence region would be as round as 
possible. According to Hosten, the eigenvalues should 
be computed from the matrix (I)“@‘), in accordance 
with the simplifications already described. From now 
on, this criterion will be called the simple shape cri- 
terion @SC). If eigenvalues are computed from eq. (9), 
it will be called the shape criterion (SC). 

Two modifications are now introduced. First it is 
proposed that the best set of experiments is that set 
which minimizes the summation of the eigenvalues of 
Tj+l. According to Kiefer (1959) it is an A-optimum 
criterion. If I is the vector of eigenvalues of qi+,, then 

f ,Ii = tr(bj+l). 
i=l 

(11) 

Thus, the best set of experiments is the one that 
minimizes the trace of Tj+,. From now on, it will be 
called the p-trace criterion (/3TC). It can also be con- 
sidered a kind of shape design. 

As already said, (lI + B’VjF1) is related to the 
confidence in the estimated-output variables. It is 
proposed to choose the set of experiments that maxi- 
mizes the summation of the eigenvalues of (B’VjI$*), 
so that the set of output variables is placed in the most 
unknown region of the output space, where a good 
investigation is needed. From now on, it will be called 
the y-trace criterion (YTC). 
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PRELIMINARY ANALYSES 

The greatest failure of the VC is to give excessive 
importance to that parameter to which the model is 
most sensitive. Thus, although the volume of the con- 
fidence region can be reduced faster, as a consequence 
of faster reduction of the uncertainty of one specific 
model parameter, the uncertainties of all the other 
model parameters may remain very large. Therefore, 
volume criteria are good for prediction-oriented 
studies, but not well suited for the general parameter 
estimation problem. 

As already said, the SVC is the most used in kinetic 
studies, in spite of not being very rigorous. Being 
a simple derivation of the more general VC, it has the 
same drawbacks described in the last paragraph and 
also other imperfections. From the point of view of 
sequential experimental design, the simple volume 
criterion presents the interesting property of allowing 
the design of all experiments at once, whenever good 
parameter estimates are available, since uncertainties 
do not appear in det@“&%‘). However, the method 
does not account for changes in the parameter 
covariance matrix and does not distinguish between 
experiments with different levels of experimental er- 
ror, which is certainly a major drawback. Besides, let 
the mathematical model be 

Yi =f;:(x. B) (i= 1,. ..,h) 
” (12) 

y,=b,+ c&y, (i=h+l,...,n) 
k=l 

where b, and ail, are numerical constants. In such 
a case: 

3 = k$, aik$ 
d& 

(i = h + 1, _ _ . , n) (13) 
4 

so that the partial derivatives of yi in respect to /?, are 
linear combinations of the other partial derivatives, 
when i is greater than h. When that is the case, 
det @“B’) can be singular everywhere, depending on 
the special arrangement of the number of parameters, 
number of equations and number of linear combina- 
tions in the model. If it really happens and the SVC is 
to be used, the linear equations must be discarded and 
a great amount of information is lost. It is worthwhile 
to notice that the model presented by eq. (12) is 
a generic kinetic model, where the linear equations are 
the stoichiometric relations and the mass balance 
equations. 

The SSC has most of the imperfections described 
above, except that it is not a prediction-oriented cri- 
terion. The basic goal of Hosten’s criterion is to re- 
duce the uncertainty of the most uncertain parameter 
as much as possible. Nevertheless, the predictive ca- 
pacity of the model is prejudiced to some extent. With 
SC, it is not necessary to discard information and 
uncertainties are also considered during the design of 
the next experiment. According to Agarwal and Brisk 
(1985) however, shape designs present slower conver- 
gence toward reasonable values than volume designs. 

The BTC represents a transition from volume to 

shape design, as shown in the Appendix. This criterion 
is prediction-oriented when the uncertainties of the 
parameters are not very different, but it is para- 
meter-oriented when the opposite happens, what 
seems to be a good property. Besides, if eq. (9) is used, 
it has none of the defects described before regarding 
linearity and uncertainties. It must also be stressed 
that, due to eq. (1 l), it is not necessary to calculate the 
individual eigenvalues of yj:-,, when the BTC is used. 

The YTC is completely prediction-oriented, since 
experiments are designed to reduce the uncertainty in 
the prediction of output variables. It must also be 
noticed that the YTC does not require the computa- 
tion of any determinants, eigenvalues or inverse 
matrixes. This may be particularly interesting when 
the model has a great number of parameters or when 
the time spent in model calculations is equivalent to 
or smaller than that spent in matrix manipulations. 

EXPERIMENTS AND RESULTS 

Three examples are presented now. The first and 
second experiments are simulations prepared to show 
the particular characteristics of each different design 
criterion analysed. The third example is a classical 
study on the dehydrogenation of ethanol. The general 
experimental procedure used was the following: an 
initial set of experiments was performed, parameters 
were evaluated, and, if results were not satisfactory, 
a new experiment was designed and performed. 

A general version of the algorithm presented by 
Anderson et al. (1978) was used for parameter estima- 
tion. A slight modification of the algorithm presented 
by Law and Bailey (1963) was used to assure conver- 
gence. 

Example 1 
Let a mathematical model be represented by the 

following system of equations: 

Y, = Ptlxt 
y, = pzx: (14) 

Supposing that this system is homoscedastic and 
that errors are normally distributed with a standard 
deviation equal to 0.1 and with zero mean value, the 
set of experiments presented in Table 1 was generated. 
Both sI and p2 were considered to be equal to 2.00. 

Using the experimental data presented in Table 1, 
the following results can be obtained: 

/?, = 1.8620 

a, = 2.0400 (15) 

6.0515 x lo-’ 0 
‘II, = 0 > 3.3722 x 1O-5 

It is clear from the results above that & is better 
evaluated than fil. 

If we are to use the SVC or SSC, it may be easily 
seen that the sequence of experiments depends neither 
on the parameters nor on the uncertainties. Suppos- 
ing that the experiments that may be carried out are 
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Table 1. Initial set of experiments: 
example 1 

Xl Yl Y2 

0.441 4.201 0.400 
2.116 0.960 8.571 
9.902 0.230 200.00 

Table 2. Experimental grid for 
parameter estimation: example 1 

Xl 

0.1 0.6 2.0 7.0 
0.2 0.7 3.0 8.0 
0.3 0.8 4.0 9.0 
0.4 0.9 5.0 10.0 
0.5 1.0 6.0 

those presented in Table 2, the next experiment to be 
performed must be x1 = 10.0 and x1 = 1.0, according 
to the SVC and SSC, respectively. 

In order to apply any of the other design criteria, 
some additional calculations are necessary. According 
to the VC, SC, #?TC and YTC, the next experiment to 
be performed must be x1 = 0.1. 

After performing the fourth experiment, one can 
obtain the results presented in Table 3. 

Example 2 
Let a mathematical model be represented by the 

following system of equations: 

y =Olex~t-Pp,xl) 
1' 

Xl 

Y+ =ex~(&x~Yx,. 
(16) 

Supposing that y, and y2 are measured with differ- 
ent levels of experimental error, it can be written that 

I, = CT,: Kexp( - 28,x,) ^ 
1 + a,exp( - 2/3,x1) 

(19) 

where K = o$/~i~. 
According to the SC, it is easy to see that the best 

experiment of all is that one for which 

a, =#I, 

1~cxp(2BIxI) Kexp(- 28,x1) = 
1 + 100a,exp(2B,x1) 1 + a,exp(- ig,x,)’ 

(20) 

As y, is a monotonic increasing function of x, and 
y, is a monotonic decreasing function of xl. it is 
reasonable to suppose that 

(1) K > 1, 
(2) a1 -c 1, 
(3) a2 > 1. 

Let K be equal to 2, a2 be equal to 2, and a1 be 
equal to 0.5. Then, according to the SC, if j?1 is equal 
to 2 and fi2 is equal to 0.25, the best experiment to be 
carried out is x1 = 1.1. 

According to the &trace design, the best x1 is that 
value that minimizes the function 

100expt2BIxI) 

1 + lOOa, exp (28,x,) 

+ Kexp( - %7,x1) 
1 + a2exp( - 28,x,) 

= minimum. (21) 

The solution is to use the largest x1 available for 
experimentation. 

It is easy to show that I, is constrained between 
1.96 and 2.00, and 2, between 0.67 and zero, when x1 
is greater than zero, so, when the SC is used, no 
significant improvement is obtained in the estimation 
of both /31 and p2. When the /3TC is used, no signific- 

2 
OYl 

O.OIexp(- 2S1x1) + aI 
0 

yj+l = 2 

0 b3.2 

ev(2&xx,) + a2 1 (17) 

where a1 = a~,/ts& and z2 = &/a&. 
So the eigenvalues of vj+i are 

1, = $1 
1~exp(2P1,xI) 

1 + lOOa,exp(2~,x,) 

ant improvement is obtained in the estimation of /?I; 
however, p2 can be improved significantly. If K and ad 

(18) are changed, no qualitative change is introduced in 
the analysis. 

Table 3. Results after the new experiment: example 1 

Criterion 

svc 
ssc 
vc, SC, 

FTC, YTC 

x1 Yl Y2 8, (95%) 82 (95%) 

10.0 0.214 200.05 1.8614 f 0.7 2.0190 + 0.01 
1.0 1.965 2.087 1.8772 + 0.6 2.0395 * 0.01 
0.1 19.63 0.037 1.9966 f 0.09 2.0395 k 0.01 
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Example 3 
Experimental data on the dehydrogenation of 

ethanol in the presence of water vapour presented by 
Franckaertz (1963) and Franckaertz and Froment 
(1964) are analysed in this example. 

The dehydrogenation of ethanol can be written as 

CH,CH,OH -+ CH,CHO + H,. (22) 

According to them, the unique significant parallel 
reaction was the ethanal condensation, given by 

2CH,CHO -f CH,COOC,H,. (23) 

It was observed experimentally, however, that the 
amount of ethyl acetate produced could be calculated 
from 

x, = 0.0353x, (24) 

where xT is the total conversion of ethanol, and X, is 
the fraction of ethanol converted to ethyl acetate. 

According to Franckaertz and Froment, the reactor 
model could be given by 

w r 
XT = 

s 
-do 

o FAO 
(25) 

where 

up, - (PRPSlK)l 
’ = (1 + kAPA + k,P,)’ 

(26) 

and 

K = exp[( - 14,159.9/T) + 25.26811 

T in Kelvin 

(27) 

where Pi are the partial pressures, k, are the adsorp- 
tion coefficients, and k is the rate constant. 

Among more than 500 experimental data presented 
by Franckaertz (1963), we decided to analyse those 
data obtained at 225, 250 and 275°C. Following the 
same procedure adopted by Franckaertz and 
Froment (1964), the parameters k, k, and k, were 
estimated at each of these temperatures and after- 
wards they were expressed in accordance with the 
Arrhenius’ equation. At each temperature, all of the 
design criteria were used to simulate a sequential 
experimental design for parameter estimation. The 
results obtained for sets of eight experiments are pres- 
ented in Tables 4-10 and Figs 1-3. The sequences of 
experiments that resulted from the application of each 
design criterion at each different temperature are pres- 
ented in Tables 4-6. The parameters evaluated after 
each sequence of experiments are presented in Tables 
7 and 8. Tables 9 and 10 show the predictive capacity 
of each set of parameters, when all experiments caried 
out by Franckaertz were analysed. The evolution of 
the confidence in the parameters is presented in Figs 
1-3. 

It is important to notice that we do not present 
results for the simple shape design because it intro- 
duced some numerical difficulties to the problem 
(eigenvalues of B’B were too small, because this 
matrix is singula; everywhere). In spite of this diffi- 
culty, we decided to maintain the simple volume de- 
sign. 

The first four experiments of all different sequences 
are the same, to provide a common starting point of 

Table 4. Sequence of experiments obtained with the VC and YTC: example 3 

Temperature 
WI W/F,, P 

225 

1.60 7 0.865 
0.80 4 0.865 
0.40 3 0.865 
l.00 1 0.865 
1.00 1 0.750 
0.40 1 0.865 
1.00 1 0.732 
0.40 10 0.865 

X” XW 

0.135 
0.135 
0.135 
0.135 
0.130 
0.135 
0.167 
0.135 

X#I 

0.000 
O.OCQ 
0.000 
O.COO 
0.119 
0.000 
0.101 
0.000 

XT 

0.066 
0.083 
0.055 
0.118 
0.052 
0.060 
0.052 
0.038 

1.60 7 0.865 0.135 0.000 0.149 
0.80 4 0.865 0.135 0.000 0.157 
0.40 3 0.865 0.135 o.cKMI 0.108 

250 
1.00 1 0.865 0.135 0.000 0.218 
1.00 1 0.672 0.145 0.183 0.123 
0.60 1 0.865 0.135 0.000 0.152 
0.80 1 0.672 0.145 0.183 0.106 
0.60 10 0.865 0.135 0.000 0.094 

1.60 7 0.865 0.135 0.000 0.254 
0.80 4 0.865 0.135 0.000 0.262 
0.40 3 0.865 0.135 0.000 0.200 

275 
1.00 1 0.865 0.135 0.000 0.362 
1.00 1 0.672 0.145 0.183 0.230 
0.20 1 0.865 0.135 0.000 0.118 
0.40 10 0.865 0.135 0.000 0.148 
0.40 1 0.865 0.135 0.000 0.196 
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Table 5. Sequence of experiments obtained with the SVC: example 3 

Temperature 
(“C) W/F,, P X” XW XR 

1.60 7 
0.80 4 
0.40 3 

225 
1.00 1 
1.53 
1.60 : 
1.40 1 
0.60 1 

1.60 7 
0.80 4 
0.40 3 

250 
1.00 1 
0.80 1 
0.85 1 
1.40 1 
0.80 3 

0.865 0.135 
0.865 0.135 
0.865 0.135 
0.865 0.135 
0.865 0.135 
0.865 0.135 
0.865 0.135 
0.796 0.158 

0.000 

0.000 
0.000 

0.000 
0.000 

izz 
0.046 

0.066 
0.083 
0.055 
0.118 
0.153 
0.155 
0.144 
0.064 

0.865 0.135 0.000 0.149 
0.865 0.135 0.000 0.157 
0.865 0.135 0.000 0.108 
0.865 0.135 0.000 0.218 
0.796 0.158 0.046 0.154 
0.796 0.158 0.046 0.162 
0.865 0.135 0.000 0.257 
0.865 0.135 0.000 0.154 

1.60 7 0.865 0.135 0.000 0.254 
0.80 4 0.865 0.135 0.000 0.262 
0.40 3 0.865 0.135 0.000 0.200 

275 
1.00 1 0.865 0.135 0.000 0.362 
0.60 3 0.865 0.135 0.000 0.250 
0.80 3 0.796 0.158 0.046 0.270 
0.80 1 0.796 0.158 0.046 0.290 
1.60 1 0.865 0.135 0.000 0.454 

XT 

Table 6. Sequence of experiments obtained with the BTC and SC: example 3 

Temperature 
(“C) W/F.,-,, P X,4 XW XR XT 

1.60 
0.80 
0.40 

225 
1.00 
0.20 
0.85 

250 

1.00 
0.40 

1.60 
0.80 
0.40 
1.00 
1.00 
0.40 
0.20 
0.85 

1.60 
0.80 
0.40 
1.00 

275 
0.20 
1.60 
0.40’ 
1 xi0 
1.40' 
0.W 

7 
4 
3 
1 
1 
3 
1 
1 

7 
4 
3 
1 
1 
1 
1 
3 

7 
4 
3 
1 
1 
3 
1 
4 
3 
1 

0.865 
0.865 
0.865 
0.865 
0.865 
0.796 
0.672 
0.865 

0.865 
0.865 
0.865 
0.865 
0.672 
0.865 
0.%5 
0.796 

0.865 
0.865 
0.865 
0.865 
0.865 
0.865 
0.865 
0.865 
0.865 
0.865 

0.135 
0.135 
0.135 
0.135 
0.135 
0.158 
0.145 
0.135 

0.135 
0.135 
0.135 
0.135 
0.145 
0.135 
0.135 
0.158 

0.135 
0.135 
0.135 
0.135 
0.135 
0.135 
0.135 
0.135 
0.135 
0.135 

0.000 0.066 
0.000 0.083 
0.000 0.055 
0.000 0.118 
0.000 0.035 
0.040 0.072 
0.183 0.048 
0.000 0.060 

0.000 0.149 
0.000 0.157 
0.000 0.108 
0.000 0.218 
0.183 0.123 
0.000 0.111 
0.000 0.065 
0.046 0.147 

0.000 0.254 
0.000 0.262 
0.000 0.200 
O.ooO 0.362 
0.000 0.118 
0.000 0.352 
0.000 0.196 
0.000 0.320 
0.000 0.338 
0.000 0.196 
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Table 7. Parameter estimates: example 3 

Temperature 
(“Cl k (99%) k, (95%) k, (95%) Criterion 

0.63 f 0.35 0.55 f 0.30 11.04 f 6.14 
225 0.71 _t 0.65 0.75 + 0.35 8.67 f 12.96 

0.52 + 0.23 0.64 + 0.30 5.08 f 2.96 

0.90 + 0.14 0.53 + 0.08 3.16 f 0.76 
250 1.08 k 0.45 0.53 + 0.I7 5.00 f 4.14 

0.92 k 0.13 0.55 f 0.09 3.12 & 0.66 

1.74 * 0.38 0.42 f 0.13 3.03 _t 1.00 
275 1.87 * 0.51 0.54 + 0.16 2.59 + 1.54 

1.94 k 0.42 0.51 f 0.21 3.32 f 0.89 
1.93 * 0.41 0.50 + 0.20 3.31 f 0.86 

VC, YTC 
svc 
SC, /STC 

VC, YTC 
svc 
SC, /7TC 

VC, YTC 
svc 

Table 8. Parameter estimates according to Arrhenius’ 
equation: example 3 

Parameter AE AS Criterion 

12,362 23.62 VC, YTC 
k 11,133 21.53 svc 

15,379 29.35 SC, PTC 

- 2695 - 6.55 VC, YTC 
k,’ - 4047 - 8.76 WC 

- 2727 - 6.37 SC, /ITC 

- 19,737 ~ 34.88 VC, YTC 
k,’ - 12,419 - 20.63 WC 

- 5571 - 8.04 SC, BTC 

‘k = exp( - AE/RT + AS/R). 

analysis. They were carried out at different pressures 

and residence times, but with the same feed composi- 
tion in order to simulate a common experimental 
procedure, since it is often much easier to vary press- 
ures and flow rates than feed composition. 

DISCUSSION 

The main objective of example 1 is to show that 
simple design criteria are frequently inadequate for 

experimental design. That simple example shows that 
not taking all available information into considera- 
tion may lead to much poorer results. According to 
Table 3, it is clear that simple design criteria are not 
effective for the estimation of the parameter B, be- 
cause they lead us to experiment in regions where 
output variables are not very sensitive to pi. This 
happens only because these criteria do not take confi- 
dence in the parameters into consideration. If confi- 
dence in p2 were considered, it would be concluded 
that p2 had been much better evaluated than pi and 
that experimentation in regions where output vari- 
ables were sensitive to p, would be necessary. 

It can also be seen from Figs l-3 that simple 
designs generally provide the less significant para- 
meters, despite also providing good predictions of 
output variables, as shown in Tables 9 and 10. Re- 
membering that numerical difficulties arise when ap- 
plying the SSC in the third example, as has already 
been pointed out in the preliminary analysis, and that 
simple design criteria are computationally equivalent 
to the others, it can generally be said that using them 
to design experiments for parameter estimation is not 
the best choice. 

The main objective of example 2 is to stress that the 
SC and BTC have fundamental differences, in spite of 

Table 9. Predictive capacity of model parameters without using 
Arrhenius’ equation: example 3 

Temperature 
(“C) Ax, AX; 

Maximum 

AX, Criterion 

0.006 0.005 0.019 VC, YTC 
225 0.005 0.003 0.014 svc 

0.005 0.004 0.020 SC, BTC 

0.007 0.008 0.029 VC, YTC 
250 0.006 0.005 0.019 svc 

0.008 0.008 0.029 SC, BTC 

0.009 0.010 0.031 VC, YTC 
275 0.010 0.012 0.026 svc 

0.010 0.012 0.03 1 SC, BTC 
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Fig. 3. Evolution of confidence limits of k,. (- ) y-trace design and volume design, (- - - -) simple 
volume design, (_ _ .) B-trace design and shape design. 

leading many times to similar sequences of experi- other parameters considerably. In such a case, esti- 
ments. When a general parameter estimation problem mates will converge much slower to satisfactory re- 
is somehow controlled by a parameter that cannot be suits and a longer sequence of experiments will be 
well evaluated, and this is the case of example 2, the necessary. If the PTC is used instead, the other para- 
usage of the SC can prejudice the estimation of all meters will be well evaluated and the convergence will 
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Table 10. Predictive capacity of model para- 
meters with the usage of Arrhenius’ equation: 

example 3 

Maximum 
Ax, Criterion 

0.014 0.020 0.057 VC, YTC 
0.007 0.009 0.023 svc 
0.007 0.009 0.026 SC, /?TC 

be faster (see Appendix). In example 2. the VC and 
j?TC provide the same results. 

Example 3 is a practical application of sequential 
experimental design to a kinetic study. It can be seen 
from Tables 4-6 that all strategies generally provided 
good exploitation of the experimental grid. Experi- 
ments at different pressures, with different feed com- 
positions and residence times were selected, no matter 
which design criterion was used. Nevertheless, it is 
important to notice that the interval of conversions 
analysed when the volume and y-trace design were 
used (Table 4) was much narrower than in the other 
cases. 

It can be seen from Table 7 and Figs l-3 that 
parameter estimates provided by the /lTC and SSC 
are almost always better than the others. From Table 
9, it can be seen that all sets of parameters can be 
considered to be equivalent to each other, if predictive 
capacity is confined to the temperature where they 
were evaluated. The same cannot be said when the 
Arrhenius’ equation is used. In this case, results pres- 
ented in Table 10 show that the VC and YTC provide 
parameters with worse predictive capacity. It seems to 
be a contradiction that prediction-oriented methods 
provide parameters with a worse predictive capacity. 
In reality, it is not only a contradiction, but it also 
happens very often. 

If one assumes that the catalytic bed is long enough, 
so that the reaction reaches equilibrium, the total 
conversion will not depend on any of the three model 
parameters. Thus, high conversions do not contribute 
very much to the parameter estimation problem. Ac- 
tually, the higher the value of k and the smaller the 
value of k,, the smaller the catalytic bed must bc for 

good parameter estimation. Besides, if it is assumed 
that the catalytic bed is very small, it can be written 
that 

rW 
x T=- 

FAO 

ax, XT 
-= 

ak k 

(28) 

(29) 

_I 

2.E 0. 

K 
(31) 

Therefore, it can be seen from Tables 4-7 and eqs 
(28)-(31) that k, is the parameter to which xT is most 

sensitive, specially at high temperatures and low con- 
versions. For such a reason, trying to reduce the 
volume of the confidence region and improve the 
predictive capacity of the model, experiments are de- 
signed mostly to reduce the uncertainty of k,. In this 
case, it means to carry out experiments at low conver- 
sions. However, it ends up biasing the results and 
reducing the predictive capacity of the model out of 
this region. 

Although these three examples constitute a very 
small set of problems and conditions, other kinetic 
studies under way have been confirming all observa- 
tions and facts presented in this article. Therefore, it 
can be said that all these phenomena are quite gen- 
eral. 

CONCLUSIONS 

Six different strategies for sequential experimental 
design for parameter estimation were analysed: the 
volume design criterion, simple volume design cri- 
terion, shape design criterion, simple shape design 
criterion, p-trace design criterion and y-trace design 
criterion. The last two criteria have not been de- 
scribed before. All design criteria but the y-trace 
and b-trace design criteria are computationally 
equivalent. 

Simple design criteria are often not adequate for 
designing experiments for parameter estimation be- 
cause they lead to less significant parameters and can 
introduce additional numerical difficulties into the 
original problem, such as singular determinants and 
ill-conditioned matrixes. 

Giving excessive importance to the parameter to 
which the model is most sensitive, prediction-oriented 
criteria (the VC and YTC) can eventually generate 
biased results and poor parameter estimates. 

When the estimation problem presents a parameter 
that cannot be well evaluated, the usage of the SC is 
inadequate because it causes poor estimation of all 
other parameters and also causes convergence to be 
too slow. 

Being able to surmount all these problems in the 
examples presented, the j?TC seems to be the best 
criterion for sequential experimental design for para- 
meter estimation among those criteria analysed. 

B 
fi, 
det( .) 
f 
F A0 

Gz 

G, 

k 
k 
K 
m 

NOTATION 

sensitivity matrix 
matrix defined by eq. (8) 
determinant of. 
vector of smooth real functions 
feed rate of ethanol, moI/h 
Gaussian distribution associated with ex- 
periments 
Gaussian distribution associated with the 
parameters 
kinetic constant, mol/h gcat 
adsorption coefficient, atm- ’ 
equilibrium constant, atm 
number of input variables 
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n 

P 
P 

pi 

r 
T 

W.) 

Y 

k. 
X 

x.2 

xT 

Xi 

w 

Y 

number of output variables 
number of parameters 
pressure, atm 
partial pressure of i, atm 
rate of reaction, mol/h gcat 
absolute temperature, K 
trace of. 
covariance matrix of parameters 
posterior covariance matrix of parameters 
covariance matrix of output variables 
vector of input variables 
fraction of ethanol converted to ethyl 
acetate 
total conversion of ethanol 
molar fraction of i 
mass of catalyst, g 
vector of output variables 

Greek letters 

B vector of parameters 
Ax absolute difference between measured and 

calculated values 
8 vector of experimental deviations 
1 vector of eigenvalues of 0 

n matrix defined by eq. (7) 

ui standard deviation associated with vari- 
able i 

Subscripts 
A ethanol 
R ethanal 
S hydrogen 
W water 

Superscripts 
t transpose ^ 

estimate 
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APPENDIX 

tr(2,+l) = 5 li. 
i=1 

(A21 

If 1, z 1 for any i(1 < i < p), then 

det(Tj+I) z Ap (A3) 

tr(yj+l> g pl. t.44) 

Therefore the shape design, volume design and p-trace de- 
sign criteria are similar when all /zs are approximately equal 
throughout the experimental grid. 

If 1, $- ,Xi for any i(2 < i < p), then 

tr(tjitl) 1 II. (A5) 

Therefore the shape design and /?-trace design criteria are 
similar when any eigenvalue is much greater than the others 
(but not constant) throughout the experimental grid. 

If any 1, is constant throughout the experimental grid, 
then 

P 
tr (Tj+ 1) g C iii + constant. 

i=2 
(A6) 

Therefore the parameter estimation will never be con- 
trolled by a poor parameter if the B-trace design criterion is 
used, because the minimum of eq. (A6) does not depend on 
A,. All parameters will be evaluated properly. 


