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Power function models are frequently used to describe rates of adsorption (as in the common Freundlich
model) and chemical reaction (for estimation of reaction orders). When power function models are used
to fit available experimental data, correlations among obtained parameter estimates are normally very
high, which may cause significant numerical problems during the estimation of the model parameters and
lead to misinterpretation of the statistical significance of final results. In this work, a reparameterization
technique is presented to allow for reduction of parameter correlations in power function models. After-
wards, the two-step parameter estimation procedure [Schwaab, M., Pinto, J.C., 2007. Optimum reference
temperature for reparameterization of the Arrhenius equation. Part 1: problems involving one kinetic
constant. Chemical Engineering Science 62, 2750–2764; Schwaab, M., Lemos, L.P., Pinto, J.C., 2008b. Opti-
mum reference temperature for reparameterization of the Arrhenius equation. Part 2: problems involving
multiple reparameterizations. Chemical Engineering Science 63, 2895–2906.] is used for optimum repa-
rameterization and estimation of uncorrelated model parameters in power function models.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Existence of high correlations among the parameter estimates
of a mathematical model can cause significant numerical problems
during the estimation of model parameters, as the minimization of
the objective functionmay become inefficient (Espie andMacchietto,
1988) and the statistical characterization of the final parameter es-
timates may lack significance (Watts, 1994). Some of these dif-
ficulties can be observed during the estimation of parameters of
power function models because of the usually very high correlations
among the obtained parameter estimates. Power function models
are commonly used in the chemical engineering field to describe
rate expressions and equilibrium conditions. Some examples are the
Freundlich equation, used to describe adsorption of gases and liquids
onto solid surfaces (Guo et al., 2006), and the well-known nth-order
reaction rate models.

Schwaab and Pinto (2007) and Schwaab et al. (2008b) have re-
cently proposed an algorithm for optimum reparameterization of the
Arrhenius equation (frequently used in kinetic models) and reduc-
tion of parameter correlations in parameter estimation problems. It
was shown that the explicit introduction of a reference tempera-
ture into the standard Arrhenius equation and the proper selection
of reference temperature values can allow for minimization (and
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sometimes elimination) of correlations among parameter estimates
and simultaneous minimization of the relative standard errors of the
parameter estimates.

In this work, a reparameterization technique is proposed in order
to allow for minimization of correlations among parameter estimates
during estimation of the parameters of power function models. The
proposed reparameterization technique is based on the definition of
a reference value, which is used to renormalize the original model
equation. First, the proposed technique is applied in a simple prob-
lem, where it is possible to derive an analytical solution for the
reference value that leads to null parameter correlations (and mini-
mum relative error content of final parameter estimates). Then, the
numerical optimization procedures proposed by Schwaab and Pinto
(2007) and Schwaab et al. (2008a,b) are used to provide the opti-
mum reference values (and, consequently, uncorrelated parameter
estimates) in a more complex numerical parameter estimation
problem, where an analytical solution cannot be derived.

2. Theoretical framework

A simple power function model can be defined as

y = kxn (1)

where x and y are the independent and the dependent measured
variables and k and n are two model parameters. The correlation
between the parameter estimates for k and n are usually very high.
In order to minimize the correlation between the two parameter
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estimates, Eq. (1) can be rewritten in reparameterized forms as

y = kref (x/xref )
n (2a)

y = exp[Aref + n ln(x/xref )] (2b)

where xref is the reference variable. (The second reparameterization
form is particularly interesting when the Arrhenius equation is also
used in the model, as it will be shown in Example 2). One must
observe that model responses are not affected by the reparameteri-
zation, since the inclusion of the reference variable leads to redefi-
nition of the model parameters, kref and Aref , as

kref = kxnref (3a)

Aref = ln(kxnref ) (3b)

Following Schwaab and Pinto (2007), when the usual least-square
minimization problem is used to provide the parameter estimates,
the correlation (�) between the two model parameters can be de-
fined as

� ∝
NE∑
i=1

− �yi
�kref

�yi
�n

= 0 (4)

where yi represents the output response at experiment i. The refer-
ence value, xref , that solves Eq. (4) leads to null parameter correla-
tion. Differentiating Eq. (2a) in respect to the model parameters:

�yi
�kref

= (xi/xref )
n = yi

kref
(5a)

�yi
�n

= kref (xi/xref )
n ln(xi/xref ) = yi ln(xi/xref ) (5b)

Eq. (4) can be rewritten as

NE∑
i=1

yi
kref

yi ln(xi/xref ) = 0 (6)

The solution of Eq. (6) gives

xref = exp

⎡
⎣NE∑
i=1

y2i ln(xi)

/NE∑
i=1

y2i

⎤
⎦ (7)

which is the reference value that allows for estimation of uncorre-
lated model parameters. It is important to emphasize that Eq. (7)
depends only on the available experimental data and can be com-
puted before the estimation of the model parameters. Although the
analytical solution presented in Eq. (7) is a particular solution for
the model form defined in Eq. (2a), it clearly shows that the proper
definition of xref can lead to the estimation of uncorrelated model
parameters.

Following Schwaab and Pinto (2007), the relative standard error
of the final parameter estimates can be defined as

e� = t(1+�)/2
NE–NP

√
s�

�
(8)

where e� is the relative error of parameter �, s� is the variance of

parameter uncertainties, t(1+�)/2
NE–NP is the t-Student distribution value

with a confidence level equal to � (always assumed to be equal to
0.95 in this work) and NE –NP represents the degree of freedom. As
presented by Schwaab and Pinto (2007), it can be easily shown that
xref also leads to minimum e�.

Eqs. (1–8) can be immediately extended to describe multivariable
power function models. In this case, however, the number of param-
eter correlations becomes larger than the number of reference val-
ues, as discussed by Schwaab et al. (2008b). Besides, it becomes very

difficult to obtain closed solutions for Eq. (7) in this case. In more
complex models, where an analytical solution cannot be obtained,
a numerical procedure must be used to minimize the correlations
among the possibly many parameter estimates. In these cases, a two-
step parameter estimation procedure can be devised, as discussed by
Schwaab and Pinto (2007) and Schwaab et al. (2008b). According to
this numerical procedure, estimation of model parameters is carried
out first, using a set of initial guesses for the reference values. Then,
the optimization of the reference values is performed during the
second step. The procedure may be repeated to overcome numerical
problems associated with the estimation of model parameters, when
the initial guesses of the reference values are poor.

3. Examples

In the following examples the parameter estimation procedure
is performed with a hybrid estimation method. The particle swarm
optimization method (Kennedy and Eberhart, 1995) is used first to
provide a set of initial guesses, which is used for fine tuning of model
parameters with the help of a Gauss–Newton procedure (Noronha
et al., 1993), as described by Schwaab and Pinto (2007) and Schwaab
et al. (2008a,b). The optimization of the reference variables was
also performed with the particle swarm optimization method, due
its inherent capabilities to solve complex minimization problems
(Schwaab et al., 2008a,b).

3.1. Example 1—the Freundlich equation

The Freundlich equation relates the volume of fluid that is ad-
sorbed onto a solid surface as a function of pressure, in the form

V = kPn (9)

where k and n are the Freundlich equation parameters. This equation
can bewritten in a reparametrized form after definition of a reference
pressure:

V = kref (P/Pref )
n (10)

where

kref = kPnref (11)

Eq. (10) is similar to Eq. (2a). According to Eq. (7), the optimum value
for Pref is

Pref = exp

⎡
⎣NE∑
i=1

V2
i ln(Pi)

/ NE∑
i=1

V2
i

⎤
⎦ (12)

Experimental data was obtained from Guo et al. (2006) for the ad-
sorption of carbon dioxide on activated carbon. (The data used here
correspond to Sample C at 333K.) As observed by Guo et al. (2006)
and shown in Fig. 1, the obtained fit is very good. It must be noted
that the quality of the model fit does not depend on the reparame-
terized form of the model equation. Consequently, Fig. 1 represents
the model fit for all possible reparameterizations that are based on
Eqs. (9)–(10).

In order to observe the effect of the reference pressure on the
parameter correlation and relative error of parameter estimates, the
reference pressure was allowed to vary, as shown in Figs. 2 and 3.
Fig. 2 shows that parameter correlation varies from −1. 0 to +1. 0
as Pref increases and shows very clearly that the proper definition
of the reference pressure can lead to the estimation of uncorrelated
parameters. Fig. 3 shows that the relative error of parameter n is
independent of the reference pressure and that the relative error
of parameter kref presents a minimum value at the same reference
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Fig. 1. Model fit in Example 1.
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Fig. 2. Parameter correlation as a function of Pref in Example 1.
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Fig. 3. Relative error of parameters kref (line) and n (dashed line) as a function of
Pref in Example 1.

pressure where the correlation between the parameter estimates
is null, as it might be already expected. It must be observed that
the parameter correlation approaches the value −1. 0 and that the
relative error of parameter kref increases sharply when the pressure
reference tends to 1Pa, corresponding to the non-reparameterized
model.

The optimum reference pressure calculated by Eq. (12) is equal
to 21.21MPa, leading to uncorrelated parameters and with mini-
mum relative error. Using this optimum reference pressure value, the
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Fig. 4. Confidence region of parameter estimates with non-reparameterized model
in Example 1.
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Fig. 5. Confidence region of parameter estimates with optimum reparametrization
of model in Example 1.

obtained parameter estimates for kref and n are equal to 8. 08mlSTP/g
and 0.403 for kref and n. The relative errors are equal to 1.52% for
kref and 6.77% for n. For comparison, the parameter estimates for the
non-reparameterized model (corresponding to Pref equal to 1Pa) are
0. 145mlSTP/g and 0.403 for kref and n. (These values are very close
to the ones obtained by Guo et al., 2006). The correlation between
kref and n is equal to −0. 998 in this case, while the relative errors
are equal to 27.2% for kref and 6.77% for n. The significant reduction
of the correlation between the parameter estimates can be clearly
seen in Figs. 4 and 5, where the parameter confidence regions are
shown (with a confidence level of 95%).

The parameter confidence region for the non-reparameterized
model (Fig. 4) consists in a very narrow and slightly curved surface,
indicating that parameter estimates are highly correlated. When
the optimum reference pressure is used, the parameter confidence
region becomes almost spherical, indicating that uncorrelated
parameters were estimated.

3.2. Example 2—the TPR model

This example consists in the modeling of a temperature pro-
grammed reduction experiment, generally used for catalysts charac-
terization. In this experiment the catalyst (generally, a metal oxide
supported onto an inert porous solid) is exposed to a reducible at-
mosphere (usually containing H2). As the temperature is increased,
the metal oxide is reduced into the metal state. As different oxide
species can be present in the catalyst, the rates of catalyst reduction
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can be very different at different temperatures. Modeling of this type
of experiment can allow for the proper catalyst characterization.

The model equations that describe the experimental system in-
clude a mass balance of the solid oxide species i, defined as

dNi
dt

= ri, Ni(0) = Ni0 (13)

and a hydrogen balance, defined as

v0(C
in
H2

− CH2
) −

NS∑
i=1

ri = 0 (14)

where Ni is the molar quantity of reducible species i (mol), v0 is
the volumetric flow (m3/s), CinH2

and CH2
are the inlet and outlet

concentration of hydrogen (mol/m3), NS is the number of reducible
species and ri is the rate of reduction of species i, defined as

ri = exp(Ai − Ei/RTi)Nn
i CH2

(15)

where n is the reaction order and the Arrhenius equation is used
to describe the temperature dependence of reaction rates. Using the
proposed reparameterizations, the reaction rate expression can be
written as

ri = exp

[
Arefi − Ei

R

(
1
Ti

− 1

Trefi

)
+ n ln

(
Ni

Nref
i

)]
CH2

(16)

where Arefi is related to the original parameters as

Arefi = Ai − Ei

RTrefi
+ n ln(Nref

i ) (17)

In this example, the reduction of Ni/SiO2 catalyst in H2/Ar atmo-
sphere is considered. The experimental conditions were defined as
volumetric flow of 20 cm3/min; linear heating rate of 5K/min; and
H2 inlet fraction equal to 1.64% (V/V). Additional details about cat-
alyst preparation, experimental setup procedures can be found in
Nele et al. (1999) and Bhering et al. (2002).

Based on previous experience, three different reducible species
were assumed to exist; consequently, the number of model param-
eters to be estimated from the TPR data was equal to 10: Arefi , Ei,
Ni0, (i = 1, . . . , 3) and n. Besides, it was necessary to define six dis-
tinct reference variables: three Trefi values and three Nref

i values.
Fig. 6 shows that the model adjustment to the experimental TPR data
can be regarded as very good.

The two-step parameter estimation procedure (Schwaab and
Pinto, 2007, Schwaab et al., 2008a,b) was used for optimization of
the six reference variables through minimization of the norm of the
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Fig. 6. Model fit in Example 2.

Table 1
Optimum values for the reference variables in Example 2

Reference Value

Tref1 (K) 716.2
Tref2 (K) 806.0
Tref3 (K) 908.7
Nref
1 (mol) 2. 0 × 10−4

Nref
2 (mol) 1. 1 × 10−4

Nref
3 (mol) 6. 8 × 10−6

Table 2
Parameter estimates with the reparameterized model with optimized values for Trefi
and Nref

i in Example 2

Parameter Value Relative error

N10 (mol) 0.1384 3.47
N20 (mol) 0.0842 4.98
N30 (mol) 0.0078 25.4
Aref
1 −14.87 0.26

Aref
2 −14.23 0.36

Aref
3 −17.88 2.26

E1 (kJ/mol) 445.8 3.87
E2 (kJ/mol) 369.5 11.2
E3 (kJ/mol) 563.5 28.8
n 2.82 12.0

Table 3
Correlation matrix of parameter estimates with the reparameterized model with
optimized values for Trefi and Nref

i in Example 2

N10 N20 N30 Aref
1 Aref

2 Aref
3 E1 E2 E3 n

N10 1 −0.91 −0.43 0.07 −0.07 −0.02 0.76 0.95 0.44 0.94
N20 −0.91 1 0.19 0.01 0.01 −0.01 −0.64 −0.94 −0.24 −0.84
N30 −0.43 0.19 1 −0.10 0.04 −0.17 −0.56 −0.34 −0.82 −0.54
Aref
1 0.07 0.01 −0.10 1 0.11 0.00 −0.18 −0.02 0.07 0.04

Aref
2 −0.07 0.01 0.04 0.11 1 0.10 0.16 −0.05 −0.09 0.06

Aref
3 −0.02 −0.01 −0.17 0.00 0.10 1 −0.01 −0.01 −0.12 −0.02

E1 0.76 −0.64 −0.56 −0.18 0.16 −0.01 1 0.80 0.52 0.91
E2 0.95 −0.94 −0.34 −0.02 −0.05 −0.01 0.80 1 0.37 0.94
E3 0.44 −0.24 −0.82 0.07 −0.09 −0.12 0.52 0.37 1 0.52
n 0.94 −0.84 −0.54 0.04 0.06 −0.02 0.91 0.94 0.52 1

correlation matrix of parameter estimates defined in Eq. (18), as
recommended by Schwaab et al. (2008b).

F =
NP−1∑
i=1

NP∑
j=i+1

�2
ij (18)

The optimum values obtained for the reference variables are shown
in Table 1. The minimum value for the norm (Eq. (18)) was equal to
10.28. The parameter estimates and the relative errors are shown in
Table 2 and the correlation matrix of parameter estimates is shown
in Table 3.

It must be noted that the parameter estimates and the relative
errors of parameters Ni0, Ei (i = 1, . . . , 3) and n are independent of
the reference variable values. Besides, the correlations among the
final estimates of these model parameters are also independent of
the reference variable values. Table 2 shows that the relative errors
of parameters Arefi (i = 1, . . . , 3) are very small and that correlations
involving these parameters are always very small. This shows very
clearly the improved quality of the parameter estimates obtained
after reparameterization of the power function model and of the
Arrhenius equation models.

For comparison purposes, the non-reparameterized model
(Eq. (15)) was used for parameter estimation. It must be noted
that the minimization of the objective function was very difficult
and failed several times, due the existence of very high parameter
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Table 4
Parameter estimates with the non-reparameterized model in Example 2

Parameter Value Relative error (%)

N10 (mol) 0.1384 3.47
N20 (mol) 0.0842 4.98
N30 (mol) 0.0078 25.4
Aref
1 84.03 6.73

Aref
2 66.57 13.8

Aref
3 90.17 26.4

E1 (kJ/mol) 445.8 3.87
E2 (kJ/mol) 369.5 11.2
E3 (kJ/mol) 563.5 28.8
n 2.82 12.0

Table 5
Correlation matrix of parameter estimates with the unreparameterized model in
Example 2

N10 N20 N30 Aref
1 Aref

2 Aref
3 E1 E2 E3 n

N10 1 −0.91 −0.43 0.87 0.96 0.56 0.76 0.95 0.44 0.94
N20 −0.91 1 0.19 −0.75 −0.92 −0.36 −0.64 −0.94 −0.24 −0.84
N30 −0.43 0.19 1 −0.57 −0.41 −0.84 −0.56 −0.34 −0.82 −0.54
Aref
1 0.87 −0.75 −0.57 1 0.93 0.65 0.98 0.89 0.53 0.98

Aref
2 0.96 −0.92 −0.41 0.93 1 0.55 0.85 0.99 0.42 0.97

Aref
3 0.56 −0.36 −0.84 0.65 0.55 1 0.62 0.49 0.99 0.64

E1 0.76 −0.64 −0.56 0.98 0.85 0.62 1 0.80 0.52 0.91
E2 0.95 −0.94 −0.34 0.89 0.99 0.49 0.80 1 0.37 0.94
E3 0.44 −0.24 −0.82 0.53 0.42 0.99 0.52 0.37 1 0.52
n 0.94 −0.84 −0.54 0.98 0.97 0.64 0.91 0.94 0.52 1

correlations. The parameter estimates and respective relative errors
are shown in Table 4, while Table 5 shows the correlation matrix of
final parameter estimates.

The relative errors of the parameters Arefi (i = 1, . . . , 3) presented
in Table 4 are much higher than the values obtained after optimiza-
tion of the reference variables. Also the absolute parameter correla-
tion values are very close to 1.0 for several pairs of parameters. If the
norm defined in Eq. (18) is calculated based on the correlation ma-
trix presented in Table 5, a value equal to 24.25 is found. This high
correlation explains the difficulties found during minimization of the
objective function used for parameter estimation. If only the correla-
tions involving the parameters Arefi (i=1, . . . , 3) are considered (which
are the parameter correlations that can be modified through the pro-
posed reparameterization), the average correlation among the pa-
rameters Arefi is equal to 0.74 when the non-reparameterized model
form is used, while the average correlation among the parameters
Arefi is equal to 0.06 when the reparameterized model form is used.
This shows that correlations among parameters Arefi can almost be
eliminated after proper reparameterization of the model equations.

4. Conclusions

In this work a reparameterization technique was proposed for
power function models, through introduction of a set of reference
concentration (pressure) values. In the first example it was shown
that there is an optimum value for the reference pressure that leads
to estimation of uncorrelated model parameters for the Freundlich
isotherm. In the second example, it was shown that the two-step pa-
rameter estimation procedure (Schwaab and Pinto, 2007; Schwaab
et al., 2008b) can be readily extended for complex problems that
involve several reference variables (reference temperatures and
concentrations) and contain different types of reparameterizations
(reparameterized Arrhenius and power function equations), allow-
ing for almost complete elimination of model parameter correla-
tions. Besides the significant reduction of the parameter correlation,
the simultaneous decrease of the relative error of the parameter
estimates can also be obtained.
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