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A B S T R A C T

The computation of confidence intervals frequently leads to arguable results due to lack of rigor when experi-
mental errors are analyzed in kinetic experiments. Particularly, the usual Gaussian approach may not be ade-
quate when the variable of interest is the reactant conversion, as this variable is constrained between very hard
limits: 0 and 1. For this reason, the present work focuses on the development of analytical and numerical
procedures for more accurate description of experimental errors in first-order reaction systems, which can be
eventually extended to more complex reaction processes. Based on the proposed analytical and numerical
schemes, new statistical distributions (named here as the kinetic distributions) can be derived to allow for more
appropriate representation of conversion fluctuations and the respective statistical quantities, including the
confidence intervals, which can be used more advantageously for analyses of kinetic data. In particular, it is
shown that conversion errors are heteroscedastic, going through a point of maximum when conversion is al-
lowed to increase from 0 to 1, and that confidence intervals are not symmetrical in respect to the averages, as
assumed by Gaussian analyses.

1. Introduction

Mathematical models find valuable and widespread use in the field
of catalysis. From the most fundamental theoretical aspects to the most
complex reaction systems, they are used by researchers to enlighten
reaction mechanisms, fit experimental data, and validate proposed
hypotheses [1,2]. Besides, models are used in all sorts of kinetic studies,
including very different experimental problems, such as chemical vapor

deposition of carbon nanotubes, enzymatic assays, and sewage treat-
ment [3–5].

Kinetic models depend on model parameters that are difficult (not
to say impossible) to measure and must be inferred from available ex-
perimental data. Definition of model parameters is fundamental during
model building because they describe the relative importance of dis-
tinct experimental effects on the analyzed process responses. Without
proper determination of the model parameters, models become useless.
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When the proposed study requires the evaluation of model para-
meters, it is common to estimate the unknown parameters through
minimization of an objective function (or metrics) that represents the
distance between the values predicted by the model and the values
obtained experimentally [2]. In order to formulate the objective func-
tion, it is usually necessary to postulate several simplifying assump-
tions, either to reduce the experimental load or simply because it is
impossible to know beforehand all features of a particular experimental
system. Most times, however, these assumptions are not validated or
verified, which may lead to inappropriate conclusions and parameter
values.

In order to illustrate this point, Schwaab et al. [6] showed that the
confidence region of parameter values may present very peculiar shapes
when the nonlinear behavior of model responses and experimental
measurements are considered. Such region can be quite distinct from
the hyper-ellipsoidal shape commonly assumed for confidence regions,
as obtained for linear model responses and Gaussian distribution of
measurement fluctuations. Similarly, Schwaab et al. [7–9] showed that
improper model parameterization may lead to highly correlated model
parameters, which can significantly degrade the final model perfor-
mance. Finally, it is usually assumed that fluctuation errors are constant
throughout the experimental region, even though this cannot be sup-
ported by independent error analyses, as discussed by Alberton et al.
[10].

Certainly, one of the commonest assumptions is the Gaussian dis-
tribution for the experimental fluctuations. This assumption is so pop-
ular that many do not understand that, although the Gaussian dis-
tribution is a model that may find suitable applications in numerous
situations, it may also be inadequate for the interpretation of several
other practical problems [2]. For this reason, the proper characteriza-
tion of experimental fluctuations can be of paramount importance for
correct assessment of experimental analyses and interpretation of ki-
netic models. Despite that, the detailed characterization of experi-
mental fluctuations in kinetic studies is often neglected, due to diffi-
culty to investigate how these unavoidable fluctuations depend upon
the reaction conditions, among other reasons. Particularly, the behavior
of the experimental fluctuations can be linked to specific characteristics
of the experimental system, including measuring techniques and op-
eration procedures, naturally causing this type of investigation to be
challenging [2].

As experimental fluctuations are related to uncontrolled random
causes, the proper characterization of experimental variability requires
replication of experimental trials a sufficiently high number of times
[11], discouraging the fundamental investigation of fluctuations and
explaining why certain statistical distribution models are needed and

assumed to be valid a priori during an experimental investigation.
Particularly, the Gaussian distribution is useful because it may be ap-
plied to a large array of physical problems, provides an asymptote for
problems dominated by infinitely many sources of variability and re-
quires the definition of only two parameters (mean and variance) for its
use. Moreover, the Gaussian distribution is mathematically tractable,
allowing for a number of important theoretical developments, which
include the derivation of t-Student, F-Fisher, and chi-square tests for
analyses of means and variances of experimental data samples [2,11].

When the Gaussian distribution is used to define boundaries for
conversion and selectivity measurements in kinetic studies, however,
anomalous results may be obtained. For instance, confidence intervals
may lie outside the [0,1] interval (which makes no physical sense),
because the Gaussian distribution is defined in the infinite domain,
while conversions and selectivities lie in the much narrower finite in-
terval [0,1]. An obvious conclusion is that conversion and selectivity
measurements do not follow the Gaussian distribution, although it may
be true that this distribution may provide useful fits for experimental
fluctuations in certain experimental systems.

Based on the previous paragraphs, the present work focuses on the
development of analytical and numerical procedures for more accurate
description of experimental errors in first-order reaction systems. Based
on the proposed analytical and numerical schemes, new statistical
distributions (named here as the kinetic distributions of fluctuation mea-
surements) are derived to allow for more appropriate representation of
conversion fluctuations and the respective statistical quantities, in-
cluding the confidence intervals, which can be used more ad-
vantageously for analyses of kinetic data. In order to do that, a first-
order reaction is assumed to take place in a model reacting system, as
several systems can be represented with good accuracy by first-order
reaction models. Besides, it is well known that more complex nonlinear
functions can be represented locally by simpler models, especially when
experimental fluctuations are not too large [12]. Nevertheless, as
shown in the proposed numerical development, this underlying as-
sumption does not constitute a major drawback of the proposed ana-
lysis, for the first-order reaction rate assumption can be easily relaxed
in more involving numerical analyses in order to represent more com-
plex reaction systems.

Stochastic methods are largely applied in Chemical Engineering,
both as an alternative for finding global maxima and as an elegant,
efficient way to validate simulations [13–15]. What is proposed in this
work is, though, to explore the error distributions themselves via a
stochastic approach, something that is seldom seen in the scientific
literature. This is of the utmost relevance since errors in the most
fundamental variables of the problem must have their statistical

Nomenclature

a Variability of catalytic activity
b First parameter for the variability of concentration mea-

surements
c Second parameter for the variability of concentration

measurements
Ci Concentration of species i
Ci

e Concentration of species i at equilibrium.
CA0 Initial concentration of species A
CA

m Measured value of the concentration of species A
k1 Specific reaction rate for the direction reaction
k2 Specific reaction rate for the reverse reaction
k′ Simplified specific reaction rate
k′m Measured value of k′
N Number of random numbers to be used in the numerical

procedure
NE Number of experiments

P (x )cum i Cumulative probability of variable x at point i
Sx Sample standard deviation of x
t Time of reaction
x Reaction conversion
xm Measured value of x
x Sample mean of x
εc Experimental fluctuations of concentration
εk′ Experimental fluctuations of k′
εC

(1) Error measurement at initial concentration
εC

(2) Error measurement at equilibrium concentration
εC

(3) Error measurement at sample concentration
εx Conversion fluctuations
εx Measurement bias of x
℘ (z)z Probability distribution of variable z
σa

2 Variance of a
σa Standard deviation of a
μa Mean of a
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probability density distribution properly described as a starting point
for the application of the maximum likelihood approach in parameter
estimation problems, for instance. Should this primordial error dis-
tribution (widely assumed to be Gaussian) be incorrect, all the re-
maining estimation process is tainted and the final parameters will
carry an extra level of uncertainty. It is also quite important, on the
other hand, to keep in sight that the proposed methodology does not
aim to build the “true” error distribution of the system. Nevertheless,
the fact is that this “true” distribution is not really required to perform
the error analysis, but only a fair approximation of it. Such hypothesis is
strongly supported by the widespread use of the Gaussian distribution
in several problems, despite it not being the correct error distribution of
most of them. The core idea of this work is to propose an error dis-
tribution that is more appropriate for statistical analyses of kinetic data
than other distributions, since is satisfies relevant experimental con-
straints and is derived from an actual kinetic problem. Even if it does
not describe the “true” error distribution, one must acknowledge that
such perfect distribution will never be known in a real experimental
kinetic problem anyway.

2. Conversion fluctuations in a first-order reacting system

Let a generic reaction mechanism be described by Eq. (1):

⇆A B k k; , ,1 2 (1)

where A and B represent the reactant and the product and k1 and k2
represent the specific reaction rates for the direct and reverse reactions,
respectively. If the reaction is conducted isothermally in a reaction
system without significant volume variation, the material balances can
be written as described by Eqs. (2) and (3):

= − + =dC
dt

k C k C C C; (0)A
A B A A1 2 0 (2)

= − =dC
dt

k C k C C; (0) 0,B
A B B1 2 (3)

where CA and CB are the concentrations of A and B, respectively. At the
equilibrium condition it can be stated that:
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where the superscript e represents the concentration at equilibrium.
Normalized conversion (normalized in respect to the species’ con-
centration at equilibrium) may be expressed as:
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−
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so that x is defined within the [0,1] range and describes the conversion
of A as a function of the maximum attainable conversion. Introducing
this variable into Eq. (2):

= − + +
−
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whose solution is given by Eq. (7):

= − − + = − − ′x k k t k t1 exp [ ( ) ] 1 exp ( )1 2 (7)

Solving for t and isolating CA:

= − −
+

= − −
′

t x
k k

x
k

ln(1 )
( )

ln(1 )
1 2 (8)

= − − − − ′C C C C k t( )[1 exp ( )]A A A A
e

0 0 (9)

It is important to observe that Eq. (9) involves one process response
(CA), two experimental inputs (CA0 and t) and two model parameters
(CA

e and ′k ). More complex kinetic problems will certainly involve ad-
ditional sets of response variables, input variables, and model para-
meters. In this case, an analytical solution for the model responses may

not be available, although mass balances can always provide the de-
sired solutions after implementation of suitable numerical procedures.
This is why the reader should not regard Eq. (9) as a fundamental
constraint for the proposed analysis, as numerical responses can always
provide numerical solutions for more involving kinetic models and re-
acting systems.

Even when the model is assumed to provide accurate description of
the analyzed kinetic problems (in this case, the evolution of conversions
with time), model responses and experimental measurements are not
equal due to the inevitable occurrence of measurement errors. It is
assumed here that the two main sources of experimental fluctuations
are the concentration measurements (usually via chromatographic
analyses) and the catalytic activity (due to disturbances in preparation
conditions, structure of the catalytic bed, particle morphology, among
others). These sources of fluctuation can be described according to Eqs.
(10) and (11):

= +C C εA
m

A C0 0
(1)

= +C C εA
e m
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e

C
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(3)

′ = ′ + ′k k ε ,m
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where m represents the disturbed value, ε is a measure of the experi-
mental fluctuation and the superscripts (1), (2) and (3) represent the
measurements of error at initial, equilibrium, and sample concentra-
tions, respectively. Consequently, one can write down the equation for
the normalized conversion as:
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This way, conversion fluctuations (εx) can be written in the forms of
Eqs. (13) and (14):
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Again, it is important to observe that Eq. (14) shows how mea-
surement errors are correlated with and depend on the variable inputs
and model parameters. Obviously, analytical expressions may not be
available in more involving kinetic problems, but can always be com-
puted numerically for a particular model structure and set of model
inputs and parameters.

Using Eq. (8), Eq. (14) can be rearranged as:

= − ⎧
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= − − − − +ε x x a b c(1 ){1 exp (ln(1 ) )[1 ]} ,x (16)

where parameter a describes the variability of catalytic activity and
parameters b and c describe the variability of the concentration mea-
surements, respectively. Generally, it is more difficult to control all the
many operation parameters related to catalyst preparation, catalyst bed
morphology and particle shape than to control concentration mea-
surements. As a consequence, it seems reasonable to assume that small
variations of catalyst activity control the experimental accuracy, be-
coming possible to express conversion fluctuations as a function of
catalyst activity variability (a) as:

= − − −ε x x a(1 ){1 exp [ln(1 ) ]}x (17)

When, instead, fluctuations of concentration measurements control
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the experimental fluctuations, then:

= − +ε x b c(1 )x (18)

Although Eqs. (17) and (18) are very simple, it is important to ob-
serve that conversion measurement fluctuations depend in both cases
on the conversion levels, as previously observed by Alberton et al. [10],
so that conversion variances change along the experimental region (the
system is heteroscedastic). Besides, Eq. (17) shows that there is a
nonlinear dependence between conversion and catalyst activity vari-
abilities, which should not be disregarded during the analysis of the
experimental errors. As pointed out previously, Eqs. (17) and (18) can
be relaxed to accommodate different reacting systems and hypotheses,
although analyses will have to rely on numerical computations in such
cases.

3. A kinetic probability distribution for conversion measurement
fluctuations

It is important to observe that, even when experimental fluctuations
of the fundamental variables (catalyst activity and concentration mea-
surement) can be assumed to follow the Gaussian distribution, the
equations that describe conversion measurement fluctuations indicate
that variability of conversion data do not necessarily follow the
Gaussian model. This is not surprising, as x is defined in the [0,1] range,
while the Gaussian distribution is defined in the infinite domain, as
already stated. Therefore, in order to correlate the fluctuations of cat-
alyst activity and concentration measurements to the uncertainties of x,
it can be assumed that:

℘ = ℘ε a da
dε

( ) ( )ε x a
x

X (19)

∫℘ = ℘ ℘ ∂
∂

+∞
ε c b c ε b

ε
dc( ) ( ) ( ( ; ))ε x c b x

x c
0X (20)

where ℘ z( )z is the probability distribution of variable z. Eqs. (19) and
(20) assume that the probability to find a conversion measurement in a
differential interval dx is equal to the probability of finding the catalyst
activity in the differential interval da or to the probability of finding
concentration measurements in the differential interval dc, depending
whether fluctuations of catalyst activity (Eq. (19)) or concentration
measurements (Eq. (20)) control the conversion measurement fluctua-
tions. Assuming that the normal distribution can be used to represent
uncertainties of the catalyst activity fluctuations, in the form of Eq.
(21):

℘ =
− −

a
πσ

a μ
σ

( ) 1

2
exp(

( )
2

),a
a

a

a
2 2

(21)

where σ is the variance of catalyst activity(or catalytic activity variability)a
2

μand a is its mean, then it is possible to write Eq. (19) as:

℘ =
− −

− − −
ε

πσ

a μ
σ x ε x

( ) 1

2
exp(

( )
2

) 1
[(1 ) ]ln(1 )ε x

a

a

a x2 2x
(22)

An analogous procedure can be applied to Eq. (20) when fluctua-
tions of concentration measurements control the experimental fluc-
tuations.

At this point, it is important to highlight that the Gaussian dis-
tribution presents an intrinsic limitation for representation of catalyst
activity fluctuations, as activities cannot be negative. When a becomes
smaller than −1 in Eq. (16), the reaction is indeed reversed, as the
kinetic constant ′k becomes negative (the negative fluctuation of cata-
lyst activity becomes larger than the nominal catalyst activity). For this
reason, other reference distributions can be used to describe fluctua-
tions of catalyst activities, such as the uniform distribution. Additional
information regarding the influence of the reference distribution on the
proposed numerical procedures is presented in Appendix A.

Fig. 1 presents the flowchart that describes the numerical procedure
that can be used to build the probability distribution of conversion mea-
surements (the kinetic probability distribution) due to catalytic activity
fluctuations and to define the boundaries for conversion fluctuations. In-
itially, the standard deviation for fluctuations of catalytic activity (σ )a must
be defined, assuming that the average fluctuation value is equal to zero.
Other types of variability measurements can be used, although the standard
deviation is certainly the most used measure of process variability. Then a
sufficiently large number (N) of random numbers must be generated (5000
points were used in this work), according to the appropriate reference
distribution (in the present work, unless stated otherwise, the Gaussian
distribution is used as reference – respecting the limitation that > −a 1 –,
although this assumption is not fundamental and can be easily relaxed, as
discussed in Appendix A). The next step is to compute values of awith theN
random numbers using the value for σa already defined. Then, a reference
conversion fluctuation value must be obtained, either experimentally (as
average of sampling values, as described below) or calculated with the
parameters of the distribution ( ′k and CA0). With the established values of a
and x, one must then use them to estimate the conversion deviations (ε )x
with help of Eq. (17) (or Eq. (18), if conversion fluctuations are controlled
by concentration measurement fluctuations). Finally, the cumulative kinetic
probability distribution of εx can be obtained, assuming that [2]:

Fig. 1. Procedure for definition of the kinetic probability distribution.
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Eq. (23) can be used to compute the first moments of the kinetic dis-
tribution (mean and standard deviation of x and εx) and the boundaries of
conversion values and conversion fluctuations, using the desired confidence
level (unless stated otherwise, the confidence level of 95% is used below).

Fig. 2 illustrates how the catalyst activity affects conversion fluc-
tuations, for distinct conversion values. As one might expect, as the
variability of catalytic activity increases, the magnitude of the con-
version fluctuations also increases for all reference conversion values.
However, it is important to observe that conversion fluctuations can
change considerably within the experimental range, going through a
point of maximum that depends on the fluctuations of the catalyst ac-
tivity. Besides, it is also important to notice that the nonlinear function
is not symmetric in respect to x, changing faster in the vicinities of
x = 1. Similar behavior had been observed for experimental conversion
variances in first-order reacting systems by Alberton et al. [10]. It is
very relevant to highlight that conversion fluctuations are equal to zero
at the boundaries x= 0 and x = 1, as one might expect from physical
grounds, since real conversion values cannot surpass these hard ex-
perimental constraints. (When conversion fluctuations are controlled by
concentration measurement fluctuations, they can be eventually vio-
lated by measurement of wrong concentration values).

Fig. 3 presents the cumulative kinetic distribution as a function of
εx, at the reference conversion value of 0.5 and three different levels of
catalyst activity variability. This graph displays some interesting char-
acteristics of the kinetic distribution. First of all, it can be noticed that
the cumulative distribution of εx is not symmetrically distributed
around zero, given the nonlinear nature of the correlation among the
many analyzed variables. An interesting consequence of this point is
that sample averages of experimental conversion values may be biased
and different from the real reference value, which has been completely
overlooked in previous publications and disregarded in experimental
kinetic studies. Besides, the shape of the cumulative kinetic distribution
can be significantly affected by the variability of catalyst activity, being
distorted towards higher values of ε σwhenx a increases.

Table 1 shows the boundaries of εx for a reference conversion value
of 0.5, illustrating how the asymmetrical behavior varies when σa
changes. Based on results presented in Table 1, it seems clear that
confidence regions provided by the Gaussian distribution may con-
stitute very poor approximations for conversion values obtained ex-
perimentally. Besides, Table 1 also shows that proper characterization
of experimental fluctuations must somehow take into account the nat-
ural variability of catalyst activity in kinetic studies (a more complete
list of boundary values, for different conversion levels and catalyst
variabilities, is presented in Table S1 as Supporting Data).

Table 2 displays how the first moments of the kinetic probability
distribution (mean and sample standard deviation values for conver-
sion) depend on catalyst activity variability (σ )a for several levels of
conversion (a more complete list of means and standard deviations, for
different conversion levels and catalyst variabilities, is presented in
Table S2 as Supporting Data).

4. Practical use of the kinetic probability distribution

From a practical point of view, the potential user of the kinetic
probability distribution may not be willing to perform the proposed
computations, but may be convinced at this point that confidence re-
gions might be calculated more accurately using the proposed kinetic
distribution, instead of the more usual Gaussian distribution. In this
case, it is important to observe that the user usually relies on a sample
of NE experiments, which can be used to provide experimental sample
means and sample standard deviations for the reaction conversion,
calculated respectively as:

∑=
=

x
NE

x1

i

NE

i
1 (24)

∑=
−

−
=

S
NE

x x1
( 1)

( )x
i

NE

i
1 (25)

Assuming that the standard deviation is free of error (this assump-
tion will be relaxed below), then Table 2 (or Table S2) can be used to
provide the values of the catalyst variability standard deviation σ( a) and
of the measurement bias (εx ) and Table 1 (or Table S1) can be used to
determine the boundaries for εx (and x), given a certain level of con-
fidence. It is very interesting to analyze two specific trends in Table 2.
The first one is the relationship between εx and σa. There is a shift from
negative bias values to positive ones with increasing values of σa. This
might be explained by the behavior described in Fig. 3, as the curves
starts slightly shifted towards negative values of εx and gradually move
towards positive ones. The second aspect is the expected correlation
between σa and Sx . From the original hypothesis in Eq. (17), it is sup-
posed that the experimental errors are mostly due to catalyst fluctua-
tions, so it is naturally expected that larger levels of σa generate larger
Sx .

As an example on how to use the procedure, suppose one wants to
find the confidence interval for x . Assuming that the average conver-
sion is equal to 0.80 and that the sample standard deviation is equal to
0.23 (assumed to be high on purpose, in order to magnify the size of the
confidence region), the Gaussian distribution provides the 95% con-
fidence interval of 0.34 < x < 1.26, which is physically meaningless
(x > 1). Using the proposed approach, instead, the first step is to
search Table S2 for the row with x= 0.80 and, within it, for the sample
standard deviation equal to 0.23. This corresponds to the row with
σa = 0.80. With this value at hand, the next step is to search Table S1
for its portion corresponding to x= 0.80 and σa = 0.80 and finally find
the values for the lower and upper boundaries of εx. In this particular
case, they correspond to −0.65 and 0.18 (round values), respectively.
Finally, these values are summed with x= 0.80 so that the 95% con-
fidence interval becomes 0.15 < x < 0.98, which is within the fea-
sible experimental region, as one might expect from a sound statistical
analysis of the available data. This sequence of steps is summarized in
Fig. 4. This procedure could be replicated for Sx and for x in place of x.

However, it is important to acknowledge that sample means and
sample variances are also uncertain to a certain extent. In this case,
distributions for means, standard deviations and single samples must be
devised, similarly to the standard t-Student, F-Fisher and chi-square
distributions for Gaussian distributions. In other words, it is necessary
to derive the analogous kinetic t-Student, F-Fisher and chi-square dis-
tributions. It can be very laborious to compute these kinetic distribu-
tions analytically, as variables are correlated nonlinearly and because
these distributions depend at least on three parameters: nominal con-
version, catalyst activity variability and degrees of freedom. For this

Fig. 2. Effect of catalyst activity and conversion on conversion fluctuations, in accordance
with the proposed kinetic distribution.
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reason, these distributions are computed here with help of numerical
procedures, as shown in Fig. 5.

Fig. 5 illustrates the procedure that can be used to compute the sample
kinetic distributions, which is analogous to the procedure shown in Fig. 1.
Using the sample standard deviation as reference (as calculated with Eq.
(25)), the reference variability of the catalyst activity σ( a) can be defined
with help of Table 2 (or Table S2). Then, NE sets of N random numbers
(5000 random numbers were used here) are generated. For each of these
sets, the values of a are calculated, using a reference distribution with zero
mean (respecting the lower boundary of a > −1, as discussed in Section 3
and in Appendix A). One more time, a normal distribution was used here as
reference without loss of generality. With the computed values of a, εx can
be calculated with help of Eqs. (17) or (18). Finally, the first moments of the
kinetic distribution are computed with the NE sampled values and the
boundaries for x and Sx can be defined with the desired confidence level.
Although the procedure seems laborious, it can be easily performed in
standard spreadsheets.

For illustrative purposes, Figs. 6 and 7 depict the behavior of the
cumulative probability for the distributions of deviations of x and Sx at
three distinct levels of σa, for nominal conversion of 0.5 and NE= 5.
For instance, for σa = 0.5 and confidence level of 95%, Figs. 6 and 7
may be used to obtain the upper and lower boundaries respectively of x
and Sx. The upper and lower boundary values for x (this is done by
selecting respectively Pac = 0.975 and Pac = 0.025 and then reading
from Fig. 6 the value of εx ) are 0.12 and −0.17. With help of Table 2,
the value of Sx corresponding to x = 0.5 and σa = 0.5 is 0.167 and the
upper and lower boundary values, from Fig. 7, are respectively 0.27 and
0.055. Therefore, the confidence intervals become < <μ0.33 0.62x and

< <σ0.112 0.437x . In order to use the proposed numerical approach, it
is assumed that the conversion sample mean is equal to the real un-
known conversion value, so that =x x . Although this assumption can
be regarded as a strong one, Table S2 shows that average conversion
values are relatively insensitive to measurement fluctuations, so that
this hypothesis is not thoroughly unreasonable.

5. Conclusion

The present manuscript presented a new family of non-normal error
distributions to describe fluctuations of conversion values (and se-
lectivities) in kinetic problems, named as the family of kinetic

Fig. 3. Cumulative kinetic probability distribution of εx for different catalyst activity
variabilities, for a reference conversion value of 0.5.

Table 1
Boundary values of εx as a function of catalytic activity variability (σ )a , as computed with
the kinetic and Gaussian distributions, for several nominal conversions and confidence
level of 95%.

σa = 0.5 σa = 0.7 σa = 0.9

x= 0.1 εxmin εxmax εxmin εxmax εxmin εxmax
−0.0817 0.0876 −0.0899 0.1238 −0.0902 0.1528
εnormalmin εnormalmax εnormalmin εnormalmax εnormalmin εnormalmax
−0.0862 0.0862 −0.1098 0.1098 −0.1313 0.1313

x= 0.5 εxmin εxmax εxmin εxmax εxmin εxmax
−0.3744 0.2496 −0.4249 0.3191 −0.4476 0.3602
εnormalmin εnormalmax εnormalmin εnormalmax εnormalmin εnormalmax
−0.327 0.327 −0.392 0.392 −0.431 0.431

x= 0.9 εxmin εxmax εxmin εxmax εxmin εxmax
−0.542 0.0891 −0.6771 0.0961 −0.7208 0.0986
εnormalmin εnormalmax εnormalmin εnormalmax εnormalmin εnormalmax
−0.337 0.337 −0.4037 0.4037 −0.4194 0.4194

Table 2
Relationship between catalytic activity deviation σ( )a and first kinetic moments for
conversion (εx and Sx) for a conversion of 50%.

σa εx Sx

0.1 −0.00004 0.035
0.2 −0.0044 0.071
0.3 −0.0096 0.106
0.4 −0.0094 0.138
0.5 −0.010 0.167
0.6 −0.013 0.183
0.7 −0.0026 0.2
0.8 0.0093 0.213
0.9 0.020 0.222

Fig. 4. Step-by-step instructions to apply the proposed methodology.
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distributions. The derivation of the kinetic distributions considered a
first-order reaction system, as analytical solutions can be easily devised
in this case, but the proposed analyses can be extended to more in-
volving kinetic systems in a straightforward manner with help of

numerical solutions provided by mass balance equations. Although the
Gaussian distribution finds widespread use for a number of reasons, the
fact is that confidence intervals computed with the Gaussian distribu-
tion can be physically incorrect in many kinetic problems, including
conversions outside the [0,1] range, for instance. As shown through a
number of examples, the proposed kinetic distributions can always
provide meaningful confidence intervals for conversions and selectiv-
ities. It is important to highlight that the kinetic distribution is in-
trinsically heteroscedastic and asymmetrical (differently from the
Gaussian distribution, which is symmetrical and usually relies on con-
stant variances for computations). Finally, a numerical procedure was
proposed for computation of analogous t-Student, F-Fisher and chi-
square distributions, using the kinetic distribution as reference, al-
lowing for analyses of sample means and sample variances as obtained
experimentally.
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Appendix A. Influence of the reference distribution selected to describe catalyst activity fluctuations

Eq. (17) can lead to interesting behaviors when the range of possible inputs for parameter a is enlarged. Fig. 7 shows how the responses change
when a becomes negative. The function loses its characteristic parabolic-like profile at the threshold a= −1 and diverges to increasingly negative εx
values. Observing the definition of parameter a in Eq. (16) ( = ′′a ε k/ )k , it becomes clear that a must be constrained to the interval ]−1, ∞ [. If
a ≤ −1, it means that the deviation εk′ is equal to or larger (in absolute terms) than ′k , which means that the sum ( ′k + ′εk ) is negative. This, in turn,
implies that the kinetics of the problem is reversed in respect to Eq. (1). Therefore, this lower limit for a should be respected during the generation of

Fig. 5. Procedure for definition of the kinetic probability distribution for the mean and
the standard deviation.

Fig. 6. Cumulative kinetic probability distribution for εx for nominal conversion of 0.50,
NE = 5, and distinct catalyst activity variabilities.

Fig. 7. Cumulative kinetic probability distribution for εSx for nominal conversion of 0.50,
NE = 5, and distinct catalyst activity variabilities.
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random values in the numerical procedures of Fig. 1 and Fig. 4. This can be easily accomplished if the reference distribution used for generation of
catalyst activities is defined in the feasible interval, such as the log-normal distribution and the uniform distribution.

Another feature that demands examination is the influence of the reference distribution selected to generate the catalyst activity values. While the normal
distribution is very common and quite convenient to manipulate, it is certainly not the only option and should not be regarded as the most convenient
reference a priori. Several well-known distributions could be used as references, such as the uniform, log-normal, exponential, binomial, among many others.
In order to illustrate how the selection of a different reference distribution for catalyst activities can affect the outcome of the kinetic distribution, the uniform
distribution is used for comparative purposes. In this case, the reference probability density function must be expressed as [11]:

℘ =
⎧
⎨
⎩

< <−z
z z z

otherwise
( )

, ,

0,z
z z min max

1
max min

(A1)

whose mean and standard deviation are given respectively by:

= +μ z z1
2

( )z min max (A2)

= −σ z z3
6

( )z max min (A3)

Inserting Eq. (A1) into Eq. (19), and defining parameter a as the appropriate variable, it is possible to correlate a with εx in the form:

℘ =
− − − −

ε
a a x ε x

( ) 1 1
[(1 ) ]ln(1 )ε x

max min x
x (A4)

Using the same procedure described in Fig. 1, the cumulative probability distributions for three levels of σa, at nominal conversion of 0.50, can be
generated, as displayed in Fig. A1. Even though the curves of Figs. 3 and A2 are distinct, since they were generated with different reference
distributions, it is interesting to note that the upper and lower boundaries predicted for εx, at 95% confidence level, are remarkably similar (as shown
in Table A1). Given that the normal and uniform distributions are completely dissimilar, it might be conjectured that, to an acceptable degree of

Fig. A1. Behavior of Eq. (17) for negative values of a.

Fig. A2. Cumulative kinetic probability distribution of εx for different catalyst activity variabilities, for nominal conversion of 0.5, using the uniform distribution for computation of a.

Table A1
Boundary values of εx as a function of catalytic activity variability using a normal and a uniform distribution as references for computation of a, for nominal conversion of 0.5 and
confidence level of 95%.

σa = 0.5 σa = 0.7 σa = 0.9

εxmin εxmax εxmin εxmax εxmin εxmax
−0.374 0.250 −0.425 0.319 −0.448 0.360
εunimin εunimax εunimin εunimax εunimin εunimax
−0.382 0.212 −0.441 0.276 −0.453 0.322
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numerical rigor, the distribution selected to represent the fluctuations of catalyst activity exerts relatively low impact on the final calculations
performed with the proposed kinetic distribution.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.cej.2017.09.076.
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