Universidad de la República Facultad de Ingeniería Instituto de Matemática y Estadística

Geometría y Álgebra Lineal 1 - Anual **Curso 2012**

Primer parcial Globalizador

	Apellido y nombre	Cédula de Identidad
No. Parcial		

Ejercicio 1

- 1. Se consideran los puntos $P, Q, R \in \mathbb{R}^3$ tales que P = (1, 2, 1), Q = (3, 0, -5), R = (-1, 5, -5).
 - a) Mostrar analíticamente que los puntos no estan alineados.
 - b) Hallar las coordenadas del baricentro del $\triangle(PQR)$.
 - c) Hallar $v \in \mathbb{R}^3 / v \perp \vec{PQ}, \ v \perp \vec{PR}, \ ||v|| = \sqrt{30}$ (hay dos soluciones).
- 2. Se considera el plano π de ecuación x+2y-3z-6=0.
 - a) Hallar las ecuaciones reducidas de los ejes coordenados y la intersección de π con cada uno
 - b) Hallar $\pi \cap r$ siendo $r : \begin{cases} x-z = 0 \\ 2x-y-1 = 0 \end{cases}$. Determinar un vector $w \subset \pi$ tal que $\widehat{r, w}$ sea mínimo.

Ejercicio 2

- JERCICIO 2
 1. Se considera una matriz $A_{\alpha} \in \mathcal{M}_{3\times 3}(\mathbb{R})$ tal que $A_{\alpha} = \begin{pmatrix} 1 & 0 & -2 \\ 2 & 1 & \alpha \\ 3 & -\alpha & -3 \end{pmatrix}$.
 - a) Hallar el rango de A_{α} discutiendo según $\alpha \in \mathbb{R}$.
 - b) Para todos los α / $rg(A_{\alpha}) = 2$, hallar las ecuaciones que caracterizan los espacios de columnas.
- 2. a) Probar utilizando propiedades que los siguientes determinantes valen 0:

$$\begin{vmatrix} 1 & a & b+c \\ 1 & b & a+c \\ 1 & c & a+b \end{vmatrix}, \begin{vmatrix} a & a & 2a \\ 2x & x & 2x \\ c+a & 2c+a & 4c+2a \end{vmatrix}$$

b) Probar utilizando propiedades que |A| = 5, |B| = 4 y |C| = 15 siendo:

$$A = \begin{pmatrix} 2 & 4 & 1 \\ 3 & 2 & 0 \\ 7 & 1 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 & 3 \\ 2 & -1 & 3 \\ 3 & -1 & 2 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 5 & 0 \\ 2 & 2 & 5 \\ 2 & 5 & 5 \end{pmatrix}$$