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PREFACE
To operate an electric power system reliably, and to plan its expansion properly, utility engineers perform

a variety of network studies. The most common types of network studies are

® short circuit (or fault) analysis,

® power (or load) flow analysis,

® stability analysis, and

® analysis of electromagnetic transients.
Among these, studies concerned with electromagnetic transients are probably the most complicated ones. For the
beginner, there is the difficulty of developing an understanding of the nature of electromagnetic transients in power
systems, in addition to the difficulty of learning how to simulate them with the Electromagnetic Transients Program
(EMTP). The problem is much easier for the expert, who needs only minimal advice on how to use the EMTP
properly. Both the beginner and the expert must have some understanding of the limitations and inherent errors of

EMTP simulations, however.

Thus began the writing of the original prime contractor who was paid by BPA to assemble this work, Prof.
Hermann W. Dommel of the University of British Columbia in Vancouver (Canada). More modern history can be
found in Can/Am EMTP News, the newsletter of the North American user group. Pasting from the July, 1994,

and July, 1995, issues is the following story about the conversion to computer storage:

July, 1994 : BPA EMTP Theory Book in WP 5.1

The 700-page EMTP Theory Book of BPA is being converted to WordPerfect 5.1 storage
from the crummy, old, paper copy that was submitted by Prof. Hermann W. Dommel of the

University of British Columbia (located in Vancouver, B.C., Canada) in 1987. More information



should be provided in the next (October) newsletter. Work has been started by Kwang-yi Ger,
Dr. Tsu-huei Liu's daughter, who recently finished her second year as a student of journalism at
the University of Washington in Seattle (USA). Ms. Ger is a good writer, and she knows
WordPerfect. Initially, the content of all figures will be ignored. If any reader has ideas about
how best to handle graphics of BPA's Theory Book, he is encouraged to share his understanding
with the Can/Am user group. Current thinking is that, initially, all figures might be scanned
to produce bitmaps. To avoid making this added burden mandatory, the files should be kept

external. Later, one at a time, some of these then might be replaced by vector storage.

For those readers who may have forgotten, or may never have known, Prof. Dommel signed
a contract with BPA around the end of August, 1981. Among other things (cable research by
Luis Marti), this contract provided payment of about $100K to Prof. Dommel for delivery of the
book within 4 years. Well, the 4 years passed, but the Theory Book (named Reference Manual
only for purposes of the contract) was not ready. This was around the end of August, 1985. So,
without penalty, BPA allowed Prof. Dommel another entire year. This time, the manuscript
was submitted. However, it was not yet usable because it included many pieces of intellectual
property that belonged to others, and for which the professor had not obtained permission to use.
This explains paragraph 3 of the official BPA form letter by Drs. Liu and Meyer dated June 10,
1987: "Since the early fall of 1986 when BPA received the manuscript from the contractor,
there has been an effort to obtain permission for BPA to publish all portions of the book that
were copyrighted by others. This has been completed to the satisfaction of the BPA contracting
officer, who just recently gave his approval for BPA to print this work, and to distribute copies

to others."

Back to the first paragraph. The perceptive reader might already have asked himself: convert
from paper to WordPerfect? Did Prof. Dommel never supply BPA with a computer-stored
(e.g., magnetically-stored) copy of the text? That is correct: only a paper copy was supplied by
Prof. Dommel, who claimed that his disk files somehow had been lost. So, the keying by

Kwang-yi Ger continues in West Linn.



July, 1995 : BPA EMTP Theory Book in WP 5.1

The 700-page EMTP Theory Book of BPA has been converted to WordPerfect 5.1 storage
from the crummy, old, paper copy that was submitted to BPA in 1987 by its contractor, Hermann

Dommel. The present mention is a continuation of the story in the January issue.

Kwang-yi Ger, the daughter of Drs. Tsu-huei Liu and Kai-hwa Ger, did all the non-table text
(including all equations) with some help from her mother, recall. Now, Kwang-chien Ger, the
younger son, has completed the operation by adding all figures as .TIF bitmaps. Both high-
(300 dpi) and low- (75 dpi) resolution copies were produced, and then included by WP5.1 to
convert to equivalent, compressed .WPG files. The .WPG files are stored externally, and
there are two sets. Compressed sizes of these are 2763 and 531 Kbytes, respectively. After

unzipping, these become 7091 and 1091 Kbytes.

Improved resolution of some figures is a result that may surprise the average reader.
Normally, creating a bitmap from an original results in distortion that includes loss of resolution.
But what if the original already involves substantial distortion, typically due to substantial
photoreduction? Using a photocopy machine, there is no way to recover the lost resolution. But
with computer scanning, human intelligence can be applied in the form of graphical editing of the
bitmap. The H-P software that allows this is HP Paintbrush, which Kwang-chien has been using
effectively on some figures such as 6.33 and 12.1. If some figures look significantly better than
the original printed copy that was submitted by contractor Dommel, it is because they have been

improved!

Co-Chairmen of Canadian/American EMTP User Group

Dr. W. Scott Meyer Dr. Tsu-huei Liu

The Fontaine, Unit 6B 3179 Oak Tree Court
1220 N.E. 17-th Avenue West Linn, Oregon 97068
Portland, Oregon 97232 U.S.A

U.S.A. E-mail: thliu@bpa.gov

E-mail: atp@agora.rain.com



1. INTRODUCTION TO THE SOLUTION METHOD USED IN THE EMTP

This manual discusses by and large only those solution methods which are used in the EMTP. It is therefore
not a book on the complete theory of solution methods for the digital simulation of electromagnetic transient
phenomena. The developers of the EMTP chose methods which they felt are best suited for a general-purpose
program, such as the EMTP, and it is these methods which are discussed here. For analyzing specific problems,
other methods may well be competitive, or even better. For example, Fourier transformation methods may be
preferable for studying wave distortion and attenuation along a line in cases where the time span of the study is so
short that reflected waves have not yet come back from the remote end.

The EMTP has been specifically developed for power system problems, but some of the methods have
applications in electronic circuit analysis as well. While the developers of the EMTP have to some extent been aware
of the methods used in electronic circuit analysis programs, such as TRAC or ECAP, the reverse may not be true.
A survey of electronic analysis programs published as recently as 1976 [22] does not mention the EMTP even once.

Computer technology is changing very fast, and new advances may well make this manual obsolete by the
time it is finished. Also, better numerical solution methods may appear as well, and replace those presently used
in the EMTP. Both prospects have been discouraging for the writer of this manual; what has kept him going is the
hope that those who will be developing better programs and who will use improved computer hardware will find
some useful information in the description of what exists today.

Digital computers cannot simulate transient phenomena continuously, but only at discrete intervals of time
(step size At). This leads to truncation errors which may accumulate from step to step and cause divergence from
the true solution. Most methods used in the EMTP are numerically stable and avoid this type of error build-up.

The EMTP can solve any network which consists of interconnections of resistances, inductances,
capacitances, single and multiphase m-circuits, distributed-parameter lines, and certain other elements. To keep the
explanations in this introduction sample, only single-phase network elements will be considered and the more
complex multiphase network elements as well as other complications will be discussed later. Fig. 1.1 shows the
details of a larger network just for the region around node 1. Suppose that voltages and currents have already been
computed at time instants 0, At, 2At, etc., up to t-At, and that the solution must now be found at instant t. At any
instant of time, the sum of the currents flowing away from node 1 through the branches must be

equal to the injected current i,:

() + i@ + i, @) + 150 = ;@) (1.1)
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lossless distributed para-
meter line with 2, T

Fig. 1.1 - Details of a larger network around node no. 1

Node voltages are used as state variables in the EMTP. It is therefore necessary to express the branch

currents, i,,, etc., as functions of the node voltages. For the resistance,

i) = % v, vy} (1.2)

For the inductance, a simple relationship is obtained by replacing the differential equation

v:Lﬂ
dt

with the central difference equation

W) ¢ Ay i) - i
2 At

This can be rewritten, for the case of Fig. 1.1, as

i) = %{vl(t) - vy(O) + hist 5(t-Ar) (1.3a)

with hist,; known from the values of the preceding time step,

hist j(t-At) = i,(t-At) + %{vl(tht) - v(t-An)} (1.3b)
The derivation for the branch equation of the capacitance is analogous, and leads to
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i, = %{vl(t) = V() + hist (t-Ar) (1.4a)

with hist,, again known from the values of the preceding time step,

hist (t-At) = —i ,(t-Ar) - %{vl(t—m) - v, (t-An)} (1.4b)

Readers fresh out of University, or engineers who have read one or one too many textbooks on electric
circuits and networks, may have been misled to believe that Laplace transform techniques are only useful for "hand
solutions" or rather small networks, and more or less useless for computer solutions of problems of the size typically
analyzed with the EMTP. Since even new textbooks perpetuate the myth of the usefulness of Laplace transforms,
Appendix I has been added for the mathematically-minded reader to summarize numerical solution methods for
linear, ordinary differential equations.

For the transmission line between nodes 1 and 5, losses shall be ignored in this introduction. Then the wave

equations
_ov L’ oi
ox ot
7ﬂ = C’ ﬂ
ox ot
where

L', C' = inductance and capacitance per unit length!,
x = distance from sending end,

have the well-known solution due to d'Alembert:

i =Fx -c) - fix +cp)
v = ZF(x - ct) + Zfix + cf) (1.5a)

with
F(x - ct)
f(x = ct) | = functions of the composite expressions x - ct and x + ct,
Z = surge impedance Z = VL'/C' (constant),
¢ = velocity of wave propagation (constant).

If the current in Eq. (1.5a) is multiplied by Z and added to the voltage, then

'The prime is used on L', C' to distinguish these distributed parameters from lumped parameters L, C.
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v + Zi = 2ZF(x - cf) (1.5b)

Note that the composite expression v + Zi does not change if x - ct does not change. Imagine a fictitious observer
travelling on the line with wave velocity c. The distance travelled by this observer is x = x;, + ct (X, = location
of starting point), or x - ct is constant. If x - ct is indeed constant, then the value of v + Zi seen by the observer
must also remain constant. With travel time
T = line length / ¢,

an observer leaving node 5 at time t - T will see the value of vs(t - T) + Zis,(t - T), and upon arrival at node 1 (after
the elapse of travel time 1), will see the value of v,(t) - Zi;s(t) (negative sign because i,; has opposite direction of is; ).
But since this value seen by the observer must remain constant, both of these values must be equal, giving, after

rewriting,

i) - %vl(t) + hist,(t - 7) (1.62)

where the term hist,; is again known from previously computed values,

hist (1) - f%vs(m) - i) (1.6b)

Example: Let At = 100 us and T = 1 ms. From equations (1.6) it can be seen that the known "history"
of the line must be stored over a time span equal to t, since the values needed in Eq. (1.6b) are those computed 10
time steps earlier. Eq. (1.6) is an exact solution for the lossless line if At is an integer multiple of t; if not, linear
interpolation is used and interpolation errors are incurred. Losses can often be represented with sufficient accuracy
by inserting lumped resistances in a few places along the line, as described later in Section 4.2.2.5. A more
sophisticated treatment of losses, especially with frequency dependent parameters, is discussed in Section 4.2.2.6.

If Eq. (1.2), (1.3a), (1.4a) and (1.6a) are inserted into Eq. (1.1), then the node equation for node 1 becomes

1 At 2C 1 1 At 2C
—r—+ ==+ v (@) - =) - =) - =, =
(R+2L+At+Z)V1() A v
i,(t) - histj(t-At) - hist, (t-Af) - hist,j(t-7) (1.7)

which is simply a linear, algebraic equation in unknown voltages, with the right-hand side known from values of
preceding time steps.

For any type of network with n nodes, a system of n such equations can be formed?,

(Gl @] = [i(@®] - lhist] (1.8a)

Brackets are used to indicate matrix and vector quantities.
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with [G] = n x n symmetric nodal conductance matrix,

[v(t)] = vector of n node voltages,

[i(t)] = vector of n current sources, and

[hist] = vector of n known "history" terms.
Normally, some nodes have known voltages either because voltage sources are connected to them, or because the
node is grounded. In this case Eq. (1.8a) is partitioned into a set A of nodes with unknown voltages, and a set B

of nodes with known voltages. The unknown voltages are then found by solving

(G, 1 v,0] = [[,0] - [hist,] - [G 5] [v40)] (1.8b)

for [v,(t)].

The actual computation in the EMTP proceeds as follows: Matrices [G,,] and [G,;] are built, and [G,,]
is triangularized with ordered elimination and exploitation of sparsity. In each time step, the vector on the right-hand
side of Eq. (1.8b) is "assembled" from known history terms, and known current and voltage sources. Then the
system of linear equations is solved for [v,(t)], using the information contained in the triangularized conductance
matrix. In this "repeat solution" process, the symmetry of the matrix is exploited in the sense that the same
triangularized matrix used for downward operations is also used in the backsubstitution. Before proceeding to the
next time step, the history terms hist of Eq. (1.3b), (1.4b) and (1.6b) are then updated for use in future time steps.

Originally, the EMTP was written for cases starting from zero initial conditions. In such cases, the history
terms hist,;, hist,, and hist,; in Eq. (1.7) are simply preset to zero. But soon cases arose where the transient
simulation had to be started from power frequency (50 or 60 Hz) ac steady-state initial conditions. Originally, such
ac steady-state initial conditions were read in®, but this put a heavy burden on the program user, who had to use
another steady-state solution program to obtain them. Not only was the data transfer bothersome, but the separate
steady-state solution program might also contain network models which could differ more or less from those used
in the EMTP. It was therefore decided to incorporate an ac steady-state solution routine directly into the EMTP,
which was written by J.W. Walker.

The ac steady-state solution shall again be explained for the case of Fig. 1.1. Using node equations again,

Eq. (1.1) now becomes
Iy + Ly + Ly + 15 = 1 (1.9)

where the currents I are complex phasor quantities |I|-e* now. For the lumped elements, the branch equations are

obvious. For the resistance,

1
ly = =0 = V) (1.10)

3This option is still available in the EMTP, but it has become somewhat of a historic relic and has seldom
been used after the addition of a steady-state solution routine. For some types of branches, it may not even work
({11, p. 37¢).
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for the inductance,

13- ].Q)—L(Vl -V

and for the capacitance,

I, = joC(V, -V)

For a line with distributed parameters R', L', G', C', the exact steady-state solution is

Y

+ - .
shunt Y series

Vi
Vs

N | —

series

1
Y series series T 5
2

Y

shunt

if the equivalent m-circuit representation of Fig. 1.2 is used, with

series

Fig. 1.2 - Equivalent n-circuit for ac steady-state
solution of transmission line

1 . B . sinh(y<)
s = g Wi Zy = SR+ ol ) S

1 g ta"n( %]

5 shunt E(G/ +ij/)'Y—_§P

2
and sometimes equally useful,
Ly - cosh(yZ) - ¥
series T 5 shunt €08 (’YS,P) series

where vy is the propagation constant,

y = R’ + joL) (G’ + juC’)
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For the lossless case with R' = 0, and G' = 0, Eq. (1.14) simplifies to

7 _ gejol’ - sin(w<LyL'C")

Series wgg \/L/_C'/

tan((’)—;‘?\/L/C/J
(")_%E 7ali
3 yL'C

~
|

shunt E.j(‘oc/ ’ (1.16)

N =

+

1 T 7~
Yseries EYShLmt = COS((.O%E L/C/) ’ Yseries

If the value of wd is small, typically ¥ < 100 km at 60 Hz for overhead lines, then the ratios sinh(x) / x and
tanh(x/2) / x/2 in Eq. (1.14), as well as sin(x) / x and tan(x/2) / x/2 in Eq. (1.16) all become 1.0. This simplified

m-circuit is usually called the "nominal" m-circuit,

V4

series

= 4R’ + joL)

Y, - %(G/ joCh if o is small, (1.17)

0| =

With the equivalent wt-circuit of Fig. 1.2, the branch equation for the lossless line finally becomes

1
I, = (Y, Y, )V, - Y,

. + —
series 2 shunt

eries VS (1 . 18)

Now, we can again write the node equation for node 1, by inserting Eq. (1.10), (1.11), (1.12) and (1.18)
into Eq. (1.9),

1.1 . 1 1 1 .
E * ](OL +J(")C+ Yseries * 5 Yslmnt Vl B E V2 B ](*)—L V3 7‘](")CV4 B Yseries V5 = 11
(1.19)
For any type of network with n nodes, a system of n such equations can be formed,
(Y1(vi = il (1.20)

with [Y] = symmetric nodal admittance matrix, with complex elements,
[V] = vector of n node voltages (complex phasor values),
[I] = vector of n current sources (complex phasor values).

Again, Eq. (1.20) is partitioned into a set A of nodes with unknown voltages, and a set B of nodes with known
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voltages. The unknown voltages are then found by solving the system of linear, algebraic equations

(Y, [V, = ] — [Y ][Vl (1.21)
Bringing the term [Y,;][Vy] from the left-hand side in Eq. (1.20) to the right-hand side in Eq. (1.21) is the
generalization of converting Thevenin equivalent circuits (voltage vector [V;] behind admittance matrix [Y ,z]) into

Norton equivalent circuits (current vector [Y ,5][V;] in parallel with admittance matrix [Y ,3]).

Norton equivalent circuits (current vector [Y ,5][V;] in parallel with admittance matrix [Y ,3]).
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2. LINEAR, UNCOUPLED LUMPED ELEMENTS

Linear, uncoupled lumped elements are resistances R, self inductances L, and capacitances C. They usually

appear as parts of equivalent circuits, which may represent generators, transformers, short sections of transmission

lines, or other components of an electric power system, or they may represent a component by itself.

2.1 Resistance R

Resistance elements are used to represent, among other things,

(a)
(b)

©)
(d)

(e)

®

closing and opening resistors in circuit breakers,

tower footing resistance (as a crude approximation [8] of a complicated, frequency-dependent
grounding impedance),

resistance grounding of transformer and generator neutrals,

"metering" - resistance in places where currents of branch voltages cannot be obtained in other
ways by the EMTP,

as parts of equivalent networks, e.g., in parallel with inductances to produce proper frequency-
dependent damping (see Section 2.2.2).

for the representation of long lines in lightning surge studies if no reflection comes back from the

remote end during the duration t_,, of the study.

max

Example (f) is easily derived from Eq. (1.6b) if it is assumed that the initial conditions on the line are zero. In that

case, hist;5(t - ) = 0 for t < 7 since it takes time t for any nonzero condition occurring in node 5 after t > O to

show up in node 1. If nothing is connected to node 5 ("open-ended line"), then I,5 would remain zero for t < 2 7.

The EMTP recognizes this simplification if

@
@

T>t.,and

‘max?

zero initial conditions'.

If both conditions (1) and (2) are met, then the EMTP represents the line simply as two shunt resistances (Fig. 2.1).

This simplification saves not only

computer time but storage space as

k m

well, because no history terms have

to be stored for the line. This long- =7 R=7

line model is mostly used in lightning

surge studies and

Fig. 2.1 - Equivalent circuit of
long line if no reflections come
back from other end

Tt is possible to modify this simplification for cases starting from linear ac steady-state conditions as well; in
that case, nodes 5 and 1 in Fig. 2.1 would have ac steady-state current sources connected to them.
Unfortunately, the EMTP does not yet contain this modification.
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in transient recovery voltage studies, where the unfaulted lines leaving the substation under study are preferably
modelled this way.

The equation of a lumped resistance R between nodes k and m,
. 1
IO E(vk(t) - v,(0) 2.1)
is solved accurately by the EMTP, as long as the value of R is not "unreasonably" small.

2.1.1 Error Analysis

Very large values of R are acceptable and do not degrade the solution of the complete network. In the

limiting case, R = , its reciprocal value 1/R simply gets lost in [G] of Eq. (1.8), that is, it will not have any
influence on the network solution, as it should be. A practical limit for very large resistances is the approximate
square toot of the largest real number which the computer can handle (e.g., R < 10%® if the computer accepts
numbers up to 107%). This is because intermediate expressions of the form R? + X? are computed in the steady-state
solution in the conversion from impedances to admittances. Extremely large values of R have been used in the past
to obtain voltage differences between nodes with such "metering"-resistance branches; in newer EMTP versions,
voltage differences can be obtained directly.

Very large resistances can be used to replace the series R-L elements in symmetric multiphase m-circuits,
if one is only interested in the capacitive coupling among the phases, as explained in Fig. 2.2. This trick reduces
the number of nodes, but more importantly, it avoids accuracy problems which may occasionally show up if the -

circuit represents a very short line section’. In the steady-state solution of Eq. (1.20) the value of the series

It may be worth adding a diagnostic printout in the EMTP if the admittances of the series and shunt elements
are too far apart in orders of magnitude. This would require a comparison of 1/wL and wC in the steady-state
solution, and of At/2L and 2C/At in the transient solution.
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AR}

> oy
YYY : J. J_ R, = very

large
ﬁr YN 1 le =0
-
\q’—f
[C]
e e ed
%[c] (b) m—-circuit with capacitive

coupling only (double C-
values from (a), and replace

(a) original m—-circuit series impedance matrix with
resistances Ry, = lOK/Z_l,
Rik = 0)

Fig. 2.2 - Conversion of nominal n-circuit for short line into m-circuit with capacitive coupling only

element is entered as 1/€[Z']"! into [Y], where [Z'] is the impedance per unit length and & the length of the short

section. For a short length, & is small and 1/%[Z']! accordingly relatively large. At the same time, the shunt

susceptances 1/2¢-jw[C'] entered into [Y] become relatively small. As < is decreased, the capacitive coupling effect

will eventually get lost in the solution. In a practical case of capacitive coupling between 500 kV circuits at 60 Hz,

this accuracy problem showed up with the shortest line section being 1.6 km; it was discovered accidentally because

the single-precision solution (accuracy approx. 7 decimal digits) on an IBM 370 differed unexpectedly by 10% from

the double-precision solution (accuracy

approx. 14 decimal digits). For reasonable step sizes of At, the problem is less severe in the transient calculation,

as can easily be seen if jw in Eq. (1.19) is replaced by 2/At in Eq. (1.7). In this example, with At = 100 us, the

value of the series element would be smaller by a factor of 53, while the value of the shunt element would be larger

by a factor of 53. Or in other words, a similar accuracy problem would appear during the transient simulation if

the line were shortened by a factor of 53 (£ = 30 m instead of 1.6 km).

Very small values of R do create accuracy problems, for the same reason as discussed in the preceding

paragraph: Very small values of R create very large conductance values 1/R in the matrix [Y] of steady-state

solutions and in the matrix [G] of transient solutions, which can "swamp out" the effects of other elements connected

to that resistance. Very small values of R have been used in the past primarily to separate switches, since earlier

EMTP versions allowed only one switch to be connected to a node with unknown voltage. In newer versions, this

limitation on the location of switches no longer exists, and the need for using very small values of R should therefore

no longer exist in these later versions.

Hints about the use of small resistances are given in [1], pp. 6b-6c.
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2.1.2 Example for Network with Resistances

Practical examples for purely resistive networks are rather limited. A simple case is shown in Fig. 2.3.
Assume a dc voltage source with negligible source impedance is connected to a line through a circuit breaker with
a closing resistor of value R, ... If we are interested in what happens after closing of contact I in the first short time
period during which reflections have not yet come back from the remote end, then this case can be studied with the

circuit of Fig. 2.3(b). If we choose R

close

= Z, we see that the voltage at the sending end will be 0.5 p.u., which
will double to 1.0 p.u. at the open receiving end. Therefore, no overvoltage will appear as long as contact II is still

open. A real case is obviously more complicated because

=0 I R
source .X close
| 11 I long line t
with Z and 1T > r2nax
(a) network (b) equivalent circuit

Fig. 2.3 - Energization of a very long line (Z = surge
impedance, T = travel time)

® contact IT will close (typically 8 to 10 ms later) as well,

® the system is three-phase,

® the line is not lossless,

o multiple reflections will occur as we study a longer time period,

® closing of contact I does not necessarily occur at maximum voltage (approximated as a dc source in Fig.

2.3), but may occur anywhere on the sine-wave,

® the source impedance is not zero,

® the three poles in a three-phase system do not close simultaneously, and because of many other factors.

In a typical system, maximum switching surge overvoltages may be 2.4 to 2.8 p.u. without closing resistors
(versus 2.0 p.u. in Fig. 2.3), which would typically be reduced to 1.5 to 2.2 p.u. with closing resistors (versus 1.0
p.u. in Fig. 2.3) [69].

2.2 Self Inductance L

Magnetically coupled circuits are so prevalent in power systems, starting from the generator, through the
transformer, to the magnetically coupled phase conductors of a three-phase line, that inductances usually appear as

coupled inductances. There are cases, however, of uncoupled self inductances. Among other things, self

24



inductances are used to represent

(@

(b)

©)

(d

(e)

®

A B C A B C
X == —
phase phase
" X
neutral
(a) normal three- (b) four-reactor
phase connection compensation
scheme

Fig. 2.4 - Shunt reactor connections

single-phase shunt reactors and neutral reactors in shunt compensation schemes (Fig. 2.4),

part of discharge circuits in series-capacitor stations,

equipment in HVDC converter stations, such as smoothing reactors, anode reactors, parts of filters
on the ac and dc side,

inductive part of source impedances in Thevenin equivalent circuits for the "rest of the system"
when positive and zero sequence parameters are identical (Fig. 2.5),

inductive part of single-phase nominal m-circuits in the single-phase representation of balanced
(positive or negative sequence) operation or of zero sequence operation (Fig. 2.6),

part of equivalent circuit for loads (Fig. 2.7), even though load modelling at higher frequencies is

a very complicated topic [9], and loads are therefore, or for other reasons, often ignored,

Fig. 2.5 - Thevenin equivalent circuit
with Z,o. = Z,,, = Z

Zero



g—-\/—"—’
— ——
generator trans- line as cascade connection of shunt
former nominal w-circuits reactor

1 | 1

Fig. 2.6 - Typical positive sequence network representation

L
s
R "
Fig. 2.7 - Load model for harmonics studies [9]
(2) part of surge arrester models to simulate the dynamic characteristics of the arrester [10],

(h) parts of electronic circuits.

Choke coils used for power-line carrier communications are normally ignored in switching surge studies,
but may have to be modelled in studies involving higher frequencies. Current transformers are usually ignored,
unless the current transformer itself is part of the investigation (e.g., in studying the distortion of the secondary
current through saturation effects).

The equation of a self inductance L between nodes k and m is solved accurately in the ac steady-state
solution with Eq. (1.11). The only precaution to observe is that wL,,, should not be extremely small, for the same
reasons as explained in Section 2.1.1 for the case of small resistance values.

For the transient simulation, the exact differential equation

L dikm 2.9
v, ~v =L-= .
is replaced by the approximate central difference equation
V(D) = v, (0) + v (t-Ar) - v, (1-Ar) L L) = 1, (1-A0) 2.3)
2 At
The same difference equation is obtained if the trapezoidal rule of integration is applied to the integral in
. o | B
i (O = i, (1-A) + 7 ft N [vk(u) vm(u)] du 2.4)

giving



(D) = ikm(t—At)+%{vk(t)—Vm(t)+vk(t—At)—vm(t—At)} (2.5)

Eq. (2.3) and (2.5) can be rewritten into the desired branch equation

i (D) = %{vk(t)—vm(t)} + hist,, (1-Ar) 2.6)

with the "history term" hist,(t - At) known from the solution at the preceding time step,
hist, (t-Ar) =i, (t-Ar) + At v(t-At) - v _(t-Ar)
km km ZL{ k m } (27)
Eq. (2.6) can conveniently be represented as an equivalent resistance R,,;, = 2L/At, in parallel with a known current

source hist,,(t - At), as shown in Fig. 2.8. Once all the node voltages have been found at a particular time step at

instant t, the history term of Eq. (2.7) must be updated for

hlstkm(twAt)

— —

A
- 2L

R =
equiv At

Fig. 2.8 - Equivalent resistive circuit
for transient solution of lumped induc-
tance

each inductive branch for use in the next time step at t + At. To do this, the branch current must first be found from

Eq. (2.6), or alternatively, if both equations are combined, the recursive updating formula

hist,, (1) = %{vkm(t) - vm(t)} + hist,, (t-Ar) 2.8)

can be used. If branch current output is requested, then Eq. (2.6) is used.

2.2.1 Error Analysis

Since the differential equation (2.2) is solved approximately, it is important to have some understanding
about the errors caused by the application of the trapezoidal rule of integration. As explained in Section 1.4 of
Appendix I, the trapezoidal rule is numerically stable, and the solution does therefore not "run away" (see Fig. 1.4

in Appendix I). Fortunately, there is also a physical interpretation of the error, because Eq. (2.5) resulting from the
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trapezoidal rule is identical with the exact solution of the short-circuited lossless line in the arrangement of Fig. 2.9
This was first pointed out to the writer by H. Maier, Technical University Stuttgart, Germany, in a personal
communication in 1968, for the case of a shunt inductance. From a paper by P.B. Johns [12], it became obvious
that this identity is valid for any connection of the inductance. To derive the parameters of such a "stub-line"
representation, it is reasonable to start with the requirement that the distributed inductance L', multiplied by the stub-

line length &, should be equal to the value of the lumped inductance

L'd =L (2.9

: 1111 I
= 11117 11

Fig. 2.9 - Lumped inductance replaced by short-circuited stub-line with Z
= 2L/Atand t = At/2

With L'Y known, the next parameter to be determined is the travel time t of the stub-line. Since
T = Y(L'YD) (C'Y) (2.10)

the shorter the travel time, the smaller will be the value of the "parasitic" but unavoidable capacitance C'¢. The

shortest possible travel time for a transient simulation with step size At is

- A 2.11
5 @.11)

With this value, conditions at terminal 1 at t - At arrive at the shorted end at t - At/2 and get reflected back to

terminal 1 at t. Therefore, the best possible stub-line representation has

z-2 o= X 2.12
At 2 (2.12)

Assume that the smoothing reactor on a dc line has L = 0.5H, and that the step size is 100 us. Then Z = 10,000
Q, and the unavoidable total capacitance C'Y becomes 5 nF, which appears to be negligible, at least if the reactor
has a shunt capacitor of 1.2 uF connected to it anyhow, as in the case of the HVDC Pacific Intertie [11]. Now it
remains to be shown that the exact solution for the lossless stub-line with parameters from Eq. (2.12) is identical with

Eq. (2.5). As explained in Section 1, the expression (v + Zi) along a lossless line for a fictitious observer riding
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on the line with wave speed remains constant, or going from 1 to 2 in Fig. 2.9,

vt - A+ Zit - A = Ziz(t - %)

and travelling back again from 2 to 1,

Ziz(t - %) = v,() - Zi(1)

which, combined, yields

i) = %vl(t) ; {évl(I—At) . il(t—At)} 2.13)

which is indeed identical with Eq. (2.5). This identity explains the numerical stability of the solution process: The

chosen step size may be too large, and thereby create a fairly inaccurate stub-line with too much parasitic capacitance

_ (A
aL

c'y (2.14)
from Eq. (2.10), but since the wave equation is still solved accurately®, the solution will not run away. The
"mathematical oscillations" sometimes seen on voltages across inductances, and further explained in Section 2.2.2,
are undamped wave oscillations travelling back and forth between terminals 1 and 2 (Fig. 2.9).

The identity of the trapezoidal rule solution with the exact stub-line solution makes it easy to assess the error
as a function of frequency [13]. Assume that an inductance L is connected to a voltage source of angular frequency
w, through some resistance R for damping purposes. The transient simulation of this case will eventually lead to
the correct steady-state solution of the stub-line (or not drift away from the steady-state answer if the simulation starts
from correct steady-state initial conditions). This steady-state solution at any angular frequency w is known from

the exact equivalent m-circuit of Fig. 1.2. By short-circuiting terminal 5, the input impedance becomes

1

input
L1 (2.15)
series 2

YS

hunt

or with Eq. (1.16),

SExcept for round-off errors caused by the finiteness of the word length in digital computers, which are
normally negligible. There is no interpolation error, which occurs in the simulation of real transmission lines
whenever T is not an integer multiple of At (see Section 4.2.2.2).

29



2.16)

Therefore, the ratio between the apparent inductance resulting from the stub-line representation or from the

trapezoidal rule solution, and the exact inductance becomes

L tan| w—
irapezoidal - _ 2
L At
0)_
2

@2.17)

The phase error is zero over the entire frequency range. Since power systems are basically operated as constant

voltage networks, it makes sense in many cases to assume that the voltage V| (jw) across the inductance is more or

less fixed, and that the current I, (jw) follows from it. If we compare this current of the stub-line representation or

trapezoidal rule solution with the current of the exact solution for the lumped inductance, then we obtain the

frequency response of Fig. 2.10, where the ratio (the reciprocal of Eq. (2.17)) is shown as a function of the Nyquist

frequency

1
f Nyquist 2—Al

Itrapezoidal
Iexact
1.0 4
0.5«
T Y '
0.0 0.5 — 1.0 f/fNyquist
© 8 4 2 samples/cycle
Fig. 2.10 - Amplitude ratio I,/ lexe through an inductance as a

function of frequency
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This frequency is the theoretically highest frequency of interest for a step size At, amounting to 2 samples/cycle.
From a practical standpoint, at least 4 to 8 samples/cycle are needed to reproduce a particular frequency even
crudely. From Fig. 2.10 or from Eq. (2.17) it can be seen that the error in the current will be -5.2% at a crude
sampling rate of 8 samples/cycle, or -0.8% at a more reasonable sampling rate of 20 samples/cycle. Furthermore,
Fig. 2.10 also shows that the trapezoidal rule filters out the higher frequency currents, since the curve goes down
as the frequency increases, as pointed out by R.W. Hamming [14].

Because of the error in Eq. (2.17), there is a small discrepancy between the initial conditions found with
Eq. (1.11), and the response to power frequency in the time step loop. For 60 Hz, this error would be 0.012% with
At = 100 ps, or 1.2% with At = 1 ms. It is debatable whether Eq. (2.17) should be used for the steady-state
solution, instead of Eq. (1.11), to match both solutions perfectly. This issue appears with other network elements
as well. If a perfect match is desired, then it may be best to have two options for steady-state solutions, one intended
for initialization (using Eq. (2.17) in this example), and the other one intended for steady-state answers at one or
more frequencies (using Eq. (1.11) in this example).

Very large values of L are acceptable as long as (wL)? or 2L/At is not larger than the largest floating point

number which the computer can handle. To obtain flux = [ vdt across a branch, a large inductance can be added
in parallel and current output be requested. The need for this may arise if a flux-current plot is required for a
nonlinear inductance. With L = 10 H, 10 - times the current would be the flux.

Very small values of wL or of 2L./At do create accuracy problems the same way as small resistances (see

Section 2.1.1).

2.2.2 Damping of "Numerical Oscillations" with Parallel Resistance

While the trapezoidal rule filters out high-frequency currents in inductances connected to voltage sources,
it unfortunately also amplifies high-frequency voltages across inductances in situations where currents are forced into
them. In the first case, the trapezoidal rule works as an integrator, for which is performs well, whereas in the second
case it works as a differentiator for which is performs badly. The problem shows up as "numerical oscillations" in
cases where the derivative of the current changes abruptly, e.g., when a current is interrupted in a circuit breaker

(Fig. 2.11). The exact solution for v, is shown as a solid line, with a sudden jump to zero at the
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Fig. 2.11 - Voltage after current interruption

instant of current interruption, whereas the EMTP solution is shown as a dotted line. Since

w0 = 2o{i) - i-80} - v, -8 (2.19)

and assuming that the voltage solution was correct prior to current interruption, it follows that v, (t) = -v,(t - At) in
points 2, 3, 4,... as soon as the currents at t - At and t both become zero; therefore, the solution for v, will oscillate
around zero with the amplitude of the pre-interruption value.

There are cases where the sudden jump would be an unacceptable answer anyhow, and would indicate
improper modelling of the real system. An example would be the calculation of transient recovery voltages, since
any circuit breaker would reignite if the voltage were to rise with an infinite rate of rise immediately after current
interruption. For a transient recovery voltage calculation, the cure would be to include the proper stray capacitance
from node 1 to ground (and possibly also from 1 to 2 and from 2 to ground).

On the other hand, there are cases where the user is not interested in the details of the rapid voltage change,
and would be happy to accept answers with a sudden jump. A typical example would be sudden voltage changes

caused by transformer saturation with two-slope inductance models for the nonlinearity, as indicated in
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Fig. 2.12 - Voltage jumps caused by transformer saturation

Fig. 2.12. It should be pointed out that these "numerical oscillations" always oscillate around the correct answer
(around zero in Fig. 2.11) and plots produced with a smoothing option would produce the correct curves.
Nonetheless, it would be nice to get rid of them, especially since they can cause numerical problems in other parts
of the network, as has happened occasionally in turbine-generator models [26, p.45].

The "textbook answer" would be re-initialization of variables at the instant of the jump. This would be
fairly easy if the equations were written in state-variable form [dx/dt] = [A][x]. With nodal equations as used in
the EMTP, re-initialization was thought to be very tricky, until B. Kulicke showed how to do it [15]. His method
is summarized in Appendix II. Whether re-initialization should be implemented is debatable, since the damping
method described next seems to cure this problem, and also seems to have a physical basis as shown in Section 2.2.3.

V. Brandwajn [16] and F. Alvarado [17] both describe a method for damping these "numerical oscillations"
with parallel damping resistances (Fig. 2.13). For a given current injection, the trapezoidal rule solution of the

parallel circuit of Fig. 2.13 becomes

2L
1 . . At
W) = E{z(t)—z(t—m)} - - +_Lv(t—At) (2.20)
2L R, PAr

If a current impulse is injected into this circuit (in a form which the EMTP can handle, e.g., as

R
)<

N

L
Fig. 2.13 - Parallel damping
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a "hat," with i rising linearly to I, between O and At, dropping linearly back to zero between At and 2At, and

staying at zero thereafter), then, after the impulse has dropped back to zero, the first term in Eq. (2.20) will

disappear, and we are left with the second term which causes the numerical oscillations,

v(t) = —a-v(t-Ar)

with
R -2
Q:J (221)
R +% .
P At

being the reciprocal of the damping factor. This oscillating term will be damped if ¢ < 1; it is shown in Fig. 2.14
for R, = 10 - 2L/Ator = 9/11, and for R, = 2 2L/At or « = 1/3. The oscillation would disappear in one time
step for R, = 2L/At or & = 0 (critically damped case)*. If R, is too large, then the damping effect is too small. On
the other hand, if R, is reduced until it approaches the value 2L/At (ideal value for damping), then too much of an
error is introduced into the inductance representation. Fig. 2.15 shows the magnitude and phase error of the
impedance for R, = 4 2L/At and R, = 8 2LL/At, as well as the magnitude error from Eq. (2.17) which already exists
for the inductance alone with the trapezoidal rule. It is interesting that the magnitude error with a parallel resistance
is actually slightly smaller than the error which already exists for the inductance alone because of the trapezoidal rule.
Therefore, the parallel resistance has no detrimental effect on the magnitude frequency response. It does introduce
losses, however, as expressed by the phase error. As shown in the next section, these losses are often not far off
from those which actually occur in equipment modelled with inductances. From a purely numerical standpoint, a

good compromise between reasonable damping

Fig. 2.14 - Oscillating term [17]. Reprinted by permission of F. Alvarado

“The critically damped trapezoidal rule with R, = 2L/At is identical with the backward Euler method, as
explained in Appendix I.9.
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Fig. 2.15 - Phase and magnitude error with parallel resistance [16]

(R, as low as possible) and acceptable phase error (R, as high as possible) leads to values of

5.4£ < Rp < 9.4% according to Brandwagn [16] (2.22)

At

or
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R 20

. according to Alvarado [17
3 At & 1l

(2.23)

with Brandwajn's lower limit determined by specified acceptable phase error at power frequency.

The errors introduced into the parallel connection of Fig. 2.13 through the trapezoidal rule are seen in Fig.
2.16, in which R, +jXnes = R(GX)/(R ,+ jX) is shown for the exact solution with X = wL, and for the
trapezoidal rule solution with wL,04a from Eq. (2.17).
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Fig. 2.16 - Apparent series resistance and series inductance for the parallel connection of Fig.
2.13, with R, = (20/3) ® (2L/At). The region to the right of f/fy ., = 0.5 is of little practical

interest because the sampling rate would be too low to show these frequencies adequately

Whether the EMTP will be changed to include parallel resistances automatically remains to be seen. It is
interesting to note that the electronic analysis program SYSCAP of Rockwell International Corp., which seems to
use techniques very similar to the EMTP, has R, and R; of Fig. 2.18 built into the inductor model, with default
values of R; = 0.1 Qand R, = 102 Q [22, p. 715]. The possibility of numerical oscillations is mentioned as well,
in cases where the time constants of the inductor model of Fig. 2.18 are small compared with At [22, p. 773].

R {ms)

103

S00 MVA

102
\ 100 MVA
N\

* 2 ..@\\

s ANAVAN
s AN
AN

\

s
”

407
0,05 40! 4 2 3 5 (0 102
— £ (kHz)

Fig. 2.17 - L/R-ratio of the short-circuit impedance of typical
transformers [18]. Reprinted by permission of CIGRE
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Fig. 2.18 - Equivalent circuit for the short-
circuit impedance of a transformer

2.2.3 Physical Reasons for Parallel Resistance

There are many situations in which inductances should have parallel resistances for physical reasons. In

some cases, the values of these resistances will be lower than those of Eq. (2.22) or (2.23), which will make the

damping of the numerical noise even better. Typical applications of damping resistances are described next. These

examples may not cover all applications, but should at least be representative.

(a)

and

Short-circuit impedance of transformers

The short-circuit impedance of transformers does not have a constant L/R-ratio; instead, the L/R-ratio
decreases with an increase in frequency, as shown in Fig. 2.17 taken from [18]. If we use the curve for
the 100 MVA transformer, and assume L = 1H (or mH, or p.u.) as well as At = 100 us, then a value of
R, = 163,000 Q (or mQ, or p.u.) will produce the proper L/R-ratio at 1 kHz. This value lies nicely in
between the limits of 108,000 Q and 188,000 Q recommended in Eq. (2.22). A series resistance of R, =
9.4 Q (or mQ, or. p.u.) can then be added to obtain the correct L/R-ratio at 50 Hz, which leads to the
from Eq.

equivalent circuit of Fig. 2.18 for the short-circuit impedance of the transformer. With Z,

input
(2.16), the L /R-ratio of this equivalent circuit is shown as a dotted line in Fig. 2.19, which is a

trapezoidal
reasonably good match for the experimental curve (solid line), and much better than a constant L/R-ratio
without Rp5. It is interesting that a CIGRE Working Group on Interference Problems recommends the same

equivalent circuit of Fig. 2.18 for the analysis of harmonics [9], with

SyR

13 < V—zp < 30 (2.24)
N
V2

20 < Y < 110 (2.25)
NRS

°In the EMTP, the L/R-ratio without R, would actually increase with frequency, since L;,e,oi4a Of Eq. (2.17)

increases with frequency.
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Fig. 2.19 - L/R-ratio of the short-circuit impedance of a 100 MVA
transformer (dotted line from equivalent circuit of Fig. 2.18 with L being
solved by trapezoidal rule, solid line from [18]). Reprinted by
permission of CIGRE

where Sy is the rated power and Vy the rated voltage of the transformer. If we assume X, ¢ = 0.05 to 0.10 p.u.
at 50 Hz ([9] talks about 50 Hz), then Eq. (2.24) becomes with wL = (0.05 to 0.10) - V /Sy,
(40,841 t0 81,681) - L < R, < (94,248 to 188,496) - L (2.26)
or with a typical step size of At = 100 pus,
(2.04 10 4.08) 2L/At < R, < (4.07 t0 9.4) 2L/At,
with the higher numbers for the lower short-circuit reactance of 0.05 p.u. Again, the value of R, lies in the
same range as Eq. (2.22). Eq. (2.25) implies an L/R-ratio at 50 Hz of 0.014 to 0.018 for a 0.05 p.u. short-
circuit reactance, or of 0.028 to 0.035 for a 0.10 p.u. short-circuit reactance, which is lower than the values
at 50 Hz in Fig. 2.17.
(b) Magnetizing impedance of transformers and iron-core reactors
As discussed in more detail in Section 6.6, parallel resistances are added to the magnetizing inductance of
transformers for a crude approximation of the hysteresis and eddy current losses. Similarly, the equivalent
circuit of Fig. 2.18 is recommended for iron-core reactors [20], with R representing I°R-losses in the
winding, and R, representing iron-core losses.

(©) Synchronous generators
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A CIGRE Working Group on Interference Problems recommends a resistance in parallel with the negative
sequence inductance (which is practically identical to (L"y + L"()/2), but feels that is it premature to
propose a probable order of magnitude [9]. A typical curve for L",/R-ratios of generators, similar to Fig.
2.19 has been published in [18], and could be used to find reasonable values of R,,.
(d) Nominal w-circuits

Cascade connections of nominal m-circuits are used to represent transmission lines on transient network
analyzers. To suppress the spurious oscillations which are caused by the lumpy approximation of distributed
parameters, it is customary to add parallel resistances (Fig. 2.20). Typical values appear to be R, = 5
Zg,1e» Which would lead to a value of R, = 5 2L/At in the stub-line representation of the inductance in Fig.
2.9. Reasonable values of R, for cascade connections are discussed in [18].

R
p

N

Fig. 2.20 - Damping resistance in
nominal T-circuit

(e) Source impedances
The Thevenin equivalent circuit of Fig. 2.5 is obviously a crude approximation for the rest of the system
at frequencies different from the power frequency. To make the frequency-response of this circuit more

realistic, damping resistances are often connected in parallel with the R-L branch.

2.2.4 Example for Network with Inductances®

A simple yet realistic example of an R-L circuit arises from short-circuit calculations. Assume that a three-
phase system has been reduced to a steady-state Thevenin equivalent circuit seen from the fault location, similar to
=R, +jX

that of Fig. 2.5, with the sequence impedances Z,,; = Z,, = R, + jX, and Z then known.

pos Zero ZEe10

As shown by Eq. (3.4), these sequence parameters can be converted to self and mutual impedances. A single-phase-
to-ground fault can then be simulated with a switch closure in the circuit of Fig. 2.21(a), where it is assumed that

the self impedance Z, consists of a resistance R, in series with an inductance L. Fig. 2.21(b) shows the fault current

SThis is one of the few examples with per-unit quantities, simply to show that they can be used. The writer
prefers actual values, for reasons explained in Appendix IV.

"This assumption is obviously only correct at power frequency, but seems to be reasonable over a wider
frequency range in many cases. It would give wrong answers if the system were to consist of a power
plant/transmission line/series capacitor connection, since this requires an R-L-C representation, possibly with a
capacitor protection circuit similar to Fig. 2.28 (see Section 2.3.4 as well). A detailed fault calculation with the
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obtained with the EMTP for R, = 0.18 p.u. and L, = 0.712 p.u. If R; < < X, at power frequency, which is not
quite true here, then there is a minimum offset ("symmetrical fault current") if the fault occurs when the voltage is
at its peak value, and a maximum offset ("asymmetrical fault current") if the fault occurs at zero crossing of the

voltage. The influence of At on the results, as well as the exact solution

1% .
i(f) = —— " {sin(wi+O-¢) - sin(©-g)e ")
JRZ+(@L )
with
¢ = tan ' (wL /R)

are shown in Fig. 2.21(c). The EMTP results with At < 500 us are indistinguishable from the exact solution.

EMTP, which shows travelling wave effects and compares results with field tests in the Hydro-Quebec System,
is described in [19].
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Fig. 2.21 - Single-phase-to-ground fault

(a) Equivalent circuit,

(b) Fault currents for R/X, = 0.2528, f = 60 Hz, At < 500 us, for different closing times,
(c) Influence of At
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2.3 Capacitance C

Capacitance elements are used to represent, among other things,

series and shunt capacitors,

shunt capacitances in nominal m-circuit representations of transmission lines,

equipment in HVDC converter stations, such as parts of snubber circuits and filters, and surge capacitors,
stray capacitances of transformers, generators, etc., especially in transient recovery voltage and lightning
surge studies, where impedances wL become so high at higher frequencies that the parallel impedances of
stray capacitances 1/wC become dominant,

capacitive potential transformers and capacitive voltage dividers,

parts of surge generators.

The equation of a lumped capacitance C between nodes k and m is solved accurately in the ac steady-state

solution with Eq. (1.12). The only precaution to observe is that ®C should not be extremely large, which is unlikely

to occur in practice anyhow, for the same reasons as explained for small resistances in Section 2.1.1.

For the transient simulation, the exact differential equation

. dv,-v,)
iy = € (2.27)

is replaced by the approximate central difference equation

L)+, (E-AT) ) C{vk(t)fvm(t)} - v (t-An)-v, (t-Ab)}

2.28
2 At (2.28)
which gives the desired branch equation

. 2C .

i) = Tl{"k(t)’vm(t)} + hist,, (t-Ar) (2.29)
with the "history term" hist,(t - At) known from the solution at preceding time step,

, . 2C
hist,,,(t-At) = -i, (t-Af) - Tt{v"(tﬂt) - v, (t-An)} (2.30)

Again, analogous to inductance, identical results would be obtained from an integration of Eq. (2.27) with the

trapezoidal rule. Eq. (2.29) can be represented as an equivalent resistance R

= At/2C, in parallel with a known

equiv

current source hist,(t - At), as shown in Fig. 2.22. Once all
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histkm(t-At)

—
m

XK o-—q
A/

—

R At
equiv 2C

Fig. 2.22 - Equivalent resistive circuit
for transient solution of lumped

capacitance

the node voltages have been found at a particular time step at instant t, the history term of Eq. (2.30) must be updated
for each capacitive branch for use in the next time step at t + At. To do this, one must first find the current from
(2.31)

Eq. (2.29). Alternatively, the recursive updating formula

hist,,(t) = —E{vk(t)—vm(t)} - hist,, (t-Af)

can be used, which is the same as Eq. (2.8) for the inductance if followed by a sign reversal.
k J‘ k co rf\—-o

" T ’
Fig. 2.23 - Lumped capacitance replaced by stub-line with Z

= At/2C and T = At/2

2.3.1 Error Analysis

Not surprisingly, the error analysis is analogous to that of the inductance. For a physical interpretation of
ended lossless line. To obtain the parameters, it is reasonable to make the total distributed capacitance equal to the
(2.32)

the errors, the stub-line representation of Fig. 2.23 is used, in which the lumped capacitance is replaced by an open-

lumped capacitance,
c'y =cC

With C'Yknown, the next parameter to be determined is travel time t. Eq. (2.10) shows that the shorter the travel
time, the smaller will be the value of the "parasitic" but unavoidable inductance L'<. For a step size At, the shortest

possible travel time is
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.= Ar (2.33)

With Eq. (2.32) and (2.33) the surge impedance becomes Z = At/2C.
Without going through the details, let it simply let it be said that the exact solution for the stub-line of Fig.
2.23 is identical with the trapezoidal rule solution of Eq. (2.29) and (2.30). This identity will again be used to assess
the error as a function of frequency. Assume that a capacitance C is connected to a source with angular frequency
w, through some network with damping. The transient simulation will then settle down to the correct steady-state
solution of the stub-line of Fig. 2.23, or not drift away from it if the simulation was started from correct steady-state
initial conditions. This steady-state solution is known from the exact equivalent m-circuit of Fig. 1.2, with terminal
5 being open-ended,
1 Y,

Yinput - (Yseries * EYshum) - S”’els (2.34)

. + —
series 2 shunt

or after some manipulations with Eq. (1.16),

(2.35)

This is analogous with Eq. (2.16) for the inductance, except that the analogous error now applies to the capacitance

C rather than to the inductance L, or

tan((»m)

Cprpen B

rapezoidal  _

= 2.36

- " (2.36)
2

Again, the phase error is zero over the entire frequency range. If we force a current I (jw) into the capacitance, then
the voltage across the stub-line, compared with the exact solution, will have the frequency response of Fig. 2.24,
which is identical with Fig. 2.10 if the current ratio is replaced by the voltage ratio. The trapezoidal rule filters out

the higher frequency voltages.
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Fig. 2.24 - Amplitude ratio V
function of frequency

/V .. Of @ capacitance as a

trapezoidal’ ¥ exact

Again, there is a small discrepancy between the initial conditions found with Eq. (1.12), and the response to power
frequency from Eq. (2.35) in the time step loop (at 60 Hz, 0.012% error with At = 100 us, or 1.2% with At = 1
ms). Whether it should be eliminated has already been discussed in the second-last paragraph of Section 2.2.1.

Very small values of C are acceptable as long as (1/wC)* or At/2C is not larger than the largest floating point

number which the computer can handle. Very large values of C do create accuracy problems the same way as small

resistances (see Section 2.1.1), but they are unlikely to occur in practice.

2.3.2 Damping of "Numerical Oscillations" with Series Resistance

While the trapezoidal rule filters out high-frequency voltages across capacitances for given current
injections, it also amplifies high-frequency currents for given voltages across C. The numerical oscillations discussed
for the inductance in Section 2.2.2 would appear in capacitance currents if there is an abrupt change in dv /dt. For
some reason, numerical oscillations have seldom been a problem in capacitances, either because there are very few
situations where they would appear, or simply because currents through capacitances are seldom included in the
output. Analogous to the inductance, these numerical oscillations could be damped with series resistances R, (Fig.
2.25). Using Alvarado's arguments [17], the trapezoidal rule solution for a voltage impulse applied to the circuit

of Fig. 2.25 would be

Al p
i) = — X i -ve-ant - 2€i-Ar) 2.37)
t At
—+R —+R
2 2c
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Fig. 2.25 - Series damping resistance
After the voltage impulse v has dropped back to zero, we are left with the second term, which causes the numerical
oscillations,
i(t) = —a-i(t-A7)
A

- R

" o 2c
—_— + R

2C s

In analogy to Eq. (2.23), a reasonable value for the damping resistance would be

At
R =0.15—
5 2C (2.39)

2.3.3 Physical Reasons for Series Resistance

None are known to the writer at this time which would justify a series resistance as high as that of Eq.
(2.39). G.W.A. Dummer [23] suggests the equivalent circuit of Fig. 2.26, and says that R_ is dominant at very high
frequencies, while R is dominant at very low frequencies, but

R
p

s »—JR\,——O
g

Fig. 2.26 - Equivalent circuit for
capacitor with losses

his comments refer to capacitors used in electronics. The typical textbook circuit has no series resistance, which
would imply that the loss factor decreases inversely proportional with frequency. This contradicts the curve in Fig.
2.27 given by A. Roth for high-voltage capacitors [24]. Assuming C = 1 uF and At = 100 ps and using C,,,c;0iqa
instead of C to duplicate the EMTP behavior, a value of R, = 0.344 Q (ignoring R,) would more or less match tand
at 2 kHz, as shown in Fig. 2.27. Note that this value of R, is one order of magnitude lower than the recommended
damping resistance of Eq. (2.39). SYSCAP, an electronic analysis program with solution techniques similar to the

EMTP, has R, and R, of Fig. 2.26 built into the capacitor model, with default values of R, = 0.1 Q and R, = 10"
Q[22, p. 715].
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Fig. 2.27 - Loss factor [24]. Reprinted by permission of Springer-Verlag and A.W.
Roth

Note that capacitors which may be subjected to short-circuits often have series resistors built in. Similarly, the
overvoltage protection of series capacitors with spark gaps (Fig. 2.28) includes current-limiting R-L elements in the

discharge circuit, with a typical "ringing" frequency of 400 Hz during discharge.

o

1L

Fig. 2.28 - Spark gap protection of
series capacitor

2.3.4 Example for Network with Capacitances

Let us modify the fault current study of Section 2.2.4 for a case in which the transmission line is series-
compensated with capacitors (Fig. 2.29). Let us further assume that L in Section 2.2.4 represented the net reactance
X, = 0L - 1/wC at 60 Hz, to make both results directly comparable. With R, = 0.18 p.u., X, = 1.0833 p.u., C
= 2.695 p.u. and At = 100 ps, the fault current of Fig. 2.30 is obtained (data taken from [74], with connection from
fault location to infinite bus left off). For comparison purposes, the fault current with the net reactance represented
by L, as done in Section 2.2.4, is shown as well; it differs appreciably from the more accurate solution with the
circuit model of Fig. 2.29. This difference has consequences for the accuracy of stability simulations, since net

reactances are practically always used in stability studies. Fig. 2.31 compares the swing curves obtained with a net

reactance and an L-C representation for a case similar to the IEEE benchmark model for subsynchronous resonance

studies [21].
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l at t=0

Fig. 2.29 - Single-phase-to-ground fault in a system
with a series capacitor

(p.u.)

40
\/ \,—’ "

Fig. 2.30 - Fault current in series-compensated network of Fig. 2.29 (line without symbols). For comparison,
results from Fig. 2.21 with net reactance are shown as well (line with symbols)

o

Rel angle (©)
200 .
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T = == R-1~-C circuit
1001{-

0 ! ! —J
o 30 60 90
—» t (cycles)

Fig. 2.31 - Swing curves with R-L and R-L-C representations
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2.4 Series Connection of R, L, C
If lumped elements R, L, C frequently occur in pairs as series connections of R-L, R-C, or L-C, or as a
series connection of all three elements R-L-C, then it becomes more efficient to treat the series connection as a single
branch, thereby reducing the number of nodes and nodal equations. This has been implemented in the EMTP for
the series connection of R-L-C (Fig. 2.32). For the steady-state solution, the branch equation is simply

1

I =———  (V-V
m R+j(u)L—1/wC)(k »

R L C

k A\~ VTN—}—=

Fig. 2.32 - Series connection of R, L, C

To derive the branch equation for the transient simulation, add the three voltage drops across R, L, and C

vk_vm:vR+vL+vc

with the voltage drops expressed as a function of the current with Eq. (2.1), (2.6) and (2.29),

2L At

. 2L . A, 2.40
v () -V, (1) = ( R+E+_] i)~ Shist (M)~ S hist (i-A) (2.40)

2C

After replacing the history terms hist; and hist. with the expressions of Eq. (2.7) and (2.30), this leads to the branch

equation
i (1) = G, Wv@®-v, O + hist,, (t-Ar) (2.412)
with
Gseries - ;
R+ 2L, A (2.41b)
At 2C
and the combined history term
hist,, . (1-At) G{( % —R—zié) i(t-At)+v, (1-At)-v, (i-AD) —2v((t—At)}. (2.42)

For updating this history term, the new current is first calculated from Eq. (2.41a), and the new capacitor voltage

v from

Velt) = velt-Ar) + %{i(t) - i(-An)
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Eq. (2.42) is not the only way of expressing the combined history term, but it is the one being used in the EMTP.

2.5 Single-Phase Nominal rt-Circuit
This is a special case of the M-phase nominal m-circuit discussed in Section 3.4. Earlier EMTP versions
recognize the special case of M = 1, and use scalar equations in place of matrix equations, whereas newer EMTP
versions go through the matrix manipulations with M = 1. Since single-phase m-circuits are seldom used, it is

reasonable to eliminate the special code for the scalar case.
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3. LINEAR, COUPLED LUMPED ELEMENTS

Coupled lumped elements appear primarily in the M-phase m-circuit representation of transmission lines,
in the representation of transformers as coupled impedances, and as source impedances in cases where positive and

zero sequence parameters are not equal.
3.1 Coupled Resistances [R]

Coupled resistances, in the form of branch resistance matrices [R], appear primarily
(a) as part of the series impedance matrix in M-phase nominal w-circuits,
(b) as long line representations in lightning surge studies if no reflections come back from the remote

end during the duration t,,, of the study.

max

The diagonal elements of [R] are the self resistances, and the off-diagonal elements are the mutual
resistances. The off-diagonal terms in the series resistance matrix of an M-phase line are caused by the presence
of the earth as a potential current return path. The earth is not modelled as a conductor as such; instead, it is used
as a reference point for measuring voltages. If it were explicitly modelled as a conductor, its equation for a three-

phase line could have the form

dv,
-—L = Z'pd, + 7

o wgly + 2l + Z/ 1

f ECC EE'E

B

Since the voltages are measured with respect to earth, Vi = 0, and therefore,

which, when inserted into the voltage drop equations for the phases A, B, C, produces

_ dVA _ Z/AA_Z/AEZ/EA IA 4 Z/AB_ Z/AEZ/EB IB 4 Z/AC_Z/AEZ/EC IC
/ / /

and similar for B, C. This is the form used in M-phase m-circuits, with earth being an implicit, rather than explicit,
current conductor. Assuming purely inductive coupling Z', = jX',, the terms Z',:Z'p/Z' ¢ etc. will obviously
contain real parts since the self impedance of the earth Z'; contains a real part. Whether the real part thus produced
can strictly be treated as a resistance for all frequencies is open to debate, as explained in Section 4.1.2.4.

The EMTP automatically converts a long line with distributed parameters into a shunt resistance matrix [R]
if

(1) T > t,,. for all M modes’ of the M-phase line,

"Modes are explained in Section 4.1.5.
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2) zero initial conditions.
This representation is simply an M-phase generalization of the single-phase case discussed in Section 2.1. For the
high-frequency lossless line model, which is often used in lightning surge studies and described in more detail in
Section 4.1.5.2, this shunt resistance matrix has the elements
R, = 609.911%, R, = 60%.911& (3.1)
r; dy

with h; = average height above ground, r; = conductor radius, D,, = distance from conductor i to image of
conductor k, d,, = direct distance between conductors i and k. These are the well-known self and mutual surge
impedances of an M-phase line [8].

The equations for coupled resistances
i, 1 = RI™{v,®] - [v, 01} (3.2)

are solved accurately by the EMTP, as long as [R] is non-singular and not extremely ill-conditioned. In all cases
known so far, [R] is symmetric, and the EMTP has therefore been written in such a way that it only accepts
symmetric matrices [R].

The EMTP does not have an input option for coupled resistances by themselves; instead, they must be
specified as part of the M-phase nominal m-circuit of Section 3.4, with L and C left zero. For long lines with T >

tnax and zero initial conditions, the EMTP converts the distributed-parameter model internally to the form of Eq.

(3.2). Since [R] is symmetric, the EMTP stores and processes the elements of these and all other coupled-branch
matrices as one-dimensional arrays in and above the diagonal (e.g. R,; stored in X(1), R, in X(2), Ry, in X(3), R}5

in X(4), etc.).

3.1.1 Error Analysis

As already mentioned, [R] must be non-singular if a resistance matrix is read in. If its inverse [R]" is read
in, then this requirement can be dropped, since [R]" is allowed to be singular without causing any problems. Also,
the resistances shouldn't be so small that [R]"! becomes so large that it "swamps out" the effect of other connected
elements, as mentioned in Section 2.1.1. On the other hand, very small values of [R]"! are acceptable (see "very

large resistances" in Section 2.1.1).

3.1.2 Insertion of Coupled Branches into Nodal Equations
Since coupled branches have not been discussed in the introduction to the solution methods, their inclusion
into the system of nodal equations shall briefly be explained. Assume that three branches ka-ma, kb-mb, kc-mc are

coupled (Fig. 3.1). In forming the nodal equation for node ka, the current i, ,, is needed,
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| S |
[R]
Fig. 3.1 - Three coupled
resistances
. _ branch branch branch
lka,ma - Gaa <vka7 vma) * Gab (vkbivmb) * Gac <vkcivmc)

with G being elements of the branch conductance matrix [R]"'. This means that in the formation of the nodal
equation for node ka, G _ enters into element G,, ,, of the nodal conductance matrix in Eq. (1.8a), -G™™" _ into
Giymar G™™, into G, 1, -G into G, ,, etc. If this is done systematically, the matrix [R]" will be added to
two diagonal blocks, and subtracted from two off-diagonal blocks of the nodal conductance matrix [G], as indicated
in Fig. 3.2. Unfortunately, rows and columns ka, kb, kc and ma, mb, mc do not follow each other that neatly, and
the entries in [G] will therefore be all over the place, but this is simply a programming task. It is worth pointing out
that the entry of coupled branches into the nodal conductance matrix can always be explained with an equivalent

network of uncoupled elements. For three coupled resistances, the equivalent network with uncoupled elements

would contain 15 uncoupled resistances (see Fig. 7 in Chapter II of [26]). Such equivalent networks with

‘ka kc ma mc

i\

+r) 7t -tr) 7t
ka‘ /
kb —
k™
-ry7t +ry7E
rnb c— -
-~
mc

Fig. 3.2 - Contributions of three coupled branches to the
nodal conductance matrix

uncoupled elements are useful for assessing the sparsity of a matrix, but they can be misleading by seemingly
indicating galvanic connections where none exist. For example, the steady-state branch equations for two-winding

transformers, which are well known from power flow and short-circuit analysis,
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/ ka,ma Y -rY Vka - Vma
- ) (3.3)
L 1Y t*Y||Viy, Vi

simply imply the connection of Fig. 3.3(a), and nothing more. The equivalent network with uncoupled elements is
shown in Fig. 3.3(b), which produces the well-known transformer model of Fig. 3.3(c) if

nodes ma and mb are grounded.

ka kb ka ty kb ey
' |
2
! = | Y 22y (1-t)Y (£t -t)v
! 1
L --|-d ~ -
. ma tY mb
ma me
(a) Coupled elements (b) Uncoupled elements © Uncoupled elements with
nodes ma and mb
grounded

Fig. 3.3 - Two-winding transformer as two coupled branches

3.1.3 Example for Coupled Resistance

Assume that a lightning stroke, represented by a current source i(t), hits phase A of a three-phase line (Fig.

3.4). Let us then find the voltage build-up in all 3 phases over a time span

Fig. 3.4 - Lightning stroke to phase A of a three-phase
line

during which reflections have not yet come back from the remote ends of the line, using the high-frequency lossless
line model of Eq. (3.1). Assume a flat tower configuration typical of 220 kV lines, with an average height above

ground = 12.5 m, spacing between conductors = 7.58 m, and conductor radius 14.29 mm. Then from Eq. (3.1),

448.02 74.24 39.41
[R] = 7424 448.02 74.24 | Q
39.41 74.24 448.02

The left as well as the right part of the line is then represented by [R] connected from A, B, C to ground, and the
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voltages become

vat) = 224.01i(t)

vg(t) = 37.12 i(t)

ve(®) = 19.71i(t)
or 16.6% of v, appears in phase B, and 8.8% in phase C. An interesting variation of this case is the calculation of
the effect which this lightning stroke has on the equipment in a substation. Assume that the travel time T between
the stroke location and the substation is such that no reflection comes back from the stroke location during the time
t.ox Of the study, with the time count starting when the waves hit the substation (Fig. 3.5). In such cases, the waves
coming into the substation can be represented as a three-phase voltage source with amplitudes equal to twice the value
of the voltages at the stroke location, behind the resistance matrix [R]. This, in turn, can be converted to a current

source in parallel with a shunt resistance matrix [R]. Since

i(1)

_ .1
1= 2[RI 0
0

[Vsource

it follows that the equivalent current source injected into the substation simply becomes equal to the lightning current
at the stroke location [i(t), 0, 0] which together with the shunt resistance matrix [R], represents the waves coming

into the substation as long as no reflections have come back yet from the stroke location.
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time

(a) Network configuration

it)

detailed
model for
the sub-
station

(b) Equivalent network for line and lightning stroke

Fig. 3.5 - Waves coming into substation

3.2 Coupled Inductances [L]

Coupled inductances, in the form of branch inductance matrices, are used to represent magnetically coupled
circuits, such as

(a) inductive part of transformers,

(b) inductive part of source impedances in three-phase Thevenin equivalent circuits for the "rest of the

system" when positive and zero sequence parameters differ,

(©) inductive part of M-phase nominal w-circuits.

The diagonal elements of [L] are the self inductances, and the off-diagonal elements are the mutual
inductances. In all cases known so far, [L] is symmetric, and the EMTP only accepts symmetric matrices, with the
storage scheme described in the last paragraph before Section 3.1.1.

The source impedances mentioned earlier under (b) above are often specified as positive and zero sequence

parameters Z,, Z,.,, which can be converted to self and mutual impedances

Zero

Z -

S

RZ,ps + Zp)  Zy =

1
‘pos zer 'm g

(Zzera - Zpos) (3 . 4)

b.)l»—l
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of the coupled impedance matrix

Z: Zm Zm
zZ Z Z

m m s

Of course, these self and mutual impedances can in turn be converted back to sequence parameters,

Zpas = Zs - Zm 4 Z = Zs * 2’Zm (36)

zero

For a generalization of this data conversion to any number of phases M, see Eq. (4.60) in Section 4.1.3.2.
The equations for coupled inductances between a set of nodes ka, kb,... and a set of nodes ma, mb,... (Fig.

3.6) are solved accurately in the ac steady-state solution with

1 -
Uil = j_w[L] Hvi - v, (3.7)

The only precaution to observe is that [L]" should not be extremely large, for reasons explained in Section 2.1.1.

A
kKa ot Yy v—p—o T2
! : !
Ko omdeer v Y Y\—p—e mb
kc._:__,.,.ﬁ“_"__,mc

! {
| U |

[L]

Fig. 3.6 - Four coupled
inductances

For the transient simulation, Eq. (2.6) and (2.7) for the scalar case are simply generalized for the matrix

case, which produces the desired branch equations

li, (O] = %[L]’l{[vk(t)]*[vm(t)]} + [hist,,(1-AD)] (3.8)

with the history term [hist,(t - At)] known from the solution at the preceding time step,

[hist,, (t-AD)] = [i,,(t-AD] + %[L]’l{[vk(tht)] - [v,(t-AD]} (3.9)

Just as in the uncoupled case, Eq. (3.8) can be represented as an equivalent resistance matrix [R,,,;,] = (2/At)[L],

in parallel with a vector [hist, (t - At)] of known current sources. The matrix [R,

equiv.

]! enters into the nodal
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conductance matrix of the transient solution in the same way as described in Section 3.1.2 (for the steady-state
solution, simply replace [Requiv]'l by (1/jw)[L]"). While the current source hist,,, of an uncoupled inductance enters
only into two components k and m of the right-hand side in Eq. (1.8b), the vector [hist,,] must now be subtracted
from components ka, kb, kc,..., and added to components ma, mb, mc,....

Once all the node voltages have been found at a particular time step at instant t, the history term of Eq. (3.9)
must be updated for each group of coupled inductances. This could be done recursively with the matrix equivalent
of the scalar equation (2.8). The EMTP does not have an input option for coupled inductances alone; instead, they
must be specified as part of the M-phase nominal wt-circuit of Section 3.4, where the updating formulas used by the
EMTP are discussed in more detail.

There are situations where [L] may not exist, but where [L]" can be specified as a singular matrix. Such
an example is the transformer model of Eq. (3.3). If resistances are ignored, Eq. (3.3) can be used for transient

studies with

Y -ty

L] = jo
/ -tY %Y

(3.10)

where Y = 1/(jX), with X being the short-circuit input reactance of the transformer measured from winding ka-ma.

It is therefore advisable to have input options for [L]"! as well as for [L], as further discussed in Section 3.4.2.

3.2.1 Error Analysis

The errors are the same as for the uncoupled inductance, that is, the ratio tan(w At/2)/(w At/2) of Eq. (2.17)
applies to every element in the matrix [L], or its reciprocal to every element in [L]". The stub-line representation
of Fig. 2.9 becomes an M-phase stub-line, if M is the size of the matrix [L]. There is no need to use modal analysis
for this stub-line because all travel times are equal, as mentioned in Section 4.1.5.2. In that case, the single-phase
line equations can be generalized to M-phase line equations by simply replacing scalars with matrix quantities. Eq.

(2.9), (2.12) and (2.14) therefore become

n o _ 2 no_ Ao
<L) =[L], (2] = E[L]’ and <[C'] = (7) (L]

3.2.2 Damping of "Numerical Oscillations" with Coupled Parallel Resistances
Again, the explanations of Section 2.2.2 for the uncoupled inductance are easily generalized to the matrix
case if all elements of [L] are to have the same ratio R /L. Since [L]! is used in Eq. (3.8), it is preferable to express

the parallel resistances in the form of a conductance matrix, e.g., with Alvarado's recipe of Eq. (2.23),

At
(G,] = .15 [L] ! 3.11)

If [L]" is singular, [G,] would be singular as well, but the singularity would not cause any problems. If the coupled

3-8



inductances go from nodes ka, kb,...to nodes ma, mb,... (Fig. 3.6), then [Gp] would be connected in the same way

from nodes ka, kb,... to nodes ma, mb,...

3.2.3 Physical Reasons for Coupled Parallel Resistances
The reasons are the same as those listed in Section 2.2.3 in those situations in which the single-phase case

can be generalized to the M-phase case.

3.2.4 Example for Network with Coupled Inductances

Let us go back to the example of the single-phase-to-ground fault described in Section 2.2.4, but treat it as
a three-phase Thevenin equivalent circuit now, with coupled resistances and inductances (Fig. 3.7). Assume that
Z,s = 0.02 + j0.404 p.u. and Z,,, = 0.5 + j1.329 p.u., or with Eq. (3.4) Z, = 0.18 + j0.712 p.u., Z,, = 0.16

+ jO.308 p.u. There are three voltage sources now,

Vi_SOURCE = Vinax SIN@I)
— 1 _ (o]
Vo_sourcE = Vinax SI(@I—-1207)

Vesource = VmaxSIN(0I+120°)

[R] [L]
rcar_-- 0 i
Yo

§
|$I| z | B

5‘ closes

v at t=0C

B
-

Fig. 3.7 - Single-phase-to-ground fault with three-phase
Thevenin equivalent circuit

With the same values of R, and L as in Section 2.2.4, the fault current will be identical with the curves of Fig.
2.21(b) and (c). In addition, we can now obtain the overvoltages in the unfaulted phases B and C, which are shown

in Fig. 3.8.
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Fig. 3.8 - Overvoltages in unfaulted phases B and C
The steady-state solution can of course be easily obtained from the phasor equations
Vil |Vasource| |Zs Zm Zal[I,
V| = \Vi-source| = 1Zm Zs Z4||0 (3.12a)
VC VC*SOURCE Zm Zm Zs 0
The first row produces, with V, = 0,
Vv
I, - A-SOURCE (3.12b)
ZS
and the second the third rows produce the voltage changes in the unfaulted phases
Zm
AVp = AV, = - 7 V4 source (3.12¢)

s

If these voltage changes are shown in a phasor diagram (Fig. 3.9), then it becomes obvious why the overvoltages
in phases B and C are unequal, unless the ratio Z,,/Z, is a real (rather than complex) number. In the latter case the

dotted changes become vertical in B and C in Fig. 3.9, and the overvoltages become equal.



VA—SOURCE

pre-fault values
«++++» changes caused by fault
- fault values

VB-SOURCE

Fig. 3.9 - Phasor diagram of voltage changes caused by single-phase-to-
ground fault

3.3 Coupled Capacitances [C]

Coupled capacitances, in the form of branch capacitance matrices, appear as the shunt elements of M-phase
nominal m-circuits (Fig. 3.10). One could argue that the capacitances are not really coupled, since they appear as
6 uncoupled capacitances in Fig. 3.10. However, the same argument can be made for coupled resistances and
inductances, as explained in Fig. 3.3 of Section 3.1.2, and the fact remains that the shunt capacitances of M-phase

lines appear as matrix quantities in the derivation of the equations.

Lo _d Lo mog me
[R] [L]
T 1
E[C] E[C]

Fig. 3.10 - Three-phase nominal m-circuit

Since the only known application of coupled capacitances is as shunt elements of M-phase nominal 7-
circuits, the EMTP accepts them only in that form, that is, as equal branch capacitance matrices 1/2 [C] at each end
of the m-circuit, from nodes ka, kb,... to ground, and from nodes ma, mb,... to ground. In all cases, [C] is

symmetric, and this symmetry is exploited with the storage scheme described in the last paragraph before Section
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3.1.1. The diagonal element C,,, of [C] is the sum of all capacitances between phase a and the other phases b, c,...
as well as between phase a and ground, whereas the off-diagonal element C,,, is the negative value’ of the
capacitance between phases a and b.

Sometimes, shunt capacitances of three-phase lines are specified as positive and zero sequence parameters
C

C,...» Which can be converted to the diagonal and off-diagonal elements

pos? “—zero?

1 1
Cs - E(chos * Czero) ’ Cm - g(czem N CPOS) (313)

of the coupled capacitance matrix

CS
[c-=\c, ¢ c (3.14)
Cm

C,, must be negative because the off-diagonal element is the negative value of the coupling capacitance between two
phases, therefore, C,,, < C,,. For a generalization of this data conversion to any number of phases M, see Eq.
(4.61) in Section 4.1.3.2.

The steady-state equations for coupled capacitances in the shunt connection of Fig. 3.10, and with the factor

1/2, are

U, - %jw[mvk], ., - %jw[cnvm] (3.15)

with subscripts "k0" and "mO" indicating that the currents flow from nodes ka, kb,... to ground ("0"), and from
nodes ma, mb,... to ground. Eq. (3.15) is solved accurately in the steady-state solution. The only precaution to
observe is that ®[C] should not be extremely large, for reasons explained in Section 2.1.1, but this is very unlikely
to occur in practice anyhow.

For the transient simulation, Eq. (2.29) and (2.30) are again generalized for the matrix case, which produces

the desired branch equations (taking care of the factor 1/2!),

li,, (0] = Aiz[c] VD] + [hist,(t-An)] (3.16)

with the history term [hist,(t - At)] known from the solution at the preceding time step,

It might be worthwhile to have the EMTP check for the negative sign, and automatically make it negative,
with an appropriate warning message, in cases where the negative sign was forgotten. The writer is not aware of
any situation in which the off-diagonal element would not be negative.
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[hist,(t-Ar)] = —ﬁ[q [v,(-AD] - [iyy(t-AD)] (3.17)

The equations for the shunt capacitance 1/2 [C] at the other end (nodes ma, mb,...) are the same if subscript k is
replaced by m. As in the uncoupled case, Eq. (3.16) can be represented as an equivalent resistance matrix At[C]?,
in parallel with a vector [hist,,(t - At)] of known current sources. The matrix 1/At [C] enters into the nodal
conductance matrix of the transient solution only in the diagonal block of rows and columns ka, kb,... and in the
diagonal block of rows and columns ma, mb,... (Fig. 3.2), because of the shunt connection, while the vector [hist,]
must be subtracted from components ka, kb,... (analogous for [hist,]).

Once all the node voltages have been found at a particular time step at instant t, the history term of Eq.

(3.17) is updated recursively,

[hist,, ()] = -A%[C_I[vk(t)] - Thisty(t-A0)] (3.18)

and analogous for [hist,,]. Recursive updating is efficient here, in contrast to coupled inductances, because the
branches consist only of capacitances here, unless currents are to be computed as well. In the latter case, [i (t)] is
first found from Eq. (3.16), and then inserted into Eq. (3.17) to obtain the updated history term, with both formulas

using the same matrix 1/At [C].

3.3.1 Error Analysis

The errors are the same as for the uncoupled capacitance, that is, the ratio tan(w At/2) / (w At/2) of Eq.
(2.35) applies to every element in the matrix 1/2 [C]. The stub-line representation of Fig. 2.23 becomes an M-phase
stub-line, with the second set of nodes being ground in this case. There is no need to use modal analysis, as

explained in Section 3.2.1.

3.3.2 Damping of "Numerical Oscillations" with Series Resistances
Again, the explanations of Section 2.3.2 for the uncoupled capacitance are easily generalized to the matrix

case if all elements of 1/2 [C] are to have the same time constant R.C. Eq. (2.39) would then become
[R] = 0.15 Ar[C]! (3.19)
(factor 1/2 of Eq. (2.39) disappeared because the equations have been written for 1/2 [C] here). As mentioned in

Section 2.3.2, numerical oscillations in capacitive currents have seldom been a problem.

3.3.3 Physical Reasons for Coupled Series Resistances
None are known to the writer at this time. The discussions of Section 2.3.3 do not apply to shunt

capacitances of overhead lines, but they may be relevant to the capacitances of underground or submarine cables.
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3.3.4 Example for Network with Coupled Capacitances
Assume that a power plant with a number of generator-transformer units in parallel is connected into the
230 kV switchyard through a number of parallel underground cables. The circuit breakers at the end of the cables

are open, when a single-phase-to-ground fault occurs on the power plant side of the breakers (Fig. 3.11).

o—3
O3t
o

Fig. 3.11 - Cable circuit with single-phase-to-ground fault. Fault occurs in phase A when source voltage in A is at
its peak. Generator-transformers represented as three-phase voltage sources of 230 kV (RMS, line-to-line) behind
coupled reactances with X, = 8 Q, X, = 2.8 Q (referred to 230 kV side). Cables represented as three-phase
nominal nt-circuit with Z,,; = Z,.,, = 0.015834 Q, oC; = ©C,,, = 897.6 uS, Ry = 1 Q

Zero

The data resembles the situation at Ground Coulee before the Third Powerhouse was built, except that Z,,,, = Z,

for the cables is an unrealistic assumption. Also note that the shunt capacitances of the nominal m-circuit are actually
uncoupled in this case because C, = 0, which is always true in high voltage cables where each phase is
electrostatically shielded. Nonetheless, this cable circuit was chosen because it illustrates the effects of shunt
capacitances better than a case with overhead lines where C,, # 0.

Fig. 3.12(a) shows the voltages in the two unfaulted phases at the fault location, with oscillations
superimposed on the 60 Hz so typical of cable circuits. Fig. 3.12(b) shows the fault current; the high-frequency
oscillations at the beginning are caused by discharging the shunt capacitance through the fault resistance of 1 Q.
With zero fault resistance, this discharge would theoretically consist of an infinite current spike at t = 0, which leads
to the undamped numerical oscillations across the correct 60 Hz - values discussed in Section 2.3.2 (Fig. 3.12(c)).
These numerical oscillations would not appear if the cables were modelled as lines with distributed parameters;

instead, physically based travelling wave oscillations would appear which would still look similar to those of Fig.

3.12(b).
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(©) Fault current for Ry, 1 = O (different scale than in (b), but value again
negative)

Fig. 3.12
- Overvoltages and fault current for a single-phase-to-ground fault in the cable circuit of Fig. 3.11 (At = 10us; small
step size chosen to allow comparisons with distributed parameter model of cable with Z,,,,. = 4.2Q, T = 10us)

3.4 M-Phase Nominal rt-Circuit

Series connections of coupled resistances and coupled inductances first appeared as part of M-phase nominal
n-circuits (Fig. 3.10) when the EMTP was developed. It was therefore decided to handle such series connections
as part of an M-phase nominal m-circuit input option. By allowing the shunt capacitance 1/2 [C] to be zero, this -
circuit input option can then be used for series connections of [R] and [L] as well.

The equations for the shunt capacitance matrices 1/2 [C] at both ends are solved as discussed in Section 3.3.
[C] = 0 is not recognized by the EMTP as a special case; instead, the calculations are done as if [C[ were nonzero.

What remains to be shown is the series connection of [R] and [L] as one single set of M coupled branches.
The derivation of the coupled branch equations is similar to that of the scalar case discussed in Section 2.4, if scalar
quantities are replaced by matrices. When the series [R] - [L] connection was first implemented in the EMTP, it
was not recognized that [L] may not always exist. With the appearance of singular [L]"! matrices, e.g., in the
transformer model of Eq. (3.3), an alternative formulation was developed. Both formulations have been

implemented, as discussed in the next two sections.
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3.4.1 Series Connection of [R] and [L]

For the steady-state solution, the branch equations are
I, = {[R] + jolL}*{[V,] - [V, ]} (3.20)

They are solved accurately. For the transient simulation, the branch equations are derived by adding the voltage

drops across [R] and [L]. From Eq. (3.2) and (3.8),

i, 0] =[G, I v®O] - v, O + [hist,, (t-AD)] (3.21a)
with
[Rseries] = [R] + Ail[L] ’ and [Gseries] = [Rseries]il (321b)
and the history term
lhist ., (t-AD] = [G,,,][v,e-An] - [v,(t-An] +
[%{L} - [R]] li,, (t-ADD (3.22)

Direct updating of the history term with Eq. (3.22) involves three matrix multiplications because [i,,,,] must first be
found from Eq. (3.21a). Unless currents must be computed anyhow, as part of the output quantities, updating with

the following recursive formula is more efficient,

[hiSIseries(t) - [H] {[Vk(t)] B [Vm(t)] * [Rseries] [hiSIseries(tiAt)]} B

[hist (1~ AD)] (3.23a)

since it involves only two matrix multiplications. Matrix [H] is

[H] = 2{[Gseries] B [Gseries] [R] [Gseries]} (323b)

All matrices [Ry i, [Gyries] and [H] are still symmetric, which is exploited by the EMTP with the storage scheme
discussed in the last paragraph before Section 3.1.1. Symmetry is not automatically assured. For instance, the

alternative updating formula

[Bist (0] = F1LG, (O] = [hist,,,,, (t-AD)]

which, in combination with Eq. (3.21a), would be preferable in situations where current output is requested, has an

unsymmetric matrix [F],

[F] = [H][R,,,;,]
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All equations in this section can handle the special case of either [R] = 0 or [L] = 0 as long as [R.] of Eq. (3.21b)

can be inverted.

3.4.2 Series Connections of [R] and [L]*!

Singular matrices [L]"! appear in transformer representations if exciting currents are ignored. By itself, [L]"
is easily handled with Eq. (3.8) and (3.9). In series connections with [R], however, the equations of the preceding
section cannot be used directly because [L] does not exist.

For the steady-state solution, the matrix [R] + jo [L] is rewritten as

[R] + jolL] = [joLI{[jwLl'[R] + [U}

with [U] being the identity matrix, which upon inversion, produces the inverse required in Eq. (3.20),

{[R] + jo[L]* = {[U] + [joL] '[R]} ! [joL]* (3.24)
Eq. (3.24) produces a symmetric matrix, even though the matrix ~ [U] + [jwL]'[R] needed as an intermediate step
is unsymmetric. The symmetry of the result from Eq. (3.24) can be shown by rewriting the matrix [R] + jw[L] as

[R] + jo[L] = [jwLl{jwL] ' [R][jwL]l " + [jwL] '} [jwL]
from which the inverse is obtained as

{[R1+jw[L] ! = [foL] "{[joL] }[R][joL] ! + [jwL] '} [jwL]™ (3.25)

Each of the three factors of the product is a symmetric matrix, which is obvious for the two outer factors and which
can easily be proved for the inner factor by showing that its transpose is equal to the original. With all three factors
being symmetric, the triple product [A][B][A] is symmetric, too. The EMTP uses Eq. (3.24) rather than (3.25),
because the latter would fail if [R] = 0 and [L]" singular. The EMTP does not use complex matrix inversion,
followed by matrix multiplication with an imaginary matrix, however. Instead, Eq. (3.24) is reformulated as the

solution of a system of N linear equations with N right-hand sides,
LUl + [LI ' [RP[Y] = [wL]™ (3.26)

where the inverse [Y] is now directly obtained as the N solution vectors. To avoid complex matrix coefficients, Eq.

(3.26) is further rewritten as 2N real equations,

[wLI'[RIY,] - [¥] = [oL]™ (3.27)

[Y,] + [@L]'[RI[Y] = O (3.28)

By replacing [Y,] in Eq. (3.27) with the expression from Eq. (3.28), the imaginary part of [Y] is found by solving

the N real equations
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{toLr 1P + (if1y] = -[oL™ (3.29)

and the real part is then calculated from Eq. (3.28).

For the transient simulation, [R.] of Eq. (3.21b) is rewritten as

series.

2 - 2R -
[R] Ar (L] Ar [L]{2 (L] [R] [U]}

which, upon inversion, produces the matrix [G,, ] required in Eq. (3.21a),

series.

o1 At

[Gyoriee] = {LU] %[L]’l[R]} S (3.30)

Again, the matrix [U] + At/2 [L]'[R] needed as an intermediate step is unsymmetric, while the final result G,

becomes symmetric. Symmetry is proved with Eq. (3.25) by simply replacing jo by 2/At. As in the steady-state

case, the inverse of Eq. (3.30) is found by solving N linear equations

101+ SHLRIIG,,,) = S (3.31)

To initialize the history term [hist.], Eq. (3.21a) can be used directly. To update it, neither Eq. (3.22)

nor Eq. (3.23a) can be used because [L] and [R,.] do not exist. Instead, Eq. (3.23a) is rewritten as

Lhist (0] = [HU@1 ~ [0, 01 + [hist,g,,, (t-Ar)] +

[G

series

11-2RI[hist,,, (1-A)] (3.32)

By storing the symmetric matrices [H], [Gg..] and -2[R], the updating with Eq. (3.32) can be done with
three matrix multiplications, starting with the product -2[R][hist.(t - At)]. An alternative updating formula, which
requires the storage of only two symmetric matrices [G. ] and -2[R], and produces the currents [i,,] as a by-

product, is

Lhist, o ()] = [Gyie]) 10,01 = [0, (0] + [22R1 i, @) + [, (0] (3.33)

if the current is first found from Eq. (3.21a), followed by the multiplication -2[R][i,,(t)], etc. Eq. (3.33) is derived
from Eq. (3.22) by rewriting 2/At [L] - [R] as [Ry..] -2[R].

All equations in this section have symmetric matrices, and can handle the special case of either [R] = O or
[L]! = 0 as long as [U] + At/2 [L]'[R] in Eq. (3.30) can be inverted. Note, however, that [L]! = 0 implies infinite

inductances, that is, the M coupled branches are really M open switches.
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4. OVERHEAD TRANSMISSION LINES

4.1 Line Parameters

The parameters R', L', and C' of overhead transmission lines are evenly distributed along the line!, and can,
in general, not be treated as lumped elements. Some of them are also functions of frequency; therefore, the term

"

"line constants" is avoided in favor of "line parameters.” For short-circuit and power flow studies, only positive

and zero sequence parameters at power frequency are needed, which are readily available from tables in handbooks,

or can easily be calculated from simple formulas. For the line models typically needed in EMTP studies, however,
these simple formulas are not adequate enough. Usually, the line parameters must therefore be computed, with either
one of the two supporting routines LINE CONSTANTS or CABLE CONSTANTS.

These supporting routines produce detailed line parameters for the following types of applications:

(a) Steady-state problems at power frequency with complicated coupling effects. An example is the calculation
of induced voltages and currents in a de-energized three-phase line which runs parallel with an energized
three-phase line. Both lines would be represented as six coupled phases in this case.

(b) Steady-state problems at higher frequencies. Examples are the analysis of harmonics, or the analysis of
power line carrier communication, on untransposed lines.

(©) Transients problems. Typical examples are switching and lightning surge studies.

Line parameters could be measured after the line has been built; this is not easy, however, and has been
done only occasionally. Also, lines must often be analyzed in the design stage, and calculations are the only means
available for obtaining line parameters in that case.

The following explanations describe primarily the theory used in the supporting routines LINE
CONSTANTS and CABLE CONSTANTS, though other methods are occasionally mentioned, especially if it appears
that they might be used in EMTP studies some day. The supporting routine LINE CONSTANTS is heavily based

on the work done by M.H. Hesse [27], though some extensions to it were added.

4.1.1 Line Parameters For Individual Conductors
The solution method is easier to understand for a specific example. Therefore, a double-circuit three-phase
line with twin bundle conductors and one ground wire will be used for the explanations (Fig. 4.1). There are 13

conductors in this configuration. They will be called

'"The "prime" in R', L' and C' is used to indicate distributed parameters in Q/km, H/km and F/km.
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Fig. 4.1 - Line parameters

individual conductors?, to distinguish them from the 6 equivalent phase conductors which are obtained after pairs

have been bundled into phase conductors and after the ground wire has been eliminated.

4.1.1.1 Series Impedance Matrix
It is customary to describe the voltage drop along a transmission line in the form of partial differential

equations, e.g., for a single-phase line as

0 . oi
*a—: = R/i +L/§; @.1)

The parameters R' and L' of overhead lines are not constant, however, but functions of frequency. In that case it
is improper to use Eq. (4.1); instead, the voltage drops must be expressed in the form of phasor equations for ac

steady state conditions at a specific frequency. For the case of Fig. 4.1,

av, |
e
av,| | i
_2 z\, 7', Z/1,13 I,
& yAS yAS yAS
~ |4 2 213 || - 4.22)
_Z/13,1 Z/13,2 Z/13,13_
I
dav,, [ 13]
L dx d

’In the output of the supporting routine LINE CONSTANTS, they are called "physical conductors."
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with  V, = voltage phasor, measured from conductor i to ground,
I, = current phasor in conductor i,
or in general
av /
_18¥l -1z 4.2b
[ dx] [(Z711] (4.2b)

with [V] = vector of phasor voltages (measured from conductor to ground), and
[I] = vector of phasor currents in the conductors.

Implied in Eq. (4.2) is the existence of ground as a return path, to which all voltages are referenced. The matrix
[Z'] = [R'(w)] + jo [L'(w)] is called the series impedance matrix; it is complex and symmetric. The diagonal
element Z'; = R'; + jwL';; is the series self impedance per unit length of the loop formed by conductor i and ground
return. The off-diagonal element Z', = Z'; = R'; + jwL',; is the series mutual impedance per unit length between
conductors i and k, and determines the longitudinally induced voltage in conductor k if a current flows in conductor
i, or vice versa. The resistive terms in the mutual coupling are introduced by the presence of ground, as briefly
explained in Section 3.1.

Formulas for calculating Z'; and Z', were developed by Carson and Pollaczek in the 1920's for telephone
circuits [28, 29]. These formulas can also be used for power lines. Both seem to give identical results for overhead
lines, but Pollaczek's formula is more general inasmuch as it can also be used for buried (underground) conductors
or pipes. Carson's formula is easier to program than Pollaczek's and is therefore used in both supporting routines
LINE CONSTANTS and CABLE CONSTANTS, except that the latter includes an extension of Carson's formula
for the case of multilayer stratified earth [30] as well. Carson's, Pollaczek's and other earth return formulas are
compared in [31].

Two recent new approaches to the calculation of earth-return impedances are those of Hartenstein, Koglin
and Rees [32], and of Gary, Deri, Tevan, Semlyen and Castanheira [33, 34]. Hartenstein, Koglin and Rees treat
the ground as a system of conducting layers 1, 2, 3...n, with uniform current distribution in each layer (Fig. 4.2(a)).
Their results come close to those obtained with Carson's formula. One advantage of their method is the fact that
it is very easy to assume difference earth resistivities for each of the layers. Gary, Deri, et al. calculate self and
mutual impedances with the simple formulas originally proposed by Dubanton,

2h.+p
Z/ii = R/ifimernal * J{" 'uog)'n ( l p) * X/ (43)

i-internal
21 7

and

\/(hi+hk+2ﬁ)2 +xty,

4.4
y 4.4)

z' = jwﬂ sn
2n i

in which p represents a complex depth,
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p=|-"
JORy

“4.5)

All other parameters are explained after Eq. (4.8), except for  x, = horizontal distance between conductors i and
k (Fig. 4.4), and p = earth resistivity. The results agree very closely with those obtained from Carson's formula,
with the differences peaking at 9% in the frequency range between 100 Hz and 10 kHz and being lower elsewhere.
This is a very good agreement, indeed, and Eq. (4.3) and (4.4) may therefore supplant Carson's formula some day.

Fig. 4.2(b) shows a comparison of positive and zero sequence parameters for a typical 500 kV line.

//g

VI LL Y L ///"//// 777
‘</ \\\\ zx\\\\/
\ S S3 S /
NN AN \\ NN N

Fig. 4.2(a) - Alternative to Carson's
formula: Ground represented as layers 1,
2,...1n

Carson's formula
Carson's formula for homogeneous earth is normally accurate enough for power system studies, especially
since the data for a more detailed multilayer earth return is seldom available. The supporting routine CABLE
CONSTANTS does have an option for multilayer or stratified earth, however. Carson's formula is based on the
following assumptions:
(a) The conductors are perfectly horizontal above ground, and are long enough so that three-dimensional end
effects can be neglected (this makes the field problem two-dimensional). The sag is taken into account

indirectly by using an average height above ground (Fig. 4.3).
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Fig. 4.2(b) - Alternative to Carson's formula: formula by Gary, Deri et al. (comparison with Carson's
formula for a typical 500 kV line with bundle conductors; skin effect in conductors ignored)

(b) The aerial space is homogeneous without loss, with permeability u, and permittivity e,.
(c) The earth is homogeneous with uniform resistivity p, permeability u, and permittivity €,, and is bounded
by a flat plane with infinite extent, to which the conductors are parallel. The earth behaves as a conductor,

i.e., 1/p > > weg,, and hence the displacement currents may be neglected. Above the critical frequency

fiea = 1/(2Teyp), other formulas [35, 36] must be used (for p = 10,000 Qm in rocky ground, f ;.. =
1.8 MHz, which is still on the high side for most EMTP line models).
(d) The spacing between conductors is at least one order of magnitude larger than the radius of the

conductors, so that proximity effects (current distribution within one conductor influenced by current in an

adjacent conductor) can be ignored.
The conductor profile between towers (Fig. 4.3) can be described
(a) as a parabola for spans < 500 m,
(b) as a catenary for 500 < spans < 2000 m, and

(©) as an elastic line for spans > 2000 m.
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height at midspan

¥

Fig. 4.3 - Conductor profile between towers
If the parabola is accurate enough, then the average height above ground is

h=height at midspan+%sag, (4.6)

4.6)
which is the formula used by both supporting routines LINE CONSTANTS and CABLE CONSTANTS. The
elements of the series impedance matrix can then be calculated from the geometry of the tower configuration (Fig.

4.4) and from characteristics of the conductors. For the self impedance,

i-internal i-internal

2h,
Z' = R o tAR) + j(w%lnTHXﬂ SAX) @.7)

1

images

é

Fig. 4.4 - Tower geometry
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and for the mutual impedance

Z/

. ko, D,
w =2 = ARy + ](wz—zlnd—’k +AXY) (4.8)

ik
with p, = permeability of free space. Using
po/2m = 2-10°* H/km (4.9)

produces impedances in Q/km. The parameters in Eq. (4.7) and (4.8) are

R';iema = ac resistance of conductor i in Q/unit length,

h; = average height above ground of conductor i,

D, = distance between conductor i and image of conductor k,
d, = distance between conductors i and k,

T, = radius of conductor i,

Ximema = internal reactance of conductor i,

® = 2nf with f = frequency in Hz,

AR', AX' = Carson's correction terms for earth return effects.

Carson's correction terms AR' and AX' in Eq. (4.7) and (4.8) account for the earth return effect, and are
functions of the angle ¢ (¢ = 0 for self impedance, ¢ = ¢, in Fig. 4.4 for mutual impedance), and of the parameter

a:

a=-4nf5-10%-D- | L (4.10)
p
with D = 2h, in m for self impedance,
D, in m for mutual impedance,
p = earth resistivity in Qm.
AR' and AX' become zero for a - « (case of very low earth resistivity). Carson gives an infinite integral for AR’
and AX', which he developed into the sum of four infinite series for a < 5. Rearranged for easier programming,

it can be written as one series, and for impedances in {/km, becomes

AR'= 40010*{/8 AX'=  40e{1/2(0.6159315-1na)
-b,a®cosd +b,a®cosd
+b,[(c,-1na)a*cos2¢p + a’sin2¢)] -d,a*cos2¢
+b,a’*cos3¢ +b,a*cos3¢
-d,a*cos4 -b,[(c,-1na)a‘cos4d + PpasingdP]
-bsa’cos5¢ +bsa’cos5¢
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+by[(cs-1na)a’cos6¢p + Pa’sin6d -dsa®cos6¢

+b,a’cosTd +b,a’cosTd
-dgabcos8¢ -bg[(c-1na)abcos8Pp + Ppa’sin8d]
. +

inQ/km (4.11)

Each 4 successive terms for a repetitive pattern. The coefficients b,, ¢, and d; are constants, which can be

precalculated and stored in lists. They are obtained from the recursive formulas:

b, = g Jor odd subscripts,

sign
127
! i(i+2

with the starting value

1 . 4.12)
b2:1_6 for even subscripts,

Ci=6172+l_+_—12 with the starting value ¢,=1.3659315,
i i+
diZE'bi’
4
with sign = +1 changing after each 4 successive terms (sign = +1 fori =1, 2, 3, 4; sign = -1 fori = 5, 6, 7,
8 etc.).

The trigonometric functions are calculated directly from the geometry,

b
cosd,, = and  sing, = Rk
Dy

and for higher-order terms in the series from the recursive formulas

a’‘cosi¢p = [a' cos(i-1)¢-cosd -a’ sin(i-1)¢ sind]-a

a'sini¢ = [a' ‘cos(i-1)¢-sind +a’ 'sin(i-1)$p-cosd]-a 4.13)

For power circuits at power frequency only few terms are needed in the infinite series of Eq. 4.11.
However, at frequencies and for wider spacings (e.g., in interference calculations) more and more terms must be
taken into account as the parameter a becomes larger and larger [37, discussion by Dommel]. Once Carson's series
starts to converge, it does so fairly rapidly. How misleading the results can be with too few terms in the series of
Eq. 4.11 is illustrated for the case of a = 4 and ¢ = 0O: If the series were truncated after the 1st, 2nd,..., 15th term,
the percent error in Re{Z';} would be

+312, -748, -16, +798, 416, +365, -121, -93, +28, -15, +5.2,

+1.7, -0.35, +0.14, -0.04

For a > 5 the following finite series [38] is best used:
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AR/ - cosd  y/2cos2¢ . cos3¢ . 3cos5¢p 45cos7d | 4w-107*
a a? a’ a’ a’ V2

AX' =

in Q/km (4.14)

cos¢p cos3¢p . 3cos5¢ . 4500574)] 4w 10

5 7 \/i

a a’ a a

Internal impedance and skin effect

In the old days of slide-rule calculations, the internal reactance X',.,...... a0d external reactance w u,/21 ¥n
2h/r for lossless earth were often combined into one expression, by replacing radius r with the smaller "geometric

mean radius" GMR to account for the internal magnetic field,

% + / _ I'l’()gen 2h

r X internal 21 GMR (4 15)

wﬂ%ﬁn
27
GMR was often included in conductor tables. Instead of or in addition to GMR, North American handbooks have
also frequently given the "reactance at 1 foot spacing"? X',, which is related to GMR,

X', - olog 10000

4.16
4 21 GMR(feet) (4.16)

with GMR in feet (or in m if X', is to be the reactance at 1 m spacing).

The concept of geometric mean radius was originally developed for nonmagnetic conductors at power
frequency where uneven current distribution (skin effect) can be ignored. In that case, its meaning is indeed purely
geometric, with GMR being equal to the geometric mean distance among all elements on the conductor cross section
area if this area were divided into an infinite number of equal, infinitesimally small elements. For a solid, round,

nonmagnetic conductor at low frequency,

GMR/r = e V*
This formula changes to

GMR/r = ¢ ""*

if the conductor is made of magnetic material with relative permeability u,; its geometric meaning is then lost. If

skin effect is taken into account, its geometric meaning is lost as well. The name geometric mean radius is therefore

’The name comes form the positive sequence reactance formula X' pos = @ po/21 Yn GMD/GMR discussed in
Eq. (4.56), for the case where the spacing among the three phases (expressed as geometric mean distance GMD)
is 1 foot, with GMR given in feet as well.
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misleading, and it is questionable whether it should be retained.
Eq. (4.15) gives the conversion formula between GMR and internal reactance,

The internal reactance can be calculated for c%tain types of conducts [39, 40] as part of the internal impedance
X ! 'mer/m[/ (0=

)
R'iernat T 31X inernat-  SinceGUIR/r dsenly a vet§ small part of the total reactance for nonmagnetic conduc%'r%,ﬂlts

accurate determination is somewhat academic. More important is the calculation of R’ because the increase

internal »
of resistance with frequency due to skin effect can be considerable.

The internal impedance of solid, round wires can be calculated with well-known skin effect formulas, with
R‘

being of more practical interest than X' Stranded conductors can usually be approximated as solid

internal internal ®

conductors of the same cross-sectional area* [41]. It has been claimed that steel-reinforced aluminum cables (ACSR)
can usually be approximated as tubular conductors when the influence of the steel core is negligible, which is more
likely to be the case with an even number of layers of aluminum strands, since the magnetization of the steel core
caused by one layer spiralled in one direction is more or less cancelled by the next layer spiralled in the opposite
direction. The supporting routine LINE CONSTANTS uses this approximation of an ACSR as a tubular conductor.
If the magnetic material of the steel core is of influence, then calculations probably become unreliable, and current-
dependent, measured values should be used instead. Since the solid conductor is a special case of the tubular
conductor, the supporting routine LINE CONSTANTS uses only the formula for the latter, which is described as
Eq. (5.7b) in Section 5.1.

Table 4.1 shows the increase in resistance and the decrease in internal inductance due to skin effect for a
tubular conductor with R',, = 0.0398 Q/mile, ratio inside radius/outside radius q/r = 0.2258 (Fig. 4.5), and p, =
1.0. The internal inductance of a tube at dc is [48, p. 64]

4 2 2
L', =2 104{q7gn1 _3q7r”

Hlkm
(r’-q®* 4 4’-q?)

or 0.454866 - 10* H/km in this case. At high frequencies, R' =X with both components being

'
internal internal »

proportional to vVw. This is the region of pronounced skin effect. From Table 4.1 it can be seen that R', ..,
X' mema ar€ almost equal at 10 kHz (difference 2.2%), with the difference decreasing to 0.7% at 100 kHz, or 0.2%
at 1 MHz.

, and

*There are cases, however, where this approximation is not good enough. More accurate formulas are
needed, for instance, for calculating the attenuation in power line carrier problems [39], as explained in
Appendix VII.
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Table 4.1 - Skin effect in a tubular conductor

f(HZ) R'ac/ R'dc L' imernal—ac/ L' internal-dc
2 1.0002 0.99992
4 1.0007 0.99970
6 1.0015 0.99932
8 1.0026 0.99879
10 1.0041 0.99812
20 1.0164 0.99254
40 1.0632 0.97125
60 1.1347 0.93898
80 1.2233 0.89946
100 1.3213 0.85639
200 1.7983 0.66232
400 2.4554 0.47004
600 2.9421 0.38503
800 3.3559 0.33418
1000 3.7213 0.29924
2000 5.1561 0.21204
4000 7.1876 0.15008
6000 8.7471 0.12258
8000 10.0622 0.10617
10000 11.2209 0.09497
20000 15.7678 0.06717
40000 22.1988 0.04750
60000 27.1337 0.03879
80000 31.2942 0.03359
100000 34.9597 0.03004
200000 49.3413 0.02124
400000 69.6802 0.01502
600000 85.2870 0.01227
800000 98.4441 0.01062
1000000 110.0357 0.00950
2000000 155.5154 0.00672
4000000 219.8336 0.00475

Fig. 4.5 - Tubular conductor
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Fig. 4.6 - Current distribution within an 8-conductor bundle [42]. ©
1976 IEEE

Example for using series impedance matrix of individual conductors
The matrix of Eq. (4.2) can be used to study the uneven current distribution within a bundle conductor.

Fig. 4.6 shows measured and calculated values for the unequal current distribution in the 8 subconductors of an
asymmetrical bundle for various degrees of asymmetry [42]. Asymmetrical bundling was proposed to reduce audible
noise, but this advantage is offset by the unequal current distribution. The currents in this case were found from Eq.

(4.2) with an 8 x 8 matrix, assuming equal voltage drops in the 8 conductors,

1] = -[Z'T" [aV/dx] (4.18)

4.1.1.2 Shunt Capacitance Matrix

The voltages from the 13 conductors in Fig. 4.1 to ground are a function of the line charges:
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-Vl- -P/u Py . P/1,13- -‘11-
V2 Py Py . Phyl|%
= ’ (4.192)
[V13) _P/13,1 P/13,2 P/13,13_ 913}
with q; = charge per unit length on conductor i, or in the general case
vl = [P 1q] (4.19b)

Maxwell's potential coefficient matrix [P'] is real and symmetric. Its elements are easy to compute from the
geometry of the tower configuration and from the conductor radii if the following two assumptions are made: (a) the
air is lossless and the earth is uniformly at zero potential, (b) the radii are at least an order of magnitude smaller than

the distances among the conductors. Both assumptions are reasonable for overhead lines. Then the diagonal element

becomes
1 2h,
Ply = S—In— (4.20)
Y 2me, 1
and the off-diagonal element
1 D.
P =P/ = In—* 4.21)
k k .
! ' 2me, d,

with g, = permittivity of free space. The factor 1/(27e,) in these equations is ¢* - u,/27, where ¢ is the speed of

light. With ¢ = 299,792.5 km/s and p,/(21t) = 2 - 10" H/km, it follows that

1/2me,) = 17.975109- 10° km/F 4.22)

The inverse relationship of Eq. (4.19) yields the shunt capacitance matrix [C'],

[q]1 = [C1DVI,  with [C] = [P (4.23)

The supporting routine LINE CONSTANTS uses a version of the Gauss-Jordan process for this matrix inversion
which takes advantage of symmetry [43]. This process was chosen because it can easily be modified to handle matrix
reductions as well, which are needed for eliminating ground wires and for bundling conductors. Appendix III
explains this Gauss-Jordan process in more detail.

The capacitance matrix [C'] is in nodal form. This means that the diagonal element C'; is the sum of the
shunt capacitances per unit length between conductor i and all other conductors as well as ground, and the off-
diagonal element C';, = C',; is the negative shunt capacitance per unit length between conductors i and k. An

example for a three-phase circuit from [44, p. 457] is shown in Fig. 4.7, with
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12.161 -2.625 -2.625
[C] =|-2.625 11.729 -1.349| nF/mile
-2.625 -1.349 11.729

or C' p = 2.625, C' =2.625, C' =1.349, C = 7.755 nF/mile, etc.

13-mutual 23-mutual 2-ground

1.349 nF/mile

£ 0 feet
2.625 nF/mile [ JO feet 10 feet

/ N :
F—p——: S

7.755 obtained from the [ | l
nF/mile == nF/mile=e= following data: 40 feet

\ . conductor diameter
6.911|nF/mile = 0.5 inches
AAANTRKARX AAA/ .

Fig. 4.7 - Mutual and shunt capacitances

For ac steady-state conditions, the vector of charges (as phasor values) is related to the vector of leakage

currents [-dI/dx] by

0] - ﬂ%} (4.24)

Therefore, the second system of differential equations is

{%} = jo[C1V] (4.25)

which, together with Eq. (4.2), completely describes the ac steady-state behavior of the multi-conductor line. Shunt
conductances G' have been ignored in Eq. (4.25), because their influence is negligible on overhead lines, except at
very low frequencies approaching dc, where the line behavior is determined by R' and G', with wL' and wC'

becoming negligibly small. With G', the complete equation is

4Ly
[dx} [Y][V] (4.26a)
where
[Y'1 =[Gl + jw[C'] (4.26b)

At very high frequencies, the shunt capacitances are also influenced by earth conduction effects, and

correction terms must then be added to Eq. (4.20) and (4.21). However, the earth conduction effect is normally
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negligible below 100 kHz to 1 MHz [45]. In that case, the capacitances are constant, in contrast to series resistances

and series inductances which are functions of frequency.

4.1.2 Line Parameters for Equivalent Phase Conductors

Equations (4.2) and (4.19) for all individual conductors contain more information than is usually needed.
Generally, only the phase quantities are of interest. For the case of Fig. 4.1, the reduction from 13 equations to 6
equations for the phases R, S, T, I, V, W is accomplished by introducing the following conditions,
for grounding conductor 13: dV,;/dx = 0 in (4.2), v;; = 0 in (4.19),
for bundling conductors 1 and 2 into phase R:

I, + I, = I, dV,/dx = dV,/dx = dVy/dx in (4.2),
and
g+ =0qr V; =V, = vz in (4.19)

and analogous for bundling the other phases. With these conditions, the matrices can be reduced to 6 x 6, as

explained next. These reduced matrices will be called matrices for the equivalent phase conductors.

4.1.2.1 Elimination of Ground Wires

Normally, ground wires are continuous and grounded at every tower’, which are typically 250 to 350 m
apart. In that case it is permissible for frequencies up to approximately 250 kHz to assume that the ground wire
potential is continuously zero [46]. This allows a reduction in the order of the [Z']- and [P']-matrices, with the
reduction procedure being the same for both. Let the matrices and vectors in Eq. (4.2) be partitioned for the set "u"

n.n

of ungrounded conductors, and for the set "g" of ground wires,

[avyaxl| |Z',) 1Z',]]|l]
aviad| iz 1 1zl #-27)
[ i ] [Zgu] [Zgg] [g]
Since [V,] and [dV,/dx] are zero, Eq. (4.27) can be reduced by eliminating [L,],
av,
- dx - [Z/reduced] [Iu] (4283')
where
VAR I VA Il VAU | VAN il VA (4.28b)

Rather than using straightforward matrix inversion and matrix multiplications in Eq. (4.28b), the more efficient
Gauss-Jordan reduction process of Appendix III is used in the supporting routine LINE CONSTANTS. [P'] is

reduced in the same way, and [C',,..q] 15 found by inverting [P' .,...d]- At first sight it may appear as if less work

*Non-continuous "segmented" ground wires are discussed in Section 4.1.2.5.
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were involved in reducing [C'], where the reduction simply consists of "scratching out" the rows and columns for
ground wires "g." However, [C'] must first be found from the inversion of [P'], and it is faster to reduce a matrix

than to invert it.

4.1.2.2 Bundling of Conductors

On high voltage power lines, bundle conductors are frequently used, where each "phase" or bundle
conductor consists of two or more subconductors held together by spacers (typically 100 m apart). The bundle is
usually symmetrical (S = 1.0 in Fig. 4.6), but unsymmetrical bundles have been proposed as well. Two methods
can be used for calculating the line parameters of bundle conductors. With the first method, the parameters are
originally calculated with each subconductor being represented as an individual conductor. Since the voltages are
equal for the subconductors within a bundle, this voltage equality is then used to reduce the order of the matrices
to the number of "equivalent phase conductors.” With the second method, the concept of geometric mean distances
is used to replace the bundle of subconductors by a single equivalent conductor. Both methods can be used with the
supporting routine LINE CONSTANTS. The supporting routine CABLE CONSTANTS is limited to the second

method.

Method 1 - Bundling of subconductors by matrix reduction

As in the elimination of ground wires, the matrix reduction process is the same for [Z'] and [P'], and will
therefore only be explained for [Z']. Let us assume that the individual conductors i, k, 1, m are to be bundled to

make up phase R. Then the conditions

and

must be introduced into Eq. (4.2). The first step is to get I; into the equations. This is done by writing I in place

of I,. By doing this, an error is of course made, which amounts to the addition of terms
Z/W.(Ik + 1, + 1)

in all rows u; they must obviously be subtracted again to keep the equations correct. In effect, this means subtraction

of column i from columns k, &, m. These changes are shaded in Fig. 4.8.
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Fig. 4.8 - First step in bundling procedure

Columns k, &, m are assumed to be the last ones in the matrix to make the explanation easier. The currents I, L,
I, are still in the equations after execution of the first step of Fig. 4.8. To be able to eliminate them, there should
be zeros in the left-hand side of the respective rows. This is easily accomplished by subtracting row i from rows
k, <, m, which produces zeros because dV,/dx = dV,/dx etc. These changes are shaded in Fig. 4.9. The equations
are now in a form which permits elimination of I, L;, I,, in the same way as elimination of ground wires in Eq.
(4.28). The four rows and columns for subconductors i, k, &, m are thereby reduced to a single row and column
for bundle conductor R.

Method 1 is more general than method 2 discussed next. For instance, it can easily handle the unequal

current distribution in asymmetrical bundles described in Fig. 4.6.

b 1 subtract row i from
= R .

rows k, £, m; row i
remains unchanged

xW L L AL T

I VPPN I

2 77777777 S
m

Fig. 4.9 - Second step in bundling procedure

Method 2 - Replacing bundled subconductors with equivalent single conductor

This method was developed for hand calculations [47], and while theoretically not limited to symmetrical
bundles, formulas have usually only been derived for the more important case of symmetrical bundles. The
following formulas are based on the assumption that
(a) the bundle is symmetrical (S = 1.0 in Fig. 4.6), and

(b) the current distribution among the individual subconductors within a bundle is uniform.
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With these assumptions, the bundle can be treated as a single equivalent conductor in Eq. (4.15) by replacing

GMR with the equivalent geometric mean radius of the bundle,

N
GMRequiv = VN. GMR - A M (429)

where
GMR = geometric mean radius of individual subconductor in bundle,
A = radius of bundle (Fig. 4.10).

Similarly, the radius r in Eq. (4.20) must be replaced with the equivalent radius

N————
requiv = N- r.ANil (430)

Comparison between methods 1 and 2

Both methods for bundling conductors give practically identical answers, at least in the example chosen for
this comparison. The example was a 500 kV three-phase line with horizontal tower configuration, with phases 40
feet apart at an average height above ground of 50 feet. The symmetrical bundle consisted of 4 subconductors spaced
18 inches apart. Conductor diameter = 0.9 inches, dc resistance = 0.1686 Q/mile, GMR = 0.3672 inches, 1.,
= 7.80524 inches from Eq. (4.30), and GMR,,,, = 7.41838 inches from Eq. (4.29). Table 4.2 compares the results

in the form of positive and zero sequence parameters at 60 Hz. Obviously, the results are practically identical.

Table 4.2 - Comparison between methods 1 and 2 for bundling

Positive and zero sequence Method 1 (Bundling by matrix Method 2 (Equivalent
parameters at 60 Hz reduction) conductors)
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R',,, (Q/mile) 0.042223 0.042205
X' pos (Q/mile) 0.53394 0.53399
C',s (uF/mile) 0.021399 0.021397
R, (Q/mile) 0.31740 0.31738
X' oo (Q/mile) 2.0065 2.0065
C' .o (pF/mile) 0.013456 0.013455

4.1.2.3 Reduced Matrices for Equivalent Phase Conductors
For the case of Fig. 4.1, elimination of ground wires and bundling of subconductors reduces the 13 x 13

matrices for the individual conductors to 6 x 6 matrices for the phases, e.g., for the series impedances,

-VR- Z/RR Z/RS Z/RT Z/RU Z/RV Z/RW -IR_
Vg Zly 2l Z'g Z'g Z', Z'g, I
d vy ~ Z/TR Z/TS Z/TT Z/TU Z/TV Z/TW I;
dx VU Z/UR Z/US Z/UT Z/UU Z/UV Z/UW IU
Vy Zg Zly Z'yy Z'yy 20y 2y Iy
V. I
L W] _Z/WR Z/ws Z/WT Z/WU Z/wv Z/WW_ [ W]
or in general,
av.,
- ixase =1Z /phase] [Iphase] “.3D)
and
a, )
_|:_2xase =Jjw [C/phase] [Vphase] (432)
For a three-phase single circuit with phases A, B, C, Eq. (4.31) would have the form
-dVA-
& Z/AA Z/AB Z/AC 1
av,
| T 2 2| |l (4.33)
dv, Z/CA Z/CB Z/cc lc

The diagonal element Z',, in Eq. (4.33) is the series self impedance of phase k for the loop formed by phase k with
return through ground and ground wires, and the off-diagonal element Z';, is the series mutual impedance between

phases i and k. The self impedance of phase k is not the positive sequence impedance. To obtain impedances which
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come close to the positive sequence values, we would have to assume symmetrical currents in Eq. (4.33),

I

_ 2 _ . _ ,j120°
p=al, and I.=al,, with a-=e

and then express the voltage drop in phase A as a function of I, only,

dVA / . / / 27/ /
e =2y yudar W Z'y = (L v a7yt al ) (4.34a)
and similarly for phases B and C,
dVB _ 7/ . / _ / / 27/
o Z'y gy With Z'g_ o = (L g+ 0 g+ a2 g0 (4.34b)
dVC _ Z/ ith Z/ _ Z/ Zz/ Z/
i C-symd 0 Wil Cosymm = L et Q7L o+ Al pe) (4.34¢)
The values of the three impedances Z', ¢ ,ums Z'p symm> Z' ¢ symm 10 Eq. (4.34) are not exactly equal, but their

average value is the positive sequence impedance. Because of slight differences in the three values, the voltage drops
are slightly unsymmetrical (or the currents become slightly unsymmetrical for given symmetrical voltage drops).
As discussed in Section 4.1.3, transposing a line eliminates or reduces these unsymmetries at power frequency,
though not necessarily at higher frequencies.

In the capacitance matrix of a three-phase line, C',, would be the sum of the coupling capacitances to phases
B and C and of the capacitance to ground, and C,, would be the negative value of the coupling capacitance between
phases A and B. Assuming symmetrical voltages, Eq. (4.32) would show slight unsymmetry in [dl,./dx],
analogous to that of Eq. (4.34).

4.1.2.4 Nominal n-Circuit for Equivalent Phase Conductors

The matrices in Eq. (4.31) and (4.32) are the basis for practically all EMTP line models. Even in studies
where ground wires must be retained, it is still these matrices which are used, with phase numbers assigned to the
ground wires as well. A three-phase line with one ground wire is conceptually a four-phase line, with phase no. 1,
2, 3 for phase conductors A, B, C and phase no. 4 for the ground wire.

One type of line representation uses cascade connections of nominal 7m-circuits, as discussed in Sections
4.2.1.1 and 4.2.2.1. This polyphase nominal m-circuit with a series impedance matrix and equal shunt capacitance

matrices at both ends, as shown in Fig. 3.10, is directly obtained from the matrices in Eq. (4.31) and (4.32),

[R] + jw[L] =< - [Z (4.35)

/
phase]

and
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%jw[C_I = %jw&’ [C phase] (4.36)

where ¢ is the length of the line.

The cascade connection of nominal w-circuits approximates the even distribution of the line parameters
reasonably well up to a certain frequency. It does ignore the frequency dependence of the resistances and inductances
per unit length, however, and is therefore reasonably accurate only within a certain frequency range.

Strictly speaking, it may not be quite correct to treat the real part of [Z',.] as a resistance, and the

phase

imaginary part as a reactance, as done in Eq. (4.35), especially for lines with ground wires. For a three-phase line

with phases A, B, C and ground wire g, the original 4 x 4-matrix is reduced to a 3 x 3-matrix with elements

/ /
Z/ Z/ _ Z ig-original Z kg -original
ik-reduced ~ ik-original / (4 3 7)

g g-original

Even if Z'; igina COuld be separated into resistance and reactance without any doubt, the real part of the second term
in Eq. (4.37) depends on the imaginary parts of the three impedances as well, unless the R/X-ratios of all three

impedances were equal. There is also some doubt about separating Z' into resistance and reactance because

ik-original
of the earth as an implied return conductor, as mentioned in Section 3.1. Nonetheless, experience has shown that
nominal 7-circuits do give reasonable answers in many cases, and they are at least correct at the frequency at which

the matrices were calculated (and probably reasonably accurate in a frequency range around that specific frequency).

Example for using nominal m-circuits

Electrostatic and magnetic coupling effects from energized power lines to parallel objects, such as fences
or de-energized power lines, are important safety issues, and have been well described in two IEEE Committee
Reports [37, 49]. A case of a fence running parallel to a power line (Fig. 4.11) is discussed here, as an application
example for nominal 7t-circuits.® By simply treating the fence as a fourth phase conductor, the following series

impedance and shunt capacitance matrices are obtained:

0.4054+j0.9859  symmetric!
iz 0.0574+j0.4265 0.4054+j0.9859 Ok
= m
phase 0.0574+j0.4265 0.0574+j0.3742 0.4054+j0.9859

0.0581+j0.3168 0.0581+j0.3291 0.0581+j0.3044 1.8607+j0.9953

and

SFor electrically short lines, as in this example, electrostatic coupling effects can be solved by themselves
with [C' ], and magnetic coupling effects by themselves with [Z',,.]. For solving such cases with the EMTP,
it is usually easier to use nominal m-circuits which combine both effects. With that approach, electrically long
lines can be studied as well, provided an appropriate number of m-circuits are connected in cascade.
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7.5709 symmetric
, -1.6266  7.3088
[C phase] = nF/km
-1.6304 -0.8349 7.2999

-0.1688 -0.2758 -0.1189 6.9727

From these matrices, the nominal w-circuit matrices are calculated with Eq. (4.35) and (4.36).

3.048 m 3.048 m

Power line conductors: | € y l

R'intemal = 0348 Q/km a— . O .
2 1l

X', = 0.4755 Q/km (60 Hz) 3
(reactance at 1 m spacing)

diameter = 12.7 mm I
frequency = 60 Hz

| - 12.192 m

Fence:
R'intemal = 1802 Q/km i . — .0.4— . l
solid conductor (nonmagnetic) !

diameter = 4.064 mm 3.048 m fe— 9.144 m_,l
length = 2 km —f

Fig. 4.11 - Fence 4 running parallel with power line phase conductors 1, 2, 3

Assume that the fence is insulated from the posts and nowhere grounded. To find the voltage on the fence
due to capacitive coupling, simply connect voltage sources to phases 1, 2, 3 at the sending end, and leave 1, 2, 3
at the receiving end as well as 4 at both ends open-ended. Assuming V = 345 kV RMS, line-to-line, the fence
voltage becomes V, = 3.97 kV. If phase 1 were at zero potential because of a phase-to-ground fault, with phases
2 and 3 still at rated voltage 345/v/3 kV, then the fence voltage would increase to V, = 6.84 kV. These answers are
practically independent of fence length.

Now assume that the 2 km long fence is grounded at the sending end and open-ended at the receiving end.
To find the voltage in the fence for a load current of 1 kA RMS, simply add current sources to phases 1, 2, 3 at the
receiving end, with symmetrical voltage sources at the sending end. Phase 4 is connected to ground at the sending

end and open-ended at the receiving end. The answer will be V. = 0.043 kV, which increases dramatically

4-receiving end
to 6.442 kV if the currents are changed to I, = 10 kA, I, = I = 0 to simulate a phase-to-ground fault. For this last
case, the fence current would be 1.526 kA if the fence were grounded at both ends. These answers are practically

independent of the voltage on phases 1, 2, 3, which can easily be verified by setting them zero.

4.1.2.5 Continuous and Segmented Ground Wires

(a) Circulating Currents in Continuous Ground Wires

Assume that ground wire no. 13 of Fig. 4.1 is grounded at each tower. If the ground wire is not eliminated,
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then the series impedance matrix for equivalent phase conductors will be a 7 x 7 matrix. Its elements can then be

used to calculate the longitudinally induced voltage in the ground wire,

dVg_ / / / / I
*E‘ZgRIRJngsIs*---ZgWIW+Zggg (4.38)

If tower and tower footing resistances are ignored, then V, = 1 at all towers as long as span < < wavelength, or

z L+ Z I+ ...Z 1
Ig _ _ T 8RR gSZ/S W oW (439)
88

Since the mutual impedances from the phase conductors to the ground wire are never exactly equal, the numerator
in Eq. (4.39) does not add up to zero even if the phase currents are symmetrical. Therefore, there is a nonzero
ground wire current I,, produced by positive sequence currents, which circulates through ground wire, towers and
ground (Fig. 4.12). This circulating current produces additional losses, which show up as an increase in the value
of the positive sequence resistance, compared with the resistance of the phase conductors. Handbook formulas would
not contain this increase, but the elimination of the ground wires discussed in Section 4.1.2.1 will produce it

automatically. In one particular case of a single-circuit 500 kV line, this increase was 6.5%.

I

g

Fig. 4.12 - Circulating current in ground wire

The inclusion of tower and tower footing resistances may change the results of Eq. (4.39) somewhat. If
we assume equal resistance at all towers, then it appears that the voltage drop produced by the current in the left loop
(Fig. 4.13) is canceled by the voltage drop produced by the current in the middle loop, and Eq. (4.39) should
therefore still be correct, except in the very first and very last span of the line. This assumes that the phase currents

do not change from one span to the next, which is reasonable up to a certain frequency.

Fig. 4.13 - Cascade connection of
loops
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(b) Segmented Ground Wires

To avoid the losses associated with these circulating currents, some utility companies use segmented ground
wires which are grounded at one tower, and insulated at adjacent towers to both ends of the segmentation interval,

where they are interrupted as well (Fig. 4.14).

1 .

7777 7T TP P T I AIIT T T N7 7 A T T 777l

v
A —

"T-configuration”
in segmentation interval
A = insulator

Fig. 4.14 - Segmented ground wires

They still act as electrostatic shields for lightning protection, but when struck by lightning, the segmentation gaps
and the small insulators will flash over, thereby making the ground wire continuous again. The supporting routine
LINE CONSTANTS has an option for segmented ground wires, which ignores’ them in the calculation of the series
impedance matrix since they have no influence on the voltage drops in the phase conductors, but takes them into

account in the calculation of the capacitance matrix because the electrostatic field is not influenced by segmentation.

(©) Reduction Effect of Continuous Ground Wires on Interference

Interference from power lines in parallel telephone lines becomes a problem if there are high zero-sequence
currents in the power line, e.g., in case of a single-phase-to-ground fault. Assume a three-phase line with one
ground wire g and a parallel telephone line P as shown in Fig. 4.15. For zero sequence currents, which implies
equal currents in phases A, B, C, the voltages in P induced by currents in A, B, C will add up in the same direction

(Fig. 4.16). The voltage induced by the ground wire current I, will have opposite polarity, however, since this

"An exception are studies where it can be assumed that the gaps and insulators have flashed over. For such
studies, ground wires must be treated as continuous, as suggested by W.A. Lewis. Switching and lightning
surge studies may fall into this category.
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Fig. 4.15 - Parallel telephone line P close to a
power line with phases A, B, C and ground
wire g

current flows in opposite direction, thereby reducing the total induced voltage - dV /dx. Part of this beneficial
reduction may be offset by an increase in the zero sequence currents because ground wires also reduce the zero

sequence impedance of lines (typically by 5 to 15% with one

~dV,/dx z'1

Pg7g
> | 2 PJ
VA PAIA A PBIB A PCIC

Fig. 4.16 - Induced voltage caused by currents I, = I = I and by I,
steel ground wire, or 15 to 30% with one ACSR ground wire). The reduction effect of the ground wire on
interference can be included in the calculations in two different ways:
(a) Obtain the mutual impedances from matrices in which ground wires have been eliminated and in which the
parallel telephone lines has been retained as an additional conductor. Then the reduction effect of the

ground wires is automatically contained in calculating the magnetically induced voltage from

av, .

dx =Z PA *reducedIA * Z/PBfreducedI B * Z/PCfreducedI C (4403')

and, if needed, the electrostatically induced voltage for an insulated parallel telephone line from

0=C /PA ~reduced VA +C /PBfreduced VB +C /PCfreducedVC +C /PPfreducedVP (440b)
(b) Calculate the mutual impedances from P to the phases as well as to the ground wires (or obtain them from

matrices in which the ground wires were retained), and recover the value of the ground wire currents with
a "screening matrix" from the phase currents. By setting V, = 0 in Eq. (4.27), the ground wire currents

are obtained as

(] = -2/, 1'Z, 1, (4.41)

[Fscreen]
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with "u" indicating ungrounded phase currents here. The screening matrix [F,..,] is the transpose of the

distribution factor matrix [D,,] of Eq. (II.14) in Appendix III, and as indicated there, can easily be obtained
as a by-product of the matrix reduction process. As an example, Fig. 4.17 shows the standing waves of
the phase currents of the sixth harmonic of 60 Hz in the two poles A, B of the Pacific Intertie HVDC line,

as well as the currents in the two ground wires recovered with Eq. (4.41) [11].

8.0

60

\/ \ /'\/“\ /\ \
SO DNTAIT O T
X /\ /\ /POLEA

[
%V \/ ~ DO!LERB
11V oo

400 600 800 000

X IN MILES
(DISTANCE FROM SENDING ENO)

LINE CURRENTS IN AMPERES

\
2ol
“

Fig. 4.17 - Currents of sixth harmonic in HVDC line [11]. ©
1969 IEEE

4.1.3 Positive and Zero Sequence Parameters of Balanced® Lines
A "balanced" transmission line shall be defined as a line where all diagonal elements of [Z',,..] and [C' ;]

are equal among themselves, and all off-diagonal elements are equal among themselves,

z, 7, .. z| e, ¢, . c,
z' Z' ... z| ¢, ¢ . c,

(4.42)
z', 2, z'| e, €y ' |

8Also called "continuously transposed” in the EMTP Rule Book.
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Fig. 4.18 - Bipolar dc line

The only line which is truly balanced is the symmetric bipolar dc line (Fig. 4.18), where Z',, = Z2',, = Z';and Z',,
= Z',.. Single-circuit three-phase lines become more or less balanced if the line is transposed, as shown in Fig.
4.19, provided the length of the "barrel" ( = 3 sections, or one cycle of the transposition scheme) is much less than
the wavelength of the frequencies involved in the particular study. While the Westinghouse Reference Book [51,
p- 777] mentions that a barrel may be 80 to 160 km in length on long lines, a German handbook [52, p. 555]
recommends that one barrel be no longer than 80 km (at 50 Hz, or 67 km at 60 Hz) for lines with triangular
conductor configuration, or 40 km (at 50 Hz, or 33 km at 60 Hz) for other conductor configurations. Whatever the

length of the barrel, it is important to realize that while

i .

A o - -
: % k% -

B o —
m m m

C o R
I IT III

Fig. 4.19 - Transposition scheme for single three-phase
circuit

a line may be reasonably balanced at power frequency, there may be enough unbalance at higher frequencies®. If
the barrel length is much shorter than the wavelength, then series impedances can be averaged by themselves through
the three sections, and shunt capacitances can be averaged by themselves, e.g., for the impedances of the line in Fig.

4.19,

Z/ Z/In Z/m

ii ik im kk km ki mm mi mk s
1 / / / / / / / / / / / /
gzkizkk ka+kameZmi+Zim ZiiZik :ZstZm
/ / / / / / / / / / / /
Z mi Z mk Z mm Z ik Z im Z ii Z km Z ki Z kk 4 m Z m Z N

with

°At the time of writing, studies at B.C. Hydro seem to indicate that transposed single-circuit lines with
horizontal conductor configuration cannot be treated as balanced lines in switching surge studies.
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e+ Z) (4.43)

The averaging process for the shunt capacitances is analogous.

4.1.3.1 Positive and Zero Sequence Parameters of Single-Circuit Three-Phase Lines
Balanced single-circuit three-phase lines can be studied much easier with symmetrical or ¢, 3, 0-components

because the three coupled equations in the phase domain,

Z/s Z/m Z/m
av,
- ;xase = Z/m Z/s Z/m [Iphase] (4.44)

Z /In Z/m Z /S

become three decoupled equations with symmetrical components,

-dv. _Jdx =Z. I

zero zero- zero
/
/ - aneg/dx = ZpOS Ineg
-dv,, Jdx = Z), 1 (4.45)

or with «, 3, O-components,

-dv. _Jdx =Z. I

zero zero~ zero

-dV,Jdx = Z,,1, (4.46)
/
-dVyldx = Z,,1,

Since transformation to symmetrical components involves complex coefficients, symmetrical components
are not well suited for transient analysis where all variables are real, and are therefore only briefly discussed in
Section 4.1.4. The impedances needed in both systems (4.45) and (4.46) are the same, however, namely Z',.., and

Z' - The balanced distributed-parameter line models in the EMTP use transformations to «, 8, O-components, due
to Edith Clarke [44],

Donasel = [T1[Vgyp) Woop] = (717 1V ]

and
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lpase] = [T11igyp) lgopl = (717" [ 5]

where
Yo
[V()aﬁ] = Ve
s
with
1 2 0 |
s
[11 = — 2 2
7 V2 2
T ]
V2 2]
and
o1 1]
1 1
r L L
(7" e V2 42
3
Bl B 4
V2 2

The columns in [T] and [T]" are normalized; in that case [T] is orthogonal,
(11" = (17

Applying this transformation to Eq. (4.44) produces

dV/dx z' w22, 0 0 Lo
-|av jdx| = 0 z' -7 0 I,
dVgldx 0 0 VAR AN I,

which is identical with Eq. (4.46), with

Z,., =2 +2Z

zero
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Eq. (4.50) and its inverse relationship is the same as discussed previously in Eq. (3.6) and (3.4). Going from the

/ / /
Z, =2 -Z (4.50b)

three coupled equations in (4.44) to the three decoupled equations in (4.46) allows us to solve the line as if it
consisted of three single-phase lines, which is much simpler than trying to solve the equations of a three-phase line.

The positive sequence inductance of overhead lines is practically constant, while the positive sequence
resistance remains more or less constant until skin effect in the conductors becomes noticeable, as shown in Fig.

4.20. Zero sequence inductance and resistance are very much frequency-dependent, due to skin effects in the earth

return.
m, 3m
61 Llokl-ul earth resistivity = 100am ’,
<9 6 O ACSR treated as tubular ~ R'aro
conductor for skin effect ~
12m calculation Pad
L* }10?

{ mH /¥m)

4 4

2.

L 10-1
o - i U 2 [ i . )
102 10% f(Hz) —» 100
Fig. 4.20 - Positive and zero sequence resistance and inductance of a three-phase line
The shunt capacitance matrix of a balanced three-phase line becomes diagonal in «, [, O-components as
well, with
/ / /
C,.,=C, +2C, (4.51a)
/ / /
Cpws = C - C, (4.51b)

4-30



which is the inverse relationship of Eq. (3.13). The capacitances are constant over the frequency range of interest

to power engineers.

Comparison with results from handbook formulas

The positive and zero sequence parameters obtained from the supporting routines LINE CONSTANTS and
CABLE CONSTANTS may differ from those obtained with handbook formulas. Since some EMTP users may make
comparisons, it may be worthwhile to explain the major differences for a specific example. Assume a typical 500
kV line with horizontal phase configuration, with phases 40 feet apart at an average height above ground of 50 feet.
Each phase consists of a symmetrical bundle with 4 subconductors spaced 18 inches apart. Subconductor diameter
= 0.9 inches, dc resistance = 0.1686 Q/mile, GMR = 0.3672 inches. Throughout this comparison, the bundle
= 7.80524 inches from Eq. (4.30) and GMR,_,,, =

equiv

conductors are represented as equivalent conductors with .

7.41838 inches from Eq. (4.29).

equiv

For positive sequence capacitance, most handbooks give the formula

d, (4.52)

with d,, = 3Vd,pd,cdpe (geometric mean distance among the three phases).
This produces a value approx. 4% lower than the more accurate value from Eq. (4.51) for the 500 kV line described

above. The formula for zero sequence capacitance in [52] and [53],

, 21e, .
o T T (Siemens)
in 2h,D,, (4.53)
requiv m2
with
h,, = *Vh,hghe (geometric mean height),
D,, = *VD,zDDjc (geometric mean distance between one phase and image of another phase),

can be derived by averaging the diagonal and off-diagonal elements in the [P’} ]-matrix among themselves to

account for transposition. Eq. (4.51) has this averaging process implied in the [C' . ]-matrix. Both give practically

phase.

the same answer, with results from Eq. (4.53) 0.23% lower than those from Eq. (4.51). In [51], Eq. (4.53) is
further simplified by assuming D,, = 2h,,,

;o 2mg,

zero

- (Westinghouse)
3
(2h,,) (4.54)

requiv m

which produces a value 4% higher than the value from Eq. (4.51). While Eq. (4.54) is theoretically less accurate,

the value may actually be closer to measured values because the influence of towers, which is neglected in all
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formulas, typically increases the calculated zero sequence capacitance by about 8 to 9% on 110 kV lines, about 6%
on 220 and 380 kV lines, and about 4% on 700 kV lines [54, p. 218].

The formulas for zero and positive sequence impedances in most handbooks are based on the assumption
that parameter a in Eq. (4.10) is so small that only the first term in the series of Eq. (4.11) must be retained. For
normal phase spacings this is probably a reasonable assumption at power frequency 50 or 60 Hz. Then, after all

diagonal and off-diagonal elements have been averaged out among themselves through transposition,

3 wn-10™

AR’ = AR’ in Q/km
and
AX' = 20-107*[0.6159315 - ln(2hmkﬁ)] in Q/km (4.55)
/o
AX', = 2w-107*[0.6159315 - ln(Dmkﬁ)] in Qlkm
p
with
k =4mn-/5-10*

This leads to the expression

Z' =R+ 2w-10*1 n in Q/k

‘pos ac T JAW nGi in m (456)

equiv

with R',. = ac resistance of equivalent phase conductor. It is interesting that the influence of ground resistivity and
of conductor height, which is present in Z'; and Z',,, completely disappears here in taking the difference, Z' . =
Z'.-7',. Eq. (4.56) is the formula found in most handbooks. Table 4.3 compares results from Eq. (4.50) with
results from Eq. (4.56) for the 500 kV line described above with the following additional assumptions: Earth
resistivity = 100 Qm; skin effect within conductors ignored to limit differences to influence of earth return (that is,

R', = R', and GMR

equiv

= constant).

Table 4.3 - Accurate and approximate positive sequence resistance and inductance

ACCURATE APPROXIMATE
R' and L' . from Eq. (4.50) R'and L' . from Eq. (4.56)
f R' L' R' L'
(Hz) (Q/mile) (mH/mile) (Q/mile) (mH/mile)
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106 0.04215 1.417 0.04215 1.417

10 0.04215 1.416 0.04215 1.417

100 0.04229 1.416 0.04215 1.417

1 000 0.05003 1.416 0.04215 1.417
10 000 0.3528 1.413 0.04215 1.417
100 000 6.229 1.401 0.04215 1.417

Table 4.3 shows that L', from Eq. (4.56) is quite accurate over a wide frequency range, whereas R' , becomes less
accurate as the frequency increases (0.33 % error at 100 Hz, but wrong by orders of magnitude at 100 kHz). The
increase in R’ in the higher frequency range is caused by eddy currents in the earth, as indicated in Fig. 4.21 for
a bipolar dc line. Ground wires also influence the positive sequence impedance, as mentioned in Section 4.1.2.5

(a). Both influences are ignored in Eq. (4.56), but automatically included in the method described here.

- -
Pl - .

e

i 7 i{/

Fig. 4.21 - Eddy currents in earth
The zero sequence impedance obtained from Eq. (4.55) is

4 658.87YP
/L 3om 10 e ot | i vk (4.57)

T2 3/GMR, - d?

Z, - R

zero

with f in Hz, p in Qm, and GMR,

equiv

and d, in m. Eq. (4.57) is the same equation as in [51, 52, 53]. Table 4.4
compares the approximate results from Eq. (4.57) with the accurate results from Eq. (4.50). The inductance L',
is reasonably accurate over a wide frequency range (-0.75% error at 100 Hz, -33% error at 100 kHz), but the

resistance R'_ is less accurate (4.6% error at 100 Hz, 159% error at 100 kHz).

Zero

Table 4.4 - Accurate and approximate zero sequence resistance and inductance

ACCURATE APPROXIMATE
R',.,and L' _ from Eq. (4.50) R',.,and L' _ from Eq. (4.57)
f R’ L' R’ L'
(Hz) (Q/mile) (mH/mile) (Q/mile) (mH/mile)
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107

10

100

1 000
10 000
100 000

0.04215
0.08905
0.4960
4.169
32.12
184.0

13.94
6.170
5.084
4.052
3.164
2.568

0.04215
0.08980
0.05187
4.807
47.69
476.6

13.94
6.158
5.046
3.934
2.823
1.711

4.1.3.2 Positive and Zero Sequence Parameters of Balanced M-Phase Lines

The EMTP can handle balanced distributed-parameter lines not only for the case of a three-phase line, but

for any number of phases M. For this general case, the «, 3, O-transformation of Eq. (4.47) has been generalized

to M phases, with the transformation matrix [55]

where again

1
M 2 6
11
M 26
1 5 2
M V6
L 0 o
/M
(7!

__M-1)

YMM-1))

(4.58)

(4.59)

[T] of Eq. (4.48) is a special case of Eq. (4.58) for M = 3 if we assume that the phases are numbered 2, 3, 1 in Eq.

(4.47) and if the «, B, O-quantities are ordered O, 3, -« (sign reversal on «).

Applying this M-phase «, B, O-transformation' to the matrices of M-phase balanced lines produces diagonal matrices

of the form

Tn the UBC EMTP, and in older versions of the BPA EMTP, Karrenbauer's transformation [57] is used
instead, which produces the same diagonal matrices, but does not have the property of Eq. (4.59). This property
is important because it makes the balanced line just a special case of the untransposed line discussed in Section

4.1.5.
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1
Z zero
L
YA pos

with the first diagona eement being the zero sequence (ground mode) impedance, and the next M-1 diagonal elements

being the positive sequence (aerial mode) impedance,
z, =27+ M - 1)Z

zero m

z =z -7

‘pos s m

and similarly for the capacitances,
Clop = C + (M - 1)C,,

zero

c =c -c

pos s m

(4.60a)

(4.60b)

(4.61a)

(4.61b)

To refer to the two distinct diagonal elements as zero and positive sequence may be confusing, because the

concept of sequence values has primarily been used for three-phase lines. "Ground mode" and "aerial mode" may be

more appropriate. Confusion is most likely to arise for double-circuit three-phase lines, where each three-phase line
hasits own zero and positive sequence vaues defined by Eq. (4.50) and (4.51) with symmetrical components used for
each three-phase circuit, while in the context of this section the double-circuit line is treated as a six-phase line with
different zero and positive sequence values defined by Eq. (4.60) and (4.61). The fact that the terms zero and positive
sequence are used for M = 3 as well comes from the generalization of symmetrical components of Section 4.1.4to M

phases with the transformation matrix [56, p. 155]

St S Sim
S S Sw Som
[ prhase]

Sur Suz Syum
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with

S, =

. exp(527 - 1)k 1) (4.62b)

1
/M
A special case of interest for symmetric bipolar dc lines" isM = 2. Inthiscase[T] of Eqg. (4.58) and [S] of
Eq. (4.62a) areidentical,

[T 2 fphase] =

11
L (4.63)

4.1.3.3 Two ldentical Three-Phase Lineswith Zero Sequence Coupling Only

Just as a transposed single-circuit three-phase line can usually be approximated as a balanced line, so two
identical and paralld three-phase lines can often be approximated as "amost balanced" lines with an impedance matrix
of theform

(4.64)

The transposition scheme of Fig. 4.22 would produce such amatrix form, which implies that the two circuits are only
coupled in zero sequence, but not in positive or negative sequence. Such a complicated transposition schemeis seldom,
if ever, used, but the writer suspects that positive and negative sequence couplings in the more common double-circuit
transposition scheme of Fig. 4.23 is often so weak that the model discussed here may be a useful approximeation for the
case of Fig. 4.23 aswell.

"To be consistent, lines with M = 1 and M = 2 are called "single-phase" and "two-phase" lines,
respectively, in this manual. This differs from the IEEE Standards [76, p. 647], in which circuits with one phase
conductor and one neutral conductor (which could be replaced by ground return), as well as circuits with two
phase conductors and one neutral conductor (or ground return) are both called single-phase circuits for historical
reasons. For M > 3, the definition in the IEEE Standards is the same as in this manual.
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Fig. 4.22 - Double-circuit transposition scheme with zero sequence coupling
only

The
matrix of Eq. (4.64) is diagonalized by modifying the transformation matrix of Eq. (4.58) to

11 43 1 0 0
11 /31 0 0
- _1jtr 0 20 0 (4.65)
VJel[t -1 0 0 3 1
1 -1 0 0 /31
1 -1 0 0 0 -2

with [T]™* = [T]" again, which produces the diagonal matrix
Z 5 1
Z, IL
A L
z . (4.66)
Z L

If each circuit has three-phase sequence parameters Z',,, Z',,, and if the three-phase zero sequence coupling between
the two CircuitS i Z',, couping: then the ground mode G, inter-line mode IL and line mode L values required by the EMTP

are found from

/ _ / /
Z G~ Z zero +Z zero-coupling

Z/IL - Z/zero B Z/zerofcoupling (467)
Z/ — Z/

L pos

with identical equations for the capacitances.
If the two three-phase circuits are not identical, then the transformation matrix of Eq. (4.65) can no longer be

used; instead, [T] depends on the particular tower configuration.
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4.1.4 Symmetrical Components

Symmetrical components are not used as such in the EM TP, except that the parameters of balanced lines after
transformation to M-phase ¢, 3, 0-components are the same as the parameters of symmetrical components, namely zero
and positive sequence values. The supporting routine LINE CONSTANTS does have output options for more detailed
symmetrical component information, however, which may warrant some explanations.

In addition to zero and positive sequence values, LINE CONSTANTS also prints full symmetrical component
matrices. Its diagonal elements are the familiar zero and positive sequence values of the line; they are correct for the
untransposed line as well as for a line which has been balanced through proper transpositions. The off-diagonal
elements are only meaningful for the untransposed case, because they would become zero for the balanced line. For
the untransposed case, these of f-diagonal elements are used to define unbalance factors[47, p. 93]. Thefull symmetrical
component matrices are no longer symmetric, unless the columns for positive and negative sequence are exchanged [27].
This exchange is made in the output of the supporting routine LINE CONSTANTS with rows listed in order "zero, pos,
neg,..." and columnsin order "zero, neg, pos,...". With thistrick, matrices can be printed in triangular form (elements
in and below the diagonal), as is done with the matrices for individual and equivalent phase conductors.

Symmetrical components for two-phase lines are cal culated with the transformation matrix of Eq. (4.63), while

those of three-phase lines are calculated with
Vel = S1y,] — and vy, 1 = 1S9, (4.682)

identical for currents,

where [vjymm] = | Vpos
vneg
1 1 1
1
[S] = —1 a? a
V3 2
1 a a
1 1 1
[s1' = %1 a a’ (4.68b)
1 a® a

and a= %",

The columns in these matrices are normalized™; in that form, [S] is unitary,

[SI7' = [S*T (4.69)

“The electric utility industry usually uses unnormalized transformation, in which the factor for the [S]-matrix
is 1 instead of 1 / v3, and for the [S]!-matrix 1/3 instead of 1 / V3. The symmetrical component impedances are
identical in both cases, but the sequence currents and voltages differ by a factor of v'3.
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where "*" indicates conjugate complex and "t" transposition.
For M > 3, the supporting routine LINE CONSTANTS assumes three-phase linesin parallel. Examples:
M =6: Two three-phaselinesin parallel
M =9: Three-phaselinesin parallel
M =8: Two three-phase lines in paralel, with equivalent phase conductors no. 7 and 8 ignored in the

transformation to symmetrical components.

The matrices are then transformed to three-phase symmetrical components and not to M-phase symmetrical components

of Eq. (4.62). For example for M = 6 (double-circuit three-phase line),

(st o
0 s

[s1 0
0 I[S]

(4.70)

[ /symm [Z /phase]

with [S] defined by Eq. (4.68), Eq. (4.70) produces the three-phase symmetrical component values required in Eq.
(4.67).

Balancing of double-circuit three-phase lines through transpositions never completely diagonalizes the
respective symmetrical component matrices. The best that can be achieved iswith the seldom-used transposition scheme
of Fig. 4.22, which leads to

Z /zerofl 0 zero-coupling 0 0
0z, 0 0 0 0
0 o z,, 0 0 0
[Z/symm] = /
zero-coupling 0 Z zero—{I 0 0
0 0 0 o z ., 0
0 0 0 0 0 Zu]

(4.71)

If both circuitsareidentical, then Z',q. = Z'se11 = Zyeror AN Ziyos) = Zipey = Zpys; inthat case, the transformation matrix

pos-I1

of Eq. (4.65) can be used for diagonalization. The more common transposition scheme of Fig. 4.23 produces positive

and zero seguence coupling between the two

CI BI
AI AI
ATII CIT
CII BII
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@ barrelsrolled in (b) barrelsrolled in
opposite direction same direction

Fig. 4.23 - Double-circuit transposition scheme

circuits as well, with the nonzero pattern of the matrix in Eg. (4.71) changing to

X 0 0/x 0 0]
0 X 0/0 X0
00 X0 0X
0 X 00 X0
0 0 X[0 0 X

where " X" indicates nonzero terms. Re-assigning the phasesin Fig. 4.23(b) to ClI, BI, Al, All, Bll, CIl fromtop to
bottom would change the matrix further to cross-couplings between positive sequence of one circuit and negative

sequence of the other circuit, and vice versa,

X 0 0/x 0 0]
0 X 000X
00 X[0 X 0
00 X[0 X 0
0 X 0/0 0 X|

4.1.5Modal Parameters

From the discussions of Section 4.1.3 it should have become obvious that the solution of M-phase transmission
line equations becomes simpler if the M coupled equations can be transformed to M decoupled equations. These
decoupled equations can then be solved as if they were single-phase equations. For balanced lines, this transformation
is achieved with Eq. (4.58).

Many lines are untransposed, however, or each section of a transposition barrel may no longer be short
compared with the wave length of the highest frequencies occurring in a particular study, in which case each section
must be represented as an untransposed line. Fortunately, the matrices of untransposed lines can be diagonalized as
well, with transformations to "modal" parameters derived from eigenvalue/eigenvector theory. The transformation
matrices for untransposed lines are no longer known a priori, however, and must be calculated for each particular pair
of parameter matrices [Z' e and [Y el -

To explain the theory, let us start again from the two systems of equations (4.31) and (4.32),
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dehase /
- dx - [Z phase] [I phase] (4 . 723—)
and
dl
_ Z;zse ] _ [Y/phase] [Vphase] (4 . 72b)

With [Y el = jo[Clyee] if shunt conductances areignored, asis customarily done. By differentiating the first equation
with respect to x, and replacing the current derivative with the second equation, a second-order differential equation for

voltages only is obtained,

2
Vphase

w |

phase] [ Y! phase] [ Vphase] (4 73 a)

Similarly, a second-order differential equation for currents only can be obtained,

2

1
phase | _ [Y/ ][Z/ (473b)
dxl

phase phase] [Iphase]

where the matrix products are now in reverse order from that in Eq. (4.73a), and therefore different. Only for balanced
matrices, and for the lossless high-frequency approximations discussed in Section 4.1.5.2, would the matrix products
in EQ. (4.73a) and (4.73b) be identical.

With eigenvalue theory, it becomes possible to transform the two coupled equations (4.73) from phase
quantitiesto "modal" quantitiesin such away that the equations become decoupled, or in terms of matrix algebra, that
the associated matrices become diagonal, e.g., for the voltages,

2
mode

= [AILV,,,] 4.74)

with [A] being a diagonal matrix. To get from Eq. (4.73a) to (4.74), the phase voltages must be transformed to mode

voltages, with
Wonasel = [TV 04.] (4.752)
and
WVoodel = [T 1V ] (4.75b)
Then Eq. (4.73a) becomes
2
e Rl G A [ GRR L A U (4.762)
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which, when compared with Eq. (4.74), shows us that

[A] = [T Z 1Y sl [T (4.76b)

phase]

Tofind the matrix [T,] which diagonalizes [Z',.|[Y el 1S the eigenval ue/eigenvector problem. The diagonal elements
of [A] are the eigenvalues of the matrix product [Z' .| [Y ‘el @0d [T,] is the matrix of eigenvectors or modal matrix
of that matrix product. There are many methods for finding eigenvalues and eigenvectors. The most reliable method
for finding the eigenvalues seems to be the QR-transformation due to Francis [3], while the most efficient method for
the elgenvector calculation seemsto be the inverse iteration scheme due to Wilkinson [4, 5]. In the supporting routines
LINE CONSTANTS and CABLE CONSTANTS, the "EISPACK"-subroutines [67] are used, in which the eigenvalues
and eigenvectors of acomplex upper Hessenberg matrix are found by the modified LR-method due to Rutishauser. This
method is a predecessor of the QR-method, and where applicable, asin the case of positive definite matrices, is more
efficient than the QR-method [68]. To transform the original complex matrix to upper Hessenberg form, stabilized
elementary similarity transformations are used. For a given eigenvalue ,, the corresponding eigenvector [t,] (= k-th

column of [T,]) isfound by solving the system of linear equations
{[Z /phase] [Y/phase] - A‘k[U]} [tvk] =0 (477)

with [U] = unit or identity matrix. EQ. (4.77) shows that the eigenvectors are not uniquely defined in the sense that they
can be multiplied with any nonzero (complex) constant and still remain proper eigenvectors', in contrast to the
eigenvalues which are always uniquely defined.

Floating-point overflow may occur in eigenval ue/eigenvector subroutines if the matrix is not properly scaled.
Unless the subroutine does the scaling automatically, [Z' . [ Y naed ShoUld be scaled before the subroutine call, by
dividing eachelement by  -(w?,,), as suggested by Galloway, Shorrows and Wedepohl [39]. This division brings
the matrix product close to unit matrix, becausg[Z' JIY' 1is a diagonal matrixeldthentsw?e,|, if resistances,
internal reactances and Carson's correction terms are ignored in Eq. (4.7) and (4.8), as explained in Section 4.1.5.2. The
eigenvalues from this scaled matrix must of course be multiplied wAth, to obtain the eigenvalues of the original
matrix. In[39] it is also suggested to subtract 1.0 from the diagonal elements after the division; the eigenvalues of this
modified matrix would then be the p.u. deviations from the eigenvalues of the lossless high-frequency approximation
of Section 4.1.5.2, and would be much more separated from each other than the unmodified eigenvalieslogech
together. Using subroutines based on [67] gave identical results with and without this subtraction of 1.0, however.

In general, a different transformation must be used for the currents,

Uppase] = [T 00] (4.78a)

BThis is important if matrices [T,] obtained from different programs are compared. The ambiguity can be
removed in a number of ways, e.g., by agreeing that the elements in the first row should always be 1.0, or by
normalizing the columns to a Euclidean vector length of 1.0, that is, by requiring t,t,,;* + t,t,* + ... = 1.0,
with t* = conjugate complex of t. In the latter case, there is still ambiguity in the sense that each column could
be multiplied with a rotation constant € and still have vector length = 1.0.
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and
[Imode] = [Ti]i1 [Iphase] (478b)

because the matrix products in Eq. (4.73a) and (4.73b) have different eigenvectors, though their eigenvalues are
identical. Therefore, Eq. (4.73b) is transformed to

a
d:;de = [A] [Inwde] (479)

with the same diagonal matrix asin Eq. (4.74). While[T] is different from [T,], both are fortunately related to each
other [58],

(7] = [T)]" (4.80)

where"t" indicates transposition. It is therefore sufficient to calculate only one of them.

Modal analysisisapowerful tool for studying power line carrier problems [59-61] and radio noise interference
[62, 63]. Itsuseinthe EMTPisdiscussed in Section 4.1.5.3. It isinteresting to note that the modes in single-circuit
three-phase lines are almost identical with thea, B, 0-components of Section 4.1.3.1 [58]. Whether the matrix products
in Eq. (4.73) can aways be diagonalized was first questioned by Pelissier in 1969 [64]. Brandao Faria and Borges da
Silva have shown in 1985 [65] that cases can indeed be constructed where the matrix product cannot be diagonalized.
Itisunlikely that such situationswill often occur in practice, because extremely small changes in the parameters (e.g.,
in the 8th significant digit) seem to be enough to make it diagonalizable again. Paul [66] has shown that diagonalization
can be guaranteed under simplifying assumptions, e.g., by neglecting conductor resistances.

The physical meaning of modes can be deduced from the transformation matrices[T,] and [T;]. Assume, for
example, that column 2 of [T;] has entries of (-0.6, 1.0, -0.4). From Eq. (4.78a) we would then know that mode-2 current

flows into phase B in one way, with 60% returning in phase A and 40% returning in phase C.

4.15.1 Line Equationsin Modal Domain
With the decoupled equations of (4.74) and (4.79) in moda quantities, each mode can be analyzed asif it were

asingle-phase line. Comparing the modal equation

da*v
mode-k
ﬁ = )Lk Vnwdefk
with the well-known equation of asingle-phaseline,
2
d 12/ -2V
dx

with the propagation constant y defined in Eg. (1.15), shows that the modal propagation constant 4.« iS the square
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root of the eigenvalue,

Viodex = % + JBy = \/7k (4.81)

with
o, = attenuation constant of mode k (e.g., in Np/km),
Bk = phase constant of mode k (e.g., in rad/km).

The phase velocity of modek is

phase velocity = Bﬁ (4.82a)
k

and the wavelength is

wave length = % (4.82b)

k

While the modal propagation constant is always uniquely defined, the modal series impedance and shunt
admittance as well as the modal characteristic impedance are not, because of the ambiguity in the eigenvectors.
Therefore, modal impedances and admittances only make sense if they are specified together with the eigenvectors used
intheir calculation. To find them, transform Eq. (4.72a) to modal quantities

mode

= [Tv]i1 [Z/phase] [Tz] [Imode] (483)

The triple matrix product in Eq. (4.83) is diagonal, and the modal seriesimpedances are the diagonal elements of this

matrix

(Z' o] = [T Z 0 [T (4.842)
or with Eq. (4.80),

(Z' i) = [TZ 0 ) [T (4.84b)

Similarly, Eq. (4.72b) can be transformed to modal quantities, and the modal shunt admittances are then the diagonal
elements of the matrix

W = [T17 1Yy [T)] (4.852)

or with Eqg. (4.80),

[Y/mode] - [Tvl] [Y/phase] [Tv] (485b)
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The proof that both [Z'4] and [Y' .4 @€ diagona is given by Wedepohl [58]. Finally, the modal characteristic

impedance can be found from the scalar equation

4 de-k
Zcharfmodefk = /”w : (4863)
Y mode-k
or from the simpler equation
VA — Y mode-k
‘char-mode-k Y / (4 . 86b)

mode-k

A good way to obtain the modal parameters may be as follows: First, obtain the eigenvalues %, and the
eigenvector matrix [T,] of the matrix product [Z'yeel[Y (el - Then find [Y',e] from Eq. (4.85b), and the modal series

impedance from the scalar equation

A

k
Z /modefk - Y/ (486C)

mode-k

The modal characteristic impedance can then be calculated from Eq. (4.864), or from Eq. (4.86b) if the propagation
constant from Eq. (4.81) is needed aswell. If [T] isneeded, too, it can be found efficiently from Eq. (4.859)

[T)] = [V ) [TITY 0] (4.85¢)

phase

because the product of thefirst two matricesis available anyhow when [Y',..J] isfound, and the post-multiplication with
[Y’oad ™ is simply a multiplication of each column with a constant (suggested by Luis Marti). Eq. (4.85c) also
establishes the link to an alternative formulafor [T;] mentioned in [57],

(7] = 1Y ) [T,1[D]

with [D] being an arbitrary diagonal matrix. Setting [D] = [Y ", |€ads us to the desirable condition [T] = [T, of
Eq. (4.80). If the unit matrix were used for [D], al modal matricesin Eq. (4.84) and (4.85) would still be diagonal, but
with the strange-looking result that all modal shunt admittances become 1.0 and that the modal series impedances
become %,. EQ. (4.80) would, of course, no longer be fulfilled. For alosslessline, the modal series impedance would
then become a negative resistance, and the modal shunt admittance would become a shunt conductance with a value of
1.0S. Aslong asthe caseis solved in the frequency domain, the answers would still be correct, but it would obviously

be wrong to associate such modal parameters with

_v R'i and _o G'v
ox ox

(with R' negative and G’ = 1.0) in the time domain.
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4.1.5.2 Lossless High-Frequency Approximation

In lightning surge studies, many simplifying assumptions are made. For example, the waveshape and amplitude
of the current source representing the lightning stroke is obviously not well known. Similarly, flashover criteriain the
form of volt-time characteristics or integral formulas [8] are only approximate. I1n view of all these uncertainties, the
use of highly sophisticated line modelsis not aways justified. Expertsin the field of lightning surge studies normally
use asimple line model in which all wave speeds are equal to the speed of light, with a surge impedance matrix [Zg,]

in phase quantities, where

Zqurge = 00 In(2h/r) (4.87a)
Zikfsurge = 60 ll’l(D ik/dik) (487b)
all wave speeds = speed of light 4.87c)

with r; being the radius of the conductor, or the radius of the equivalent conductor from Eq. (4.30) in case of abundle
conductor.*

Typicaly, each span between towers is represented separately as aline, and only afew spans are normally
modelled (3 for shielded lines, or 18 for unshielded linesin [8]). For such short distances, losses in series resistances
and differencesin modal travel timesare negligible. The effect of coronais sometimesincluded, however, by modifying
the ssmple model of Eq. (4.87) [8].

Itis possibleto develop a specia line model based on Eq. (4.87) for the EMTP, in which al calculations are
done in phase quantities. But as shown here, the smple modd of Eq. (4.87) can aso be solved with modal parameters
as aspecial case of the untransposed line. The simple model follows from Eqg. (4.72) by making two assumptions for
a"lossless high-frequency approximation”:

1 Conductor resistances and ground return resistances are ignored.

2. The frequencies contained in the lightning surges are so high that all currents flow on the surface of

the conductors, and on the surface of the earth.

Then the elements of [Z',....] become
I jetmeny Z' = jonD, id
Z; = Jo)%ln(Zhl. ) k = J‘*’E n(D,/d;) (4.88)
while[Y] is obtained by inverting the potential coefficient matrix,
[Y] = jo[P]! (4.89)

with the elements of [P] being the same asin Eq. (4.88) if the factor jw,/(21) is replaced by 1/f2,). Then both matrix

“Ground wires are usually retained as phase conductors in such studies. If they are eliminated, the method
of Section 4.1.2.1 must be used on [Z,,].
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productsin Eq. (4.73) become diagonal matrices with al elements being

A, = -, k=1,..M (4.90)

These values are automatically obtained from the supporting routines LINE CONSTANTS and CABLE
CONSTANTS as the eigenvalues of the matrix productsin Eg. (4.73), by simply using the above two assumptionsin
the input data (all conductor resistances = 0, GMR/r = 1.0, no Carson correction terms). The calculation of the
eigenvector matrix [T,] or [T;] needed for the untransposed line model of Section 4.2 breaks down, however, because
the matrix productsin Eq. (4.73) are aready diagona. To obtain [T,], let usfirst assume equal, but nonzero conductor
resistances R'. Then the eigenvectors|t,,] are defined by

(-weuglU] + joR'TPT) 2] = Alz,] (4.91)

with the expression in parentheses being the matrix product [Z'y,.[Y el @d [U] = unit matrix. Eq. (4.91) can be

rewritten as
P [t,] = )“k—nwdlﬁed [z, (4.92)
with modified eigenvalues

ij/}“kfmodiﬁed = A + wegu, (4.93)

Eq. (4.92) isvalid for any value of R’, including zero. It therefore followsthat [T,] is obtained as the eigenvectors of
[P]?, or alternatively as the eigenvectors of [P] since the eigenvectors of amatrix are equal to the eigenvectors of its
inverse. Theeigenvalues of [P]™ are not needed because they are aready known from Eq. (4.90), but they could aso
be obtained from Eq. (4.93) by setting R’ = 0.

For this simple mode, [T,] isareal, orthogonal matrix,

[T]IT) = [U] (4.94)
and therefore,

(7] = [T)] (4.95)

D.E. Hedman has solved this case of the lossless high-frequency approximation more than 15 years ago [45]. He
recommended that the eigenvectors be calculated from the surge impedance matrix of Eq. (4.87), which isthe same as
calculating them from [P] since both matrices differ only by a constant factor.

One can either modify the line constants supporting routines to find the eigenvectors from [P] for the lossless
high-frequency approximation, as was done in UBC's version, or use the same trick employed in Eq. (4.91) in an
unmodified program: Set all conductor resistances equal to some nonzero value R’, set GMR/r = 1, and ask for zero
Carson correction terms. If the eigenvectors are found from [P7], then it is advisable to scale this matrix first by
multiplying al elements with 2re,,.

The lossless high-frequency approximation produces eigenvectors which differ from those of the lossy case
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at very high frequencies [61]. This is unimportant for lightning surge studies, but important for power line carrier

problems.

Example: For adistribution line with one ground wire (Fig. 4.24) the lossless high-frequency approximation produces

the following modal surge impedances and transformation matrix,

mOde Zsurqe-mode (Q)

1 993.44
2 209.67
3 360.70
4 310.62

Fig. 4.24 - Position of phase conductors A, B,
C and ground wire D (average height, all
dimensions in m). Conductor diameter =
10.1092 mm

).52996 0.82860 -0.18I
).49080 -0.21322 0.462
).49080 -0.21322 0.462
).48721 -0.47170 -0.73:

Converted to phase quantities, the surge impedance matrix becomes [T J[Z,qe mocel [ TJ]" OF

490.33
176.95 484.89 symmetric
[Zsur e hase] - Q
sep 176.95 174.27 484.89

190.74 144.26 144.26 495.31
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The dements from Eq. (4.87) are dightly larger, by afactor of 300,000/299,792, because the supporting routine LINE
CONSTANTS uses 299,792 kmi/s for the speed of light, versus 300,000 knvsimplied in Eq. (4.87).

Representation in EM TP then would be by means of a 4-phase, constant-parameter, lossless line. The following
branch cards are for the first of 4 such cascaded sections:

-11A 2A 99344 3E6 2 4
-11B 2B 99344 3E-6 2 4
-11C 2C 99344 3E-6 2 4
-11D 2D 99344 3E-6 2 4

The modelling of long lines as coupled shunt resitances [R] = [Zqe ol Nas already been discussed in Section
3.1.3. In the example above, such a shunt resistance matrix could be used to represent the rest of the line after the 4
spans from the substation. Simply using the 4 x 4 matrix would be unrealistic with respect to the ground wire, however,
because it would imply that the ground wire is ungrounded on the rest of theline. More redlistic, though not totally
accurate, would be a3 x 3 matrix obtained from [Z'..] and [Y',,.] in which the ground wire has been eliminated. This
model implies zero potential everywhere on the ground wire, in contrast to the four spans where the potential will more

or less oscillate around zero because of reflections up and down the towers.

Comparison with More Accurate Models: For EM TP users who are reluctant to use the simple model described in this

section, afew commentsarein order. Firgt, let us compare exact vaues with the approximate values. 1f we use constant
parameters and choose 400 kHz as a reasonabl e frequency for lightning surge studies, then we obtain the results of table
4.5 for the test example above, assuming T/D = 0.333 for skin effect correction and internal inductance calculation with
the tubular conductor formula, R',, = 0.53609 ©/km, and p = 100 Qm.

Table 4.5 - Exact line parameters at 400 kHz

mode | Zgieeme (£2) | wavevelocity (nvs) R’ (€2/km)
1 1027.6-j33.9 285.35 597.4
2 292.0-j0.5 299.32 7.9
3 361.9-j0.5 299.37 8.2
4 311.1-j0.5 299.32 8.0

The differences are less than 0.5% in surge impedance and wave speed for the aerial modes 2 to 4, and not more than
5% for the ground return mode 1. These are smdll differences, considering all the other approximations which are made
in lightning surge studies. If seriesresistances are included by lumping them in 3 places, totally erroneous results may
be obtained if the user forgets to check whether R/4 < Z, .. in the ground return mode. For the very short line length
of 90 min this example, this condition would still be fulfilled here.

Using constant parameters at a particular frequency is of course an approximation as well, and some users may
therefore prefer frequency-dependent models. For very short line lengths, such as 90 min the example, most frequency-

dependent models are probably unreliable, however. It may therefore be more sensible to use the simple model
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described here, for which answers are reliable, rather than sophisticated models with possibly unreliable answers.

A somewhat better lossless line model for lightning surge studies than the preceding one has been suggested
by V. Larsen [92]. To obtain this better model, the line parameters are first calculated in the usual way, at a certain
frequency whichistypical for lightning surges (e.g., a 400 kHz). The resistances are then set to zero when the matrix
product [Z'yael[ Y rese] iS formed, before the modal parameters are computed. With this approach, [T;] will always be
real. Table 4.6 shows the modal parameters of this better lossless model. They differ very little from those in Table
45,

Table 4.6 - Approximate modal parameters at 400 kHz with R=0

mode | Zgeme (€2) | wave velocity (m/s)
1 1026.3 285.50
2 292.0 299.32
3 362.0 299.37
4 3111 299.32

In particular, the wave velocity of the ground return mode 1 is now much closer to the exact value of Table 4.5. The

transformation matrix which goes with the modal parameters of Table 4.6 is

0.40795 0.84115 -0.22316 0

0.55628 -0.18448 0.44910 -0.70711
7l = 0.55628 -0.18448 0.44910 0.70711

0.46335 -0.47371 -0.73947 0

Inthiscase[T,] isno longer to [T]; Eq. (4.80) must be used instead.

4.1.5.3 Approximate Transformation Matricesfor Transient Solutions

The transformation matrices [T,] and [T;] are theoretically complex, and frequency-dependent as well. With
a frequency-dependent transformation matrix, modes are only defined at the frequency at which the transformation
matrix was calculated. Then the concept of converting a polyphase line into decoupled single-phase lines (in the modal
domain) cannot be used over the entire frequency range. Since the solution methods for transients are much simpler
if the modal composition is the same for all frequencies, or in other words, if the transformation matrices are constant
with real coefficients, it is worthwhile to check whether such approximate transformation matrices can be used without
producing too much error. Fortunately, thisis indeed possible for overhead lines [66, 78].

Guidelines for choosing approximate (real and constant) transformation meatrices have not yet been worked out
at the time when these notes are being written. The frequency-dependent line model of J. Marti discussed in Section
4.2.2.6 needs such a real and constant transformation matrix, and wrong answers would be obtained if a complex

transformation matrix were used instead. Since areal and constant transformation matrix is always an approximation,
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its use will always produce errors, even if they are small and acceptable. The errors may be small in one particular
frequency region, and larger in other regions, depending on how the approximation is chosen.

One choice for an approximate transformation matrix would be the one used in the lossless approximations
discussed in Section 4.1.5.2. This may be the best choice for lightning surge studies.

For switching surge studies and similar types of studies, the preferred approach at this time seems to be to
calculate[T,] at aparticular frequency (e.g., a 1 kHz), and then to ignore the imaginary part of it. In thisapproach, [T,]
should be predominantly real before the imaginary part is discarded. One cannot rely on this when the subroutine
returns the eigenvectors, since an eigenvector multiplied with € or any other constant would still be a proper
eigenvector. Therefore, the columns of [T,] should be normdized in such away that its components lie close to the real
axis. One such normalization procedure was discussed by V. Brandwajn [79]. The writer prefers a different approach,
which works as follows:

1 Ignore shunt conductances, asis customarily done. Then [Y’,.] ispurely imeginary. Use Eq. (4.85)

to find the diagonal elements of the modal shunt admittance matrixX Y’ oge k- praiminary-

2. In general, these "preliminary” modal shunt admittances will not be purely imaginary, but joC' e €

Ik instead. Then normalize [T,] by multiplying each column with € ®2, With this normalized
transformation matrix, the modal shunt admittances will become joC', gk, OF purely imaginary asin
the phase domain.

3. To obtain the approximate (real and constant) transformation matrix, discard the imaginary part of

the normalized matrix from step 2.

4, Use the approximate matrix [T, o] from step 3 to find modal series impedances and modal shunt

admittances from Eq. (4.84) and (4.85) over the frequency range of interest. If [T]] is needed, use

[ lfapprox.] = [Tvtfazpprox.]i1 (496)
5. If theline model requires nonzero shunt conductances, add them as modal parameters. Usually, only

conductances from phase to ground are used (with phase-to-phase values being zero); in that case,
the modal conductances are the same as the phase-to-ground conductances if the latter are equal for
all phases.
An interesting method for finding approximate (real and constant) transformation matrices has been suggested
by Paul [66]. By ignoring conductor resistances, and by assuming that the Carson correction terms AR’; + jAX’; in EQ.
(4.7) and AR, +jAX in Eq. (4.8) are dl equal (all elementsin the matrix of correction terms have one and the same

value), the approximate transformation matrix [T, ., ] iS obtained as the eigenvectors of the matrix product

with all elements of the second matrix being 1. To find [T, 4o, EQ. (4.96) would have to be used. Wasley and
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Selvavinayagamoorthy [93] find the approximate transformation matrices by simply taking the magnitudes of the
complex elements, with an appropriate sign reflecting the values of their arguments. They compared results using these
approximate matrices with the exact results (using complex, frequency-dependent matrices), and report that fairly high
accuracy can be obtained if the approximate matrix is computed at alow frequency, even for the case of double-circuit
lines.

If the M-phase line is assumed to be balanced (Section 4.1.3.2), then the transformation matrix is always redl
and constant, and known a priori with Eq. (4.58) and Eq. (4.59). Two identical and balanced three-phase lines with zero
seguence coupling only have the real and constant transformation matrix of Eq. (4.65).

42LineModelsintheEMTP

The preceding Section 4.1 concentrated on the line parameters per unit length. These are now used to develop
line models for liens of a specific length.

For steady-state solutions, lines can be modelled with reasonable accuracy as nominal z-circuits, or rigorously
as equivalent n-circuits. For transient solutions, the methods become more complicated, as one proceeds from the smple
case of asingle-phase lossless line with constant parameters to the more realistic case of alossy polyphase line with

frequency-dependent parameters.

4.2.1 AC Steady-State Solutions

Lines can be represented rigoroudly in the steady-state solution with exact equivalent n-circuits. Less accurate
representations are sometimes used, however, to match the model to the one used in the transient simulation (e.g.,
lumping R in three places, rather than distributing it evenly along the line, or using approximate real transformation
meatrices instead of exact complex matrices). For lines of moderate "electrical” length (typically < 100 km at 60 Hz),
nomina r-circuits are often accurate enough, and are probably the best modelsto use for steady-state solutions at power
frequency. If the steady-state solution is followed by atransient simulation, or if steady-state solutions are requested
over awide frequency range, then the nominal r-circuit must either be replaced by a cascade connection of shorter
nominal w-circuits, or by an exact equivalent -circuit derived from the distributed parameters.

4.2.1.1 Nominal M-Phase n-Circuit

For the nominal M-phase n-circuit of Fig. 3.10, the series impedance matrix and the two equa shunt
susceptance matrices are obtained from the per unit length matrices by simply multiplying them with the line length, as
shown in Eq. (4.35) and (4.36). The equations for the coupled lumped elements of this M-phase r-circuit have already
been discussed at length in Section 3, and shall not be repeated here.

Nominal z-circuits are fairly accurate if the line is electrically short. Thisis practicaly always the case if
complicated transposition schemes are studied at power frequency (60 Hz or 50 Hz). Fig. 4.25 shows atypica example,
with three circuits on the same right-of-way. In this case, each of the five transposition sections (1-2, 2-3, 3-4, 4-5, 5-6)

would be represented as anomina 9-phase rn-circuit. While anominal w-circuit would already be reasonably accurate
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for the total line length of 95 km, nominal r-circuits are certainly accurate for each transposition section, since the

longest section isonly 35 km long. A comparison between measurements on the de-energized line L3 and computer

resultsis shown in table 4.7 [80]. The coupling in this case is predominantly capacitive.

distances in km
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Fig. 4.25 - Transposition scheme for three adjacent circuits

Table 4.7 - Comparison between measurements and EM TP results (voltages on energized line L1 =

372kV and on L2 =535 kV)

phase measurement EMTP results
Induced voltages on de-energized line L3 if open at A 30kV 27.5kV
both ends B 15kV 13.8kV
C 10 kV 7.8kV
Grounding currents if de-energized line L3 is A 11A 105A
grounded at right end B 5A 32A
C 1A 15A

Because nominal w-circuits are so useful for studying complicated transposition schemes, a"CASCADED PI"
option was added to the BPA EMTP. With this option, the entire cascade connection is converted to one single z-

circuit, which is an exact equivalent for the cascade connection. Thisis done by adding one "component” at atime, as

shown in Fig. 4.26. The"component" may either be an M-phase n-circuit, or other types of network elements such as
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shunt reactors or series capacitors. Whenever component K is added, the nodal admittance matrix

@ © OO O,
. Equivalent : Equivalent
o for ° Compo- ° ﬁ ° for °
components nent K components
P 1,2,....,K-1{_o —e ® 1,2,..... K —e

Fig. 4.26 - Schematic illustration of cascading operation for K-th component

for nodes 1, 2, 3isreduced by eliminating the inner nodes 2, to form the new admittance matrix of the equivalent for
the cascaded components 1, 2, ... K. This option keeps the computational effort in the steady-state solution as low as
possible by not having to use nodal equations for the inner nodes of the cascade connection, at the expense of extra

computational effort for the cascading procedure.

4.2.1.2 Equivalent a-Circuit for Single-Phase Lines

Lines defined with distributed parameters at input time are always converted to equivalent r-circuits for the
steady-state solution.

For lines with frequency-dependent parameters, the exact equivalent z-circuit discussed in Section 1 is used,
with Eq. (1.14) and (1.15). The same exact equivalent n-circuit is used for distortionless and lossless line models with
constant parameters.

In many applications, line models with constant parameters are accurate enough. For example, positive
sequence resistances and inductances are fairly constant up to approximately 1 kHz, as shown in Fig. 4.20. But even
with constant parameters, the solution for transients becomes very complicated (except for the unrealistic assumption
of distortionless propagation). Fortunately, experience showed that reasonable accuracy can be obtained if L’ and C’
are distributed and if

R =R'Y 4.97)
islumpedin afew placesaslong asR << Z,.. Inthe EMTP, R/2islumped in the middle and R/4 at both ends of an

otherwise lossless line, as shown in Fig. 4.27, and as further discussed in Section 4.2.2.5. For this transient

representation, the EM TP uses the same assumption®® in the

The EMTP should probably be changed to by-pass this option if only steady-state solutions are requested,
either at one frequency or over a range of frequencies.
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Fig. 4.27 - Line representation with lumped resistances

steady-state solution, to avoid any discrepancies between ac steady-state initialization and subsequent transient
simulation, even though experiments have shown that the differences are extremely small at power frequency. By using
equivaent n-circuits for each lossless, half-length section in Fig. 4.27, and by eliminating the "inner" nodes 1, 2, 3, 4,
an equivalent rr-circuit (Fig. 1.2) was obtained by R.M. Hasibar with

2
Zprins = Rcos’wt - [0.5 +0.03125R—) R sin*wt + j sinwt coswt:
ZZ
2
(0.375R7 +22)
2
(-2 - 0.125R—)sin2wr + jgsinw‘rcosw‘r
1y _ Z? VA (4.98)
2 s Zseries
where
T = length y|L'C’
/
Z = L_
A\ C/
R = length- R’ (4.99)

4.2.1.3 Equivalent M-Phase n-Cir cuit

To obtain an equivalent M-phase n-circuit, the phase quantities are first transformed to modal quantities with
Eq. (4.84) and (4.85) for untransposed lines, or with Eq. (4.58) and (4.59) for balanced lines. For identical balanced
three-phase lines with zero sequence coupling only, Eq. (4.65) is used. For each mode, an equivalent single-phase -
circuit is then found in the same way as for single-phase lines; that is, either as an exact equivalent n-circuit with Eq.
(1.14) and (1.15), or with Eqg. (4.98) and (4.99) for the case of lumping R in three places. These single-phase modal
n-circuits each has a series admittance Y oics mose 8N two equal shunt admittances 1/2 Y 4,imoger BY 8SSembling these

admittances as diagonal matrices, the admittance matrices of the M-phase rt-circuit in phase quantities are obtained from
[Yseries] - [Tt] [Yseriesfmode] [Tl]t (4 . 100)

and
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1 1
5 [Yshunt] - 5 [Tt] [Yshuntfmode] [Tl]t 4.101)

While it is always possible to obtain the exact equivalent M-phase r-circuit at any frequency in this way,
approximations are sometimes used to match the representation for the steady-state solution to the one used in the
transient solution. One such approximation isthe lumping of resistances as shown in Fig. 4.27. Another approximation
isthe use of real and constant transformation matrices in Eg. (4.100) and (4.101), as discussed in Section 4.1.5.3.

4.2.2 Transient Solutions

Historically, the first [ine models in the EM TP were cascade connections of z-circuits, partly to prove that
computers could match switching surge study results obtained on transient network analyzers (TNA's) at that time. On
TNA'’s, balanced three-phase lines are usually represented with decoupled 4-conductor r-circuits, as shown in Fig. 4.28.
This representation can easily be derived from Eq. (4.44) by rewriting it as

dVA / / /
_E = s A m)IA +Z m(IA * IB * IC) (4.102)

N1 N2

Fig. 4.28 - Four-conductor m-circuit used on
TNA's

for phase A, and similar for phases B and C. The first termin Eq. (4.102) is Z',Jl, (or branch A1-A2in Fig. 4.28),
while the second term is the common voltage drop caused by the earth and ground wire return current 1, + 1 + |
(branch N1-N2in Fig. 4.28). Note, however, that Fig. 4.28 isonly valid if the sum of the currents flowing out through
aline returns through the earth and ground wires of that sameline. For that reason, the neutral nodes N2, N3, ... must
be kept floating, and only N1 at the sending end is grounded. V oltages with respect to ground at location i are obtained
by measuring between the phase and node N;. 1n meshed networkswith different R/X-ratios, this assumption is probably
not true. For this reason, and to be able to handle balanced as well as untransposed lines with any number of phases,
M-phase rt-circuits were modelled directly with M x M matrices, as discussed in Section 4.1.2.4. Voltages to ground
are then simply the node voltages. Comparisons between these M-phase r-circuits, and with the four-conductor -

circuits of Fig. 4.28 confirmed that the results are identical.
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The need for travelling wave solutions first arose in connection with rather simple lightning arrester studies,
where lossless single-phase line model s seemed to be adequate. Section 1 briefly discusses the solution method used
in the EMTP for such lines. This method was aready known in the 1920's and 1930's and strongly advocated by
Bergeron [81]; it istherefore often called Bergeron's method. In the mathematical literature, it is known as the method
of characteristics, supposedly first described by Riemann.

It soon became apparent that travelling wave solutions were much faster and better suited for computers than
cascaded w-circuits. To make the travelling wave solutions useful for switching surge studies, two changes were needed
from the simple single-phase lossless line: Firgt, losses had to be included, which could be done with reasonable
accuracy by simply lumping R in three places. Secondly, the method had to be extended to M-phase lines, which was
achieved by transforming phase quantities to moda quantities. Origindly, this was limited to balanced lines with built-
in transformation matrices, then extended to double-circuit lines, and finally generalized to untransposed lines. Fig. 4.29
compared EM TP results with results obtained on TNA's, using the built-in transformation matrix for balanced three-

phase lines and simply lumping R in three places.

R1=R0=6'75 Q
C /v length=202.8 km .
X =X =127 Q z2.=0.04+30.318 Q/km
£f=50 Hz 1o 1 .
v=1 p.u. ZO=O.26+31.015 2/km
Cl=ll.86 nF /km Co=7.66 nF/km

V (p.u.)

0 20 40

—> t (ms)

Fig. 4.29 - Energization of athree phase line. Computer simulation results (dotted line) superimposed on 8 transient
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network anayzer results for receiving end voltage in phase B. Breaker contacts close at 3.05 msin phase A, 8,05 ms
in phase B, and 5.55 msin phase C (t=0 when source voltage of phase A goes through zero from negative to positive)
[82]. Reprinted by permission of CIGRE

While travelling wave solutions with constant distributed L', C’ and constant lumped R produced reasonable
accurate answers in many cases, as shown in Fig. 4.29, there were also cases where the frequency dependence,
especidly of the zero sequence impedance, could not be ignored. Choosing constant line parameters at the dominant
resonance frequency sometimes improved the results. Eventually, frequency-dependent line models were devel oped
by Budner [83], by Meyer and Dommel [84] based on work of Snelson [85], by Semlyen [86], and by Ametani [87].
A careful re-evaluation of frequency-dependence by J. Marti [88] led to afairly reliable solution method, which seems
to become the preferred option as these notes are being written. J. Marti’s method will therefore be discussed in more
detail.

4.2.2.1 Nominal =-Circuits

Nominal r-circuits are generally not the best choice for transient solutions, because travelling wave solutions
are faster and usually more accurate. Cascade connections of nominal w-circuits may be useful for untransposed lines,
however, because one does not have to make the approximations for the transformation matrix discussed in Section
4.1.5.3. On the other hand, one cannot represent frequency-dependent line parameters and one has to accept the
spurious oscillations caused by the lumpiness. Fig. 4.30 shows these oscillations for the simple case of a single-phase
line being represented with 8 and 32 cascaded nominal w-circuits. The exact solution with distributed parametersis
shown for comparison purposes aswell. The proper choice of the number of w-circuits for onelineisdiscussed in [89],
as well as techniques for damping the spurious oscillations with damping resistances in parallel with the series R-L
branches of the r-circuit of Fig. 4.28.
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Fig. 4.30 - Voltage at receiving end of asingle phase lineif adc voltage of 10V is connected to the sending end at t=0
(line data: R=0.0376 {¥mile, L=1.52 mH/mile, C=14.3 nF/mile, length-320 miles; receiving end terminated with shunt
inductance of 100 mH)

The solution methods for nominal w-circuits have aready been discussed in Section 3.4. With M-phase
nominal w-circuits, untransposed lines (or sections of aline) are as simple to represent as balanced lines. In the former
case, one simply uses the matrices of the untransposed line, whereas in the latter case one would use matrices with
averaged equal diagonal and averaged equal off-diagonal elements.

4.2.2.2 Single-Phase LosslessLinewith Constant L’ and C’

The solution method for the single-phase case has already been explained in Section 1. The storage scheme
for the history terms is the same as the one discussed in the next Section 4.2.2.3 for M-phase |ossless lines, except that
each single-phase line occupies only one section in the table, rather than M section for M modes. Similarly, the

initialization of the history terms for cases starting from linear ac steady-state initial conditionsis the same asin Eq.
(4.108).
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The solution is exact as long as the travel time T is an integer multiple of the step size At. If thisisnot the case,
then linear interpolation is used in the EMTP, as indicated in Fig. 4.31. Linear interpolation is believed to be a
reasonable approximation for most cases, since the curves are usualy smooth rather than discontinuous. If
discontinuities or very sharp peaks do exit, then rounding t to the nearest integer multiple of At may be more sensible
than interpolation, however. There is no option for this rounding procedure in the EMTP, but the user can easily
accomplish this through changesin theinput data. Fig. 4.32 compares results for the case of Fig. 4.30 with sharp peaks
with and without linear interpolation. The line was actually not lossless in this case, but the losses were represented
in asimple way by subdividing the line into 64 lossless sections and lumping resistances in between and at both ends.
Theinterpolation errors are more severe if lines are split up into many sections, as was done here. If the line were only
split up into two lossless sections, with R lumped in between and at both ends, then the errors in the peaks would be
less (thefirst peak would be 18.8, and the second peak would be -15.4).

The accumulation of interpolation errors on aline broken up into many sections, with t of each section not
being an integer multiple of At, can easily be explained. Assume that atriangular pulse is switched onto along, lossless
line, which islong enough so that no reflections come back from the remote end during the time span of the study (Fig.
4.33). Let uslook at how this pulse becomes distorted through interpolation as it travels down the line if

@ the line is broken up into short sections of travel time 1.5 At each, and

(b) the line from the sending end to the measuring point is represented as one section (t = k - 1.5 At, withk =1,
2,3,..).
v T —
o= -0~ >~ - - = - -
i .
1 42 12
v(t) v,
- vit)
0 248t t

Fig. 4.33 - Single-phase lossless line energized with triangular
pulse

At any point on the line, the current will be

and between points 1 and 2 separated by t (Fig. 4.33),

v2(t + 1) = vI()

This last equation was used in Fig. 4.34, together with linear interpolation, to find the shape of the pulse asit travels
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down theline. The pulselosesits amplitude and becomes wider and wider if it is broken up into sections of travel time
1.5 At each. On the other hand, the pulse shape never becomes as badly distorted if the line is represented as one single
section.

What are the practical consequences of this interpolation error? Table 4.8 compares peak overvoltages from
a BPA switching surge study on a 1200 kV three-phase line®®, 133 miles long. Each section was split up into two
lossless half-sections, with R lumped in the middle and

Table 4.8 - Interpolation errors in switching surge study with At = 50 us

Peak overvoltages (MV)
Run Line model
phase A phase B phase C
1 single section 1.311 1.191 1.496
2 7 sections 1.276 1.136 1.457
3 single section with 1.342 1.167 1.489
rounded

at both ends, as explained in Section 4.2.2.4. Run no. 1 shows the results of the normal line representation as one
section. Run no. 2 withubdivision into 7 sections produces differences of 2.6 to 4.7%. In run no. 3 the zero and
positive sequence travel timgs= 664.93 us and = 445.74 ps were rounded to 650 and 450 ps, respectively, to make
them integer multiples okt = 50 ps. These changes could be interpreted as a decrease ig both I;' and C' of 2.25%,
and as an increase in both L' and C' of 0.96%, with the surge impedances remaining unchanged. Since line parameters
are probably no more accurate than +5% at best anyhow, these implied changes are quite acceptedaiadivigth
a slightly modified case is then solved without interpolation errors. Whether an option for routalthg nearest
integer multiple ofAt should be added to the EMTP is debatable. In general, rounding may imply much larger changes
in L', C' than in this case, and if implemented, warning messages with the magnitude of these implied changes should
be added as well. In Table 4.8, runs no. 3 to 1 differ by no more than 2.3%, and the interpolation error is therefore
acceptable if the line is represented as @wian. Breaking the line up into very many sections may produce
unacceptable interpolation errors, however.

If the user is interested in a "voltage profile" along the line, then a better alternative to subdivisions into

sections would be a post-processor "profile program" which would calculate

1The problem of interpolation errors is basically the same for single-phase and M-phase lines; therefore, a
three-phase case is presented here for which data was already available. Choosing a step size At which makes
the travel time T an integer multiple of At is more difficult for three-phase lines, however, because there are two
travel times for the positive and zero sequence mode on balanced lines (or three travel times for the 3 modes on
untransposed lines).
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Fig. 4.34 - Pulse at incremental distances down the line
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voltages and currents at intermediate points along the line from the results at both ends of the line. Such aprogramis
easy to write for lossless and distortionless lines. Luis Marti developed such a profile algorithm for the more
complicated frequency-dependent line models, which he merged into the time step loop of the EMTP [90]. Thiswas
used to produce moves of travelling waves by displaying the voltage profile at numerous points along the line at time
intervals of At.

Fig. 4.34(a) suggests adigital filtering effect from the interpolation which is similar to that of the trapezoidal
rule described in Section 2.2.1. To explain this effect, Eq. (1.6) must first be transformed from the time domain

% V(O - i (1) - % v (-1) + i (1-7)

into the frequency domain,

1 1 ;
1= Ve Iy - (EV'” v Imk) - e o (4.103)

For smplicity, let us assume that voltage and current phasors V,, and I, a node m are known, and that we want to find
| =VJZ-1,,a nodek. Without interpolation errors, Eq. (4.103) provides the answer. If interpolation isused, and if
for the sake of simplicity we assume that the interpolated value lies in the middle of an interval At, then Eq. (4.103)

becomes
1 interpolated ~ ( % Vo +Imk) ) % ( e jm(ﬁ%) te jm(?%)) (4.104)
Therefore, the ratio of the interpolated to the exact value becomes
Iianerpolated _ cos( w%) (4.105)
exact

which isindeed somewhat similar to Fig. 2.10 for the error produced by the trapezoidal rule.

Single-phase lossl ess line models can obviously only approximate the complicated phenomenaon rea lines.
Nonetheless, they are useful in a number of applications, for example

@ in simple studies where one wants to gain insight into the basic phenomena,

(b) in lightning surge studies, and

(c) as abasis for more sophisticated models discussed later.

For lightning surge studies, single-phase lossless line models have been used for along time. They are
probably accurate enough in many cases because of the following reasons:

D Only the phase being struck by lightning must be analyzed, because the voltages induced in the other

phases will be much lower.
()] Assumptions about the lightning stroke are by necessity very crude, and very refined line models are

therefore not warranted.
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3 Therisk of insulation failure in substations is highest for backflashovers at a distance of approx. 2
km or less. Insulation co-ordination studies are therefore usually made for nearby strokes. In that
case, the modal waves of an M-phase line "stay together," because differences in wave velocity and
distortion among the M waves are still small over such short distances. They can then easily be
combined into one resultant wave on the struck phase. There seems to be some uncertainty, however,
about the value of the surge impedance which should be used in such simplified single-phase
representations. It appears that the "self surge impedance” Z; . of Eq. (4.872) should be used. For
nearby strokes it is also permissible to ignore the series resistance. Attenuation caused by corona may
be more important than that caused by conductor losses. At the time of writing these notes, corona

isdtill difficult to model, and it may therefore be best to ignore losses altogether to be on the safe side.

4.2.2.3M-Phase Losdess Linewith Constant L’ and C’

Additional explanations are needed for extending the method of Section 1 from single-phase linesto M-phase
lines. In principle, the equations are first written down in the modal domain, where the coupled M-phase line appears
as if it consisted of M single-phase lines. Since the solution for single-phase lines is already known, this is
straightforward. For solving the line equations together with the rest of the network, which is always defined in phase
quantities, these modal equations must then be transformed to phase quantities, as schematically indicated in Fig. 4.35.

la 2a
= - _— o

|A o— °2A

Linear b | b Linear

ations lc ; 2c | ations
Co [, M [ [, v [°2C

k- PHASE~] ~—— MODAL DOMAIN ——=|~—PHASE—
DOMAIN DOMAIN

Fig. 4.35 - Transformation between phase and modal domain on a three-phase line

For simplicity, let us assume that the line has 3 phases. Then, with the notations from Fig. 4.35, each mode

is described by an equation of the form of Eq. (1.6), or

. 1 .
ZlafZa(l) - 7‘}1(1([) * hlsrlafZa(l_‘ca)

. 1 . “
I op(D) = 7"11;(’) + histy, o, (t-1,) (4.106)
b
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. 1 .
llC*ZC(t) = ?Vlc(t) + hlStlcfZC(t_Tc)

where each history term hist was computed and stored earlier. For mode a, this history term would be

. 1 .
hlsrlafZa(t_ra) - _7V2a(t_1a) - lZafla(t_ra) 4.107)

a

and analogous for modes b and ¢. These history terms are calculated for both ends of the line as soon as the solution
has been obtained at instant t, and entered into atable for use at alater time step. Asindicated in Fig. 4.36, the history
terms of athree-phase line would occupy 3 sections of the history tables for modes a, b, ¢, and the length of each section
would be Ty yeed/ Al, With Ty eneeq DEING the travel time of the particular mode increased to the nearest integer multiple
of AtY. Sincethe modal travel timest,, 1., 7. differ from each other, the 3 sections in this table are generally of different
length. Thisis also the reason for storing history terms as modal values, because one has to go back different travel
times for each mode in picking up history terms. For the solution at timet, the history terms of Eq. (4.106) are obtained
by using linear interpolation on the top two entries of each mode section.

A single-phase line would simply occupy one section, whereas a six-phase line would occupy six sections in
this table.
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Fig. 4.36 - Table for history terms of transmission lines
After  the
solution in each time step, the entries in the tables of Fig. 4.36 must be shifted upwards by one location, thereby
throwing away the values at the oldest point at t-7; .- THiSiS then followed by entering the newly cal culated history
terms hist(t) at the newest point t. Instead of physically shifting values, the EM TP moves the pointer for the starting
address of each section down by 1 location. When this pointer reaches the end of the table, it then goes back again to
the beginning of the table ("wrap-around table") [91].

The initial values for the history terms must be known for t = 0, -At, -2At, ... “Tigexea- 1€ NECESSItY fOr
knowing them beyond t = 0 comes from the fact that only terminal conditions are recorded. If the conditions were also
given along the line at travel time increments of At, then the initial values at t = 0 would suffice. For zero initial
conditions, the history table is simply preset to zero. For linear ac steady-state conditions (at one frequency ), the

history terms are first computed as phasors (peak, not rms),
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1
HISTkm - 72 Vm - Imk (4.1082)

whereV,, and |, are the voltage and current phasors at line end m (analogous for HIST,,). With HIST = |HIST| - &,

the instantaneous history terms are then

hist,,(t) = |HIST, | -cos(wt +a) , with t=0, -At, -2At, ...

(4.108b)
Eq. (4.108) is used for single-phase lines as well as for M-phase lines, except that mode rather than phase quantities
must be used in the latter case.
Eq. (4.106) are interfaced with the rest of the network by transforming them from modal to phase quantities
with Eq. (4.78a),

8] - ] - i @105

surge

with the surge admittance matrix in phase quantities,

z' 0 0
Yoo = [T © 2,5 O |[T] (4.109b)
0o o0 z*

and the history terms in phase quantities,

hlsrlafZa

st ] = [ sty 2, (4.109¢)

hm1c—2c

For a lossless line with constant L' and C', the transformation matrix [T] will always be real, as explained in the last
paragraph of Section 4.1.5.2. It is found as the eigenvector matrix of the product [C'][L'] for each particular tower
configuration, where [L'] and [C'] are the per unit length seridadtance and shunt capacitance matrices of the line.
For balanced lines, [T] is known a priori from Eq. (4.58), and for identical balanced three-phase lines with zero
sequence coupling only it is known a priori from Eq. (4.65).

The inclusion of Eq. (4.109) into the system of nodal equations (1.8a) for the entire network is quite
straightforward. Assume that for the example of Fig. 4.35, rows and colummzdis 1A, 1B, 1C follow each other,
as do those for nodes 2A, 2B, 2C (Fig. 4.37). Thenthe 3 x 3 magix [Y ] enters into two 3 x 3 blocks on the diagonal,
as indicated in Fig. 4.37, while the history terms [H8® ] =[hist ghist ,chist ]of Eq. (4.109c) enter into rows

1A, 1B, 1C, on the right-hand side with negative signs. Analogous history terms for terminal 2 enter into rows 2A, 2B,
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2C ontheright-hand side. While[Y ] isentered into [G] only once outside the time-step loop, the history terms must
be added to the right-hand side in each time step.

+(Y ]

surge

/

7
¥
1B VY | - histip om
e [ \ 1 s
22 [ /| A T PiStyaiia
2B 1 /. ] T histyp gp
= ' 2 - sty
. —_— — [N —— N

[G] [v] {i]-[hist]

Fig. 4.37 - Entries for a three-phase line into system of equations

M-phase lossless line models are useful, among other things, for

@ simple studies where one wants to investigate basic phenomena,

(b) in lightning surge studies, where single-phase models are no longer adequate, and

(©) as abasis for more sophisticated models discussed later.

Lightning surge studies cannot always be done with single-phase models. For simulating backflashovers on
lineswith ground wires, for example, the ground wire and at |east the struck phase must be modelled ("2-phase line").
Since it is not always known which phase will be struck by the backflashover, it is probably best to model all three
phasesin such asituation ("4-phase line"). An example for such a study is discussed in Section 4.1.5.2, with 4-phase
lossless line models representing the distribution line, and single-phase lossless line models representing the towers.
Not included in the data listing are switches (or some other elements) for the simulation of potential flashovers from

the tower top (nodes D) to phases A, B, C.

4.2.2.4 Single and M-Phase Distortionless Lineswith Constant Parameters
Distortionless line models are seldom used, because wave propagation on power transmission linesis far from
distortionless. They have been implemented in the EMTP, nonetheless, simply because it takes only a minor

modification to change the lossless line equation into the distortionless line equation.
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A single-phase transmission line, or amode of an M-phase line, is distortionless if

R’ G’

? = F (4.110)
Losses areincurred in the series resistance R’ as well as in the shunt conductance G'. The real shunt conductance of
an overhead line is very small (close to zero), however. If its value must be artificially increased to make the line
distortionless, with a resulting increase in shunt losses, then it is best to compensate for that by reducing the series
resistance losses. The EM TP does this automatically by regarding the input value R’y &S an indicator for the total
losses, and uses only half of it for R’,

@.111)

With thisformula, the ac steady-state results are practically identical for the line being modelled as distortionless or with
R lumped in 3 places; the transient response differs mainly in the initial rate of rise. From Eqg. (4.111), the attenuation

R’ /
@ = et | C (4.112)
2 L’

Thefactor 1/2 can also bejustified by using an approximate expression for the attenuation constant for lines with low
attenuation and low distortion [48, p. 257],

o = R/INPUT g N G/INPUT L_/ (4113)
2 L’ 2 C’

which isreasonably accurate if R’ << wL'and G’ << oC'. This condition isfulfilled on overhead lines, except at very

constant o becomes

low frequencies. Eq. (4.112) isthen obtained by dropping the term with G’y @nd by ignoring the fact that the waves
are not only attenuated but distorted as well.

If auser wants to represent a truly distortionless line where G’ is indeed nonzero, then the factor 1/2 should
of course not be used. The factor 1/2 is built into the EM TP, however, and the user must therefore specify R’y twice
as large as the true series resistance in this case.

With o known, an attenuation factor ¢ is calculated (< = length of ling). Thelosdessline of Eq. (1.6) isthen
changed into a distortionless line by simply multiplying the history term of Eq. (1.6b) with this attenuation factor,

hist,, (1-7) - |- %vm(m) i (T e @.114)
The surge impedance remains the same, namely vL'/C..

For M-phase lines, any of the M modes can be specified as distortionless. Mixing is allowed (e.g., mode 1

could be modelled with lumped resistances, and modes 2 and 3 as distortionless).
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Better results are usually obtained with the lumped resistance model described next, even though lumping of
resistancesin afew placesis obviously an approximation, whereas the distortionless line is solved exactly if the travel
timeis an integer multiple of At.

4.2.2.5 Singleand M-Phase Lineswith Lumped Resistances

Experience has shown that a lossy line with series resistance R' and negligible shunt conductance can be
modelled with reasonable accuracy as one or more sections of lossless lines with lumped resistances in between. The
simplest such approach is one lossless line with two lumped resistances R/2 at both ends. The equation for this model
is easily derived from the cascade connection of R/2 - losdessline - R/2, and leads to aform which isidentical with that
of Eg. (1.6),

ikm([) =

v(8) + hist, (i-7) (4.115)
‘modified

except that the values for the surge impedance and history terms are dightly modified. With Z, R and t calculated from
Eq. (4.99),

R
Zmodiﬁed =Z+ 5
and
hi - 1 7 R..
isty,(t-1) = - v, -1) + ( *E)Imk(tft)
‘modified

Thismode with R/2 at both endsisnot used inthe EMTP. Instead, the EM TP goes one step further and lumps
resistancesin 3 places, namely R/4 at both ends and R/2 in the middle, as shown in Fig. 4.27. This approach was taken

because the form of the equation still remains the same asin Eq. (4.115), except that

V4 =Z +

‘modified (4 .1 16)

NS

now. The history term becomes more complicated®, and contains conditions from both ends of thelineat t - 1,

hist, (t-7) = -—Z

v (-1) + @-B)i (1-0)
72 4
‘modified

8The equation at the bottom of p. 391, left column, in [50] contains an error. I, and I should not be
computed from Eq. (7b); instead, use I, = -(1/Z) e(t - t) -hi, ,(t - T) with the notation of [50], where Z is
Z . oairiea Of Eq. (4.116). For I, exchange subscripts k and m.
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R/4

2
Zmodiﬁed

v (1) + (Z—f)ikm(t—r) @.117)

Users who want to lump resistances in more than 3 places can do so with the built-in three-resistance model,
by simply subdividing the line into shorter segmentsin the input data. For example, 32 segments would produce lumped
resistances in 65 places. Interestingly enough, the results do not change much if the number of lumped resistancesis
increased as long as R << Z. For example, results in Fig. 4.30 for the distributed-parameter case were practically
identical for lumped resistancesin 3, 65, or 301 places. Fig. 4.29 shows as well that TNA results are closely matched
with R lumped in 3 places only.

One word of caution isin order, however. The lumped resistance modd gives reasonable answers only if R/4
<< Z, and should therefore not be used if the resistance is high. High resistances do appear in lightning surge studies
if the parameters are calculated at a high frequency, e.g., at 400 kHz in Table 4.5, where R’ = 597.4 Q/km in the zero
sequence mode. Lumping R in 3 places would still be reasonable in the case discussed there where each tower span of
90 mismodelled asoneline, since 13.4 Q2 is still reasonably small compared with Z = 1028 Q. If it were used to model
alonger line, say 90 km, then R/4 = 13,400 2, which would produce totally erroneous results'®. In such asituation it
might be best to ignore R altogether, or to use the frequency-dependent option if higher accuracy is required.

For M-phase lines, any of the M modes can be specified with lumped resistances. Mixingisalowed (e.g.,
mode 1 could be modelled with lumped resistances, and modes 2, ... M as distortionless). The lumped resistances do
not appear explicitly as branches, but are built into Eq. (4.115) (4.116) and (4.117) for each mode. Should a user want
to add them explicitly as branches, e.g., for testing purposes, then they would have to be specified asM x M - matrices
[R] in phase quantities, which could easily be done with the M-phase nominal r-circuit input option by setting L =
0 and C=0. All modeswould have to use the lumped resistance model in this set-up, that is, mixing of modelswould
not be allowed in it.

4.2.2.6 Singleand M-Phase Lines with Frequency-Dependent Parameters
The two important parameters for wave propagation are the characteristic impedance

RPN
7 = M (4.118)
‘ G’ + jwC’

and the propagation constant

y = YR’ + joL)(G' + joC) (4.119)

Both parameters are functions of frequency, even for constant distributed parameters R’, L', G, C’ (except for lossless

and distortionless lines). The line model with frequency-dependent parameters can handle this case of constant

The UBC version of the EMTP stops with an error message if R/4 > Z. It would be advisable to add a
warning message as well as soon as R/4 gets fairly large (e.g. > 0.05 * Z).
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distributed parameters®, even though it has primarily been developed for frequency-dependent series impedance
parameters R'(o) and L'(w). Thisfrequency-dependence of the resistance and inductance is most pronounced in the zero
sequence mode, as seenin Fig. 4.20. Frequency-dependent line models are therefore important for types of transients
which contain appreciable zero sequence voltages and currents. One such typeisthe single line-to-ground fault.

To develop aline model with frequency-dependent parameters which fits nicely into the EMTP, it is best to
use an approach which retains the basic idea behind Bergeron's method. Let ustherefore look at what the expression
Vv + Zi used by Bergeron looks like now, as one travels down the line. Since the parameters are given as functions of
frequency, this expression must first be derived in the frequency domain. At any frequency, the exact ac steady-state
solution is described by the equivalent z-circuit of Eq. (1.13), or in an input-output relationship form more convenient

here,

cosh(ydl)  Zsinh(y<)|ry,

m

, (4.120)

mk

%sinh(ygﬁ) cosh(y<)

which can be found in any textbook on transmission lines. Assume that we want to travel with the wave from node m
to node k. Then the expression V + Z | is obtained by subtracting Z, times the second row from the first row in Eg.
(4.120),

Vo-21, =", + chmk)-e’Ygg (4.121a)
or rewritten as
L, =VIZ - (V. IZ + Imk)-e’ﬂ (4.121b)

with anegative sign on |, since its direction is opposite to the travel direction. Eqg. (4.121) isvery sSimilar to Bergeron's
method; the expression V + Z| encountered when leaving node m, after having been multiplied with a propagation
factor €, the same when arriving at node k. Thisis very similar to Bergeron’s equation for the distortionless line,
except that the factor is e there, and that Eq. (4.121) isin the frequency domain here rather than in the time domain.

Before proceeding further, it may be worthwhile to look at the relationship between the equations in the

frequency and time domain for the simple case of alosslessline. In that case,

/
z - | L , Yy =joyL'C', and e = e "

[ C/
Anybody familiar with Fourier transformation methods for transforming an equation from the frequency into the time
domain will recall that a phase sift of €~ in the frequency domain will become atime delay t in the time domain.

Furthermore, Z_ is now just a constant (independent of frequency), and Eq. (4.121) therefore transforms to

This case differs from the line with lumped resistances inasmuch as the resistance becomes truly distributed
now.
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v - Zi, () = v, (-71) + Zi,-7)
which isindeed Bergeron’'s equation (1.6).
For the general lossy case, the propagation factor
Alw) = e = g . oI
withy = o + jB, contains an attenuation factor e** as well as a phase shift €**, which are both functions of frequency.
To explain its physical meaning, let us connect a voltage source V. t0 the sending end m through a source impedance

which is equal to Z(w), to avoid reflectionsin m (Fig. 4.38). Inthat case, V ,,+ ZJd i = Vouee FUrthermore, let us

assume that the receiving end k is open. Then from Eq. (4.121),

Vk - V:ource ’ A((")) (4122)

Z (w)
c

-
p 3

v
mk source

Fig. 4.38 - Voltage source connected to end m through matching
impedance

that is, the propagation factor istheratio (receiving end voltage) / (source voltage) of an open-ended lineif thelineis
fed through a matching impedance Z (o) to avoid reflections at the sending end®. If V. = 1.0 a all frequencies from
dc toinfinity, then its time domain transform vg,,(t) would be a unit impulse (infinitely high spike which isinfinitely
narrow with an area of 1.0), and the integral of v,.(t) would be aunit step. Setting V .« = 1.0 in EQ. (4.122) shows
that A(w) transformed to the time domain must be the impulse which arrives at the other end k, if the sourceis a unit

impulse. This response to the unit impulse,

a(t) = inverse Fourier transform of {A(w)} (4.123)

will be attenuated (no longer infinitely high), and distorted (no longer infinitely narrow). Fig. 4.39 shows these
responses for atypical 500 kV line of 100 miles length. They were obtained

210ne could also connect a matching impedance Z (w) from node k to ground to avoid reflections at the
receiving end as well. In that case, the left-hand side of Eq. (4.122) becomes 2V, rather than V,. Note that the
ratio e starts from 1.0 and becomes less than 1.0 as the line length (or frequency) is increased. This is in
contrast to the open-circuit response V,/V, = 1.0/cosh(y¥) more familiar to power engineers, which increases
with length or frequency (Ferranti rise).
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@ zero sequence mode (b) positive sequence (© positive sequence
mode with same mode with
scaleas (a) expanded scale

Fig. 4.39 - Receiving end response v,(t) = a(t) for the network of Fig. 4.38 if vg,(t) = unitimpulse [94]. Reprinted
by permission of J. Marti

fromthe inverse Fourier transformation of A(w) = exp(-y<) calculated by the LINE CONSTANTS supporting routine
at asufficient number of pointsin the frequency domain. The amplitude of the propagation factors A(w) for the case
of Fig. 4.39 isshown in Fig. 4.40.

The unit impul se response of alosdesslinewould be aunitimpulseat t =t with an areaof 1.0. In Bergeron's
method, thisimplies picking up the history termv,/Z +i,, a t - Tt with aweight of 1.0. In the more general case here,

history terms must now be picked up a more than one point, and weighted with the "weighting function" a(t). For the
example of Fig. 4.39(a),

Alw) A(w)
1.0 1.0
. 5: 0.5
o p
0 W T Y TR YTV YT el kinked -
- 3 6
1073 1 100 — 10° 107 1 10° — 10
f (Hz) £ (Hz)
(a) zero sequence mode (b) positive sequence mode

Fig. 4.40 - Propagation factor A(w) for the line of Fig. 4.39 [94]. Reprinted by
permission of J. Marti
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history terms must be picked up starting at 1,.,,, = 0.6 ms back in time, to approx. 7, = 2.0 msback intime. Thevalue
Tmin 1S the travel time of the fastest waves, while 1., is the travel time of the slowest waves. Each terms has its own
weight, with the highest weight of approx. 5400 around t = 0.7 ms back in time. Mathematically, this weighting of

history at the other end of the line is done with the convolution integral

T,

st opagaiion = f "L ora(E W)WY (4.124)

Tmin

which can either be evaluated point by point, or more efficiently with recursive convolution as discussed later. The
expression i, in Eq. (4.124) is the sum of the line current i, and of a current which would flow through the
characteristic impedance if the voltage v,, were applied to it (expression |, + V,/Z. in the frequency domain).

With propagation of the conditions from m to k being taken care of through Eq. (4.124), the only unresolved
issueisthe representation of theterm V,/Z, in Eq. (4.121b). For the same 500 kV line used in Fig. 4.39, the magnitude
and angle of the characteristic impedance Z, are shown in Fig. 4.41. If the shunt conductance per unit length G’ were
ignored, asis usually done, Z, would become infinite a w = 0. This complicates the mathematics somewhat, and since
G'isnot completely zero anyhow, it was therefore decided to use a nonzero vadue, with a default option of 0.03 ps/km.
As originally suggested by E. Groschupf [96] and further developed by J. Marti [94], such a frequency-dependent
impedance can be approximated with a Foster-l R-C
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network. Then the line seen from node k becomes a simple R-C network in parallel with a current source hist,, ouagion
(Fig. 4.42(a)). One can then apply the trapezoidal rule of integration to the capacitances, or use any other method of
implicit integration. This transforms each R-C block into a current source in parallel with an equivalent resistance.
Summing these for all R-C blocks produces one voltage source in series with one eguivalent resistance, or one current
source in paralld with one equivalent resistance (Fig. 4.42(b)). In the solution of the entire network with Eq. (1.8), the

frequency-dependent line is then simply represented again as a constant resistance R,,;, to ground, in parallel with a

equiv
current source histgc + hist,opaaion Which has exactly the same form as the equivalent circuit for the lossless line.

To represent thelinein the form of Fig. 4.42 inthe EMTP, it is necessary to convert the line parametersinto
aweighting function a(t) and into an R-C network which approximates the characteristic impedance. To do this, Z, and
y arefirst calculated with the support routine LINE CONSTANTS, from dc to such a high frequency where both A(w)
= exp(-y<) becomes negligibly small and Z () becomes practically constant. J. Marti [94] has shown that it is best to
approximate A(w) and Z(w) by rational functions directly in the frequency domain. The weighting function a(t) can
then be written down explicitly as a sum of exponentials, without any need for numerical inverse Fourier transformation.
Similarly, therational function approximation of Z(w) produces directly the values of R and C in the R-C network in

Fig. 4.42.
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(a) with R-C network (b) with equivalent resistance after

applying implicit integration

Fig. 4.42 - Frequency-dependent line representation seen from line end k

The rational function which approximates A(w) has the form

o (8+2)(5+2y)...(s+2,,
Appls) = ¢ g o VRS
“ ($+p(s+py)...(s+Dp,,)

(4.125)

with s=jw and n<m. The subscript "approx" indicates that Eq. (4.125) is strictly speaking only an approximation to
the given function A(w), even though the approximation is very good. The factor """ jsincluded to take care of the
fact that a(t) in Fig. 4.39iszero up tot =1, this avoids fitting exponential s through the portion O < t < 1,;, where the
values are zero anyhow (remember that atime shift -t in the time domain is a phase shift e* in the frequency domain).
All poles p; and zeros z in Eq. (4.125) are negative, real and simple (multiplicity one). With n < m, the rationa
function part of Eq. (4.125) can be expanded into partial fractions,

(5+2)(5+2y)...(s+2,) k, k, k,
- * et (4.126)
(s+p1)(s+p2)...(s+pm) s+p, S+p, 5+p,,

The corresponding time-domain form of Eq. (4.15) then becomes

— P T Pt T P m(tirmin)
aappmx(t) = |k,e +kye ...tk e Jor >t

=0 Jor i<t . 4.127)

This weighting function a,,,(t) is used to calculate the history term hist,,aion Of EQ. (4.124) in each time step.

Because of itsform as asum of exponentias, theintegral can be found with recursive convolution much more efficiently
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than with a point-by-point integration. 1f we look at the contribution of one exponential term k,gP-*m",

Sl-(l) = fw i(t—u)kie P Tnin) du (4.128)

Tmin

then s(t) can be directly obtained from the value s(t - At) known from the preceding time step, with only 3
multiplications and 3 additions,

s = ¢ s (t-AD + ¢y i(T-T,) + ¢y i(-T,, ~AY) (4.129)
as explained in Appendix V, with ¢,, ¢,, ¢, being constants which depend on the particular type of interpolation used

fori.

The characteristic impedance Z () is approximated by arational function of the form [94]

(5+2)(8+2,)...(s+2,)
Z () =k
cfapprm(s) (S +p1)(s +p2) B .(S +pn)

(4.130)

withs=jw. All polesand zeros are again real, negative and simple, but the number of polesis equal to the number of

zeros now. This can be expressed as

Z (s) = ky + b A&
¢-approx 0 s+p, S+p2”‘S+p (4.131)
n

which corresponds to the R-C network of Fig. 4.42, with

>
Il
| =

1 .
] , C = - i=1,...n (4.132)

=

Rather than applying the trapezoidal rule to the capacitancesin Fig. 4.42, J. Marti chose to use implicit integration with
Eq. (1.3) of Appendix 1%, with linear interpolation oni. For each R-c block

v, dv,
i=—L +C—
R, "at
which has the exact solution
v(@) = e v -Al) + L1 e iy
; ; =/ (4.133)
1

2This method is identical to the recursive convolution of Appendix V applied to Eq. (4.131). Whether
recursive convolution is better than the trapezoidal rule is still unclear.
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with o; = Y(R,C). By using linear interpolation on i, the solution takes the form of
vi0) = R, " WD) + eft-An) (4.134)

with e(t - At) being known values of the preceding time step (formula omitted for simplicity), or after summing up over
al R-C blocksand R,,

V() = R, " i) + e(-An) (4.135a)
with
R = Ry + ;:Requi and e = ,;ei (4.135b)

which can be rewritten as

i(r) =

WE) + hist (4.136)

equiv

The equivaent resistance R, enters into matrix [G] of EQ. (1.8), whereas the sum of the history terms hist -+

equiv
hi St opagaion ENETS iNto the right hand side.

The key to the success of this approach is the quality of the rational function approximations for A(w) and
Z(w). J. Marti uses Bode's procedure for approximating the magnitudes of the functions. Since the rational functions
have no zerosin the right-hand side of the complex plane, the corresponding phase functions are uniquely determined
from the magnitude functions (the rational functions are minimum phase-shift approximations in this case) [94]. To
illustrate Bode's procedure, assume that the magnitude of the characteristic impedance in decibelsis plotted as afunction
of thelogarithm of the frequency, as shown in Fig. 443 [94]. The basic principleis to approximate the given curve by
straight-line segments which are either horizonta or have alope which isamultiple of 20 decibels/decade. The points
where the slopes change define the poles and zeros of the rational function. By taking the logarithm on both sides of

Eqg. (4.130), and multiplying by 20 to follow the convention of working with decibels, we obtain

20log|Z

e—appro®) | = 20logk + 20log|s+z,|...+ 20log|s+z,|

- 20log|s+p, |-~ 20log|s+p,| (4.137)

For s = jo, each one of the terms in this expression has a straight-line asymptotic behavior with respect to w. For
instance, 20 log |jo + z,| becomes 20 log z, for ® << z,, which is constant, and 20 log » for ® >> z, which is a straight
line with adope of 20 db/decade. The approximation to Eq. (4.137) is constructed step by step: Each time a zero corner
(at w = z) is added, the slope of the asymptotic curve isincreased by 20 db, or decreased by 20 db each time a pole
corner (at » = p) is added. The straight-line segments in Fig. 4.43 are only asymptotic traces; the actual function

becomes a smooth curve without sharp corners. Since the entire curve is traced from dc to the
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highest frequency at which the approximated function becomes practically constant, thet&tite frequency range is
approximated quite closely, with the number of poles and zeros not determined apriori. J. Marti improves the accuracy
further by shifting the location of the poles and zeros about their first positions. Fig. 4.44 shows the magnitude and
phase errors of the approximation of A(w), and Fig. 4.45 shows the errors for the approximation of Z () for the line
used in Fig. 4.39.

L. Marti has recently shown [95] that very good results can be obtained by using lower-order approximations
with typically 5 poles and zeros rather than the 15 poles and zeros used in Fig. 4.44 and 4.45. Furthermore, he shows
that positive and zero sequence parameters at power frequency (50 or 60 Hz) can be used to infer what the tower
geometry of the line was, and use this geometry in turn to generate frequency-dependent parameters. With this
approach, simple input data (60 Hz parameters) can be used to generate a frequency-dependent line model internally

which isfairly accurate.
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Fig. 4.44 - Errorsin approximation of A(w) for line of Fig. 4.39 [94]. Reprinted by permission of J.
Marti

For M-phase lines, any of the M modes can be specified as frequency-dependent, or with lumped resistances,
or asdistortionless. Mixingisadlowed. A word of cautionisin order here, however: At the time of writing these notes,
the frequency-dependent line model works only reliably for balanced lines. For untransposed lines, approximate real
and constant transformation matrices must be used, as explained in Section 4.1.5.3, which seems to produce reasonably
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accurate results for single-circuit lines, but not for double-circuit lines. Research by L. Marti into frequency-dependent
transformation matrices in connection with models for underground cables will hopefully improve this unsatisfactory
state of affairs.
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Fig. 4.46 - Comparison between voltages at phase b for [94]:
(a) Field test oscillograph
(b) BPA's frequency-dependence simulation
(c) New model simulation
Reprinted by permission of J. Marti

Field test results for a single-line-to-ground fault from Bonneville Power Administration have been sued by
various authors to demonstrate the accuracy of frequency-dependent line models [84]. Fig. 4.46 compares the field test
results with simulation results from an older method which used two weighting functions & and a, [84], and from the
newer method described here. The peak overvoltage in thefield test was 1.60 p.u., compared with 1.77 p.u. in the older
method and 1.71 p.u. in the newer method. Constant 60 Hz parameters would have produced an answer of 2.11 p.u.
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5. UNDERGROUND CABLES

There is such a large variety of cable designs on the market, that it is difficult, if not impossible, to develop
one computer program which can calculate the parameters R', L', C' for any type of cable.
For lower voltage ratings, the cables are usually unscreened and insulated with polyvinyl chloride. An

example of a three-phase 1 kV cable with neutral conductor and armor is shown in Fig. 5.1.

Fig. 5.1 - Armored 1 kV cable (1 = stranded conductor, 2 = insulation, 3 = bedding, 4 = flat
steel wire armor, 5 = helical steel tape, 6 = plastic outer sheath). Reprinted by permission from
Siemens Catalog 1980

Fig. 5.2 - 12 to 35 kV distribution cable with concentric neutral conductors (1 = stranded
conductor, 2, 4 = conductive layers, 3 = plastic insulation , 5 = conductive tape, 6 = concentric
neutral conductors, 7 = helical copper tape, 10 = inner sheath, 11 = plastic outer sheath).

Reprinted by permission from Siemens Catalog 1980

At the distribution voltage level, the cables are usually screened with concentric neutral conductors, as

shown in Fig. 5.2.



At the transmission voltage level, two types of cables are in widespread use today, namely the pipe-type
cable (Fig. 5.3) and the self-contained cable (Fig. 5.4). In the pipe-type cable, three paper-insulated oil-impregnated
cables are drawn into a steel pipe at the construction site. The helical skid wires make it easier to pull the cables.
After evacuation, the pipe is filled with oil and pressurized to a high pressure of approx. 1.5 kPa. Pipe-type cables

are used for voltages from 69 to 345 kV, with 550 kV cables under development. The typical

Steel pipe
(filled with nsulating o)

Skid wires

Metatlic topes

Paper /oil insulation
Screen

Conductor
(stranded copper)

Fig. 5.3 - Pipe-type oil-filled cable [148]. © 1979 John Wiley & Sons,
Ltd. Reprinted by permission of John Wiley & Sons, Ltd

self-contained oil-filled cable is a single-core cable (Fig. 5.4). Its stranded core conductor has a hollow duct which
is filled with oil and kept pressurized with low-pressure bellow-type expansion tanks. Underground and submarine

self-contained cables are essentially identical, except that underground cables do not always have an armor.
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Fig. 5.4 - Single-core self-contained cable (C = stranded core conductor
with oil-filled duct, I = paper insulation, S = metallic sheath, B =
bedding, A = armor, P = plastic sheath). Details of conductive layers
left out

Gas-insulated systems with compressed SF, gas are used for compact substation designs. The busses in such
substations consist of tubular conductors inside a metallic sheath, with the conductors held in place by plastic spacers
at certain intervals (Fig. 5.5). SF,-busses are in use in lengths of up to 300 m. A similar design can be used for
cables, but SF-cables are still experimental, with the sheath usually being corrugated. In EMTP studies, such

relatively short

conductor @

sheath

SF6 gas @ @

(a) Single-phase (b) Three-phase

Fig. 5.5 - SF; bus

busses can often be ignored, or represented as a lumped capacitance. Only in studies of fast transients with high

frequencies must SF;-busses be represented as transmission lines. Since the single-phase geometry is essentially
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similar to that of a self-contained cable, and since the three-phase geometry is similar to that of a pipe-type cable,
no special programs are needed to handle SF-busses or cables, except that the three-phase arrangement of Fig.
5.5(b) has no electrostatic screens as in the case of a pipe-type cable of Fig. 5.3.

Fig. 5.1 t0 5.5 are only a few examples for the large variety of cable designs. The support routine CABLE
CONSTANTS was developed by A. Ametani essentially for the coaxial single-core cable design of Fig. 5.4 and
5.5(a), and later expanded for the pipe-type cable of Fig. 5.3 and for the three-phase SF -busses of Fig. 5.5(b). At
this time, there is no support routine for the types of lower voltage cables shown in Fig. 5.1 and 5.2, but calculation

methods applicable to such non-coaxial arrangements are briefly discussed in Section 5.7.

5.1 Single-Core Cables

The cable parameters of coaxial arrangements, as in Fig. 5.4, are derived in the form of equations for
coaxial loops [150, 152]. In Fig. 5.4, loop 1 is formed by the core conductor C and the metallic sheath S as return,
loop 2 by the metallic sheath S and metallic armor A as return, and finally loop 3 by the armor A and either earth

Or sea water as return.

5.1.1 Series Impedances

The series impedances of the three loops are described by three coupled equations

-dVl-
dx zZ'\, Z', 0L,
av,

222 2z ozl 7z || 5.1
e a Lp Liplih (5.1

dv, 0 Z/az Z/aa L

The self impedance Z',, of loop 1 consists of 3 parts,

21 = 7 oeon T L' coressneancinsutation T 2 sheanin (5.2)
with
Z' oreou = internal impedance (per unit length) of tubular core conductor with return path outside
the tube (through sheath here)
Z' ore/sheath-insulation = impedance (per unit length) of insulation between core and sheath, and
Z' eahin = internal impedance (per unit length) or tubular sheath with return path inside the tube
(through core conductor here).
Similarly,
L'y = 2 yeanou T Z' sheatvamor insutaion T Z'armor-in (5.3)
and
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1 — 1 ' '
Z 3 ™ Z armor-out +Z armor/earth-insulation +Z earth (54)

with analogous definitions as for Eq. (5.2). The coupling impedances Z',, = Z',, and Z',; = Z';, are negative
because of opposing current directions (I, in negative direction in loop 1, I; in negative direction in loop 2),
', =7y =-2'
Ly=1y=-17

(5.52)
(5.5b)

sheath-mutual

armor-mutual

with Z'gonmea = ~ Mmutual impedance (per unit length) of tubular sheath between the inside loop 1 and the
outside loop 2, and
Z mormuwa =  Mutual impedance (per unit length) of tubular armor between the inside loop 2 and the

outside loop 3.
Finally, Z',; = Z';, = 0 because loop 1 and loop 3 have no common branch.

The simplest terms to calculate are the impedances of the insulation, which are simply

) r
/insulation =Jw % IHE (56)

with u, = permeability of insulation (u, = 2¢10* H/km),

r = outside radius of insulation,

q = inside radius of insulation, in identical units (e.g. in mm)
If the insulation is missing, e.g., between armor and earth, then Z';  .ion = O-

The internal impedance and the mutual impedance of a tubular conductor with inside radius q and outside

radius r (Fig. 4.5) are a function of frequency, and are found with modified Bessel functions [149].

Z' hein = pm/2ngD {I,(mq) K,(mr) + K, (mq) I,(mr)} (5.7a)

Z' oo = pm/21rD {I (mr) K;(mq) + Ky(mr) I,(mq)} (5.7b)

Z' jpemua = P/21qrD (5.7¢)

with D = I;(mr) K,(mq) - I;(mq) K,(mr) (5.7d)

The parameter

m = yjoul/p (5.7e)

is the reciprocal of the complex depth of penetration (OVERLINE) p defined earlier in Eq. (4.5).
wheout OF Eq. (5.7b) was developed at BPA for the
support routine LINE CONSTANTS, and later modified at UBC to "TUBE" for the calculation of Z',,.;, and Z' ...

A subroutine SKIN for calculating the impedance Z'

et 38 Well. - All arguments of the modified Bessel functions I, I;, K, K, are complex numbers with a phase angle

of 45° because of Eq. (5.7¢). In such a case, the following real functions of a real variable can be used instead:

ber(x) + jbei(x) = I,(xy/))
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ber'(x) + jbei'(x) = /jI,(x\)) (5.8)
ker(x) + jkei(x) = K, (xJ)

ker'(x) + jkei'(x) = —\jK, (x\})

These functions are evaluated numerically with the polynomial approximations of Eq. (9.11.1) to (9.11.14) of [149].
For arguments x < 8, the absolute error is < 107, whereas for arguments x > 8, the relative error is < 3¢107.
To avoid too large numbers in the numerator and denominator for large arguments of x, the expressions f(x) and g(x)
in Eq. (9.22.9) and (9.11.10) of [149] are multiplied with exp (- 1 + j/v2 x). If both arguments mq and mr have
absolute values greater than 8, then in addition to the above multiplication, the K- and K;- functions are further
multiplied by exp (2mq) to avoid indefinite terms 0/0 for very large arguments.

When the support routine CABLE CONSTANTS was developed, subroutine TUBE did not yet exist, and
A. Ametani chose slightly different polynomial approximations for the functions I, I;, K;, K, in Eq. (5.7). He uses
Eq. (9.8.1) to (9.8.8) of [149] instead, with the accuracy being more or less the same as in the polynomials used in
subroutine TUBE.

Simpler formulas with hyperbolic cotangent functions in place of Eq. (5.7) were developed by M. Wedepohl
[150], which also give fairly accurate answers as long as the condition (r-q)/(r+q) < 1/8 is fulfilled. This was
verified by the author for the data of a 500 kV submarine cable.

The only term which still remains to be defined is Z',,,;, in Eq. (5.4). This is the earth or sea return

carth
impedance of a single buried cable, which is discussed in more detail in Section 5.3.

Submarine cables always have an armor, while underground cables may only have a sheath. The armor
often consists of spiralled steel wires, which can be treated as a tube of equal cross section with u, = 1, without too
much error (153]. A more accurate representation is discussed in [151].

Eq. (5.1) is not yet in a form suitable for EMTP models, in which the voltages and currents of the core,
sheath, and armor must appear, in place of loop voltages and currents. The transformation is achieved by

introducing the terminal conditions

Vl = Vcore - Vsheath Il = Icore
VZ = Vsheath - Varmor and 12 = Isheath + Icore
V3 = Varmor I3 = Iarmor + Isheath + Icore (59)

where V. = voltage from core to ground,
Vean = Voltage from sheath to ground,
Vmer = Vvoltage from armor to ground.

By adding row 2 and 3 or Eq. (5.1) to the first row, and by adding row 3 to the second row, we obtain
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av_lax| |\Z'. 7' Z' |1

core cc a core
- |dV

sheath/dx = Z /5(‘ Z /ss Z /5(1 I:heath (5 . 10)
dVarmor/dx Z/ll(’ Z/as Z/aa Iarmor

with Z' . =2'\,+2Z2', +2Z'y, +272'y;, + 7'y,

2'.=2'.=7",+2Zy +22';+ 7',

7. =72,=2,=27",.=2Zy+7Z,

7' =17y +27';+ 7',

2'.=7 (5.10b)

Some authors use equivalent circuits without mutual couplings, in place of the matrix representation of Eq.
(5.10) with self impedances (diagonal elements) and mutual impedances (off-diagonal elements). For example, [150]
shows the equivalent circuit of Fig. 5.6 for a single-core cable without armor, which is essentially the same as the

TNA four-conductor representation of overhead lines in Fig. 4.28.

1 1
211 * 217

core

sheath

TT_]‘ 1 T_l_]'
212 * 23
earth

Fig. 5.6 - Three conductor m-circuit suitable for TNA's

5.1.2 Shunt Admittances
For the current changes along the cable of Fig. 5.4, the loop equations are not coupled,
- dl/dx = (G’ + joC')V,
- dL/dx = (G', + joC’) V, (5.11)

- dljdx = (G'; + joC'y)V,

G', and C', are the shunt conductance and shunt capacitance per unit length for each insulation layer. If there is no
insulation (e.g., armor in direct contact with the earth), then replace Eq. (5.11) by
V, =0 (5.12)

The shunt capacitance of tubular insulation with inside radius q and outside radius r is
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(5.13)

with e, = absolute permittivity or dielectric constant of free space (g, defined in Eq. (4.22)) and €, = relative
permittivity or relative dielectric constant of the insulation material. Typical values for €, are shown in Table 5.1

[54].

Table 5.1 - Relative permittivity and loss factor of insulation material [54]. Reprinted by permission of Springer-
Verlag and the authors

Relative Permittivity at | Loss Factor tand at 50
Insulation Material 20°C Hz and 20°C
butyl rubber 3.0t04.0 0.05
insulating oil 2.21t02.8 0.001 to 0.002
oil-impregnated paper 33t04.2 0.003 to 0.008
polyvinyl chloride 3.0t04.0 0.02 t0 0.10
polyethylene 2.3 0.0002
crosslinked polyethylene 2.4 0.0004

The shunt conductance G' is ignored in the support routine CABLE CONSTANTS, which is probably
reasonable in most cases. It cannot be ignored, however, if buried pipelines are to be modelled as cables, as
explained in Section 5.6. If values for G' are available for cables, it is normally in the form of a dielectric loss angle
0 or loss factor tand. Then

G' = oC' * tand (5.14)
Typical values for tand are shown in Table 5.1. In the literature on electromagnetics, the shunt conductance is

usually included by assuming that €, in Eq. (5.13) is a complex number €, = €' - je", with Eq. (5.13) rewritten as

jW2TE
G+ joc = 2750 ¢ _ ey
o’ (5.15)

q

For cross-linked polyethylene, both €' and €" are more or less constant up to 100 mHz [168], with the typical values
of Table 5.1. For oil-impregnated paper insulation, both €' and €" vary with frequency. Measured values between
10 kHz and 100 mHz [154] showed variations in €' of approximately 20%, whereas &" varied much more. Fig. 5.7

shows the variations which can be expressed as a function of frequency with the empirical formula
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Fig. 5.7 - Measured values of €' and €" for a cable with oil-
impregnated paper insulation at 20°C [154]. Reprinted by
permission of IEE and the authors

The support routine CABLE CONSTANTS now assumes €¢" = 0 and €' being constant, but it could easily be
changed to include empirical formulas based on measurements, such as Eq. (5.16). At this time, formulas based
on theory are not available because the frequency-dependent behavior of dielectrics is too complicated. Except for
very short pulses (< 5 us), the dielectric losses are of little importance for the attenuation [154], and using a constant
e' with ¢" = 0 should therefore give reasonable answers in most cases.

Again, Eq. (5.11) is not yet in a form suitable for EMTP models. With the conditions of Eq. (5.9), they

are transformed to

/ /
dl core/ dx Y 1 Y 1 0 Vcore
- \dI

sheath/dx = _Y/1 Y/1+Y/2 _Y/z V:heath (5.17)

dlarmor/dx 0 - Y/2 Y/z + Y/3 Varmor

where Y';, = G'; + joC',.

5.2 Parallel Single-Core Cables
There are not many cases where single-core cables can be represented with single-phase models. A notable
exception is the submarine cable system, where the individual cables are laid so far apart (to reduce the risk of

anchors damaging more than one phase) that coupling between the phases can be ignored. In general, the three
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single-core cables of a three-phase underground installation are laid close together so that coupling between the
phases must be taken into account.

If we start out with loop analysis, then it is apparent that it is only the most outer loops (armor with earth
return, or sheath with earth return in the absence of armor) through which the phases become coupled. The magnetic
field outside the cable produced by loop 1 and 2 in Fig. 5.4 is obviously zero, because the field created by I, in the
core is exactly cancelled by the

earth
]7///////]/////]///7/////////////7/////7//I/////I///////]fl//llHIII//7/////777//I///I surface

Fig. 5.8 - Three single-core cables

returning current I, in the sheath, etc. The first two equations in (5.1) are therefore still valid, whereas the third

equation now has coupling terms among the three phases a, b, c, or

- Z\aZ'ya 0 00 O o
Z'ya Z'ya Z'ya 00 0 0
0 Zia Zya 00 Z% 002z,
Z\b Z'p 0
12 ] = Ziyb Z'yh Z'yp| 00 0 (5.18)
0 Zlyb z'p| 00 Zy]

Z'\cZ,c O

: / / /
symmetric Z's¢c Z'yc Z'yc

0 Zye Z'ie |

withZ',, Z',., Z',. being the mutual impedances between the three outer loops of Fig. 5.8. By using Eq. (5.9) for

the transformation from loop to phase (core, sheath, armor) quantities, the matrix in Eq. (5.18) becomes
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VAN I VA z’ ]

self-a mutuala-b mutuala-c

[Z ' phase] = [Z /Selffb] [Z /mutualbfc] (5 1 9)

/
selffc]

symmetric [Z
The 3 x 3 submatrices [Z;,] etc. on the diagonal are identical to the matrix in Eq. (5.10a) for each cable by itself,

whereas the 3 x 3 off-diagonal matrices have identical elements, e.g.,

Z/ab Z/ab Z/ab
1=z Z, 7, (5.20)

/
[Z mutuala—b

/ / /
Zab Zab Zab

The only elements not yet defined are the mutual impedances Z',, Z',,, Z',. of the outer earth return loops, which
are discussed in more detail in Section 5.3. If one of the cables does not have an armor, its self submatrix is
obviously a 2 x 2 matrix and its mutual submatrix is a 2 x 3 matrix. For cables without sheath and armor, the
submatrices become 1 x 1 and 1 x 3, respectively.

There is no coupling among the three phases in the shunt admittances. Therefore, the shunt admittance

matrix for the three-phase system is simply

Y] o o0
(Y asd =| O [Y',] 0 (5.21)
0 0 [Y]

where [Y',] is the 3 x 3 matrix of Eq. (5.17) for phase a, etc.

The screening effect of the sheath and armor depends very much on the method of grounding. For example,
if cable a is operated at 100 A between core and ground, with sheath and armor ungrounded and open-circuited, then
the full 100 A will flow in the outer loop (loop currents I, = 100, I, = 100, I; = 100 in Fig. 5.4). This will produce
maximum induced voltages in the conductors of a neighboring cable b. How much nuisance this induction effect
creates depends again on the method of grounding within cable b itself. If cable b is operated between core and
ground (loads connected from core to ground), and if its sheath and armor are ungrounded and open-circuited, then
the induced voltage will drive a circulating current through the core, ground and load impedances. If cable b is
operated between core and sheath (loads connected from core to sheath), then there will be no circulating current
in that loop, because according to Eq. (5.20), the induced voltages are identical in core and sheath. There would
be a circulating current through the sheath and armor in parallel with earth return if the sheath (and armor) is
grounded at both ends.

If both the sheath and armor in the current-carrying cable a are grounded at both ends, then the voltage

induced in the conductors of the neighboring cable b would be small. For the practical example of a 500 kV ac
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submarine cable at 60 Hz, 14% of the core current would return through the sheath, 87.8% through the armor, and
only 5.6% through the outermost loop with ground or sea water return. The induction effect in neighboring cables
would then be only 5.6% compared to the case with ungrounded sheath and armor. The algebraic sum is larger than

100% because there are phase shifts among the three currents (I, = 14e, 1 == 87.8¢™"", I, = 5.6e%9).

5.3 Earth-Return Impedances’
In Eq. (5.4), the impedance of the loop formed by the outermost tubular conductor and the earth (or sea
water) as return path is needed. This shall be called the "self earth-return impedance." For the matrix of Eq. (5.18),
the "mutual earth-return impedance" Z'; between the loop formed by the outermost tubular conductor and the earth
return path of cable i, and the analogous loop of cable k, is needed as well.
The four main methods of installing cables are as follows [148]:
(a) The cable is laid directly in the soil, in a trench which is filled with a backfill consisting of either the

original soil or of other material with lower or more stable thermal resistivity.

(b) The cable is laid in ducts or troughs, usually of earthenware or concrete.

(©) The cable is drawn into circular ducts or pipes, which allows additional cables to be installed without
excavation.

(d) The cable is installed, in air, e.g. in tunnels built for other purposes.

In cases (a), (b) and (c) the cable is clearly buried underground, and formulas for buried conductors must
therefore be used. In case (a), the radius R of the outermost insulation is simply the outside radius of the cable. In
cases (b) and (c) it should be the inside radius of the duct if the duct has a similar resistivity as the soil, or the outside
radius if it is a very bad conductor, or possibly some average radius if it is neither a good nor a bad conductor. What
to do in case (d) is somewhat unclear. Reasonable answers might be obtained by representing the tunnel with an
equivalent circular cross section of radius R. Another alternative is to assume that the tunnel floor is the surface of
the earth, and then use the earth-return impedance formula for overhead conductors. This would ignore current

flows in the earth above the tunnel floor.

5.3.1 Buried Conductors in Semi-Infinite Earth

Exact formulas for the self and mutual earth-return impedances of buried conductors were first derived by
Pallaczek [29]. In these formulas, the earth is treated as semi-infinite, extending from the surface downwards and
sideways to infinity. If the horizontal distance between cable i and cable k is x, and if cable i and k are buried at

depth h and y, respectively (Fig. 5.9), then the mutual earth-return impedance is [150]

’ - expl-(h+ywo+m? .
Z/utual:%{Ko(md)_Ko(mD)+fwexp ( +y) x - m CXPOOLX)dOC}

m
[ 2 2

lo| +yas+m

(5.22)

IThe assistance of N. Srivallipuranandan and L. Marti in research for this section is gratefully acknowledged.
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where
d = vx*+(h-y)* = direct distance between cables i and k,
D = vx*+(h+y)* = distance between cable i and image of cable k in air,
m = reciprocal of depth of penetration for earth from Eq. (5.7¢),

o = integration constant.

air

NS S S
earth

v

cable 1

Y I D

R

Fig. 5.9 - Geometric configuration of two
cables

The self earth-return impedance is obtained from Eq. (5.22) by choosing the x,y- coordinate on the surface of the

outermost insulation, e.g., x = Randy = H,

Z' .., = (same as Eq. (5.22), withy = h, x = R) (5.23)
with R = outside radius of outermost insulation. The permeability u of earth and air are assumed to be identical in
these equations. Furthermore, they are written in a slightly different form than in Pollaczek's original paper, but
they are in fact identical.

While the K, terms in Eq. (5.22) are easy to evaluate, the integral terms in both (5.22) and (5.23) cannot
be calculated that easily. Wedepohl [150] gives an infinite series, which has been compared by Srivallipuranandan
[168] with a direct numerical integration method based on Romberg extrapolation. Both results agreed to within
0.1%. Since the function under the integral is highly oscillatory, direct numerical integration is not easy, and the
series expansion is therefore the preferred approach.

The support routine CABLE CONSTANTS does not use the exact Pollaczek formula. Ametani recognized
that the integral terms in Eq. (5.22) and (5.23) become identical with Carson's earth return impedance if the
numerator exp {-(h+y)ve*+m?’} is replaced by exp {-(h+y)|«|}. Accepting this approximation, which is valid

for || > >|m]|, he can then use Carson's infinite series or asymptotic expansion discussed in Section 4.1.1.1. Fig.
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5.10 and 5.11 show the errors in Ametani's results from support routine CABLE CONSTANTS, as well as the errors

of Wedepohl's approximate formulas [150] for self impedance,

2
_ pm YmR 4
Z/ean‘h - 2Tc {_ IHT + 0.5 - E mh}
and for mutual impedance
2
_ pm ymd 2
Z/murual = E{_IHT + 0.5 - Emgf}

with  y = Euler's constant, and

¢ = sum of the depths of burial of the two conductors.

(5.24)

(5.25)

Wedepohl's approximations are amazingly accurate up to 100 kHz (error < 1%), and then become less

accurate as the

frequency 2
increases (25%
~ WEDEPOHL
error at 1 mHz) e« "1 AMETAN /
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Fig. 5.10 - Relative errors in self earth-return impedance formulas for
buried conductors (R = 48.4 mm, p = 100 Qm) [168]. Reprinted by

permission of N. Srivallipuranandan
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Fig. 5.11 - Relative error in mutual earth-return impedance formulas for

buried conductors (d = 0.3 m, h = 0.75 m, y = 0.75 m) [168].
Reprinted by permission of N. Srivallipuranandan

Semlyen has recently developed a very simple formula based on complex depth (OVERLINE) p = 1/m

[156], analogous to Eq. (4.3) for the case of overhead lines. For the self earth-return impedance, the formula is

@) 1
2l = EWMR = ) (5.26)

while a similar formula for the mutual impedance has not yet been found. The error of Eq. (5.26) is plotted in Fig.
5.10. Considering the extreme simplicity of this formula as compared to Pollaczek's formula, it is amazing to see

how reasonable the results from this approximate formula are.

5.3.2 Buried Conductors in Infinite Earth

In some cases, it may be reasonable to assume that the earth is infinite in all directions around the cable.

This assumption can be made when the depth of penetration in the earth
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Dy = 92 503, L;f(;’}“;” (m) (5.27)
m Z

becomes much smaller than the depth of the burial. For submarine cables, where p is typically 0.2 Qm, this is
probably more or less true over the entire frequency range of interest, whereas for underground cables it would only
be true above a few MHz or so. Bianchi and Luoni [151] have used this infinite earth assumption to find the sea
return impedance of submarine cables.

The self earth-return impedance for infinite earth is easily obtained from the tubular conductor formula

(5.7a), by letting the outside radius r go to infinity. Then with q = R,

K (mr)
/earth - M ) (528)
2nR K(mR)
The mutual earth-return impedance was derived in [168] as
Z it = (5.29)
TR, R, K, (mR) K, (mR,)

5.3.3 Overhead Conductors

If the cable is installed in air, or laid on the surface of the ground, then the earth-return impedances are the
same as those discussed for overhead lines in Section 4. The support routine CABLE CONSTANTS uses Carson's
formula in that case. For a cable laid on the surface of the ground, the height is equal to R. Ametani has tried a
special formula of Sunde for conductors on the surface of the ground, but the answers were found to be very

oscillatory around the seemingly correct answer. Sunde's formula was therefore not implemented.

5.3.4 Mutual Impedance Between Overhead Conductor and Buried Conductor

There is inductive coupling between the loop of an overhead conductor with earth return and the loop of
a buried conductor with earth return. The mutual impedance between these two loops is needed, for example, for
studying the coupling effects in pipelines from overhead lines, as discussed in Section 5.6. This case was treated

by Pollaczek as well, with

/ _ e expl-h|a] - yyoim?
mutual 7‘[

- || + yo?+m?

} exp(jox) do (5.30)

As in the case of buried conductors, Ametani uses an approximation for this integral by replacing yva*+m?* with
y|e|. With this approximation, the formula becomes identical with Carson's equations, with the height of the buried
conductor having a negative value. In connection with a pipeline study [158], it was verified that Carson's formula
and Pollaczek's formula give identical results at 60 Hz. At higher frequencies, the differences would probably be

similar to those shown in Fig. 5.11.
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5.4 Pipe-Type Cable

Compared to the geometry of the single-core cable of Fig. 5.4, the geometry of the pipe-type cable of Fig.
5.3 is more complicated. It is therefore more complicated to obtain the impedances of a pipe-type cable, mainly for
two reasons,

(a) The single-core cables inside the pipe are not concentric with respect to the pipe.

(b) The steel pipe is magnetic, and subject to current-dependent saturation effects.

The analysis is somewhat simplified by the fact that the depth of penetration into the pipe is less than the
pipe thickness at power frequency and above. At 60 Hz, it is 1.5 mm from Eq. (5.27), with typical values of p =
0.2¢10° Qm and pu, = 400, whereas a typical pipe thickness for a 230 kV cable is 6.4 mm. For transient studies
with frequencies above power frequency, the pipe thickness can therefore be assumed to be infinite, or equivalently,

the earth-return can be ignored. Table 5.2 shows the current returning in the earth for a single-phase-to-ground

Table 5.2 - Earth-return current in a 230 kV pipe-type cable for single-phase fault (u, = 400)

f current in earth
(Hz) (percent of core current)
0.6 94.50
6 31.00

60 0.85
600 0.00

fault in a 230 kV pipe-type cable, with the pipe being in contact with the earth. To arrive at these values, it was
assumed that the core of the faulted phase was in the center of the pipe, and that the two unfaulted phases can be
ignored. With these assumptions, the impedance formulas of Section 5.1 can be used. If the two unfaulted phases
were included, the earth-return current would probably be even less because some current would return through the
shield tapes and skid wires of the unfaulted phases. The relative permeability u, influences the values of Table 5.2;

with u, = 50, 6% of the current would return through the earth at 60 Hz, or 0.02% with u, = 1600.

5.4.1 Infinite Pipe Thickness (No Earth Return)

If the depth of penetration is less than the pipe thickness, then no voltage will be induced on the outside of
the pipe (Z' ;e mua = 0 from Eq. (5.7¢)), and consequently, the loop current pipe/earth return will be practically
zero. In that case, the pipe is the only return path. The configuration is then essentially the same as that of three
single-core cables in Fig. 5.8, except that the pipe replaces the earth as the return path.

If we assume that each phase consists of three conductors (e.g., core, shield tapes represented as sheath,
skid wires represented as armor), then the loop impedance matrix is the same as in Eq. (5.18). Coupling will only

exist among the three outermost loops of each armor (skid wires) with return through the pipe. What is needed then
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is a formula for the self impedances Z's;,, Z'53,, Z'55, of the loops formed by each armor (skid wires) and the pipe,
and a formula for the mutual impedances Z',, Z',., Z'., between two such loops.

The support routine CABLE CONSTANTS finds these impedances with formulas first derived by
Tegopoulos and Kriezis [159], and later used by Brown and Rocamora [160]. In these formulas it is assumed that
the current is concentrated in an infinitesimally small filament at the center of each single-core cable. This model
can be applied to conductors of finite radius if proximity effects are negligible, either because of symmetrical
positioning within the pipe, or because the conductor radius is small compared to the distance to other conductors
or the pipe wall. In pipe-type cables, neither condition is met since the conductors are relatively large and lie on the
bottom of the pipe. The pipe-type cable impedances from CABLE CONSTANTS are therefore not completely
accurate, but no better analytical models are available at this time. Brown and Rocamora, who proposed the
formulas originally, recommend methods based on the subdivision into partial conductors discussed in Section 5.7,
for more accurate impedance calculation [161]. Hopefully, a support routine based on the subdivision method will
become available some day.

The self impedance Z',,, etc. of the loop between the armor (skid wires) and the pipe consists again of three

terms, as in Eq. (5.4). The first term Z' is the same as in Eq. (5.7b), with the assumption that proximity

armor-out

effects can be ignored. The second term for the insulation becomes more complicated than Eq. (5.6), because of

the eccentric geometry,

! :jwﬁln

q
z insulation m E G. 31 )

with g, R, and d, l
defined in Fig.
5.12.  The third
term  for  the
internal impedance
of the pipe, with
return on the —_
inside, replaces

Z' ... in Eq. (5.4):

Fig. 5.12 - Geometry of pipe-type cable (q,r = inside and outside
radius of pipe; R;, R, = outside radius of single-core cables i, k; d,,
d, = offset from center)
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Z/- - wii
pipectn 21 |mgK (mq) 1=

o 2n
Koma) [ d"] K, (mg) (5.32)
1 np,

q K, (mq) - mqK 'mq)

with m from Eq. (5.7¢), and p = pyu, = permeability of the pipe,

K, = modified Bessel function of the second kind of order i
K', = derivative of K.

For the concentric case with d, = 0, Eq. (5.32) becomes identical with Eq. (5.28).

The mutual impedance Z',,, etc. between two outermost loops formed by armor (skid wires) and pipe is

+ 1,
Jd?+d2-2dd,cosS,  ™eKi(mq)

/ w0

= Jjw n
mutual 27

= dd K
Y (’—2")” cos(n©,) 2ur mq)

1
-1y |
= nh K (mq) - mqK ' (mg) 7 -39

Except for replacing Z',,.,, with Z' and for using Z' from Eq. (5.33) instead of (5.22), all

pipe-in? mutual

calculations remain the same as in Section 5.2, including the transformation from loop to phase quantities. If the
cables inside the pipe do not have an armor (skid wires) or a sheath (shield tapes), then some of the matrices will
be reduced to 2 x 2, or 1 x 1, as discussed in Section 5.2. In practice, the shield tapes and skid wires can probably
be represented as one single sheath.

The magnetic properties of the steel pipe are easily taken into account by using the proper values for the
relative permeability u, in Eq. (5.32) and (5.33). Unfortunately, u, depends on the current because of saturation
effects, as shown in Fig. 5.13 [192]. To model saturation effects accurately is not simple, because even at one
frequency, say at 60 Hz, the permeability would not remain constant over one cycle. A two-slope saturation curve
was tried in [161], with the conclusion that reasonably accurate answers can be obtained with a constant value of .
The sensitivity of the results

with respect to p, can then

— 30
be checked by re-running W
25
the case with one or more T
0
different values of u,. s
10

L

04 &4 &0 400

— .1 /D (A/mm)
p'p

Fig. 5.13 - Relative permeability as a function of
pipe current (I, = pipe current, D, = pipe

diameter) [192]. © 1964 IEEE
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Since the shield tapes and skid wires are in contact with the pipe wall, the values of the capacitances between
the shield tapes/ skid wires of the three phases and between them and the pipe are immaterial. They are shorted out.
Eq. (5.21) can therefore be used directly for the shunt admittance matrix. The support routine CABLE
CONSTANTS does not assume this contact with the pipe in the beginning, however, and is therefore more general.

For this general case, a potential coefficient matrix is found first,
'] P’ [P',1 [P',]
[P’,] | P P, [P, (5.34)

P’ [P, [P',] [P']

[P /phase] -

where [P',], [P',], [P'] are the 3 x 3 matrices of each single-core cable found by inversion of Eq. (5.17) with G'
= 0,

P’]=|-¢c/ c+c -¢ (5.35a)

or [163]
P1/+P2/+P3/ P2/+P3/ P,
[P,1 = |P,+P; P,+P; Py (5.35b)
Pa/ P3/ P3/
with P = 1/C,". (5.35¢)

The dielectric between the armors (skid wires) and the pipe is represented by the second term in Eq. (5.34). Each

of the submatrices [P;'] and [P, '] in the second term is a 3 x 3 matrix with 9 equal elements,

2
1 - [ﬁ) (5.362)
q

p/:Lmi

i 2nee, | R,

- In q
2me e, \/dl.z +d? - 2dd.cosO,

e (5.36b)

with the essential terms in Eq. (5.36) being the same expressions appearing in Eq. (5.31) and (5.33). The admittance

matrix is then found by inverting [P",,.],

[Y/phase] - jw [P /phase] N (537)
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5.4.2 Finite Pipe Thickness with Earth Return

At lower frequencies, there is mutual coupling between the inner and outer surface of the pipe. The induced
voltage on the outer surface will then produce a circulating current through the pipe and earth return. This extra loop

must be added to the loop impedance matrix of Eq. (5.18),

[ as in Eg. (5.18), 0
with el enents defined 0
in Section 5.4.1 -Z' m
0
[Z 1% 0 (5.38a)
7 m
0
0
7 m
00-z 00-2z 00-7, Z m m s
with
Z', = Zjpemua from Eq. (5.7¢), (5.38b)
Z'=Zoeon T Linsuation T L carth- (5.38¢)

Thefirst two termsin Eq. (5.38c) are found from Eq. (5.7b) and (5.6) (Z’ion = O if pipe in contact with earth), and
Z' . IS the earth-return impedance discussed in Section 5.3. Transforming Eq. (5.384a) to phase quantities produces

samemafrixas 0 27272 ..Z|Z [ e |
forinfinitel 0 272 ..Z227Z e
[ZA pipe thickness . .............. . (p.39a)
VAVA VANVA R
00... o z7z7 .7 7 e e R s

with Z. from Eq. (5.38c)

Z.=2.-27, (5.39b)
2=2.-27
Thelast row and column in Eq. (5.39a) represent the pipe quantities, while the first 9 rows and columns refer to core,
sheath (shield tapes), armor (skid wires) of phases a, b, and c.
If the pipeisin contact with the earth, then the shunt admittance matrix isthe same asin Section 5.4.1. If it

isinsulated, then the potential coefficient matrix of Eq. (5.34) must be expanded with one extrarow and column for the
pipe, and the same element
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P/ - 1 In rpipefinsulalion

21-Eeoer rpipefourside

(5.40)

must be added to this expanded matrix,

sameagin 0 PP P T
Eq.(5.39) O PP ..P
[P’ ondsw N (3.41)
PP P’
00.. 0

The admittance matrix is then again found by inversion with Eq. (5.37).

5.5 Building of Conductorsand Elimination of Grounded Conductors

Conductors are sometimes connected together ("bundled"). For example, the concentric neutral conductors
in the cable of Fig. 5.2 arein contact with each other, and therefore electrically connected. 1n a pipe-type cable, the
shield tapes and skid wires are in contact with the pipe. 1n a submarine cable, the sheath is often bonded to the armor

at certain intervals, to avoid voltage differences between the sheath and armor.
I'n such cases, the connected conductors 1,...m can be replaced by (or bundled into) one equivalent conductor,

by introducing the bundling conditions
L+l = g Vi =V, =V =V (5.42)

into the equations for the series impedance and shunt admittance matrices. The bundling procedure for reducing the

equiv

equations from m individual to one equivaent confluctgr is the same as Method 1 of Section 4.1{2.2 for overhead lines,

and is therefore not explained again. It is exact |f the conguctors are continuously connected with zero connection
resistance (asthe neutr@l conductorsin Fig. 5.2), ajd accuratd enough if the connections are madg at discrete points with

negligible resistance (gs in bonding of the sheath {o the armdr), as long as the distance betweer) the connection points

is short compared to trriwavel ength of the highest freguendy in the transient simulation.
Asinthe case of overhead lineswith ground wires, some conductorsin acable may be grounded. For example,
the steel pipe of a pipe-type cable can usually be assumed grounded, because its asphalt mastic coating is not an electric
insulation. Also, neutral conductors may be connected to ground at certain intervals, or at both ends. If a conductor
i is grounded, then the condition is simply
V,=0 (5.43)
and conductor i can then be eliminated from the system of equations in the same way as described in Section 4.1.2.1.
Again, the elimination is only exact if the conductor is grounded continuously with zero grounding resistance, and
accurate enough if the distance between discrete grounding points is short compared to the wavelength of the highest
freguency.
An example of bundled aswell as grounded conductors would be a single-core submarine cable which hasits

sheath bonded to the armor. Since the asphalt coating of the armor is not an electric insulation, the armor isin effect
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in contact with the sea water, and both sheath and armor are therefore grounded conductors. By eliminating both of
them, the submarine cable can be represented by single-phase equations for the core conductor, with the current return
combined in seawater, armor and sheath. For an overhead line, the equivalent situation would be a single-phase line
with two ground wires.

The case of segmented ground wires in overhead lines discussed in Section 4.1.2.5(b) can exist in cables as
well. For example, if the sheath is grounded at one end, but open and ungrounded at the other end, then the sheath could
be eliminated in the same way as segmented ground wires, provided the cable length is short compared to the wavelength
of the highest frequency. The support routine CABLE CONSTANTS does not have an option for such eliminations.
The user must represent the sheath as an explicit conductor, instead, with one end connected to ground. This offersthe

advantage that the induced voltage at the other end can automatically be obtained, if so desired.

5.6 Buried Pipelines
Pipelines buried close to power lines can be subjected to hazardous induction effects, especialy during single-
line-to-ground faults. To study these effects, one can include the pipeline as an additional conductor into the
transmission line representation (Fig. 5.14(a)). For steady-state anaysis, one can aso use the single-phase
representation of Fig. 5.14(b), with an impressed voltage

(z']
[Y']
g — T AT T T T ) AV, iced
a o—t—A—~TIN x _l___= - Z' dx
-
b o—p—A—~TTN - T bad e p o—A—TIN—A —)—g— — - - ——~
¢ ATV o -:_l;_-_ .
I PP

P o——dA—TTN - -TFE - oo L L

steady-state analysis, oRe ¢ se the sipgl ph%e representation of Fig. 5.14(b), with an impressed voltage
PP
-~ = - = = =

(a) polyphase representation o (b) s-ingle—phase representation

Fig. 5.14 - Pipeline representation (g = ground wire, a, b, ¢ = phase
conductors, p = pipeline)

dV'd d
_ l;xuce _ Z/pala + Z/pblb + Z/pclc + Z/pglg (544)

There is no capacitive coupling between the power line and the pipelineif it is buried in the ground.

Asexplained later, nominal w-circuits can only be used for very short lengths of pipeline (typicaly < 0.3 km
at 60 Hz). The single-phase representation is therefore preferable for steady-state analysis, because the distributed
parameters of Fig. 5.14(b) are more easily converted into an exact equivalent r-circuit than the polyphase parameters

of Fig. 5.14(a). This results in the active equivalent n-circuit of Fig. 5.15, with Y o, and Y, being the usua
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parameters obtained from Eq. (1.14), while |, 4, 1S an active current [158],

B dVinduced/dx

- — (5.45)
/
4 pp

induced

Iinduced

—

Y ,
series
1 1
2 Yshunt Q IE-Z- Yshunt

Fig. 5.15 - Active equivalent m-circuit

The correctness of the active n-circuit can easily be shown. Starting from the differential equations

av
B E = Z/pp + Z/pp Iinduced
a .,
e YV
the introduction of a modified current
Imodified = | linduced

transformsthe differential equations into the normal form of the line equations, with the assumption that I, does not
change aong the line (dl qiea/dX = dl/dX),

av
- a = Z/pp Imodiﬁed
_ dImodiﬁed _ Y/ \%
dx pp

The solution for aline between nodes k and mis given in Eq. (1.13), except that the current is NOW | iieq» OF FEWTittEN,

Ikm * Iinduced _ Yseries * (1/2)Y shunt B Yseries Vk
Imk B Iinduced = L series Yseries * (1/ 2)Yshunt Vm

Thisis exactly the same equations which comes out of the equivalent circuit of Fig. 5.15.
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With this single-phase approach, the currents in the power line are assumed to be known, e.g., from the usual
type of short-circuit study. It isaso assumed that they are constant over the length of the exposure to the pipeline, and
that the pipeline runs parallel to the power line (mutual impedances constant). If either assumption is not true, then the
power line-pipeline system must be split up into shorter sections as is customarily done in interference studies. The
effect of the pipe on the power line zero sequence impedance is usually ignored, but could be taken into account.

In both representations of Fig. 5.14, the mutual impedances between the pipe and the overhead conductors, as
well as the self impedance of the pipe with earth return, are needed. The mutual impedances are obtained with the
formulas discussed in Section 5.3.4. At 60 Hz, Carson’s formula will give practically identical results as the more
complicated formula of Pollaczek.

The salf impedance Z',; of the pipeline consists of the same three terms shown for the armor in Eq. (5.4). The
first two terms are calculated with Eq. (5.7b) and (5.6), while R, is found from the equations discussed in Section
5.3.

For the shunt admittance Y’,, = G’ + joC’, the capacitive part is calculated in the usual way with Eg. (5.13).
In contrast to the underground cable, the shunt conductance G’ of the pipeline can no longer be ignored. The insulation
around pipelinesis electrically poor, either originally or because of puncturing during the laying operation. The loss
angled in Eg. (5.14) is so large on pipelines insulated with glass-fiber/bitumen that G’ becomes much larger than wC’
a power frequency, and if one part of the shunt admittance isignored it should be »C' rather than G’. On PV C-insulated
pipelines, G’ may still be smaller than wC’, though.

If the shunt resistance of theinsulation isrelatively small, then the grounding resistance of the pipe should be

connected in series with it> [170], or

G' =

/ / (5.46)

. . + .
insulation R grounding

where  R'qaion = esistance of pipe insulation,
R grounding = grounding resistance.

A useful formulafor the grounding resistance is [170]

[ L)?
2h)+ =] +
/ _ pearth 24 \( ) (2)

grounding 41 2In—+In 733 2
2n+ =| -
{3

with  pom = €arth resistivity (e.g., in Qm),

(5.47)

R Talu FY [Ta}

h = depth of burial of pipe
¢ = length of pipe

’If the sheath, armor, or pipe of an underground cable or the ground wire of an overhead line is grounded,
then it has been standard practice to ignore the grounding resistance (V = 0). An alternative would be to use a
finite shunt admittance Y' = 1/R',;;,uqing» @8 recently suggested [186].
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D = outside diameter of pipe.

Grounding grids must generally be analyzed as three-dimensional problems, even if they consist of only one
pipe. The grounding resistance from Eq. (5.47) istherefore no longer an evenly distributed parameter, but depends on
thelength. Fortunately, the dependence of G’ on length is very small for typical values of G'qxion [158]. INn the region
of measured values for G’ between 0.1 S/km for newly-layed pipeines and 0.3 S/lkm for older pipelines with glass
fiber/bitumen insulation [170], the dependence of G’ on length is practically negligible, as shown in Fig. 5.16. Treating
G’ as an evenly distributed parameter is therefore a reasonabl e approximation.

10.0 A
~~o R’ = 10 Qm

G' (S/km) *-,>.__£E§ulation—

-
-
T ————— .
-

R’ = 100 Qm

1.0 -

- 9= =t
R'. . = 1000 Om
insulation
H =1.2 m
D = 400 mm
pearth= 100 Qm
0.1 T T \J
10 100 1000 10000

— 2 (m)

Fig. 5.16 - Shunt conductance of buried pipe

Because of G’ >> wC, the wavelength of buried pipelines is significantly shorter than that of underground
cables, asshown in Table 5.3 [170]. Therefore, anomina r-circuit of acircuit which includes a buried pipeline should
not be longer than approximately 0.8 km for

Table 5.3 - Wavelength of pipeline at 50 Hz [170]

G’ (S/km) wavelength (km)
0.1 41.3
10 131
10.0 4.13
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steady-state analysis, or approximately 0.08 km for switching surge studies [158].
Fig. 5.17 shows a comparison between measured and cal culated voltages and currents in a pipeline, induced

by currents in a neighboring power line, with the pipeline representation as discussed here [158].

Ipipe/Ipower (p.u.)

6--3\\
/\ P bl S v . /1 (V/a)
pipe’ power

o ] // \‘\a

0.3 .T

OO M - + PR 4 " 4 N B o i S| 4 i 1 +
. v A T o A A A

! 2 2 & S & 7 & 8 10 0 12 13 15 15 1§ 17 18 18 20 2
pipe node numbers

distance along

pipeline
PIPE VOLTAGE PIPE CURRENT
¢ BBcker measured A BHcker measured
o calculated from single-phase e calculated from single-phase
m-model T-model

I = fault current in power line
power

Fig. 5.17 - Induced voltages and currents in a buried pipeline

5.7 Partial Conductor and Finite Element M ethods

The support routine CABLE CONSTANTS uses anadytical formulas which are essentially only applicable to
configurationswith axial symmetry. The formulasfor the nonconcentric configuration in pipe-type cables (Section 5.5)
are only approximate, and the authors of these formulas themselves suggest improvements along the lines discussed
here.

To find the impedances and capacitances for conductor systems with arbitrary shapes (e.g., for the cable of Fig.
5.1), numerical methods can be used in place of analytical formulas, which are either based on subdivisions into partial
conductors or on finite element methods. There is no support routine yet in the EM TP which uses these numerical

methods. The principle of these methods is therefore only outlined very briefly.
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5.7.1 Subdivision into Partial Conductors
With this method, each conductor is subdivided into small "partial” conductors ("subconductors' in [162],

"segments" in [164]), as shown in Fig. 5.18. Various shapes can be used for the partial conductors, with rectangles
being the preferred shape for strip linesin

Fig. 5.18 - Subdivision of the main conductors into partial
conductors

integrated circuits (Fig. 5.19).
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Fig. 5.19 - Subdivision of strip lines into partial conductors
of rectangular shape [164]. Copyright 1979 by International
Business Machines Corporation; reprinted by permission

In deriving the equations for the system of partial conductors, uniform current density is assumed within each
partial conductor. Then the voltage drops along a system of n partial conductors at one frequency are described by the
phasor equations

avyax] [[R, ] A
AV Jdx R Ly, L, - - L, /
2 2 2
Ly Ly 0 Ly,
- = + jw (5.48)
Ln] LnZ t Lnn
dv /dx R, I,

The diagonal resistance matrix contains the dc resistances, and the full inductance matrix contains the self and mutual
inductances of the partia conductors. The formulas for the matrix elements depend on the shape of the partial
conductor, but they are well known.

To obtain the frequency-dependent impedance of a cable system, the matrices [R] and [L] are first computed.
At each frequency, the complex matrix [Z] =[R] + jw[L] isformed, and reduced to the number of actual conductorswith
Bundling Method 1 of Section 5.5. For example, if partial conductors 1,...50 belong to the core conductor, and partial
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conductors 51,...120 to the sheath, then this bundling procedure will reduce the 120 x 120-matrix to a 2 X 2-matrix,
which produces the frequency-dependent impedances

Z (@) Z ()
Z (0) Z (o)

This numerical method works well as long as the conductors are subdivided into sufficiently small partial
conductors. The size of these partial conductors must be of the same order of magnitude as the depth of penetration.

5.7.2 Finite Element M ethods

Finite e ement methods are more powerful than partial conductor methods in one sense, inasmuch asit is not
necessary to assume uniform current density within each element. However, it isvery difficult to handle open-boundary
conditions with finite element methods, that is configurations where the magnetic field diminishes gradually as one
moves away from the conductors, with no clearly defined boundary of known magnetic vector potential reasonably close
to the conductors. In situations where a boundary is clearly defined, e.g., in pipe-type cables at high frequency where
the depth of penetration becomes much less than the wall thickness, finite element methods can be quite useful.

With finite element methods, the region inside and outside of the conductorsis subdivided into small elements,
usually of triangular shape. Fig. 5.20(a) shows the example of a stranded conductor inside a pipe of radius R, asthe
return path (clearly defined boundary with zero magnetic field A = 0 outside the pipe and zero derivative along the two
edges of the "wedge"). Because of axial symmetry, it is sufficient to analyze the "wedge" shown in Fig. 5.20(8). This
wedge region is then subdivided into triangular el ements as shown in Fig. 5.20(b), with longer triangles as one moves
away from the conductor.

The magnetic vector potential A is assumed to vary linearly along the edges and inside of each triangle,

A=ax+by+c, (5.49)
when afirst-order method is used (higher-order methods exist as well). The unknowns are essentially the values of A
in the node points. If they were shown in the z-direction of athree-dimensional picture, then the triangles would appear
in ashape similar to a geodesic dome, with the roof height being the value of A. The equations for finding A are linear
algebraic
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(a) Stranded conductor inside pipe of radius R,

(b) Subdivision of region into triangular elements

Fig. 5.20 - Analysis of stranded conductor with finite element method [171]. Reprinted by permission of Yin Yanan

equations with a sparse matrix, but the number of node points or the number of equations is usually quite high (146
equations for the example of Fig. 5.20). Once the magnetic vector potential is known in the entire region, the
impedances can be derived fromiit.

For readersinterested in finite element methods for cable impedance cal culations, the papers by Konrad, Weiss
and Csendes [165, 166, 167] are a good introduction.

5.8 Modal Parameters
Once the series impedance and shunt admittance matrices per unit length [Z'.e], [Y 'pasel @re known, the
derivation of modal parametersis exactly the same as described in Section 4.1.5 for overhead lines. They could be used,

for example, to develop exact equivalent n-circuits for steady-state solutions as explained in Section 4.2.1.3.
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For transient simulations, it is more difficult to use modal parameters, as compared to overhead lines, because
the transformation matrix [T;] can no longer be assumed to be constant as for asingle-circuit overhead line. Fig. 5.21
shows the variation of the elementsin the third column of [T}] for atypical three-phase arrangement of 230 kV single-
core cables with core conductor and sheath in each [155]. Especially around the power frequency of 50 or 60 Hz, the

variations are quite pronounced.

O O O O O O O O O — —
wn

Magnitude of Elements of Elgenvector 3

]
o
o
1o

100 10° 100 1 10 18 100 10° 168 10 10

Frequency in Hz

Fig. 5.21 - Magnitude of the elements of column 3 of [T}]

Above afew kHz, the loop between core conductor and sheath becomes decoupled from the outer loop between sheath
and earth return, because the depth of penetration on the inside of the sheath for loop 1 becomes much smaller than the
sheath thickness. Inthat case, Z, e mua ~ 0. This makes the transformation matrix constant above afew kHz, as evident
from Fig. 5.21. For asingle-phase single-core cable with sheath and armor, the three modes are identical with the 3
loops described in Eq. (5.1) at high frequency where Z',, ~ 0 and Z’,; ~ 0. The transformation matrix between loop and
phase quantities of Eq. (5.9),

100 1 00
[T]' =110 and [T]=|-1 1 0 (5.50)
111 0 -11

5.9 CableModelsintheEMTP
Co-author: L. Marti

As of now (Summer 1986), there are no specific cable modelsin the BPA EMTP. The only way to simulate
cablesisto fit cable datainto the models available for overhead lines. It has long been recognized, of course, that this
is only possible in a limited number of cases. A method specifically developed for cables, as discussed in Section
5.9.2.3, will hopefully be implemented in late 1986 or early 1987. It has already been tested extensively in the UBC
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EMTP.

5.9.1 Ac Steady-State Solutions

In principle, there is no difficulty in representing cables as nominal or equivalent z-circuits in the same way
as overhead lines (Section 4.2.1). If nominal w-circuits are used, it should be realized that the wavelength of
underground cablesis shorter than on overhead lines. If anominal r-circuit should not be longer than 100 km at 60 Hz
for overhead lines, the limit is more typically 30 km for underground cables. If apipelineis modelled, the limit can be
aslow as 1 km, as discussed in Section 5.6.

Underground cables are often very short compared to the length of connected overhead lines. In such cases,
the (complicated) series impedances have very little effect on the results because the system sees the cable essentially
as a shunt capacitance. The cable can then be modelled as a simple lumped capacitance.

5.9.2 Transient Solutions

The accurate representation of cables with frequency-dependent impedances and frequency-dependent
transformation matrices is discussed in Section 5.9.2.3. Situations where simpler models should be accurate enough
are discussed first.

5.9.2.1 Short Cables

If arectangular wave pulse travels on an overhead line and hits arelatively short underground cable, then the
cable termination is essentially seen as alumped capacitance. The voltage then builds up exponentially with atime
constant of T = Z,eneai®Ceae: ShOWN in Fig. 5.22(a). If the cable is modelled somewhat more accurately as a lossless
distributed-parameter line, then the voltage build-up has the staircase shape of Fig. 5.22(b), with the average of the
sending and receiving end curve being more or less the same as the continuous curve in Fig. 5.22(a). As long as the
travel time [] of the cable is short compared to the time constant T, reasonably accurate results can be obtained if the

cable is represented as a lumped capacitance.

v
= Zoverhead.ccable T
—— T —

7
/!

/

—_ t ——)-l L—— — t
@) Cable represented as lumped (b) Cable represented as
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capacitance lossless transmission line
------ sending end of cable
...... receiving end of cable

Fig. 5.22 - Voltage build-up in a cable connected to an overhead line

Nominal w-circuit representations have often been suggested as approximate cable models. They obviously
represent the capacitance effect correctly, but the pronounced frequency-dependence in the seriesimpedance isignored.
Nominal r-circuits give reasonable answers probably only in those cases in which the simpler lumped capacitance

representation is already accurate enough.

5.9.2.2 Single-Phase Cables
There are Situations where single-phase representations are possible. An example is a single-phase submarine
cable in which the sheath and armor are bonded together, with the armor being in contact with the seawater. In such

a case, the sheath and armor can be eliminated from Eq. (5.10), which results in the reduced single-phase equation

with Z'. being the impedance of the core conductor with combined current return through sheath, armor and sea water.
Coupling to the cables of the other two phases can be ignored because the three cables are layed relatively far apart, to
reduce the risk of anchors damaging more than one phase in the same mishap.

When the equations have been reduced to single-phase equations, then it is straightforward to use the
frequency-dependent overhead line model described in Section 4.2.2.6.

Sometimes it is not necessary to take the frequency-dependence in the series impedances into account. For
example, single phase SF,-busses have been modelled quite successfully for fast transients with two decoupled lossless
single-phase lines, one for the inside coaxial loop and a second one for the outside |oop between the enclosure and the
earth-return. The coupling between the two loops through the enclosure is negligible at high frequencies because the
depth of penetration is much less than the enclosure wall thickness. The only coupling occurs through reflections at
the terminations. Agreement between simulation results from such simple models and field tests has been excellent
[169].

5.9.2.3 Polyphase Cables[155]
The simple overhead line models with constant parameters discussed in Section 4.2.2 are of limited use for

underground cables for two reasons:

@ The transformation matrix [T] is frequency-dependent up to a few kHz, though a constant [T] would be
acceptable for transients which contain only high frequencies (e.g., lightning surge studies).

(b) The moda parameters (e.g., wave velocity and attenuation) are more frequency-dependent than on overhead
lines, as shown in Fig. 5.23 for three single-core cables with core and sheath [150].
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Fig. 5.23 - Modal parameters as afunction of frequency [150]. Reprinted by permission of |EE and
the authors

To derive an accurate model for an n-conductor cable system between nodes k and m, we can start from the
phasor equation (4.121) for the overhead line, if we replace that scalar equation, which was written for one phase or

mode, by a matrix equation for the n conductors,

[YILV,] - [1,,] = [ANY LV, ] + (1,0 (5.51)
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with[Y ] = [Z]™" = characteristic admittance matrix in phase quantities,
[A] = €!"¥ = propagation factor matrix.
Eq. (5.51) istransformed to modal quantities, with

Ul = [T],,,] (5.52a)
and
V1 = [T V,,.) (5.52b)
which yields
i model = e moael WVi-modgel = A model LYo moe) Vi moded * Ui moae)?
(5.53)
with both [Y ¢ meel @Nd [A o] PEING diagona matrices,
(Y, e = [T YT (5.542)
[4,00] = [T1 [A]1T)] (5.54b)
The diagonal element of [A,,,] is obtained from thei-th eigenvalue y; of the product [Y' e | [ Z phese |
wodes = € (5.54¢)

and [T] isthe matrix of eigenvectors of the same product [Y' el [Z el - EG. (5.53) consists of n decoupled (scalar)
equations, with one equation for each mode.

Transforming these scalar equations into the time domain is the same procedure as described in Section 4.2.2.6
for the overhead line. For mode i, the second term in Eqg. (5.53) is found with the same convolution integral asin Eq.
(4.124),

h l St Tmax l'

propagation -

(t-wya(u)du for each mode (5.55)

m-total
‘min

with the current i,,, .y PeINg the sum of the line current i, and of a current which would flow through the characteristic
impedance of mode i if the voltage v, of mode i were connected acrossit. Only known history terms appear in Eq.
(5.55), and hist,, yegaion CAN therefore be found by n recursive convolutions for the n modes, in the same say asin Section
4.2.2.6. Themoda propagation factors are very similar in shape to those of an overhead line, as shown for A 4.3 (®)
in Fig. 5.24.
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Fig. 5.24 - Magnitude of propagation factor for mode 3 of a 6-conductor
system (three single-core cables with core and sheath in each)

With
propagation of the conditions from mto k being taken care of through Eqg. (5.55), the only unresolved issue in the modal
domain equationsisthe representation of theterm Y .V, in Eq. (5.53). Again, the frequency dependence of Y, issimilar
to that of an overhead line, as shown in Fig. 5.25, and can be represented with the same type of Foster-1 R-C network
shown in Fig. 4.42(a), and reproduced here as Fig. 5.26. By applying the trapezoida rule of integration to the
capacitances, or by using recursive convolution as discussed in Appendix V, the R-C

.045 q

[en] o o o o o o o o
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w
1

Magnitude of Element 3 of Yc' (mhos)

107 10° 100 i 10 1 180 10" 180 10° 10
Frequency in Hz

Fig. 5.25 - Magnitude of characteristic admittance for mode 3 (same 6-
conductor system as in Fig. 5.24)
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Fig. 5.26 - Representation of one mode seen from side k

network is converted into an equivalent conductance G,

in parallel with aknown current source histyc + hist,ageion-
After the network solution at each time step, the current flowing through the characteristic impedance represented by

the R-C network must be calculated for both ends of the cable from G,,v + histc, because this term is needed after

equiv
the elapse of travel time to form the expression i,y Needed in Eq. (5.55).
From Fig. 5.26(b), it can be seen that each mode is now represented by the scalar, algebraic equation

n(t) = G Vi(0) + (it + NSty opegeor) (556)
with an analogous equation for i, (t) a the other end. If the transformation matrix were constant and real, then Eq.
(5.56) could very easily be transformed back to phase quantities,

[ prese()] = [T Gequid [T TVicprese] + [Til[hiSt]

asexplained in Eq. (4.109) for the overhead line. Asshown inFig. 5.21, the transformation matrix [T;] of cablesisvery
much freguency-dependent, and the transformation back to phase quantities now requires convolutions based on Eq.

(5.52),

[iphase(t)] - fil[ti(tiu)] [inwde(u)] du (5573)
[vmode(t)] - f:; [ti(tiu)]t [Vphase(u)] du (557b)

where [t] is amatrix obtained from the inverse Fourier transform of the frequency-dependent matrix [T]. Similar to
the curve fitting used for the modal characteristic impedances, each element of [T,] is again approximated by rational

functions of the form
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T (w) =k, + !
@) =y - Y o ” (5.58)

with k,, k; and p, being real constants which, when transformed into the time domain, becomes

tlw(t) = k,o(t) + Zki exp(-pt) u(z) (5.59)
i=1

With the simple sum of exponentialsin Eq. (5.59), recursive convolution can be applied again (Appendix V). Then,
the convolution integrals in EQ. (5.57) can be split up into aterm containing the yet unknown voltages and currents at

timet, and the known history terms which can be updated recursively,

[iphase(l)] - [IO] [imode([)] * [hiSIcurrent] (5603)

[vmode(t)] = [to]t [vphase(t)] * [hiSIvaltage] (560b)

with [t,] being areal, constant n x n-matrix. With Eq. (5.60), the transformation of the modal equations (5.56) to phase

quantitiesis now fairly simple,
i -prase®] = [G 5] Vi prase®D] + [hist ] (5.61a)
with
[Gpasel = 11 [G ] L) (5.61b)

and the history term
[Nty = [NiStayrerd] + [t [Gaqi] [Nt e
+ [Nistec] + [ty o} (5.610)
Sincetheformof Eg. (5.61a) isidentical to that of Eq. (4.109) for the overhead line with constant [T,], adding the model
to the EMTP isthe same as described there. The extra effort lies essentially in the evaluation of the two extra history
Vectors [Niste and [hist ... After the network solution at each time step, Eq. (5.60) is used to obtain the modal
quantities from the phase quantities.

The principle of the frequency-dependent cable model isfairly simple, but its correct implementation depends
on many intricacies, which are described in [155]. In particular, it isimportant to normalize the eigenvectorsin such
a way that the elements of [T,] as well as the modal surge admittances Y .. bOth become minimum phase shift
functions. Thisisachieved by making one element of each eigenvector area and constant number through the entire
frequency range. Furthermore, standard eigenvalue/eigenvector subroutines do not produce smooth curves of [T;] and
[Y .mosel @S afunction of frequency, because the order in which the eigenvalues are calculated often changes as one
moves from one frequency point to the next. This problem was solved by using an extension of the Jacobi method for

complex symmetric matrices. Symmetry is obtained by reformulating the eigenproblem
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[Y/phase] [Z /phase] [)C] = k[x]

intheform
[H] [r] = Alr] (5.62a)
where
[H] = [LI'[Z' ] L] (5.62b)
and
[x] = [L][r] (5.62¢c)

with [L] being the lower triangular matrix obtained from the Choleski decomposition of [Y’ ;.| [157]. The Choleski
decomposition is amodification of the Gauss elimination method, as explained in Appendix I11. One can aso replace
[L] in Eq. (5.62) with the square root of [Y'.| obtained from

(Y el = IXTAYT[XT! (5.63)

where[A"?] is the diagonal matrix of the square roots of the eigenvalues, and [X[ is the eigenvector matrix of [Y’,. ..
Both approaches are very efficient if G’ isignored, or if tand is constant for all dielectrics in the cable system, because
[L] or [V’ phasel Y2 must then only be computed once for all frequencies.

For parallel single core cables layed in the ground (not in air), [ Y] is diagonal if loop equations are used. In
that case it is more efficient to find the eigenvalues and eigenvectors for [Y',,,][Z'0p], Where both [L] and [Y),,] vz
become the same diagonal matrix with VY’ ; asits elements. The conversion back to phase quantitiesis trivial with
Eq. (5.50).

The reason why the Jacobi procedure produces smooth eigenvectorsis that the Jacobi algorithm requires an
initial guess for the solution of the eigenvectors. This initial guess is readily available from the solution of the
eigenproblem of the preceding frequency step; consequently, the order of the eigenvectors from one calculation to the
next is not lost.

Figure 5.27(a) shows the magnitude of the elements of row 3 of the eigenvector matrix [T;] for the same 6-
conductor system asin Fig. 5.24, when standard eigenval ue/eigenvector routines are used. Fig. 5.27(b), on the other
hand, shows the same elements of [T;] calculated with the modified Jacobi algorithm.

As an application for this cable model, consider the case of three 230 kV single-core cables (with core and
sheath), buried side by side in horizontal configuration, with alength of 10 km. A unit-step voltage is applied to the
core of phase A, and the cores of phases B and C aswell asal three sheaths are left ungrounded at both ends. The unit-
step function was approximated as a periodic rectangular pulse of 10 ms duration and a period of 20 mswith a Fourier

series containing 500 harmonics,
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500
v(t) = a, + Y {a,cos(wf) + b sin(wr)}
i1

The wave front of this approximation is shownin Fig. 5.28. Choosing a Fourier series
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Fig. 5.28 - Fourier series approximation of unit-step

approximation for the voltage source offered the advantage that exact answers could be found as well, by using ac
steady-state solutions with exact equivalent w-circuits (Section 4.2.1.3) at each of the 500 frequencies, and by
superimposing them. Fig. 5.29 and 5.30 show the EMTP simulation results in the region of the third pulse,

superimposed on the exact answers. The two
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(a) Standard eigenvalue/eigenvector subroutines
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Fig. 527 -
Magnitude of the elements of row 3 of [T;] (same 6-conductor system asin Fig. 5.24)

curves are indistinguishable in this third pulse region where the phenomena have aready become more or less periodic.
This shows that the EMTP cable model is capable of producing highly accurate answers. Theinsert on the right-hand
side of Fig. 5.29 shows the response to thefirst pulse, where the EM TP simulation results differ slightly from the exact
answers, not because of inaccuracies in the model but because the EM TP starts from zero initial conditions while the

exact answer assumes periodic behavior evenfort < 0.
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Fig. 5.29 - Step response, receiving end voltage of core (phase A)
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Fig. 5.30 - Step response, receiving end voltage of sheath (phase A)
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6. TRANSFORMERS

The first representation of transformers in the EMTP was in the form of branch resistance and inductance
matrices [R] and [L]. The support routine XFORMER was written to produce these matrices from the test data of
single-phase two- and three-winding transformers. Stray capacitances are ignored in these representations, and they
are therefore only valid up to a few kHz.

A star circuit representation for N-winding transformers (called "saturable transformer component” in the

BPA EMTP) was added later, which uses matrices [R] and [L]" with the alternate equation

(L1 [v] = [LITY[R][] + [di/di] 6.1)

in the transient solution. This formulation also became useful when support routines BCTRAN and TRELEG were
developed for inductance and inverse inductance matrix representations of three-phase units. An attempt was made
to extend the star circuit to three-phase units as well, through the addition of a zero-sequence air-return path
reluctance. This model has seldom been used, however, because the zero-sequence reluctance value is difficult to
obtain.

Saturation effects have been modelled by adding extra nonlinear inductance and resistance branches to the
inductance or inverse inductance matrix representations, or in the case of the star circuit, with the built-in nonlinear
magnetizing inductance and iron-core resistance. A nonlinear inductance with hysteresis effects (called "pseudo-
nonlinear hysteretic reactor” in the BPA EMTP) has been developed as well. An accurate representation of
hysteresis and eddy current effects, of skin effect in the coils, and of stray capacitance effects is still difficult at this
time, and some progress in modelling these effects can be expected in the years to come.

Surprisingly, the simplest transformer representation in the form of an "ideal" transformer was the last

model to be added to the EMTP in 1982, as part of a revision to allow for voltage sources between nodes.

6.1 Transformers as Part of Thevenin Equivalent Circuits

If a disturbance occurs on the high side of a step-up transformer, then the network behind that transformer,
plus the transformer itself, is usually representation as a voltage source behind R-L branches. Since the transformer
inductances tend to filter out the high frequencies, such a low-frequency R-L circuit appears to be reasonable.

To explain the derivation of such Thevenin equivalent circuits, the practical example of Fig. 6.1 shall be
used [80], where the feeding network consists of three generators and two three-winding transformers. The
transformer short-circuit reactances are X,; = 0.117 p.u., X,y = 0.115 p.u., X;; = 0.241 p.u., and the generator

reactance is X", = 0.1385 p.u., all based on 100
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for acceptance testing.

Fig. 6.1 - Network configuration for various field tests at CEMIG, Brazil [80]

MVA at 60 Hz. With the well-known equivalent star circuit for three-winding transformers (see Section 6.3.2), the
power plant in Fig. 6.1 can be represented with the positive and zero sequence networks of Fig. 6.2. For simplicity,
resistances are ignored, but they could easily be included. It is further assumed here that the zero sequence reactance
values of the transformer are the same as the positive sequence values, which is only correct for three-phase banks

built from single phase units, but not quite correct for three-phase units (if the zero sequence values were known,

0.1385

0.1215

Attt llii it

-0.0045

(a) Positive sequence (negative (b) Zero sequence
sequence identical, except that
voltage sources are shorted)
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Fig. 6.2 - Equivalent circuits for the power plant (reactance values in p.u. based

on 100 MVA at 60 Hz)

then those values could of course be used in Fig. 6.2(b)). Furthermore, the generator is modelled as a symmetrical
voltage source E" behind X",. Note that the delta-connected windings act as short-circuits for zero sequence currents

in Fig. 6.2(b), while the generators are disconnected to force I,,, = 0. The zero sequence parameters of the

generators are therefore irrelevant in this example.

The networks of Fig. 6.2 can now be reduced to the three Thevenin equivalent circuits of Fig. 6.3, which
in turn can be converted to one three-phase Thevenin equivalent circuit as shown in Fig. 6.4. This three-phase
circuit is used in the EMTP for the representation of the power plant, with the data usually converted from p.u. to
actual values seen from the 345 kV side (X, = X, = 99.90 Q, X, = 33.17 Q, or X{ = 77.65 Q, X, = -22.25
Q at 60 Hz). The symmetrical voltage sources E,, E,, E_ behind the coupled inductances in Fig. 6.4 are the open-

circuit voltages of the power plant on the 345 kV side. In the transient simulation, the matrix [X] is obviously

replaced by the inductance matrix [L].

0.08393 p.u. 0.08393 p.u.

i i

Fig. 6.3 - Thevenin equivalent circuits in sequence quantities

Vg @ g p TN TS —_
<~— s z  m
— YN ° ~ coupled reactances Xy s X
] X, X X
E E E o m m S__
a b c

>
]

0.06524 p.u.
s } at 60 Hz
-0.01869 p.u.

>4
"

Fig. 6.4 - Three-phase Thevenin equivalent circuit in phase quantities

6.2 Inductance Matrix Representation of Single-Phase Two- and Three-Winding Transformers

Transformers can only be represented as coupled [R]-[L]-branches if the exciting current is not ignored.

The derivations are fairly simple, and shall be explained with specific examples.
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6.2.1 Two-Winding Transformers
Assume a short-circuit reactance of 10%, short-circuit losses of 0.5%, and an exciting current of 1%, based

on the ratings V Siaing Of the transformer. The excitation losses are ignored, but could be taken into account as

rating

explained in Section 6.6. If the given quantities are Z then the resistance

- 10ad losses P, and power rating S

rating >

and reactance part of the short-circuit impedance are

Rpu - Plass/S rating (623)
2 2
Xpu = Zpu - Rpu (6.2b)

Since the load losses do not give any information about their distribution between windings 1 and 2, it is best to

assume

1
tpu ~ R2pu = ERpu (6.2¢)

then R, , and R

If the winding resistances are known, and not calculated from P apu

may of course be different,

loss? 1pu

and R, = R, + R, is then used in Eq. (6.2b). With the T-circuit representation found in most textbooks, the p.u.
impedances are then as shown in Fig. 6.5. The short-circuit impedance 0.005 + j0.10 p.u. is divided into two equal
parts, and the magnetizing reactance j99.95 p.u., which is purely imaginary when excitation losses are ignored, is
chosen to give an input impedance of 100 p.u. from one side, with the other side open, to make the exciting current
0.01 p.u. (the resistance 0.0025 p.u. is so small compared to 100 p.u. that it can be ignored in finding the value

799.95). The equations with the branch impedance matrix in p.u. are then

0.0025+30.05 p.u. 0.0025+3j0.05 p.u.

399.95 p.u.

Fig. 6.5 - T-circuit representation of transformer

Vipu| 1]0.0025 0 1100 99.95|| [l
= +J (6.3a)
Vapu 0  0.0025 99.95 100 || |1,
for steady-state solutions, or
v, [ di /dt
= [R + [L 6.3b
v, I I 5 di, / dt (6.3b)
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for transient solutions, with [R] being the same matrix as in Eq. (6.3a), and [L] = 1 / w [X]. Most EMTP studies
are done with actual values rather than with p.u. values. In that case, the matrix in Eq. (6.3) must be converted to

actual values, with

L [p-002svy 0 100V} 99.95V,V,
[Z] = + (6.4)
2| Y 2
S rating 0 0.0025 V, 99.95V,V, 100V,
where S, = apparent power rating of transformer,

V., V, = voltage ratings of transformer.

Eq. (6.4) gives the [R] and [X]-matrices of coupled branches in Q, as required by the EMTP, with the correct turns
ratio V,/V,. If all quantities are to be referred to one side, say side 1, then simply set V, = V, in Eq. (6.4).

It is important to realize that the branch impedance matrix [Z] in Eq. (6.4) does not imply that the two
coupled branches be connected as shown in the T-circuit of Fig. 6.5. If it were indeed limited to that connection,
one could not represent a three-phase bank in wye/delta connection, because both sides would always be connected
from node to ground or to some other common node. Instead, [Z] simply represents two coupled coils (Fig. 6.6).
The connections are only defined through node name assignments. For example, if three single-phase transformers
are connected as a three-phase bank with a grounded wye connection on side 1 and a delta connection on side 2, then
the first transformer could have its two coupled branches from node HA to ground and from LA to LB, the second
transformer from HB to ground and LB to LC, and the third transformer from HC to ground and LC to LA. This
connection will also create the correct phase shift automatically (side 2 lagging behind side 1 by 30° for balanced

positive sequence operation in this particular case).

F —)
2
@ 211 %22 (:D
f —
N—
%12

Fig. 6.6 - Two coupled coils

6.2.2 TlI-Conditioning of Inductance Matrix

The four elements in the [X]-matrix of Eq. (6.3) contain basically the information for the exciting current
(magnetizing reactance X, = 100 p.u.), with the short-circuit reactance being represented indirectly through the
small differences between X, and X,,, and between X,, and X,,. If all four values were rounded to one digit behind
the decimal point (X,, = X,, = X,, = 100 p.u.), then the short circuit reactance would be completely lost X" =

0). In most studies, it is the short-circuit reactance rather than the magnetizing reactance, however, which influences

the results. It is therefore important that [X] be calculated and put into the data file with very high accuracy
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(typically with at least 5 or 6 digits), to make certain that the short-circuit reactance

X short = X X122 ide 1
=X, - X_zz seen from side 6.5)
is still reasonably accurate. It is highly recommended to calculate X*™" from Eq. (6.5), to check how much it differs
from the original test data. For a transformer with 10% short-circuit reactance and 0.4 % exciting current, the values
of Z,,, Z,,, Z,, would have to be accurate to within +0.001% to achieve an accuracy of +10% for X" This
accuracy problem is one of the reasons why Z,,, Z,,, Z,, cannot be measured directly in tests if this data is to contain
the short-circuit test information besides the excitation test information. Mathematically, [X] is almost singular and
therefore ill-conditioned, the more so the smaller the exciting current is. Experience has shown that the inversion
of [X] inside the EMTP does not cause any problems, as long as very high accuracy is used in the input data.
Problems may appear on low-precision computers, however. The author therefore prefers inverse inductance matrix

representations, as discussed in Section 6.3.

6.2.3 Three-Winding Transformers

The impedance matrix of single-phase three-winding transformers can be obtained in a similar way with the
well-known star circuit used in Fig. 6.2. In that circuit, the magnetizing reactance is usually connected to the star
point, but since its unsaturated value is much larger than the short-circuit reactances, it could be connected to either
the primary, secondary or tertiary side as well. Assuming that the exciting current for the example of Fig. 6.2 is
1% measured from the primary side, with excitation losses ignored, the magnetizing reactance in the star point would

then be 100.0045 p.u. Then

100 100.0045 100.0045
[X] = [100.0045 100.1260 100.0045| p.u. (6.6)
100.0045 100.0045 100.1240

The particular connection would again be established through the node names at both ends of the branches. For
example, the three branches could be connected from node HA to ground, LA to LB, and TA to TB. To convert

Eq. (6.6) to actual values, divide all elements by the power rating S and multiply the first row and column with

rating >
voltage rating V,, the second row and column with V,, and the third row and column with V.

The [R]- and [X]-matrices can either be derived by hand, or they can be obtained from the support routines
XFORMER, BCTRAN, or TRELEG in the BPA version of the EMTP. The latter two support routines were

developed for three-phase units, but can be used for single-phase units as well.

6.3 Inverse Inductance Matrix Representation of Single-Phase Two- and Three-Winding Transformers
If the exciting current is ignored, then the only way to represent transformers is with matrices [R] and [L],
which are handled by the EMTP as described in Section 3.4.2. The author prefers this representation over all others,

because the matrices [R] and [L]! are not ill-conditioned, and because any value of exciting current, including zero,
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can be used. The built-in star circuit in the BPA version of the EMTP uses this representation internally as well.
For three-phase transformers, the conversion of the test data to [R]- and [L]'-matrices is best done with the
support routine BCTRAN. For single-phase units and for three-phase transformers where Z,,,, = Z,,, the conversion

is fairly simple, and can easily be done by hand, as explained next.

6.3.1 Two-Winding Transformers
First separate the short-circuit impedance into its resistance and reactance part with Eq. (6.2). The [R]- and
[wL]!-matrices in p.u. can then be written down by inspection from the equivalent circuit of Fig. 6.5 (after the

magnetizing inductance has been removed),

I
R, 0 X X
pu pu pu
R]-= and [wL 17! = 6.7
(R,,] 0 R, [wL,] o : 6.7)
Xpu Xpu

The inverse branch reactance matrix [(J.)Lpu]'I is the well-known node admittance matrix of a series branch with p.u.

reactance X,,,. For the example of Fig. 6.5, with exciting current ignored, the p.u. matrices would be

0.0025 0 oL ] 10 -10 6.8)
= , . = .
b 0 0.0025 b -10 10
The matrices in Eq. (6.7) are converted to actual values with
R V2 0
R] = —— | " | e (6.92)
S rating 0 Rzpuvz
11
S V12 Viv,
[wL] ! = [ in S (6.9b)
X 1 1
pu | — _—
ViV, V22

with S,uing = apparent power rating

V., V, = voltage ratings.
Eq. (6.9) contains the correct turns ratio V,/V,. If all quantities are to be referred to one side, say side 1, then
simply set V, = V, in Eq. (6.9). To obtain [L]", the matrix in Eq. (6.9) is simply multiplied with w.

As already mentioned in Section 3.1.2, the two coupled branches described by Eq. (6.9) can also be

represented as six uncoupled branches. Ignoring the resistances for the sake of this argument, and setting
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produces the steady-state branch equations (3.3) and the alternate representations with uncoupled branches of Fig.
3.3.

6.3.2 Three-Winding Transformers

Separating R and X is more complicated now. Therefore, R shall be ignored in the following explanations.
Resistances can be included, however, if the support routines BCTRAN or TRELEG are used (see Section 6.10.2
and 6.10.3). The starting point is the well-known star circuit of Fig. 6.7. Its reactances are found from the p.u.

short-circuit reactances Xy, Xurpys

Hpu

Tpu

Fig. 6.7 - Star circuit for three-winding
transformer with p.u. values based on voltage
ratings, or with actual values referred to one
side

X 1p,» based on the voltage ratings and one common power base S,,... Since the power transfer ratings Sy; between
H-L, S,;; between H-T, and S, ; between L-T are usually not identical, a power base conversion is usually needed.

If we choose S;,. = 1.0 (in same units as power ratings Sy, , Syr, Sir), then

_1 XHLpu . XHTpu _ XLTP"
Hpu 2 XHL SHT SLT
v o L K, Xpe  Xiop (6.10)
A Sur Sur .
X - 1 XHTpu . XLTpu _ XHLpu
7
pu 2 SHT SLT SHL
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For the example used in Section 6.1, with X,;; = 0.117 p.u., Xy = 0.115 p.u., X;; = 0.241 p.u. based on 100

MVA, these star-circuit reactances based on 1 MVA would be

X

Hpu

= -0.000045, X, = 0.001215, X, = 0.001195

Next, the well-known star-delta transformation is used to convert the star-circuit of Fig. 6.7 into the delta

circuit of Fig. 6.8,

B
HLpu

B
LTpu

HTpu

Fig. 6.9 - Delta circuit

which gives us the susceptances’

By = —2 (6.11a)

with  X* = X, X0+ X0 X0+ X X (6.11b)

For the numerical example,

By, =889.48, B, =904371, B, = -33.495

HTpu LTpu

Note that the susceptances in Eq. (6.11a) are not the reciprocals of the short-circuit reactances X used in Eq. (6.10).
The p.u. matrix [wL,,]" based on S, = 1.0 is easily obtained from Fig. 6.8 with the rules for nodal admittance

matrices as

"Susceptance" B is used here for the reciprocal of reactance X. This is not strictly correct, because
susceptance is the imaginary part of an admittance (which implies B = -1/X).
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B, *B -B -B

HLp HIpu HLpu HTpu
-1 _ — —
[('oLpu] - BHLpu BHLpu * BLTpu BLTpu (6 12)
B BHTpu B BLTpu BHTpu + BLTpu

or for the numerical example,

1793.855 -889.484 -904.371
[ooLpu]’1 = |-889.484 855.989  33.495 based on 1 MVA
-904.371 33.495  870.876

The matrix [ooLpu]'l in actual values is found as

st row and column of (6.12) multiplied with 1/V,
[(.)L]*l = | 2nd row and column of (6.12) multiplied with 1/V, | in § (6.13)
3rd row and column of (6.12) multiplied with 1/V,.

This matrix will contain the correct turns ratios. If all quantities are to be referred to one side, say side H, then
simply set V, = V; = V;; in Eq. (6.13). Since the p.u. values are based on 1 MVA, the voltages in Eq. (6.13) must
be in kV.

6.4 Matrix Representation of Single-Phase N-Coil Transformers

The newer support routines BCTRAN and TRELEG are not limited to the particular case of two or three
coils, but work for any number of coils. If each winding is represented as only one coil?, then transformers with
more than three coils will seldom be encountered, but if each winding is represented as an assembly of coils, then
transformer models for more than three coils are definitely needed. Breaking one winding up into an assembly of
coils may well be required for yet to be developed high-frequency models with stray capacitances.

To explain the concept, only single-phase N-coil transformers are considered in this section. The extension
to three-phase units is described in Section 6.5. For such an N-coil transformer, the steady-state equations with a

branch impedance matrix [Z] are

%A coil is "an assemblage of successive convolutions of a conductor," whereas a winding is "an assembly of
coils." [76] Since a winding may either be represented as one or as more coils, the more general term "coil" is
used here.
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ZN |

u Zp 1
£ Zy Zy, ... LN L

) : (6.14)

V| Ew 2

NN _IN_

The matrix in Eq. (6.14) is symmetric. Its elements could theoretically be measured in excitation tests: If coil k is
energized, and all other coils are open-circuited, then the measured values for I, and V,,...V produce column k of

the [Z] matrix,

Z, = VI, (6.15)

Unfortunately, the short-circuit impedances, which describe the more important transfer characteristics of
the transformer, get lost in such excitation measurements, as mentioned in Section 6.2. It is therefore much better

to use the branch admittance matrix formulation

] = Y[V (6.16)

which is the inverse relationship of Eq. (6.14). Even though [Z] becomes infinite for zero exciting current, or ill-
conditioned for very small exciting currents, [Y] does exist, and is in fact the well-known representation of
transformers used in power flow studies. Furthermore, all elements of [Y] can be obtained directly from the standard
short-circuit test data, without having to use any equivalent circuits. This is especially important for N > 3, because
the star-circuit "saturable transformer component” in the BPA EMTP) is incorrect for more than three coils.

For an intermediate step in obtaining [Y], the transfer characteristics between coils are needed. Let these

transfer characteristics be expressed as voltage drops between coil i and the last coil N,

[ _ | reduced reduced reduced 17 ]
V1 VN Zu le e Zl,N—l Il
V.-V reduced reduced reduced L
2N 21 Zy Zy Ny 2
- : 6.17)
\% -V reduced reduced reduced ]/
" N-1 TN _ZN—1,1 Zyya o e Ly | [N-1]

with [Z™%/] again being symmetric. Since the exciting current has negligible influence on these transfer
characteristics, it is best to ignore the exciting current altogether. Then the sum of the p.u. currents® (based on one

common base power S,,.., and on the transformer voltage ratings of the N coils) must be zero, or

3From here on it is best to work with p.u. quantities, or with quantities referred to one side, to avoid carrying
the turns ratios through all the derivations.
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N
D hp = 0 (6.18)

k=1

The p.u. values of the matrix elements in Eq. (6.17) can then be found directly from the short-circuit test data, as

first shown by Shipley [108]. For a short-circuit test between i and N, only I, , in Eq. (6.17) is nonzero, and Vy

ipu

s = 0. Then the i-th row becomes

Vv -7z reduced I (6 19)

ipu ii pu ipu

The impedance in this equation is the short-circuit impedance between coils i and N by definition,

reduced _ short
Ziiow = Zinpu (6.20)

reduced
ik pu

=-L,, and V,

based on one common base power S,,.. The off-diagonal element Z is found by relating rows i and k of Eq.

(6.17) to the short-circuit test between i and k. For this test, I, = 0, with all other currents being

k pu k pu
zero. Then rows i and k become
reduced reduced
7 pu Vy ou (Ziijmiwe - ZikepzaZ )1, pu (6.21a)
Vi, - (B - i, (6.21b)

or after subtracting Eq. (6.21b) from (6.21a), with Z,;®¢ = 7, reduced,

_ reduced reduced reduced
Viow =i * i " 2Zipu i (6.21¢)
p p

short

By definition, the expression in parentheses of Eq. (6.21c) must be the short-circuit impedance Z, ,,”", or
reduced 1 hort hort hort
Zin = S+ Zvne - Zi) 6.2

based on one common base power S This completes the calculation of the matrix elements of Eq. (6.17) from

base*
the short-circuit test data, which is normally supplied by the manufacturer.
Eq. (6.17) cannot be expanded to include all coils, since all matrix elements would become infinite with the

exciting current being ignored. To get to the admittance matrix formulation (6.16), Eq. (6.17) is first inverted,

[ Yp;educed] = [ Zp’:dmed] -1 (6.23)
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In this inverse relationship, the voltage V ,, of the last coil already exists, and all terms associated with it can be

N pu

collected into a N-th column for V The N-th row is created by taking the negative sum of rows 1,...N-1 based

Nopu*

on Eq. (6.18). This results in the full matrix representation

IlP” Yllpu YlZpu Yleu le“

IZP” 21 pu Y22pu YZNpu 2 pu
= ’ (6.24a)

_IN pu] _YNI pu YNZ pu YNN pu | _VN pu]

with
Yoo = Yl from Eq. (6.23) for i, k < N-1 (6.24b)
N-1
YiN pu - YNi pu - _kz; K/Zezzced fOl’ i*N (4240)
=IN-1
YNNpu - 21: Yinu (624(1)
i

To convert from p.u. to actual values, all elements in Eq. (6.24) are multiplied by the one common base power S,,.,
and each row and column i is multiplied with 1/V,.

For transient studies, the resistance and inductance parts must be separated, in a way similar to that of
Section 6.3. This is best accomplished by building [Z™***?] only from the reactance part of the short-circuit test data,

which is

X =\l - R, RY (6.25)

with Zy pus‘“’” = p.u. short circuit impedance (magnitude),

R; ,, + R, ,, = either p.u. load losses in short-circuit test between i and k, or sum of p.u. winding

pu
resistances.

The winding resistances then form a diagonal matrix [R], and
(L] = jwlY) (6.26)

with [Y] being purely built from reactance values jwL. Both [R] and [L]* are used in Eq. (6.1) to represent the N-
coil transformer.

Support routine BCTRAN uses this procedure for obtaining [R] and [L]" from the transformer test data,
with two additional refinements:

a. If the winding resistances are not given, but the load losses in the short-circuit tests are known,

then the resistances can be calculated from Eq. (6.2) for N=2, and from the following three
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equations for N = 3,

_ loss
Rlpu * R2pu - pllpu
_ loss
R2 pu * R3 pu P23 pu (627)
_ loss
Rlpu * R3pu - P13pu

Strictly speaking, Eq. (6.2) and (6.27) are not quite correct, because the load losses contain stray
losses in addition to the I’R-losses, but the results should be reasonable. For transformers with 4
or more coils there is no easy way to find resistances from the load losses, and coil resistances
must be specified as input data if N > 4.
b. Additional branches can be added to represent the exciting current, as described in Section 6.6.
To short derivations for a numerical example, let us first use the two-winding transformer of Fig. 6.5, with
exciting current ignored. The resistance and reactance part is already separated in this case, with R, = 0.005 and
X,, = 0.10. The reduced reactance matrix of Eq. (6.17) is just a scalar in this case, jXPureduced = j0.10, and its

inverse is the reciprocal Ypureduced = -j10. Adding a second row and column with Eq. (6.24) produces

10 -10
Loz, =1
j P j|-10 10
which, together with R, ,, = R, ,, = 0.0025, is the same result shown in Eq. (6.8).

For the example of the three-winding transformer used after Eq. (6.10), the reduced reactance matrix

(without the factor j) is

educed;,|0-1150 0.1195

(X, = based on 100 MVA
b 0.1195 0.2410

which, after inversion, becomes

17.9386 -8.8948
-8.8948 8.5599

[Y reduced-

o based on 100 MVA

1
J
or after adding the third row and column with Eq. (6.24),

17.93856 -8.89484 -9.04372
vl = l -8.89484 8.55989 0.33495 based on 100 MVA

/ -9.04372 0.33495 8.70877
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which is the same answer as the one given after Eq. (6.12), except for minor round-off errors and for a change in
base power from 1 MVA to 100 MVA. The star-circuit equivalent circuit of a three-winding transformer is therefore

just a special case of the general method for N coils discussed here.

6.5 Matrix Representation of Three-Phase N-Coil Transformers

The first attempt to extend single-phase to three-phase transformer models was the addition of a zero-
sequence reluctance to the equivalent star-circuit ("saturable transformer element” in the BPA EMTP). This was
similar to the approach used on transient network analyzers, where magnetic coupling among the three core legs is
usually modelled with the addition of extra delta-connected winding to a three-phase bank consisting of single-phase
units. To relate the available test data to the data of the added winding is unfortunately difficult, if not impossible.
For example, a two-winding three-phase unit is characterized by only two short-circuit impedances (one from the
positive sequence test, and the other from the zero sequence test). Adding delta-connected windings to single-phase
two-winding transformers would require three short-circuit impedances, however, because this trick converts the
model into a three-winding transformer. Adding extra delta-connected windings becomes even more complicated
for three-phase three-winding units, not only in fitting the model data to the test data, but also because a four-winding
model would be required for which the star-circuit is no longer valid [109]. It was therefore reasonable to develop
another approach, as described here.

The extension from single-phase to three-phase units turned out to be much easier than was originally
thought. Conceptually, each coil of a single-phase units becomes three coils on core legs I, II, III in a three-phase

unit (Fig. 6.9).

II I III II I ITI

(a) Three-legged core (b) Five-legged core (c) Shell-type design
design design

Fig. 6.9 - Three-phase transformers

In terms of equations, this means that each scalar quantity Z or Y must be replaced by a 3 x 3 submatrix of the form
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(6.28)

where Z, is the self impedance of the coil on one leg, and Z,, is the mutual impedance to the coils on the other two

legs*. As in any other three-phase network component (e.g., overhead line), these self and mutual impedances are

related to the positive and zero sequence values,

1
Zs = E (Zzera * 2Zpas)
1
Zm = E(Zzem B Zpas) (6.29)

6.5.1 Procedure for Obtaining [R] and [L]*

By simply replacing scalars by 3 x 3 submatrices of the form (6.28), the [R]- and [L]"-matrix representation

of a three-phase transformer is found as follows:

1.

Set up the resistance matrix [R]. If the winding resistances are known, use them in [R]. If they are to be
calculated from load losses, use Eq. (6.2) for N = 2, or Eq. (6.27) for N = 3. For N > 4, there is no easy
way to calculate the resistances. Use positive sequence test data in these calculations, and assume that the
three corresponding coils on legs I, II, IIT have identical resistances.

Find the short-circuit reactances from Eq. (6.25) for positive sequence values. Use the same equation for
zero sequence values, provided the zero sequence test between two windings does not involve another
winding in delta connection. In the latter case, the data must first be modified according to Section 6.5.2.
Build the reduced reactance matrix [Xpu”d”"ed] from Eq. (6.20) and (6.22), by first calculating the positive
and zero sequence values separately from the positive and zero sequence short-circuit reactances, and by
replacing each diagonal and off-diagonal element by a 3 x 3 submatrix of the form (6.28). The elements
of this matrix are calculated with Eq. (6.29).

Since the 3 x 3 submatrices contain only 2 distinct values X and X,,, it is not necessary to work with 3 x
3 matrices, but only with pairs (X, X,). D. Hedman derived a "balanced-matrix algebra" for the
multiplication, inversion, etc., of such "pairs" [110], which is used in the support routines BCTRAN and

TRELEG.

*From Fig. 6.9 it is evident that the mutual impedance between legs I and II is slightly different from the one

between legs II and III, etc. Data for this unsymmetry is usually not available, and the unsymmetry is therefore
ignored here. To take it into account would require that a three-phase two-winding transformer be modelled as a
six-coil transformer (Section 6.4), with 15 measured short-circuit impedances.
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Invert [X "] to obtain [B,,"“"*'], again using Hedman's "balanced-matrix algebra," and expand [B,, "]
to the full matrix [B,,] with Eq. (6.24).
the inverse inductance matrix [L]" in actual

with o S, / V,V,, where V, and V,

Since the reactances were in p.u. based on one common S, .,

values 1/H is obtained from [B,,] by multiplying each element B

ik pu base

are the voltage ratings of coil i and k. For the conversion of p.u. resistances to actual values in Q, multiply

R, with V2/ S

base*

6.5.2 Modification of Zero-Sequence Data for Delta Connections

The procedure of Section 6.5.1 cannot be used directly for the zero sequence calculation of transformers

with three or more windings if one or more of them are delta-connected. Assume that a three-winding transformer

has wye-connected primary and secondary windings, with their neutrals grounded, and a delta-connected tertiary

winding. In this case, the zero-sequence short-circuit test between the primary and secondary windings will not only

have the secondary winding shorted but the tertiary winding as well, since a closed delta connection provides a short-

circuit path for zero-sequence currents. This special situation can be handled by modifying the short-circuit data for

an open delta so that the procedure of Section 6.5.1 can again be used. With the well-known equivalent star circuit

of Fig. 6.7, the three test values supplied by the manufacturer are ("pu" in the subscript dropped to simplify

notation),

X X

XrlosedA =X LT
HL T 7XL S X, (6.30a)
X, =X, + X, in p.u. values (6.30b)
Xir =X, +Xp (6.30c)

which can be solved for X,;, X;, X;:

Xy = Xyp — (X Xy - X" X, (6.31a)
X =X, X,; + X, in p.u. values (6.31b)
Xr = Xyr - Xy (6.31c)

After this modification, the short-circuit reactances X,; + X, X;; + X; and X; + X are used as input data, with

winding T no longer being shorted in the test between H and L.

The modification scheme becomes more complicated if resistances are included. For instance, Eq. (6.30a)

becomes
R, +jX) (R, +jX
‘Zlf[lzsedA‘ _ RH +jXH 4 ( L J L)(.T J T) in p.u. values (632)
(R, +Rp +jX, + X))

with ‘ZHL“"S“' A‘ being the value supplied by the manufacturer, and Ry, R;, R; being the winding resistances. This
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leads to a system of nonlinear equations, which is solved by Newton's method in the support routine BCTRAN. It
works for three-winding transformers with wye/wye/delta- and with wye/delta/delta- connections so far, which

should cover most practical cases.

6.6 Exciting Current

The exciting current is very much voltage-dependent above the "knee-point" of the saturation curve A =
f(i). Fig. 6.10 shows a typical curve for a modern high-voltage transformer with grain-oriented steel, with the knee-
point around 1.1 to 1.2 times rated flux [114]. The value of the incremental inductance dA/di is fairly low in the
saturated region, and fairly high in the unsaturated region. The exciting current in the unsaturated region can easily
be included in the [L]- or [L]'-representations. Extra nonlinear branches are needed to include saturation effects,

and extra resistance branches to include excitation losses.

AA
pu
Tqu’———,
0.81
0. 49
. el
-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 PuU
1
u ON H
-0.4 P 3
-0.8 -

Fig. 6.10 - Typical saturation curve [114]. © 1981
IEEE

6.6.1 Linear (Unsaturated) Exciting Current

For single-phase units and for three-phase units with five-legged core or shell-type design (Fig. 6.9(b) and
(c)), the linear exciting current is very small and can often be ignored. If it is ignored, then the [L]'-matrix
representation described in Section 6.3 to 6.5 must be used. A (small) exciting current must always be included,
however, if [L]-matrices are used, as explained in Section 6.2. For three-phase units with three-legged core design,
the exciting current is fairly high in the zero sequence test (e.g., 100%), and should therefore not be neglected.

The exciting current has an imaginary part, which is the "magnetizing current" flowing through the
magnetizing inductance L. It also has a smaller real part (typically 10% of the imaginary part), which accounts for
excitation losses. These losses are often ignored. They can be modelled reasonably well, however, with a shunt

conductance G,, in parallel with the magnetizing inductance L,,. The p.u. magnetizing conductance is
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P

exc

Gy = — (6.33)

rating

and the reciprocal of the p.u. magnetizing reactance is

I 2
Xl - J(I) (G} (6.34)

m pu rating

with P, = excitation loss in excitation test,
Ly = magnitude of exciting current in excitation test,
S.ing = power rating, and
Lating = current rating.

To assess the relative magnitudes of G,, and 1/X,,, let us take the values from the example of Section 6.2 as typical
Kgow = 10%, Ry, = 0.5%, I, = 1%). Furthermore, assume that the excitation loss V°G,, at rated voltage is 25%

of the load loss I’Ry, , at rated current (a typical ratio for power transformers). Then G,, , = 0.00125 and I I ating

m pu exc/

= 0.01. The reciprocal of the p.u. magnetizing reactance is therefore close to the value of the p.u. exciting current,

1 Iex C

= (6.35)

m pu rating

with the error being less than 1% in the numerical example.
How to include the linear exciting current in the model depends on whether an [L]!- or [L]-matrix

representation is used, and whether the transformer is a single-phase or a three-phase unit.

6.6.1.1 Single-Phase Transformers
In the [L]-matrix representation, the magnetizing inductance L, will already have been included in the
model. Usually, the T-circuit of Fig. 6.5, or the star circuit of Fig. 6.7 with L connected to star point S, is used

in the derivation of [L]. Since L,, ,, is much larger than L, it could be placed across the terminals of the high,

short pu?
low or tertiary side with equal justification. Alternatively, 2L, ,, could be connected to both high and low side,
which would convert the T-circuit of the two-winding transformer into a m-circuit, or 3L, ,, could be connected to
all 3 sides in the case of a three-winding transformer. The conversion of L,, ,, into actual values is done in the usual
way by using the voltage rating for that side to which the inductance is to be connected. For example, connecting

the p.u. inductance 3L, , to all 3 sides would mean that the actual values of these 3 inductances are

‘m pu
2
VH

H 'm pu
rating
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rating

In the [L]'-matrix representation, the "internal" nodes of the T- or star circuit are not available, and the magnetizing
inductance must therefore be connected across one or all "external” terminals, as discussed above. Connecting it
across side i is the same as adding 1/L, to the i-th diagonal element of [L]". This makes [L]" nonsingular, and it
could therefore be inverted if the user prefers [R]- and [L]-matrices. This inversion option is available in the support
routine BCTRAN, even though this writer prefers to work with [L]"' because [L] is more or less ill-conditioned as
discussed in Section 6.2.2.

While L, does not create extra branches, but "disappears" instead into the [L]- or [L]'-matrix, one or more
extra resistance branches are needed to model excitation losses with G, ,, from Eq. (6.33). Again, G, ,, can either
be added to one side, or 1/2 G, ,, to both sides of a two-winding transformer and 1/3 G,, ,, to all three sides of a
three-winding transformer. The conversion to actual values is again straightforward, and R, = 1/G,, is then used

as input data for the extra resistance branch.

6.6.1.2 Three-Phase Transformers
The inclusion of the linear exciting current for three-phase units is basically the same as for single-phase
units, except that G, and 1/X, from Eq. (6.33) and (6.34) are now calculated twice, from the positive as well as

from the zero sequence excitation test data. The reciprocals of the two magnetizing inductances,

B pos - I/mepos ’ Bzero - 1/mezero
are converted to a 3 x 3 matrix
BS Bﬂl Bm
Bm BS Bm
Bm Bﬂl BS
where
B -L@®. 2B
s 5( zero © pos)
1
Bm - g (Bzero B Bpos) (6.36)

which is added to the 3 x 3 diagonal block in [L] "’ of the high, low, or some other side. Alternatively, 1/N-times
the p.u. 3 x 3 matrix could be added to the 3 x 3 diagonal blocks of all sides of an N-winding transformer, after

conversion to actual values with the proper voltage ratings. After these additions, [L]" becomes nonsingular and
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can therefore be inverted for users who prefer [L]-matrices. Support routine TRELEG builds an [L]-matrix directly
from both the short-circuit and excitation test data, as briefly described in Section 6.10.3.
To include excitation losses, three coupled resistance branches must be added across the terminals of one

side. The diagonal and off-diagonal elements of this resistance matrix are

( L1 ) (6.37)
Gmfzero GII'I*pOS ’

The excitation test for the positive sequence is straightforward, and the data is usually readily available.
Some precautions are necessary with the zero sequence test data, if it is available, or reasonable assumptions must
be made if unavailable.

If the transformer has delta-connected windings, the delta connections should be opened for the zero
sequence excitation test. Otherwise, the test really becomes a short-circuit test between the excited winding and the
delta-connected winding. On the other hand, if the delta is always closed in operation, any reasonable value can be
used for the zero sequence exciting current (e.g., equal to positive sequence exciting current), because its influence
is unlikely to show up with the delta-connected winding providing a short-circuit path for zero sequence currents.

If the zero sequence exciting current is not given by the manufacturer, a reasonable value can be found as
follows: Imagine that one leg of the transformer (A in Fig. 6.11) is excited, and estimate from physical reasoning
how much voltage will be induced in the corresponding coils of the other two legs (B and C in Fig. 6.11). For the
three-legged core design of Fig. 6.11, approximately one half of flux A, returns through phases B and C, which
means that the induced voltages V, and V. will be close to 0.5 V, (with reversed polarity). If k is used for this
factor 0.5, then

Iexcfzero 1 +k

- = 1 - 2k (6.38)
exc-pos
approx
+
r-
[}
'
U
VB ‘——l b
o~
]
L -
B

Fig. 6.11 - Fluxes in three-legged core-type design
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Eq. (6.38) is derived from

=Z]1, (6.392)

Vy=Ve=2,1, (6.39b)

with Z,, Z_, being the self and mutual magnetizing impedances of the three excited coils. With

Z zZ, 6 -Z
Vp = Vo= —Vy = —==——2=V, = kV, (6.40)
ZS ZZEI'U * ZZPUS
and Z,, Z,,, inversely proportional to L. e Lexczeror EQ. (6.38) follows. Obviously, k cannot be exactly 0.5,

because this would lead to an infinite zero sequence exciting current. A reasonable value for | in a three-legged

€XC-zero

core design might be 100%. If I were 0.5%, k would become 0.49626, which comes close to the theoretical

exc-pos
limit of 0.5. Exciting the winding on one leg with 100 kV would then induce voltages of 49.6 kV (with reversed
polarity) in the windings of the other two legs.

For the five-legged core-type design of Fig. 6.9(b), maybe 2/3 of approximately (1/2)A, would return
through legs B and C. In that case, k would be 1/3, or L sero/Iexcpos = 4-

The excitation loss in the zero sequence test is higher than in the positive sequence test, because the fluxes
Aas Ag, Ac in the three cores are now equal, and in the case of a three-legged core-type design must therefore return
through air and tank, with additional eddy-current losses in the tank. Neither the value of the zero sequence exciting
current nor the value of the zero sequence excitation loss are critical if the transformer has delta-connected windings,
because excitation tests really become short-circuit tests in such cases.

The modification of [L]"' for magnetizing currents and the addition of resistance branches for excitation
losses create a model which reproduces the original test data very well. Table 6.1 compares the test data, which was
used to create the model with the support routine BCTRAN, with steady-state EMTP solutions in which this model
was used to simulate the test conditions (e.g., voltage sources were connected to one side, and another side was
shorted, to simulate a short-circuit test). In this case, the three winding resistances were specified as input data, and
an [L]-matrix with 10-digit accuracy was used to minimize the problem of ill-conditioning. The excitation data was
specified as being measured from the primary side, but 1/L, and shunt conductance G,, were placed across the
tertiary side, for reasons explained in Section 6.6.2. BCTRAN modifies L, and R, in this situation, to account for
the influence of the short-circuit impedance between the primary and tertiary side. For the zero sequence short-

circuit impedance between the primary and secondary side, the modifications of Section 6.5.2 were applied to

account for the effect of the delta-connected tertiary winding.

Table 6.1 - Data for three-phase three-winding transformer in Yyd-connection

TYPE OF TEST TEST DATA SIMULATION RESULTS
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pos. sequence exciting current (%) 0.428 0.4281 (in phase A)
excitation test 0.4280 (in phase B)
0.4230 (in phase C)

excitation loss (kW) 135.73 135.731
Zero sequence exciting current (%) 0.428 0.4280 in all phases
excitation test” o

excitation loss (kW) 135.73 135.731
short-circuit test 8.74 8.740

impedances, with | Z;, (%) (300)
three-plane MVA

base in paren- pos 8.68 8.680

thesis Z; (%) (76)
pos 5.31 5.310
Zy (%) (76)
7.343194™7 7.34318
Z, (%) (300)
Jero 26.258183™" 26.25806
Z; (%) (300)
zer0 18.552824™ 18.55284
Zy; (%) (300)

*) With open delta on side 3 (values were unavailable from test; since they are unimportant if delta is closed

in operation, as explained in text, the positive sequence values were used for zero sequence as well).

#k) With closed delta on side 3.

**%)  These values were calculated from the original test data given as R and X in percent with an accuracy of
2 digits after the decimal point.

6.6.2 Saturation Effects

For the transient analysis of inrush currents, of ferroresonance and of similar phenomena it is clearly
necessary to include saturation effects. Only the star circuit representation in the BPA EMTP ("saturable transformer
component") accepts the saturation curve directly, while the [L]- and [L]'-representations require extra nonlinear
inductance branches for the simulation of saturation effects.

Nonlinear inductances of the form of Fig. 6.10 can often be modelled with sufficient accuracy as two-slope
piecewise linear inductances. Fig. 6.12 shows two- and five-slope piecewise linear representations from a practical
case [80] for the system shown before in Fig. 6.1. The simulation results (Fig. 6.13) are almost identical, and agree
reasonably well with field test results (Fig. 6.14). The slope in the saturated region above the knee is the air-core
inductance, which is almost linear and fairly low compared with the slope in the unsaturated region. Typical values
for air-core inductances are 2L, ., (L, = short-circuit inductance) for two-winding transformers with separate
windings [111], or 4 to 5 times L, for autotransformers. In the unsaturated region, the values can be fairly high
on very large transformers (see Fig. 6.10).

While it makes little difference to which terminal the unsaturated inductance is connected,
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Fig. 6.12 - Two-slope and five-slope piecewise linear inductance
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Fig. 6.13 - Superimposed EMTP simulation results with two- and five-slope piecewise linear
inductance
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Fig. 6.14 - Comparison between simulation and field test results

it may make a difference for the saturated inductance, because of its low value. Ideally, the nonlinear inductance
should be connected to a point in the equivalent circuit where the integrated voltage is equal to the iron-core flux.
To identify that point is not easy, however, and requires construction details not normally available to the system
analyst. For cylindrical coil construction, it can be assumed that the flux in the winding closest to the core will
mostly go through the core, since there should be very little leakage. This winding is usually the tertiary winding
in three-winding transformers, and in such cases it is therefore best to connect the nonlinear inductance across the
tertiary terminals. Fig. 6.15 shows the star circuit derived by Schlosser [112] for a transformer with three cylindrical
windings (T closest to core, H farthest from core, L in between), where the integrated voltage in point A is equal
to the flux in the iron-core. The reactances of -0.58 Q between A and T is normally not known, but it is so small
compared to 7.12 Q between S and T, that the nonlinear inductance can be connected to T instead of A, with little
error. Fig. 6.15 also identifies a point B at which the integrated voltage is equal to yoke flux. Zikherman [113]
suggests to connect another nonlinear inductance to that point B to represent yoke saturation. Since -4.9 Q between
H and B is small compared to 22 Q between H and S, this second nonlinear inductance could probably be connected

to H without too much error. The knee-point and the slope in the saturated region of this second nonlinear
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Fig. 6.15 - Reactances (in Q) of a three-winding transformer
(from [112], which provides the data for 5 cylindrical
windings; the two windings farthest from the core are
ignored here)

inductance are higher than those of the first nonlinear inductance (Fig. 6.16). Since it is already difficult to obtain
saturation curves for the core, this secondary effect of yoke saturation is usually ignored. Dick and Watson [114]
came to similar conclusions about the proper placement of the nonlinear inductance when they measured saturation
curves on a three-winding transformer. Table 6.2 compares the air-core inductance (= slope in saturated region)
obtained from laboratory tests with values obtained from the star circuit® if the nonlinear inductance is connected to
the tertiary T, or to the star point S. The authors also show a more accurate equivalent circuit which would be useful
if yoke saturation or unsymmetries in the three core legs are to be included. If L is connected to T, then the
differences are less than +5%, whereas the differences become very large for the connection to S. Unfortunately,
the built-in saturation curve in the BPA star-circuit representation ("saturable transformer component") is always
connected to the star point. This model could become more useful if the code were changed so that L, could be

connected to any terminal.

This star circuit also had a zero sequence inductance of 1.33 p.u. connected to the high side (see Section
6.6.2.2).
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Fig. 6.16 - Nonlinear inductances connected to H (yoke saturation)
and L (core saturation) of a two-winding transformer. Reprinted
with permission from [113], Copyright 1972, Pergamon Journals Ltd

The proper placement of the nonlinear inductance may or may not be important, depending on the
circumstances. For example, if the transformer of Table 6.2 with L in S were energized from the high side, then
the amplitude of the inrush current would be correct. If it were energized from the tertiary side, however, then the
amplitude of the inrush current would be 56% too low for high levels of saturation®. If details of the transformer
construction are not known, then it is not easy to decide where to place L . In the example of Fig. 6.12-6.14, no
construction details were known, and L, was simply placed across the high voltage terminals. In spite of this,

simulation results came reasonably close to field test results.

6.6.2.1 Single-Phase Transformers

If the [L]'-model of Section 6.3 or 6.4 is used without the corrections for linear exciting current described
in Section 6.6.1, then the nonlinear inductance is simply added across the winding closest to the core. If the [L]-
model of Section 6.2 is used, or if [L]" has already been corrected for the linear exciting current, then a modified
nonlinear inductance must be added in which the unsaturated part has been subtracted out (Fig. 6.17). This modified

nonlinear inductance has an infinite slope below the knee-point.

Table 6.2 - Comparison between measured and calculated air-core inductances. © 1981 IEEE

air-core inductance (p.u.)

excited flux measured calculated error calculated error
winding at ” test with L_in T (%) with L_ in S (%)

SInrush current approximately proportional to 1/L,;. .. for flux above knee-point if unsaturated L, > > L,

core*
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H H 0.198 0.207 +4.5 0.198 0.0
L 0.124 0.129 +4.0 0.120 -3.2
T 0.076 0.076 0.0 0.120 +58.0
L H 0.127 0.129 +1.6 0.120 -5.5
L 0.131 0.125 -4.8 0.116 -11.0
T 0.078 0.076 -2.6 0.120 +54.0
T H 0.076 0.076 0.0 0.120 +58.0
L 0.076 0.076 0.0 0.120 +58.0
T 0.076 0.076 0.0 0.173 +128.0

“Measured by integrating the voltage at that terminal. The measured short-circuit inductances were L, = 0.0738
p-u., Ly = 0.1305 p.u., L;; = 0.0493 p.u., which produces the star-circuit inductances of L,; = 0.0775 p.u., L,
= -0.0037 p.u., L; = 0.0530 p.u.

6.6.2.2 Three-Phase Transformers

Usually only the positive sequence saturation curve (or the saturation curve for one core leg) is known.
Then it is best to connect the same nonlinear inductance across each one of the three phases (e.g., across the tertiary
terminals TA-TB, TB-TC, TC-TA). This implies that the zero sequence values are the same as the positive sequence
values, which is probably a reasonable assumption for the five-legged core and shell-type construction.

For the three-legged core design, the zero sequence flux returns outside the windings through an air gap,
structural steel and the tank. Fig. 6.18 shows the measured zero sequence magnetization curve for the transformer
described in Table 6.2 [114]. Because of the air gap, this curve is not nearly as nonlinear as the core saturation
curve of Fig. 6.10. It is therefore reasonable to approximate it as a linear magnetizing inductance. In [114] it is
shown that this zero sequence magnetizing inductance should be connected to the high side. With the [L]'-model,

= 1/L

Zero

in Eq. (6.36), and by adding the 3 x 3 matrix with

Zero

this is accomplished by setting B,,,; = 0 and using B
B, = B,, = B, /3 to the 3 x 3 diagonal block of the high side’. This "buries" the zero sequence magnetizing
inductance in [L]"'. The positive sequence (core leg) nonlinear inductance (Fig. 6.10 for the example taken from

[114]) can then again be added across each one of the phases.

'By setting B, = 0, [L]" will remain singular. This causes no problems if the inverse inductance is used.
Users who prefer [L]-matrices would have to add another 3 x 3 matrix with B, = 2B /3 and B,, = -B,,,/3 to one
of the sides, with B,,; = 1/L,,;, where L is the linear (unsaturated) positive sequence magnetizing inductance.
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Fig. 6.18 - Zero sequence magnetization curve [114]. © 1981 IEEE

6.6.3 Hysteresis and Eddy Current Losses

The excitation losses obtained from the excitation test are mostly iron-core losses, because the I’R-losses
are comparatively small for the low values of the exciting current. These iron-core losses are sometimes ignored,
but they can easily be approximated with the linear shunt conductance of G,, of Eq. (6.33).

A linear shunt conductance G,, cannot represent the iron-core losses completely accurately. These losses

consist of two parts,

P iron-core P hysteresis + P eddy current (641)

namely of hysteresis losses P ... and of eddy current losses Py curen-  In the excitation tests, these two parts
cannot be separated, and only the sum P, .. is obtained. Before discussing more accurate representations, it is
useful to have some idea about the ratio between the two parts. Ref. [51], which may be somewhat outdated, gives

ratios of

hysreresix/ P eddy current =3 f or silicon steel
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hymm.j/Pg ddy current = 2/3 for grain-oriented steel

while a more recent reference [125] quotes a typical ratio of 1/3. On modern transformers, hysteresis losses are
therefore much less important than they used to be before the introduction of grain-oriented steel.

It is generally agreed that eddy current losses are proportional to A* and to f* [51], at least in the low-
frequency range, which seems to change to ' in the high-frequency range because of skin effect in the laminations.
Frequency-dependent eddy current representations were discussed in [115], where R, is replaced by a number of
parallel R-L branches. It is doubtful whether this sophistication is needed, however, because the reduction caused
by a proportionality change from f* to f'-* at high frequencies is probably offset by other types of loss increases (e.g.,
by increases in coil resistance due to skin effect, etc.). At any rate, laboratory tests would first have to be done to
verify the correctness of the frequency dependence proposed in [115]. In such tests it may be difficult to separate
eddy current and hysteresis losses. If we accept a proportionality with A* and 12, then a constant resistance R, does

model these losses very well, because P = Vpua /R, and Vyy® = @*A%y, for sinusoidal excitation.

eddy current

Hysteresis losses are a nonlinear function of flux and frequency,

Physteresis - k()h)a ) (f)b (642)

In [51], a is said to be close to 3 for grain-oriented steel, and b = 1. In[116],a =2.7andb = 1.5. Ifa=b =
2 were used, then the sum of hysteresis and eddy current losses could be modelled by the constant resistance R, or
conductance G,, of Eq. (6.33). This is a reasonable first approximation [125], especially if one considers that
hysteresis losses are only 25% of the total iron-core losses in transformers with grain-oriented steel. Fig. 6.19(a)
shows the nonlinear inductance of a current transformer, which was used by C. Taylor to duplicate field test results
in a case where the secondary current was distorted by saturation effects [117]. Fig. 6.19(b) shows A as a function
of the exciting current in the transient simulation, if iron-core losses are modelled with a constant resistance R, =
80 Q. It can be seen that R, not only creates the typical shape of a normal magnetization curve (with lower dA/di

coming out of the origin, compared to A = f(i) in Fig. 6.19(a)), but also creates minor loops with reasonable shapes.
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Fig. 6.19 - Saturation in current transformer [117]. Reprinted by permission of
C.W. Taylor

If the flux-current loop® for sinusoidal excitation is available, then R, can also be calculated from

v
R = —

m A (6.43)
as an alternative to Eq. (6.33), with Ai being half of the horizontal width of the loop at A = 0 (Fig. 6.20), and v =

WA Eq. (6.43) is derived from realizing that at A = 0 all the current must flow through the parallel resistance

R,, and that the voltage reaches its peak value wA,,, at A = 0 because of the 90° phase shift between voltage and
flux.

If more values of Ai are used at various points along the A-axis, together with the corresponding values for
v = dA/dt, then a resistance R,, can be constructed which becomes nonlinear. This parallel combination of nonlinear
resistance and nonlinear inductance has been proposed by L.O. Chua and K.A. Stromsmoe [118] to model flux-
current loops caused by hysteresis and eddy current effects. They give convincing arguments why this representation
is reasonable. In particular, they did make comparisons between simulations and laboratory tests, not only for a
small audio output transformer with laminated silicon steel, but for a supermalloy core inductor as well. Fig. 6.21

shows the nonlinear inductances and resistances for this audio output transformer [118]. Fig. 6.22 compares the

laboratory test results with simulation results [118] (first row laboratory results, second row simulation results). Fig.

8The author is reluctant to call it "hysteresis loop" because the losses associated with this loop are the sum of
hysteresis and eddy current losses, with the latter actually being the larger part in transformers with grain-
oriented steel.
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6.22(a) is a family of flux-current loops for 60 Hz sinusoidal flux linkage of various amplitudes. Fig. 6.22(b) shows
two loops, one with a sinusoidal flux linkage and the second with a sinusoidal current. Fig. 6.22(c) is a family of
loops obtained at 60 Hz for various amplitudes of sinusoidal current. Fig. 6.22(d) shows a family of loops for
sinusoidal flux linkages at 60, 120, and 180 Hz. In all cases, the agreement between measurements and simulation
results is excellent. The minor loops in Fig. 6.22(e) were obtained with a 60 Hz sinusoidal current superimposed

on a dc bias current. Again, there appears to be excellent agreement.

Al i—

Fig. 6.20 - Flux-current loop

The major drawback of this core-loss representation with a linear or nonlinear resistance is its inability to
produce the correct residual flux when the transformer is switched off. This was one of the motivations for the
development of more sophisticated hysteresis models, but even these models do not seem to produce the residual flux
very accurately. This writer believes that there are no models available at this time which can predict residual fluxes
reliably, and that reasonable assumptions should therefore be made. There is no difficulty with the linear or
nonlinear R -representation in starting a transient simulation with a residual flux if its value is provided as input data,

as explained in Section 6.6.4.
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Fig. 6.21 - Model for exciting current with parallel, nonlinear resistances and inductances
[118]. © 1970 IEEE

The more sophisticated models mentioned above use pre-defined trajectories or "templates” in the A, i-plane
to decide in which direction the curve will move if the flux either increases or decreases [114, 119]. The technique
of [119] has been implemented in the BPA-EMTP ("pseudolinear hysteretic reactor") but a careful comparison with
the simpler R -representations (either linear or nonlinear) has not yet been done. More research may be needed
before reliable hysteresis models become available. Such models may be based on the duality between magnetic and
electric circuits, which would then require the dimensions of the iron-core as input data [121], or they may be based

on the physics of magnetic materials [120].
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Fig. 6.22 - Comparison between measured and simulated flux-current loops [118]. © 1970 IEEE

6.6.4 Residual Flux

Residual flux is the flux which remains in the iron core after the transformer is switched off®. It has a major
influence on the magnitude of inrush currents. Starting an EMTP simulation from a known residual flux is relatively
easy, with simple as well as with sophisticated hysteresis models. To find the residual flux from a simulation is more
complicated, and the results still seem to be unreliable at this time, even with sophisticated hysteresis models. Until
this situation improves, it might be best to use a typical value for the residual flux as part of the input data.
Unfortunately, not much data is available on residual flux. A recent survey by CIGRE [122] has not added much
to it either, except for the quotation of 2 maximum values of 0.75 and 0.90 p.u. This survey does contain a
reasonable amount of information about values of air-core inductances and saturation curves, however.

The UBC version of the EMTP starts the simulation from a nonzero residual flux with the following

approach, in connection with piecewise linear inductances'® (see also Section 12.1.3): At t = 0, the starting point

A lies at A

Tesidu:

. and i = 0, and the simulation moves along a slope of L, (unsaturated value), as shown in Fig. 6.23.

The slope is changed to L, (saturated value) in point B as soon as A > A At the same time, a value A, is

knee*

calculated which will bring the characteristic back through the origin when the slope is changed back to L, as soon

as A < A Thereafter, the normal A/i-curve will be followed. More details, in particular the problem of

switch*
overshoot (A slightly larger than A, .. when going into saturation), are discussed in Section 12.1.3.3. For typical
saturation curves, such as the one shown in Fig. 6.10, the linear slope is almost infinite; in that case, the first move

into saturation practically lies on the given A/i-curve, rather than somewhat higher as in Fig. 6.23.

There seems to be some confusion in terminology between "residual" and "remanent” flux. It appears that
remanent flux is the flux value at i = 0 in the hysteresis curve under the assumption of sinusoidal excitation.

In the BPA version, this branch type has been generalized from 2 to n slopes ("pseudolinear inductor"), but
it appears that is no longer accepts residual flux as input data.
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Fig. 6.23 - Starting from residual flux

The simple hysteresis model of a nonlinear L in parallel with a resistance R, cannot be used to predict the
residual flux after the transformer is switched off. The energy stored in L will simply be dissipated in R, in this
model, with an exponential decay in current and flux to zero values. The flux value at the instant of switching could
possibly be close to the residual flux, but this has never been checked. Also, this value would only be meaningful

if the transformer is switched off by itself, without lines or other equipment connected to it.

6.7 Autotransformers

If an autotransformer is treated the same way as a regular transformer, that is, if the details of the internal
connections are ignored, the models discussed here will probably produce reasonably accurate results, except at very
low frequencies. At dc, the voltage ratio between the low and high side of a full-winding transformer will be zero,
whereas the voltage ratio of the autotransformer of Fig. 6.24 becomes R;/R, (dc voltage divider effect).

For a more accurate representation, series winding I and common winding II should be used as building
blocks, in place of high side H and low side L. This requires a re-definition of the short-circuit data in terms of
windings I and II. Since most autotransformers have a tertiary winding, this winding T shall be included in the re-
definition.

First, the voltage ratings are
Vi=Vu-V,

v, -V, (6.44)

The test between H and L provides the required data for the test between I and II directly, since II is shorted
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and since the voltage applied to H is actually applied to I (b and c are at the same potential through the short-circuit

connection). Only the voltage ratings are different, and the conversion from H to I is simply

1% 2
z =7 | —2 in p.u. values
111 HL[ V- V] p (6.45)

H L

No modifications are needed for the test between II and III,

Zyy =2y in p.u. values (6.46)

T = III

Fig. 6.24 - Autotransformer with tertiary winding

For the test between H and T, the modification can best be explained in terms of the equivalent star-circuit of Fig.
6.7, with the impedances being Z,, Z,;, Z;;;, based on V,, V,;, V|; in this case. With III short-circuited, 1 p.u. current
(based on Vy;; = V) will flow through Z;;;. This current will also flow through I and IT as 1 p.u. based on Vy, or

converted to bases V|, V;, [, = (V- V))/V, and I;; = V,/V,. With these currents, the p.u. voltages become

vV, -V .
V, = Z[% + Zy, in p.u. values (6.47)
H
4 .
vV, = 2117L + Z, in p.u. values (6.48)
H

Converting V; and V; to physical units by multiplying Eq. (6.47) with (Vy - V,) and Eq. (6.48) with V,, adding

them, and converting the sum back to a p.u. value based on V,, produces the measured p.u. value

VH_VL)Z L 7
1l

H

2
+ Z,, in p.u. values (6.49)

Vi

Vv

Zyr = Z, [
H

Egs. (6.45), (6.46) and (6.49) can be solved for Z,, Z,,, Z,; since Z,, = Z, + Zyand Z;, ,,, = Z;; + Zy,,
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Z Z ViV V4 Vi Z YL j 1
= + - Z,——=— in p.u. values
1111 HL W, V) HT V.-V, LT V.-V, p (6.50)

The autotransformer of Fig. 6.24 can therefore be treated as a transformer with 3 windings I, II, IIT by
simply re-defining the short-circuit impedances with Egs. (6.45), (6.46) and (6.50). This must be done for the
positive sequence tests as well as for the zero sequence tests. If the transformer has a closed delta, then the zero

sequence data must be further modified as explained in Section 6.5.2, after the re-definition of the short-circuit data.

6.8 Ideal Transformer

An ideal transformer was not added to the BPA EMTP until 1982. The ideal transformer has no impedances

and simply changes voltages and current from side 1 to side 2 (Fig. 6.25) as follows:

Vi 1, i
— == — =n (6.51)
v, n i
i i
k 1 1l :n 2 Jj
o~ o
1
vy V2
m O —0 ¢

Fig. 6.25 - Ideal transformer

It is handled in the system of nodal equations (1.8a) or (1.20) by treating current i, as a variable, and by adding the

equation

nv, - nv, - (vj -vy) =0 (6.52)

The matrix of the augmented system of equations, with an extra column for variable i,, and an extra row for Eq.

(6.52), then has the form of Fig. 6.26.
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Fig. 6.26 - Augmented [G]-matrix

The ideal transformer can also be simulated with 8 resistance branches and one extra node "extra," as shown in Fig.
6.27, because these branches augment the matrix in the same way as shown in Fig. 6.26. In both approaches it is
important that node "extra" (or Eq. (6.52)) is eliminated after nodes k, m, j, &, to assure that the diagonal element

becomes nonzero during the elimination process.

Fig. 6.27 - Resistance modelling of ideal transformer

If the transformer is unloaded (i, = 0), the elimination process will fail with a zero diagonal element. The
UBC version would stop in that case with an appropriate error message, while the BPA version will first print a

warning, and then continue after automatic connection of a very large resistance to the node where the zero diagonal
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element has been encountered. This problem is related to the treatment of floating subnetworks (see next Section

6.9).

6.9 Floating Delta Connections

Most transmission autotransformers have delta-connected tertiary windings for the suppression of third
harmonics. Frequently, nothing is connected to such tertiary windings. In that case, and in similar cases, the delta
windings have floating potential with respect to ground (Fig. 6.28): only the voltages across the windings a-b, b-c,
c-a are defined, but not the voltages in a, b, or ¢ with respect to ground. Since the EMTP solves for node voltages
with respect to ground, the Gauss elimination will fail with a zero diagonal element.

a

Fig. 6.28 - Floating delta
connection

To prevent the solution algorithm from failing, one can either ground one of the nodes (e.g., node a), or
connect stray capacitances or large shunt resistances to one or all 3 nodes. Connecting identical branches to each
of the 3 nodes has the "cosmetic" advantage that the voltages in a, b, ¢ will be symmetrical, rather than one of them
being zero. The BPA version connects a large shunt resistance automatically, with an appropriate warning, whenever
a zero or near-zero diagonal element is encountered. For example, if the zero diagonal is encountered at node c,

then a large resistance will be connected from c to ground which will make v, = 0.

6.10 Description of Support Routines and Saturable Transformer Component

Except for the "Saturable Transformer Component" in the BPA EMTP, which is an input option specifically
for transformers, all other transformer representations discussed here use the general branch input option for -
circuits (with C = 0), and possibly additional linear or nonlinear, uncoupled resistance and inductance branches for
the representation of the exciting current. There are three support routines XFORMER, TRELEG, and BCTRAN,
which convert the transformer data into impedance or admittance matrices, as well as a support routine CONVERT
for the conversion of saturation curves Vyys = f(Izys) into A = f(i). These support routines, as well as the built-in

saturable transformer component, are briefly described here.
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6.10.1 Support Routine XFORMER
This support routine for single-phase transformers is somewhat obsolete, and has been superseded by
support routine BCTRAN. For two-winding transformers, it uses essentially the approach of Section 6.3.1 to form

an admittance matrix

FRNY
Z Z

B ‘pu ‘pu
o Y
Zpu Zpu

without first separating R and L as in Eq. (6.7). One half of 1/ jX, , from Eq. (6.35) is then added to Y, ,, and

m pu
Y2 > Which makes the matrix nonsingular. After its inversion, and conversion from p.u. to actual values, the 2 x
2 branch impedance matrix is obtained. By not separating R and L, this impedance matrix has nonzero off-diagonal
resistances, which would produce wrong results at extremely low frequencies when the magnitude of R becomes
comparable with the magnitude of wL (in one particular example, R = wL at f = 0.002 Hz). At dc, an off-diagonal
resistance would imply a nonzero induced voltage in the secondary winding, which should really be zero in a full-
winding transformer.

For three-winding transformers, the approach of Section 6.3.2 is used. First, the impedances of the
equivalent star circuit are found with Eq. (6.10), which is then converted to the delta circuit with Eq. (6.11) to obtain
the 3 x 3 admittance matrix [Y,,] of Eq. (6.12). Again, there is no separation between R and L, and complex

impedances Z are used in place of X in all these equations. One third of 1 / jX, , from Eq. (6.35) is then added to

m pu
Y1 pur Yoo, and Y35, followed by matrix inversion and conversion to actual values. Again, nonzero off-diagonal
resistances will appear in the branch impedance matrix, as already discussed for the two-winding transformer.
Except for errors at extremely low frequencies, which is caused by not separating R and L, the model
produced by XFORMER is useful if the precautions for ill-conditioned matrices discussed in Section 6.2.2 are

observed.

6.10.2 Support Routine BCTRAN
This support routine works for any number of windings, and for single-phase as well as for three-phase
units. It uses the approach of Section 6.4 and 6.5 to produce the [R] and [L]'-matrices of coupled branches.
BCTRAN has an option for inductance matrices [L] as well, in cases where the exciting current is nonzero. Because
of the ill-conditioning problem (Section 6.2.2), the author prefers to work with [L]" instead of [L], however.
Impedance matrices produced by BCTRAN and XFORMER differ mainly in the existence of off-diagonal
resistance values in the latter case, which should make the model from BCTRAN more accurate than that from

XFORMER at very low frequencies.

6.10.3 Support Routine TRELEG

This support routine was developed by V. Brandwajn at Ontario Hydro, concurrently with the development
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of BCTRAN at UBC. It builds the impedance matrix (6.14) of N-winding single-phase or three-phase transformers
directly from short-circuit and excitation test data, without going through the reduced impedance matrix described
in Section 6.4. The exciting current must always be nonzero, and for very small values of exciting current, the
matrices are subject to the ill-conditioning problem described in Section 6.2.2.

Recall that Eq. (6.14) is valid for three-phase transformers as well, if each element is replaced by 3 x 3

submatrix as discussed in Section 6.5. With this in mind, the imaginary parts of the diagonal element pairs (X

s-ii 2
X..;i) of the excited winding "i" are first calculated from the current of the positive and zero sequence excitation tests.
If excitation losses are ignored, then X;; in per unit is simply the reciprocal of the per-unit exciting current. With
positive and zero sequence values thus known, the pair of self and mutual reactances is found from Eq. (6.29). For
the other windings, it is reasonable to assume that the p.u. reactances are practically the same as for winding "i,"
since these open-circuit reactances are much larger than the short-circuit impedances. This will produce the
imaginary parts of the other diagonal elements''. The real part of each diagonal element is the resistance of the
particular winding.

With the diagonal element pairs known, the off-diagonal element pairs (Z_,, Z,, ;) are calculated from Eq.

(6.5), except that real values X are replaced by complex values Z,

i = &y - Zﬂihm) Zy (6.53)

These impedances are first calculated for positive and zero sequence, and then converted to self and mutual
impedances with Eq. (6.29).

As pointed out in Section 6.2.2, the elements of [Z] must be calculated with high accuracy; otherwise, the
short-circuit impedances get lost in the open-circuit impedances. The lower the exciting current is, the more equal
the p.u. impedances Z;, Z,, and Z, become among themselves in Eq. (6.5). Experience has shown that the positive
sequence exciting current should not be much smaller than 1% for a single-precision solution on a UNIVAC
computer (word length of 36 bits) to avoid numerical problems. On computers with higher precision, the value could
obviously be lower. On large, modern transformers, exciting currents of less than 1% are common, but this value
can usually be increased for the analysis without influencing the results. Since these ill-conditioning problems do

not exist with [L]", support routine BCTRAN should make TRELEG unnecessary, after careful testing of both

routines has been carried out.

6.10.4 Support Routine CONVERT

Often, saturation curves supplied by manufacturers give RMS voltages as a function of RMS currents. The

UIf it is known that the magnetizing impedance should be connected across a particular terminal, then the
diagonal elements are modified to account for the differences caused by the short-circuited impedances between
the terminals.
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support routine CONVERT" changes Vgys/Igms-curves into flux/current-curves A = f(i) with the following

simplifying assumptions:

1. Hysteresis and eddy current losses in the iron-core are ignored,
2. resistance in the winding is ignored, and
3. the A/i-curve is to be generated point by point at such distances that linear interpolation is

acceptable in between points.
For the conversion it is necessary to assume that the flux varies sinusoidally at fundamental frequency as
a function of time, because it is most likely that the Vy,,/Ixys-curve has been measured with a sinusoidal terminal
voltage. With assumption (2), v = dA/dt. Therefore, the voltage will also be sinusoidal and the conversion of Vg

values to flux values becomes a simple re-scaling:

VRMS \/E
[}

A = (6.54)

The re-scaling of currents is more complicated, except for point iy at the end of the linear region A-B (Fig. 6.29):
ig = Tays 52 (6.55)

The following points i, ip,... are found recursively: Assume that i; is the next value to be found. Assume further

that the sinusoidal flux just reaches the value A at its maximum,

A= )\.E sin wt (6.56)
I I
v N N
RMS | e e e e e A e e e e e e - - — =
E ot e e e e e et e - — — e e e .
[}
Dple - m- = = — e - e = = | = = e = - — '
]
Cefor — = m e e e - — = - = o - — =C t
j
B o e e e - e - - — - -+ - :
 linear
, interpolation
. ' between points
only discrete points used i
A I — A lE | ——
RMS

Fig. 6.29 - Recursive conversion of a Vy,,/Ipys-curve into a A/i-curve

Within each segment of the curve already defined by its end points, in this case A-B and B-C and C-D, i is known

as a function of A (namely piecewise linear), and with Eq. (6.56) is then also known as a function of time. Only the

2CONVERT was developed with the assistance of C.F. Cunha, CEMIG, Belo Horizonte, Brazil.
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last segment is undefined inasmuch as i, is still unknown. Therefore, i = f(t,i;) in the last segment. If the integral

needed for RMS-values,

F = zfiizd(wt) (6.57)
T JO

is evaluated segment by segment, the result will contain i; as an unknown variable. With the trapezoidal rule of

integration (reasonable step size = 1°), F has the form

F =a + bi, + ci (6.58)

with a, b, ¢ known. Since F must be equal to Iy * by definition, Eq. (6.58) can be solved for the unknown value
ig. This process is repeated recursively until the last point iy has been found.

If the A/i-curve thus generated is used to re-compute a Vyyo/Igys-curve, it will match the original Vyy,o/Ipys-
curve, except for possible round-off errors. As an example, support routine CONVERT would convert the table of

per-unit RMS exciting currents as a function of per-unit RMS voltages,

Vius (p-u) Livs (p-u)
0 0

0.9 0.0056
1.0 0.0150
1.1 0.0401

with base power = 50 MVA and base voltage 635.1 kV, into the following flux/current relationship:

A (Vs) i (A)

0 0
2144.22 0.6235
2382.46 2.7238
2620.71 7.2487

This A/i-curve is then converted back into a Vy,,¢/Ixys-curve as an accuracy check. In this case, the Vyyg and Ipyq
values were identical with the original input data.

Very often, the Vy,,/Izys-curve is only given around the knee-point, and not for high values of saturation.
In such cases, it is best to do the conversion first for the given points, and then to extrapolate on the A/i-curve with

the air-core inductance.

6.10.5 Saturable Transformer Component

This built-in model was originally developed for single-phase N-winding transformers. It uses the star-
circuit representation of Fig. 6.30. The primary branch with R;, L, is handled as an uncoupled R-L branch between
nodes BUS1,, and star point S, whereas each of the other windings 2,...N is treated as a two-winding transformer

(first branch from S to BUS2,, second branch from BUS1, to BUS2,, with k = 2,...N). The equations for each of
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these two-winding transformers are derived from the cascade connection of an ideal transformer with an R-L-branch

(Fig. 6.31). This leads to

)t Ry
di:tar/ dt _ i nl nl v:tar Lk israr ( 6.5 9)
di /dt L, n, . v, 0 R.|| i,
n L
L, R : R L BUS1
BUS1, 1 1 n,: oo, 2 2

A C s
winding 1 I: Rm winding 2
i

3

o S
BJS2 ideal . BUS2,
1 .etc.
: . BUS1
n 1 : nN . N
—\- LEFT——o0
R L
N N winding N
ideal BUS2 N
Fig. 6.30 - Star-circuit representation of N-winding transformers
Fig. 6.30 - Star-circuit representation of N-winding transformers
R
i o i
*star — «— 'k

v
star

> ) ©
ideal

Fig. 6.31 - Cascade connection of ideal transformer and R-L-branch

which is the alternate equation (6.1) with an inverse inductance matrix [L]". In the particular case of Eq. (6.59),
the product [L]'[R] is symmetric, which is not true in the general case.

The input data consists of the R, L-values of each star branch, and the turns ratios, as well as information
for the magnetizing branch. For three-winding transformers, the impedances of the star branches are usually

available in utility companies from the data files kept for short-circuit studies. If these values are in p.u., they must
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be converted to actual values by using the proper voltage rating V, for each of the star branches k = 1,...N. If the
short-circuit impedances are known, then the star branch impedances can be calculated from Eq. (6.10).
The saturable transformer component has some limitations, which users should be aware of:

1. It cannot be used for more than three windings, because the star circuit is not valid for N > 3. This is
more an academic than a practical limitation, because transformers with more than three windings are
seldom encountered.

2. The linear or nonlinear magnetizing inductance, with R , in parallel, is connected to the star point, which
is not always the best connecting point, as explained in Section 6.6.

3. Numerical instability has occasionally been observed for the three-winding case. It is not believed to be a
programming error. The source of the instability has never been clearly identified, though it is felt that it
is caused by the accumulation of round-off errors. V. Brandwajn ran a case in 1985 in which the instability
disappeared when the ordering of the windings was changed (e.g., first winding changed to low side from
high side).

4. While the saturable transformer component has been extended from single-phase to three-phase units
through the addition of a zero-sequence reluctance parameter, its usefulness for three-phase units is limited.
Three-phase units are better modelled with inductance or inverse inductance matrices obtained from support

routines BCTRAN or TRELEG.

6.11 Frequency-Dependent Transformer Models
At this time, no frequency-dependent effects have yet been included in the transformer model. There are

basically three such effects:

a. Frequency-dependent damping in the short-circuit impedances,
b. frequency dependence in the exciting current, and
c. influence of stray capacitances at frequencies above 1 to 10 kHz.

CIGRE Working Groups [8, 18] have collected some information on the frequency-dependent L/R-ratios
of short-circuit impedances (Fig. 2.17). As explained in Section 2.2.3, this frequency dependence can easily be
modelled with parallel resistances, which matches the experimental curves reasonably well (Fig. 2.19). When
dealing with matrices [L] or [L]", resistance or conductance matrices [R,] or [G,] could be added automatically by

the program, with the user simply specifying the factor k in

[R,] = k[L], or [G)] = %[L]’1 (6.60)

Frequency-dependent effects in the exciting current were modelled with parallel R-L branches in [115], as
discussed in Section 6.3.3. Whether the linear frequency dependence in these parallel R-L branches can be separated
easily from the nonlinear saturation effects would have to be verified in laboratory experiments.

For transient studies which involve frequencies above a few kHz, capacitances must be added to the R-L-

models. As suggested in [123], capacitances should be included
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a. between the winding closest to the core, and the core,
b. between any two windings, and
c. across each winding from one end to the other.

In reality, inductances and capacitances are distributed, but reasonably accurate results, as seen from
terminals, can be obtained by lumping one half of the capacitance at each end of winding for effects (a) and (b), and
by lumping the total capacitance in parallel with the winding for effect (c), as shown in Fig. 6.32. Each of these
capacitances can be calculated from the geometry of the transformer design. Obviously, the internal voltage
distribution across a winding, which is of such great concern to the transformer design, cannot be obtained with the
simple model of Fig. 6.32. Fig. 6.33 compares measured impedances of a transformer (500 MVA, 765/345/17.25
kV) and calculated impedances with a model where the capacitances were added according to Fig. 6.32. The

agreement is quite good. Similar suggestions for the addition of capacitances have been made by others (e.g., [124]).
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Fig. 6.32 - Addition of capacitances to R-L-model
(subscripts a, b, c refer to the three effects mentioned in
text)
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Fig. 6.33 - Frequency response of single-phase autotransformer with tertiary winding (marking of terminals
according to North American standards: H1 = high voltage terminal, X1 = low voltage terminal, Y1, Y2 =
terminals at both ends of tertiary winding) [123]. © 1981 IEEE
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7. SIMPLE VOLTAGE AND CURRENT SOURCES

Most of the simple sources are either voltage or current sources defined as a time-dependent function f(t),

v = fiv), or 1) = fo)

Frequently used functions f(t) are built into the EMTP. There is also a current-controlled dc voltage source for
simplified HVDC simulations, which is more complicated than Eq. (7.1). In addition to the built-in functions, the
BPA version of the EMTP allows the user to define functions through user-supplied FORTRAN subroutines, and
to declare TACS output variables as voltage or current source functions. The UBC version of the EMTP does not

have these two options, but allows the user to read f(t) step by step in increments at At. This option has rarely been

used, however.

Note that f(t) = O for a current source implies that the source is disconnected from the network (i = 0),

whereas for a voltage source it implies that the source is short-circuited (v = 0).

7.1 Connection of Sources to Nodes

If a voltage or current source is specified at a node, it is assumed to be connected between that node and
local ground, as shown in Fig. 7.1. A voltage source of v(t) = +1.0 V means that the potential at that node is +1.0

V with respect to local ground, whereas a current source of +1.0 A implies that 1.0 A flows from the local ground

into that node.

- ! rd
S - - ~No ”
- - ~ -,
v(t) T i(e)
(a) Voltage source (b) Current source (©)
between node from local
and local ground ground into node

Fig. 7.1 - Source connections
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7.2 Current Sources Between Two Nodes

Current sources between two nodes, e.g., a current leaving node B and entering into node A as shown in

Fig. 7.1(c), must be specified as two current sources, namely as

Lo =f, and iy®) = -f (7.2)

7.3 Voltage Sources Between Two Nodes

Until recently, voltage sources could not be connected between two nodes. With the addition of ideal
transformers to the BPA EMTP in 1982 (Section 6.8), voltage sources between two nodes are easy to set up now.
In Fig. 6.25, simply ground node &, connect the voltage source from node j to ground, and use a transformer ratio
of 1:1. This will introduce a voltage source between nodes k and m. A special input option has been provided for
using the ideal transformer for this particular purpose.

The UBC EMTP and older versions of the BPA EMTP do not accept voltage sources between nodes. One
could use the equivalent circuit of Fig. 6.27 for the ideal transformer, however, which turns into the circuit of Fig.
7.2. This representation works in the transient solution part of the UBC EMTP, provided the branches of Fig. 7.2
are read in last. In that case, the node "extra" will be forced to the bottom of the equations as shown in Fig. 6.26.
The steady-state subroutine in both versions, as well as the transient solution in the BPA version, use optimal re-
ordering of nodes, which may not force the row for node "extra" far enough down to assure nonzero diagonal
elements during the Gauss elimination. Using Fig. 7.2 may therefore not always work, unless minor modifications

are made to the re-ordering subroutine.

-1 Q

extra ¢ «— i(t) = —

1Q

-1 m

Fig. 7.2 - Equivalent circuit for voltage source
v(t) between nodes k and m

In all versions, a voltage source in series with a (nonzero) impedance can always be converted into a current

source in parallel with that impedance. The current source between the two nodes is then handled as shown in Eq.
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(7.2). The conversion from a Thevenin equivalent circuit (v in series with Z) to a Norton equivalent circuit (i in

parallel with Z) is especially simple if the impedance is a pure resistance R, as shown in Fig. 7.3.

R k'l kl’
N \\
b Y
v(t) convert to: i(t) = v;t) I R
4 ,’
’
m\\ ) m\\

Fig. 7.3 - Conversion of v(t) in series with R into i(t) =
v(t)/R in parallel with R

Converting a voltage source in series with an inductance L into a current source with parallel L is slightly more
complicated. L is again connected between nodes k and m, in the same way as R in Fig. 7.3. The definition of the

current source depends on the initial conditions, however. For example, if

W) = V.. cos(wi + ¢) (7.3)

and if the case starts from zero initial conditions, then

Vv
i(f) = 2 [sin(w? + ¢) - sind] (7.4a)
wlL
If the case starts from linear ac steady-state conditions, with that voltage source being included in the steady-state
solution, then

\%
i(t) = = cos(wt + ¢ - 90°) (7.4Db)
oL

7.4 More Than One Source on Same Node

If more than one voltage source is connected to the same node, then the EMTP simply adds their functions

f,(t),...f,(t) to form one voltage source. This implies a series connection of the voltage sources between the node

and local ground, as shown in Fig. 7.4(a).
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: 1
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v ( i >
n
i =i +... 1
ttotal abt n
(a) Series connection of (b) Parallel connection of
sources

current sources

Fig. 7.4 - Multiple voltage or current sources on same node

If more than one current source is connected to the same node, then the EMTP again adds their functions
f,(t),...f,(t) to form one current source. This implies a parallel connection of the current sources, as shown in Fig.
7.4(b).

Source functions can be set to zero by using parameters tgpagr and Tgrop. The EMTP sets f(t) = 0 for t <
Tgrarr and for t > Tgrop. By using more than one source function at the same node with these parameters, more
complicated functions can be built up from the simple functions, as explained in the UBC User's Manual and in the
BPA Rule Book.

If voltage and current sources are specified at the same node, then only the voltage sources are used by the
EMTP, and the current sources are ignored. Current sources would have no influence on the network in such a case,

because they would be directly short-circuited through the voltage sources.

7.5 Built-in Simple Source Functions

Commonly encountered source functions are built into the EMTP. They are:

(a) Step function (type 11). In cases which start from zero initial conditions, the step function is

approximate in the sense that the EMTP will see a finite rise time from f(0) = 0 to f(At) = F,..» as shown
in Fig. 7.5.
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f(t) f(t)
Fx'nax bt —o Fmax““¢~‘
!
|
I
|
+
At t — t =
(a) Starting from zero (b) Starting from initial
initial conditions value F_,,

Fig. 7.5 - Step function

(b) Ramp function (type 12) with f(t) as shown in Fig. 7.6. The value of the function rises linearly from

Tyrart to Tgrarr + T, to a value of F, ., and then remains constant until it is zeroed at t > Tgyep.

max?

TSTART TsToP t

Fig. 7.6 - Ramp function

A modified ramp function (type 13) has the same rise to F,,, at Tgrarr + T, as in Fig. 7.6, but decays or rises with
a linear slope thereafter. By setting Tgrarr = 0 and T, = O, this becomes a step function with a superimposed linear
decay or rise.

(c) Sinusoidal function (type 14) with

f)y = F_, cos(wi + ¢) if Tgupr < 0 (7.5a)
or
) = Fp cos(@( = Tgpypr) + @) U Tsppr > 0 (7.5b)

with — f@) =0 fort < Tgpy

This is probably one of the most used source functions. Note that the peak value F,,, must be specified,

rather than the RMS value. To start a case from linear ac steady-state conditions, or to obtain a sequence of steady-
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state solutions at a number of frequencies, use Tgrarr < O to indicate to the EMTP that this sinusoidal source should
be used for the steady-state solution. The value of Tg;rr is immaterial as long as its value is negative, and the
complex peak phasor used for that source is then
Vorl =F,, € (7.6)
(d) Impulse function (type 15) of the form

1@y = kle™ - &™) (1.7)

This function has been provided for the representation of lightning or switching impulses, as used in standard impulse
tests on transformers and other equipment. A typical lightning impulse voltage is shown in Fig. 7.7 [126], and a
typical switching impulse voltage is shown in Fig. 7.8 [126]. There is no simple relationship between the time
constants 1/c; and a/e, in Eq. (7.7) and the virtual front time T, (or time to crest T,,) and the virtual time to half-
value T,. Table 7.1 shows the values for frequently used waveshapes, as well as values for k which produce a
maximum value of f,,, = 1.0 in Eq. (7.7). The time at which the maximum occurs is found by setting the derivative
df/dt = 0 from Eq. (7.7) and solving for t,,,. Inserting t,. . into Eq. (7.7) then produces f_,. Note that 1/a, and

1/e, in Table 7.1 are in us, whereas the EMTP input is usually in s.

10f---
09[ ~B

Fig. 7.7 - General shape of lightning impulse voltage (IEC definitions: T, = virtual front time,
typically 1.2 us + 30%; T, = virtual time to half-value, typically 50 us + 20%). Reprinted with
permission from [126], © 1984, Pergamon Books Ltd

1.0+
0.9~

0.5
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Fig. 7.8 - General shape of switching impulse voltage (IEC definitions: T, = time to crest,
typically 250 ps + 20%; T, = virtual time to half-value, typically 2500 us + 60%, T, = time

above 90%). Reprinted with permission from [126], © 1984, Pergamon Books Ltd

In impulse testing, the capacitance of the test object is usually much smaller than the capacitance of the
impulse generator. It is then permissible to regard the impulse generator as a voltage source with the function of

Eq. (7.7). In cases where the impulse generator is discharged into lines, or into other test objects with impedances

which can influence the wave

Table 7.1 - Relationship between T,, T,, and «,, &,. Reprinted with permission from [126], ©
1984, Pergamon Books Ltd

T,/T, (us) T./T, (us) 1 (us) 1 (us) k to produce
o, o, f = 1.0

1.2/5 - 3.48 0.80 2.014

1.2/50 - 68.2 0.405 1.037

1.2/200 - 284 0.381 1.010

250/2500 - 2877 104 1.175

- 250/2500 3155 62.5 1.104

shape, it may be better to simulate the impulse generator as a capacitance and resistance network, as shown in Fig.
7.9 for a simple single-stage impulse generator. The initial voltage across C, would be nonzero, and the switch
closing would simulate the gap firing. Fig. 7.10 compares measurements against EMTP simulation results for the
waveshape of a multistage impulse generator, where the generator was modelled as a network of capacitances,

resistances in inductances [127]. The spark gaps were represented as time-dependent resistances based on Toepler's

formula.

v(0

close at

t=0 Rl
) #0 j]j Cl R2

(a) Circuit type a

1

test
object

C

2

close at

test

t=
v(0)#0 jlr Cl R2

(b) Circuit type b

Fig. 7.9 - Single-stage impulse generators
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’ I
- d
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_f'a— : tinus
0 1.0 2,0

(a) Measurement (b) Simulation results (1 = exact with nonsimultaneous
firing of spark gaps, 2 = simultaneous firing, 3 =
simultaneous firing with gaps as ideal switches)

Fig. 7.10 - Waveshape of a multistage impulse generator [127]. © 1971 IEEE

7.6 Current-Controlled dc Voltage Source

This source provides a simplified model of an HVDC converter station [128], and produces simulation
results which come reasonably close to field tests [129]. The current-dependent voltage source is connected between
two nodes (cathode and anode), as indicated in Fig. 7.11. The current can only flow in one direction (from anode
to cathode). This is simulated internally with a switch on the anode side, which opens to prevent the current from
going negative and closes again at the proper voltage polarity. Spurious voltage oscillations may occur between the
anode and cathode side after the switch opens, unless the damping circuits across the valves are also modelled. Good
results were obtained in [128] when an RC branch was added between the anode and cathode (R = 900 Q and C =
0.15 ps in that case).

The current regulator is assumed to be an amplifier with two inputs (one proportional to current bias Iy,
and the other proportional to measured current i), and with one output e, which determines the firing angle. The

transfer function of the regulator is

K1 +sT)
(I +sT)A + sTy)

G(s) = (7.8)

with limits placed on the output e, in accordance with rectifier minimum firing angle, or inverter minimum extinction

angle.
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The current-controlled dc voltage source is a function of e,
Ve =k + Kye, (7.9)

as shown in Fig. 7.12. The current regulator output e,, minus a bias value (10V in Fig. 7.12) is proportional to

cosa. The inverter normally operates at minimum extinction angle at the limit e and the rectifier normally

amin>
operates on constant current control between the limits. The user defines steady-state limits for v, which are

converted to limits on e, with Eq. (7.9). If the converter operates at the maximum limit e, (or at the minimum

amax

limit e,,;)), either in initial steady state or later during the transient simulation, it will be back off the limit as soon

amin

as the derivative de,/dt becomes negative (or positive) in the differential equation

de,
dt

i d’e
- Kd,,.-i) - kT,%E 1 L% (7.10)
BIAS 27y B0 o

(T, + Ty

The value for d’,/dt* is zero in Eq. (7.10) as long as the converter operates at the limit.

I
BIAS

node name for cathode side

G(s)

1 node name for anode side

Fig. 7.11 - Current-controlled dc voltage source



150 Vdc max
kv
vdc( )
0 0 20
e —
Q
-150 4
- A R
-1.0 0 1.0

cos a —>

Fig. 7.12 - Relationship between v, and e, (k, = -150 000,
k, = 15 000)

7.6.1 Steady-State Solution

Steady-state dc initial conditions are automatically computed by the program with the specified value v, (0).
Since the steady-state subroutine was only written for ac phasor solutions, the dc voltage is actually represented as
Vi = Vg4(t) cos(wt) with a very low frequency of f = 0.001 Hz. Practice has shown that this is sufficiently close
to dc, and still makes reactances wL and susceptances wC large enough to avoid numerical problems in the ac steady-
state solution. When the current-controlled dc voltage source was added to the EMTP, voltage sources between two

nodes were not yet permitted. For the steady-state solution, a resistance R, is therefore connected in series with

equiv

the voltage source, which is then converted into a current source in parallel with R,

equiv*

This produces accurate
results if the user already knows what the initial current i,,(0) is, because the specified voltage source of the rectifier

is automatically increased by R, i

(0), and that of the inverter is decreased by R,;,is(0). The program user
should check, however, whether the computed current i,, does indeed agree with what the user thought it would be.
This nuisance of having to specify i,.(0), without knowing whether it will agree with the computed value, could be
removed by using the methods described in Section 6.3, if this HVDC model is used often enough to warrant the

program changes. The value of R

equiv

is the same as the one used in the transient solution (Section 7.5.2).

The normal steady-state operation of an HVDC transmission link, measured somewhere at a common point
(e.g., in the middle of the line) is indicated in Fig. 7.13. For the converter operating between the limits on constant
current control (which is normally the rectifier), I, is automatically computed to produce the characteristic A-A'

of Fig. 7.13,
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IB[AS = l(O) * 0C]{ 4 lf eocmin < eoc < eocmax (711)

with i(0), e,(0) being the dc initial conditions. For the converter operating at maximum or minimum voltage (which
is normally the inverter), the current setting Iggrrng must be given as part of the input, which defines the point where
the converter backs off the limit and goes into constant current control. Iy, is again automatically computed, which
in this case is

_, £,(0)

1 serring T lf ea(o) = €umax 9 Cymin (712)

BIAS

Lgerming 18 typically 15% lower than the current order Lyyper at the steady-state operating point for inverters (or 15%

higher for rectifiers).

7.6.2 Transient Solution
In the transient solution, the dynamics of the current controller in the form of Eq. (7.9) and (7.10) must
obviously be taken into account. First, rewrite the second-order differential equation (7.10) as two first-order

differential equations,

dx di

e, + Tx + PE = Kg,s-0 - KTZE (7.13a)
ae. 7.13b

X = .
7 ( )

with the new variable x and with the new parameters

T = Tl + T3 (713C)

P =TT, (7.13d)

After applying the trapezoidal rule of integration to Eq. (7.13a) and (7.13b) (replacing x by [x(t - At) + x(t)]/2 and
dx/dt by [x(t) - v(t - At)]/At, etc.), and after eliminating x(t), one linear algebraic equation between e,(t) and i(t) is

obtained. Inserting this into Eq. (7.9) produces an equation of the form

Ve = v - R, (D) (7.14)

which is a simple voltage source vy(t) in series with an internal resistance R

equiv*

This Thevenin equivalent circuit

is converted into a current source iy(t) in parallel with R,;, (Fig. 7.14).
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Fig. 7.14 - Norton equivalent circuit
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whereas the current source iy(t) depends on the values e,(t - At) and x(t - At) of the preceding time step. After the
complete network solution at each time step, with the converter representation of Fig. 7.14, the current is calculated
with Eq. (7.14), and then used to update the variables e, and x.

If e, hits one of the limits e, Or €,.,, it is kept at the appropriate limit in the following time steps, with
x and dx/dt set to zero. B.C. Chiu has recently shown, however, that simply setting x and dx/dt to zero at the limit
does not represent the true behavior of the current controller [130]. The treatment of limits should therefore be

revised, if this current-controlled dc voltage source remains in use. Backing off the limit occurs when the derivative
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de,/dt calculated from Eq. (7.10) becomes negative in case of e, = € or positive in case of e, = ¢

omax? amin*®

The switch opens as soon as i(t) < 0, and closes again as soon as Vyope = Veorroms 1O assure that current
can only flow in one direction. This updating of the current source iy(t) from step to step is not influenced by the

switching actions.
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8. THREE-PHASE SYNCHRONOUS MACHINE

Co-author: V. Brandwajn

The details with which synchronous machines must be modelled depend very much on the type of transient
study. Most readers will be familiar with the simple representation of the synchronous machine as a voltage source
E" behind a subtransient reactance X,". This representation is commonly used in short-circuit studies with steady-
state phasor solutions, and is also reasonably accurate for transient studies for the first few cycles of a transient
disturbance. Switching surge studies fall into that category. Another well-known representation is E' behind X,,'
for simplified stability studies. Both of these representations can be derived from the same detailed model by making
certain assumptions, such as neglecting flux linkage changes in the field structure circuits for E" behind X", and
in addition, assuming that the damper winding currents have died out for E' behind X;'.

The need for the detailed model described here arose in connection with subsynchronous resonance studies
in the mid-1970's. In such studies, the time span is too long to allow the use of simplified models. Furthermore,
the torsional dynamics of the shaft with its generator rotor and turbine rotor masses had to be represented as well.
Detailed models are now also used for other types of studies (e.g., simulation of out-of-step synchronization). To
cover all possible cases, the synchronous machine model represents the details of the electrical part of the generator
as well as the mechanical part of the generator and turbine. For studies in which speed variations and torsional
vibrations can be ignored, an option is provided for by-passing the mechanical part of the UBC EMTP.!

The synchronous machine model was developed for the usual design with three-phase ac armature windings
on the stator and a dc field winding with one or more pole pairs on the rotor. For a reversed design (armature
windings on the rotor and field winding on the stator), it is probably possible to represent the machine in some
equivalent way as a machine with the usual design. Even though the model was developed with turbine-driven
generators in mind, it can be used for synchronous motors as well (e.g., pumping mode in a pumped-storage plant).

The model cannot be used for dual-excited machines (one field winding in direct axis and another field
winding in quadrature axis) at this time, thought it would be fairly easy to change the program to allow for it. Since
such machines have not yet found practical acceptance, it was felt that the extra programming was not justified.
Induction machines can also not be modelled with it, though program changes could again be made for that purpose.
For these and other types of machines, the universal machine of Section 9 should be used.

While the equations for the detailed machine model have been more or less the same in all attempts to
incorporate them into the EMTP, there have been noticeable differences in how their solution is interfaced with the
rest of the network. K. Carlsen, E.H. Lenfest and J.J. LaForest were probably the first to add a machine model to
the EMTP, but the resulting "MANTRAP" - program [97] was not made available to users outside General Electric
Co. M.C. Hall, J. Alms (Southern California Edison Co.) and G. Gross (Pacific Gas & Electric Co.), with the

assistance of W.S. Meyer (Bonneville Power Administration), implemented the first model which became available

'The synchronous machine model is the UBC EMTP is experimental and has not been released.
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to the general public. They opted for an iterative solution at each time step, with the rest of the system, as seen from
the machine terminals, represented by a three-phase Thevenin equivalent circuit [98]. To keep this "compensation”
approach efficient, machines had to be separated by distributed-parameter lines from each other. If that separation
did not exist in reality, short artificial "stub lines" had to be introduced which sometimes caused problems. V.
Brandwajn suggested another alternative in which the machine is basically represented as an internal voltage source
behind some impedance. The voltage source is recomputed for each time step, and the impedance becomes part of
the nodal conductance matrix [G] in Eq. (1.8). This approach depends on the prediction of some variables, which
are not corrected at one and the same time step in order to keep the algorithm non-iterative. While the prediction
can theoretically cause numerical instability, it has been refined to such an extent by now that the method has become
quite stable and reliable. Whether an option for repeat solutions as correctors will be added someday remains to be
seen. Numerical stability has been more of a problem with machine models partly because the typical time span of
a few cycles in switching surge studies has grown to a few seconds in machine transient studies, with the step size

At being only slightly larger, if at all, in the latter case.

8.1 Basic Equations for Electrical Part

Since there is no uniformity on sign conventions in the literature, the sign conventions used here shall first
be summarized:
(a) The flux linkage A of a winding, produced by current in the same winding, is considered to have

the same sign as the current (A = Li, with L being the self inductance of the winding).

(b) The "generator convention" is used for all windings, that is, each winding k is described by
dr (1)
v(@) = -Ri() - — 8.1
(O = R0 - = &)
(with the "load convention," the signs would be positive on the right-hand side).
(©) The newly recommended position of the quadrature axis lagging 90° behind the direct axis in the

machine phasor diagram is adopted here [99]. In Park's original work, and in most papers and
books, it is leading, and as a consequence the terms in the second row of [T]! of Eq. (8.7b) have
negative signs there.

The machine parameters are influenced by the type of construction. Salient-pole machines are used in hydro
plants, with 2 or more (up to 50) pole pairs. The magnetic properties of a salient-pole machine along the axis of
symmetry of a field pole (direct axis) and along the axis of symmetry midway between two field poles (quadrature
axis) are noticeably different because a large part of the path in the latter case is in air (Fig. 8.1a). Cylindrical-rotor
machines have long cylindrical rotors with slots in which distributed field windings are placed (Fig. 8.1b). They
are used in thermal plants, and have 1 or 2 pole pairs. For cylindrical-rotor machines the magnetic properties on
the two axes differ only slightly (because of the field windings embedded in the slots), and this difference

("saliency") can often be ignored. The word saliency is used as a short expression for the fact that the rotor has

8-2



different magnetic properties on the two axes.

(a) Salient-pole machine (b) Cylindrical-rotor machine

Fig. 8.1 - Cross sections of synchronous machines (d = direct axis, q = quadrature axis)
[101]. Reprinted by permission of I. Kimbark

The machine model in the EMTP always allows for saliency; if saliency is ignored, the same equations will still be

used, except that certain parameters will have been set equal at input time (X, = X, etc.).

The electrical part of the synchronous machine is modelled as a two-pole machine with 7 coupled windings®:

1
2
3
f

D
Q

three armature windings (connected to the power system),

one field winding which produces flux in the direct axis (connected to the dc source of the
excitation system),

one hypothetical winding in the quadrature axis to represent slowly changing fluxes in the
quadrature axis which are produced by deep-flowing eddy currents (normally negligible in salient-
pole machines)

one hypothetical winding in the direct axis to represent damper bar effects,

one hypothetical winding in the quadrature axis to represent damper bar effects.

For machines with more than one pole-pair, the electrical equations are the same as for one pole-pair, except that

the angular frequency and the torque being used in the equations of the mechanical part must be converted as follows:

2Another, more modern approach is to measure the frequency response from the terminals, which can then be
used to represent the machine with transfer functions between the terminals, without assuming a given number of
lumped windings a priori. One can also use curve fitting techniques to match this measured response with that
from a series and parallel combination of R-L branches [100]. The end results in the latter case is basically the
same model as described here, except that damper bars are sometimes represented by more than one winding,
and that the data is obtained from frequency response tests.
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_ ©2-pole-machine (8.2a)

wactual p /2

T2 -pole-machine (8 . 2b)

actual

(Y

where p/2 is the number of pole pairs.

The behavior of the 7 windings is described by two systems of equations, namely by the voltage equations
D = -RIG - 2 8.3)
dt
with

[1] = [ila iz’ i3’ if, ig7 iD, 1Q]’

[)“] = [)“I’ }\'2’ )“3’ }\‘f’ )“g’ }\‘D’ )“Q]’

[vl = [vy, vy, V3, V4, 0, 0, O] (zero in last 3 components because g-, D-, and Q- windings are short-
circuited)
[R] = diagonal matrix of winding resistances R, R,, R,, R;, R, Ry, R, (subscript "a" for armature),

and by the flux-current relationship

L. L

h

11 12

Ly Ly ... Ly,

[A] = [L]1[i] with [L] = 8.4)

L, L L

Qr Tzttt T

To make the equations manageable, a number of idealized characteristics are assumed, which are reasonable for
system studies. These assumptions for the "ideal synchronous machine" [76, p. 700] are’:
1) The resistance of each winding is constant.
2) The permeance of each portion of the magnetic circuit is constant (corrections for saturation effects
will be introduced later, however).
3) The armature windings are symmetrical with respect to each other.
4) The electric and magnetic circuits of the field structure are symmetrical about the direct or
quadrature axis.
&) The self inductance of each winding on the field structure (f, g, D, Q) is constant.
6) The self and mutual inductances of the armature windings are a constant plus a second-harmonic
sinusoidal function of the rotor position 3 (second-harmonic component zero if saliency ignored),

with the amplitude of the second-harmonic component being the same for all self and mutual

3For a detailed design analysis of synchronous machines, many of these idealizations cannot be made. Since
they imply that the field distribution across a pole is a fundamental sinusoid, harmonics produced by the
nonsinusoidal field distribution in a real machine could not be studied with the ideal machine implemented in the
EMTP.
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inductances.
@) The mutual inductance between any winding on the field structure and any armature winding is a
fundamental sinusoidal function of the rotor position 3.
) Effects of hysteresis are negligible.
) Effects of eddy currents are negligible or, in the case of cylindrical-rotor machines, are represented
by the g-winding.
Then,

L, =L, + L,cos2p, similarforL,,, L.,
L, =1L, =M, +L,cos(2p -120°) similar for L
Ly =L, = M,cosp similar for L,, Ly
w = Lp; = M,,cosP similar for L, L., (8.5)
L,=L, =M,sinp similar for L,,, L,,
L, =L, = M,;sinf similar for L,,, Ly,

20’
Ly Loy Lips Log, My, M, constant  (not functions of p)

L

13> 723

L

DD oo

with {3 being the angular position of the assumed two-pole rotor relative to the stator (Bya = B pote-machine / P/2)>

which is related to the angular frequency,

_ dp
© = (8.6)

Some authors (e.g., Kimbark [101]) use a different sign for M, in Eq. (8.5). With the sign used here, the numerical
value will be negative.

The solution of the two systems of equations (8.3) and (8.4) is complicated by the fact that the inductances
in Eq. (8.4) are functions of time through their dependence on § in Eq. (8.5). While it is possible to solve them
directly in phase quantities*, most authors prefer to transform them from phase quantities to d, g, O- quantities
because the inductances become constants in the latter reference frame. This transformation projects the rotating
fluxes onto the field axis, from where they appear as stationary during steady-state operation. The transformation
was first proposed by Blondel, and further developed by Doherty, Nickle and Park; in North America, it is now often
called Park's transformation. The transformation is identical for fluxes, voltages, and currents, and converts phase

quantities 1, 2, 3 into d, q, 0- quantities, with quantities on the field structure remaining unchanged,
(A0l = [T1'[A]l  identical for [v], [i] (8.7a)

with

*If space harmonics in the magnetic field distribution had to be taken into account, then L, and L,, in Eq.
(8.5) would have added 4th, 6th, and higher harmonics terms, and L,; etc. would have added 3rd,
5th,...harmonics terms. In that case, solutions in phase quantities would probably be the best choice.
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gl = D Aps Agw A A Ay Ayl and

Remain unchanged

Qcosﬁ QCOS(B—12OO) QCOS(BHZOO) 0000

V3 V3 V3

Qsinﬁ Qsin(ﬁ—lZOO) Qsin(ﬁ+l20°) 0000O0

V3 3 V3

mt-| L L L 0000 (8.7b)

V3 V3 V3
0 0 0 1 000
0 0 0 0100
0 0 0 0010

| O 0 0 0001

Eq. (8.7) is an orthogonal transformation; it therefore follows that

[T] = [T]t;(lznsposed (8 8)

The matrices [T] and [T]"! are normalized here. This has the advantage that the power is invariant under
transformation, and more importantly, that the inductance matrix in d, q, 0- quantities is always symmetric. The
lack of symmetry with unnormalized quantities can easily lead to confusion, because it is often removed by rescaling
of field structure quantities which in turn imposes unnecessary restrictions on the choice of base values if p.u.
quantities are used. Authors who work with unnormalized transformations use a factor 2/3 in the first two rows of
Eq. (8.7b), and 1/3 in the third row. In many older publications the position of the quadrature axis is assumed 90°
ahead of the direct axis, rather than lagging 90° behind d-axis as here, and the second row of Eq. (8.7b) has
therefore negative signs there.

Transforming Eq. (8.3) to d, q, 0- quantities yields

—wkq

+0A,

Wigol = R liggol ~ 5yl + 8.9

o O O o O

which is almost identical in form to Eq. (8.3), except for the "speed voltage terms" -wA, and wA, (voltage induced
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in armature because of rotating field poles). They come out of Eq. (8.3) by keeping in mind that [T] is a function

of time,

(71 % {71 ol = %Mm] <1 {% [ﬂ} Pagol

Transforming Eq. (8.4) yields flux-current relationships which can be partitioned into two systems of equations for

the direct and quadrature axis, and one equation for zero sequence,

Ay L, Mdf M yp||ig
Af = Mdf Lﬁ MfD if (8.10a)
Apl My MfD Lpp|ip

where Mdf = ﬁMaf, M, = EMQD
V2 V2
)”q Lq ng MqQ iq
Ag = ng ng MgQ ig (8.10b)
)”Q MqQ MgQ LQQ iQ
where ng = ﬁMﬂg, MqQ = ﬁMaQ
V2 V2
and Ay = Lyi, (8.10c)

Most elements of these inductance matrices with constant coefficients have already been defined in Eq. (8.5), except
for

direct axis synchronous inductance Ly = L, - My + 3/2 L,

quadr. axis synchronous inductance L, = L, - M, - 3/2 L, (8.11)

zero sequence inductance L, = L, + 2M..

8.2 Determination of Electrical Parameters’

The assistance of S. Bhattacharya and Ye Zhong-liang in research for this section is gratefully
acknowledged.
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A set of resistances and of self and mutual inductances is needed in the two systems of equations (8.9) and
(8.10), which are not directly available from calculations or measurements. According to IEEE or IEC standards

[102, 103] the known quantities are

armature resistance R,
armature leakage reactance X,

Zero sequence reactance X,s
transient reactances Xy X'
subtransient reactances Xg" X"
transient short-circuit time constants T, T ',
subtransient short-circuit time constants T,", Tq“.

All reactances and time constants must be unsaturated values, because saturation is considered separately, as
explained in Section 8.6. This is the reason why short-circuit time constants are preferred as test data over open-
circuit time constants, because the measurement of the latter is influenced by saturation effects [104]. Fortunately,
one set of time constants can be converted precisely into the other set [104], as explained in Appendix VI in Eq. (VI.

14c) and (VI. 21),

X
TpTy =T/ Td”X—d (8.12)

for the direct axis, and identically for the quadrature axis by replacing subscript "d" with "q."

The number of known parameters is less than the number of resistance and inductance values in Eq. (8.9)
and (8.10), and some assumptions must therefore be made before the data can be converted. Since the procedure
for data conversion is the same for the direct and quadrature axis parameters, only the direct axis will be discussed
from here on.

Winding D is a hypothetical winding which represents the effects of the damper bar squirrel cage. We can
therefore assume any number of turns for it, without loss of generality. In particular, we can choose the number

of turns in such a way that

M, = M, (8.13a)
in Eq. (8.10a), and similarly
M, = M, (8.13b)

in Eq. (8.10b). Many authors represent the flux-current relationships with an equivalent star circuit, which requires
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all three mutual inductances in Eq. (8.10a) to be equal. This is achieved by modifying (rescaling) the field structure

quantities as follows:

Ap = ﬁk-)»f, and i, = ! I
V2 V3 i (8.14a)
2
M
with k= M“f (8.14b)
1D
(identical for Ay and ip,). Then Eq. (8.10a) becomes
}“d Ld Mm Mm id
)Lfm =M, LW M, ifm (8.15a)
}“Dm Mm Mm LDDm Z.Dm
with
M —3kM L —3k2L L —3k2L
m af? fm ~ “ff 2 DDm "~ DD (8.15b)
and
3 3
R, = E1<2Rf, R, = EkZRD (8.16)

Fig. 8.2 shows the equivalent star-circuit for the direct axis, with the speed voltage term and resistances added to
make it correct for Eq. (8.9) as well. Modifying the field structure quantities is the same as changing the number
of turns in the field structure windings. It does not influence the data conversion, but it is simpler to carry out if the
modified form of Eq. (8.15a) is used. The correct turns ratio is then introduced later from the relationship between
rated no-load excitation current and rated terminal voltage.

The best data conversion procedure seems to be that of Canay [104]. It uses the four equations which define
the open- and short-circuit time constants, as derived in Appendix VI.2, to find R, Rp,,, Ly, and Ly, ("m"
dropped in Appendix VI to simplify the notation). Usually, only one pair of time constants (either T,,', T4" or T,',
T,") plus X,', X" are known; in that case, the other pair must first be found from Eq. (8.12). Solving the four
equations for the four field structure quantities presupposes that the mutual inductance M, in Eq. (8.15a) is already

known. Its value has traditionally been found from leakage flux calculations. While turns ratios have been
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Fig. 8.2 - Equivalent circuit for direct axis with modified field structure quantities

unimportant so far, they must be considered in the definition of leakage flux, since it is the actual flux ¢, rather than
the flux linkage A = N¢ (N = number of turns) which is involved. In defining the leakage flux we must either use

actual flux quantities, or flux linkages with turns ratios of 1:1. The leakage flux linkage produced by i, is then

Ay = Lyiy, ~ Lyi,,  provided NgN, = 1:1 (8.17)

Let us assume that all field structure quantities are referred to the armature side, which implies N,:N; = 1:1 in the
original equations (8.4) with phase quantities, with the mutual inductance being M,; (cos f = 1.0 if magnetic axis
of phase 1 armature winding lined up with direct axis). After transforming to d, q, 0- quantities, the mutual

inductance in Eq. (8.10a) between d and f changes to v3/v2 M,,, which implies that the ratio is now NN, = v3/V2

af»
: 1. To convert back to a ratio of 1:1, the second row and column in Eq. (8.10a) must be multiplied with v3/v2,
which changes the mutual inductance to 3/2 M. Then the leakage flux linkage produced by i, with a 1:1 ratio

becomes

or for the leakage inductance,
L, =L 3 M
g~ Hd h (8.18)

Unfortunately, this equation is still not enough for finding M,, in the modified matrix of Eq. (8.15a) because of the

unknown factor k in Eq. (8.14b). To find k, an additional test quantity must be measured which has not yet been
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prescribed in the IEEE or IEC standards. It has therefore been common practice to assume k = 1, which implies
M, = M,;. With this assumption, the results for armature quantities will be correct, but the amplitude of the fast
oscillations in the field current will be incorrect, as pointed out by Canay [104] and others. Fig. 8.3 shows the
measured field current after a three-phase short-circuit [104], compared with EMTP simulation results with k = 1,

and with the correct value of k. Note that the "d-branch" in the star circuit of Fig. 8.2 is the leakage inductance only

if all quantities are referred to the armature

£ - S S S
SR B O S -
(p.u.) SO S S R L N N S
I AR A S AR A N
T R R R L T R
PP e A :'l:c‘ :lt:’l‘:" P
Y N A OV Y SRR \
SN PREE! A AW AL A i
Y A : " :
::: .\ g :‘
4.0 41 % 3 M >
VAR N S
2.0 - v
...... k= 1
-—==== correct k
field test
0.0 . : l - '
0.0 0.05 0.10 0.15 0.20

—_— t (3)

Fig. 8.3 - Field current after three-phase short-circuit [104]. Reprinted by permission

of IEE and the author
side and if k = 1. If the factor k is known, then the "d-branch" with field structure quantities referred to the
armature becomes Canay's "characteristic inductance"

3
Lo=Ly - kM,

(8.19)
The data conversion of the modified quantities on the direct axis can now be done as follows: If k is

unknown, assume k = 1, find M,, from Eq. (8.18),
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M, =L, - Ly (8.20a)

and realize that the fast oscillations in the field current will have a wrong amplitude, but the armature quantities will

be correct. If the characteristic inductance is known (which can be calculated from k), find M,, from Eq. (8.19),

Mm = Ld 7LC (820b)

and the fast oscillations in the field current will be correct. Then use the conversion procedure of Appendix VI.4
to obtain the field structure quantities R, Ry, Ly, Lpp, ("m" dropped in Appendix VI), which will be rescaled
according to Eq. (8.14). It is not necessary to undo the rescaling if one is only interested in quantities on the
armature side, because scaling of field structure quantities does not influence the armature quantities. If the
conversion was done with p.u. quantities, which will usually be the case, then multiply all resistances and inductances
with V_.;*/S,,.q t0 Obtain physical values (V,,., = rated line-to-line RMS armature voltage, S,,., = rated apparent

rated rated

power) for wye-connected machines, followed by another multiplication with a factor 3 for delta-connected machines.

The data conversion for the quadrature axis quantities is the same as that for the direct axis, except that one
does not have to worry about correct amplitudes in the oscillations of the current i,. This current cannot be
measured, because the g-winding is a hypothetical winding which represents eddy or damper bar currents. It is

therefore best to use k = 1 and

Mm(quadrature axis) - Lq B Lﬁ (820C)

on the quadrature axis.

Rather than undo the rescaling of Eq. (8.14) by using t = 1 / (vV3/v2 k) with the procedure described after
Eq. (8.22), it makes more sense to choose a factor t which introduces the correct turns ratio between physical values
of the armature and field structure quantities. To find this factor, we must look at the open-circuit terminal voltage
produced by the no-load excitation current i, - FOr open circuit, i; = iy = i, = 0, and, in steady-state operation,

dA,/dt = 0, which leads to

v =wM i

q m " fin

Since we know that the modified current must be t-times the actual current,

and since v, is equal to v3 ® V, s (assuming symmetrical voltages in the three phases), we can find t from

V3V
1= phe 8.21
oM i ( )

m “f-no load

with V.. = rated RMS line-to-ground voltage for wye connection, and line-to-line voltage for delta connection,

Itno10aa = rated no-load excitation current which produces rated voltage at the terminal.
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Sometimes the no-load excitation current is not known. Then any system of units can be used for the field structure.
One possibility is to set t = 1 (field structure quantities referred to the armature side). Another possibility is to say

that a field voltage |v,;| = 1.0 should produce the rated terminal voltage. Then

. vl 10
lffna load ~— "
Rf tzRfm
which, when inserted into Eq. (8.21) gives
oM,
t = — "
R (8.22)
‘/gvphase fm

Once t is known, the inductances are converted by multiplying the second and third row and column of the inductance
matrix in Eq. (8.15a) with t, and by multiplying R,,, and Ry, with t*. The quadrature axis inductances and resistances
are also multiplied with t or 2, respectively.

Sometimes, generators are modelled with less than 4 windings on the field structure (D-winding on the direct
axis missing, and/or g- or Q-winding on the quadrature axis missing). In such cases, the EMTP still uses the full
7-winding model and simply "disconnects”" the unwanted winding by setting its off-diagonal elements in the
inductance matrix to zero, and its diagonal element to an arbitrary value of WL = 1 Q. Its resistance is arbitrarily
set to zero. The inductances and resistances of the other windings on the same axis are calculated from Eq. (VI.4)

and (VL.5) (Appendix VI), e.g., for a missing g-winding,

M =0, M

2 w0=0, R, =0, L, =1

88

and

L., = , R, = > where M = L, - Ly

8.3 Basic Equations for Mechanical Part

There are many transient cases where the speed variation of the generator is so small that the mechanical
part can be ignored. Simulating short-circuit currents for a few cycles falls into that category. In that case, w in
Eq. (8.6) and in the other equations is constant, and the angular position 3 of the rotor needed in Eq. (8.7) and (8.9)

is simply
B = BO) + wr (8.23)
with  and w being angle and speed on the electrical side.
For other types of studies it may be necessary to take the speed variations into account. The simplest model
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for the mechanical part is the single mass representation as used in stability studies,

d? d
J?E + DF? = Tturbine B Tgen (8.24a)

and

i SN 8.24b

dr ( )
with = moment of inertia of rotating turbine-generator mass,
= rotor position,

speed

O e & <
Il

= damping coefficient for viscous and windage friction (linear dependence on speed is a
crude approximation),
Tuwine = torque input to turbine,
Tyen = electromagnetic torque of generator.

Eq. (8.24) is valid for quantities referred to the electrical or the mechanical side with the conversion from one to the

other being®

J

_ mech
@27
- P
Be;ﬂ 2 Bmech (825)

Jeﬂ

With voltages given in V, and power in W, the unit for the torque T becomes N ® m, for the damping coefficient
D it becomes Nem / rad/s and for the moment of inertia J it becomes kgm? (kg as mass).
Instead of the moment of inertia, the kinetic energy at synchronous speed is often given, which is identical

for the mechanical and electrical side,

1 2 1

E = 5 Jmech Wpecn = 5 Jegﬂ wzeﬁ (826)

The inertia constant h (in seconds) is the kinetic energy E (e.g., in k€Ws) divided by the generator rating S,,;,, (€.g.,

®Subscript "mech" is used for the mechanical side, and subscript "eX" for the electrical side.
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in kVA),

E
h=-— (8.27)

rating

The relationship between the inertia constant h and the acceleration time T, of the turbine-generator is

T,P

h = rating (8 28)
2§ rating
with Poing = rated power of turbine-generator (e.g., in MW),
Siating = rated apparent power of generator (e.g., in MVA).

A single mass representation is usually adequate for hydro units, where turbine and generator are close
together on a stiff shaft. It is not good enough, however, for thermal units, if subsynchronous resonance or similar
problems involving torsional vibrations are being studied. In such cases, a number of lumped masses must be
represented. Usually 6 to 20 lumped masses provide an adequate model’. The model in the EMTP allows any
number of lumped masses n > 1, and automatically includes the special case of n = 1 in Eq. (8.24). Each major
element (generator, high pressure turbine, etc.) is considered to be a rigid mass connected to adjacent elements by
massless springs. Fig. 8.4 shows a typical 7-mass model.

The shaft/rotor system is assumed to be linear, which is reasonable for the small amplitudes of typical
torsional vibrations. The n spring-connected rotating masses are then described by the rotational form of Newton's

second law,

. T . . . . T
Tturbl.ne 1 turbine 2 Ttuxblne 3 Tturbxne 4 Tturbme 5 gen exc

HP IP LPA LPB LPC GEN EXC

Fig. 8.4 - Mechanical part of a steam turbine generator with 7 masses (HP = high pressure
turbine, IP = intermediate pressure turbine, LPA, LPB, LPC = low pressure turbine stages A,
B, C, GEN = generator, EXC = exciter)

d? d
[J]E[G] + [D]E[e] +[KIO) = [T, pine] ~ [Typmenc] (8.29a)

and

"There are studies where the lumped mass representation is no longer adequate, and where continuum models
must be used.
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do

[E = [w] (8.29b)
where
[J] = diagonal matrix of moments of inertia (J,,...J; in Fig. 8.4),
[0] = vector of angular positions (0,,...0, in Fig. 8.4, with 0, = p),
[w] = vector of speeds,
[D] = tridiagonal matrix of damping coefficients,
K] = tridiagonal matrix of stiffness coefficients,
[Tuwine = vector of torques applied to the turbine stages (T, imee = 0 and T ey = 0 in Fig. 8.4),
[Teenrexe] = vector of electromagnetic torques of generator and exciter (components 1 to 5 = 0 in Fig. 8.4).

The moments of inertia and the stiffness coefficients are normally available from design data. The spring
action of the shaft section between masses i - 1 and i creates a torque which is proportional to the angle twist 6, ,-0,.
The proportionality factor is the stiffness coefficient or spring constant K; ;. This spring action torque acts in

opposite directions on masses i - 1 and i,

Tspring,#l = 7Tspring,i = I{ifl,i (eifliei) (830)

If these torques are included in Eq. (8.29), they create the term [K][0]. From Eq. (8.30) it can be seen that [K] has

the following form

(K] = Ky, KytKy, K,
_anl,n anl,n

Two damping effects are included with the damping coefficients, namely the self-damping D, of mass i
(mostly friction between the turbine blades and steam), and the damping D, , ; created in the shaft when the shaft

between masses i - 1 and i is twisted with the speed w, - w,;. The damping torque acting on mass i is therefore

b, do, do,_, b, db,., 8.31
Laamping = Pz * Povi 7 =47 | P g~ &30

From Eq. (8.31) it can be seen that [D] has the same structure as [K], except that the diagonal element is now D, | ;

+ Di + Di.i+l’
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It is very difficult to obtain realistic values for these damping coefficients. Fortunately, they have very little
influence on the peak torque values during transient disturbances. However, for estimating the low cycle fatigue one
must consider the damping terms, which, unfortunately until now, have often been derived from unsuitable models
[107]. The damping of torsional oscillations is measured by observing the rate of decay when the shaft system is
excited at one of its natural frequencies (modes). It is difficult to convert these modal damping coefficients into the
diagonal and off-diagonal elements of [D].

For the vector of turbine torques it is best to assume that the turbine power P, =weT remains

urbine turbine

constant. This implies that the torque decreases with an increase in speed, which is more reasonable than constant
torque because if the turbine were to reach the same speed as the steam (or water) jet the torque on the blades would
obviously drop to zero. It is possible to include the effects of the speed governor through TACS modelling, but
usually the time span of transient simulations is so short that the governor effects will normally not show up.

The vector of electromagnetic torques and the rotor position of the generator provide the link between the

equations of the mechanical and electrical part, with

p

emechfgen ) 5 - Be;ﬂ (8.32a)
Tmechfgen - %()\‘d iq B )‘q ld) (832b)
-v.i, + i’R
Tm@chfexc = % (8320)
mech

where it is assumed that (Eq. 8.29) is written for the mechanical side. If it is written for the electrical side, then the
conversion of Eq. (8.25) must be used. The term iR, in Eq. (8.32¢c) represents the losses incurred in the exciter
machine; the negative sign for v, comes from the source convention of Eq. (8.1). If there is no exciter machine, as
in the case of rectifier excitation systems, then mass no. 7 in Fig. 8.4 would obviously be deleted, and Eq. (8.32c)

would not be needed. T is not in the BPA EMTP.

mech-exc

8.4 Steady-State Representation and Initial Conditions

Transient studies with detailed turbine-generator models practically always start from power frequency
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steady-state conditions. The EMTP goes therefore automatically into an ac steady-state solution whenever the data
file contains turbine-generator models.

In some versions of the BPA EMTP, the machine is represented as a symmetrical voltage source at its
terminals. This approach is only correct if the generator feeds into a balanced network. In that case, the generator
currents are purely positive sequence. In an unbalanced network, there are negative and zero sequence currents,
which would see the generator as a short-circuit. This is incorrect, because generators do have nonzero negative and

In the M39 version of the BPA EMTP, the user can specify unsymmetrical

Zero *

zero sequence impedances Z,,, and Z
voltage sources at the terminals. This is still not good enough, however, unless the user adjusts the negative and zero
sequence components of the terminal voltage iteratively until V.., = -Z,. L., and V,,,, = -Z,, L., with L., L., being
the currents from the steady-state network solution. The UBC EMTP does include negative and zero sequence
impedances correctly, as explained next.

The negative sequence impedance can be calculated as part of the data conversion. Its imaginary part is very

close to

X+ X
~ 47 Tq (8.33)

neg 2

and this value can be used without too much error if the negative sequence impedance is needed for preliminary
calculations. The real part R, is larger than the armature resistance R, because of double-frequency circulating
currents in the field structure circuits; its value is difficult to guess, and is therefore best taken from the data
conversion. For calculations internal to the UBC EMTP, the correct values from the data conversion are always
=R, + kX

used. The zero sequence impedance Z is part of the input data, but its value becomes immaterial

Ze1r0 Zero

if the generator step-up transformer is delta-connected on the generator side and if the disturbance occurs on the line
side.
The positive sequence representation can be a voltage source behind any impedance, as long as it produces

the desired values for the terminal voltage V , and the current [,,.. Knowing only V  may require a preliminary

pos

steady-state solution with a voltage source V  at the terminal, to find [,,.. Then the value needed for the voltage

pos

source behind the impedance is

=V +ZI

source pos pos

Any value can be chosen for Z, but Z = Z,,, simplifies programming for the following reason: The EMTP solves
the network in phase quantities, and assumes that all phase impedance matrices are symmetric. Only Z = Z,., will
produce a symmetric phase impedance matrix, however. Changing the program to handle unsymmetric matrices just
for generators would have required a substantial amount of re-programming.

The generator positive sequence representation is then a voltage source behind Z,,, while the negative and

respectively (or zero voltage sources or short-

Zero?

Zero sequence representations are passive impedances Z,,, and Z

circuits behind Z,,, and Z

Zero.

). Converted to phase quantities, these 3 single-phase sequence representations become
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a three-phase symmetrical voltage source (E,", E,", E;") behind a 3 x 3 impedance matrix, as shown in Fig. 8.5(a),
with

ZS Zm Zm

zZ Z Z

m m s

@.,,+22,), Z,=-2,, ~Z,)

m 3 zero neg

To be able to handle any type of connection, including delta and impedance-grounded or ungrounded wye
connections, the voltage sources behind [Z] are converted into current sources in parallel with [Z], as indicated in

Fig. 8.5(b), with

- -1
I
|
Il [z
l L
|
. -l
(a) Thevenin equivalent circuit (b) Norton equivalent circuit

Fig. 8.5 - Turbine-generator representation for steady-state solution

Il El//
L| = (2] |E)” (8.35)
]3 E3//

This is done because the EMTP could not handle voltage sources between nodes until recently and even after such
voltage sources are allowed now, this Norton equivalent circuit is at least as efficient. For armature winding 1, the

internal voltage source is
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E/ - Viss + Zogg Lo (8.36)

with V., I, being the unnormalized positive sequence values. Unnormalized values are a more convenient input
form for the user, because with the unnormalized transformation of Eq. (8.38) the positive sequence values are
identical with the phase values V, and I, for armature winding 1 for balanced network conditions. For armature

windings 2 and 3, the internal voltages are

E/ = a*E/ and  E) =aE/ (8.37)

a =),

In the UBC EMTP, either V ,; and I, can be specified as input data, in which case E," is calculated from
Eq. (8.36), or E," can be specified directly. Specifying E," is not as unusual as it may seem, because short-circuit
programs use essentially the same generator representation (E" behind X,;"). If users want to specify active and
reactive power at the terminals, or active power and voltage magnitude, then the load flow option described in
Section 12.2 can be invoked, which will automatically produce the required V  and I.

The UBC EMTP connects the generator model of Fig. 8.5(b) to the network for the steady-state solution,
which will produce the terminal voltages and currents at fundamental frequency. For unbalanced network conditions,
this solution method is not quite correct because it ignores all harmonics in the armature windings and in the network.
Experience has shown, however, that such an approximate initialization is accurate enough for practical purposes.
Fig. 8.6 shows simulation results for a generator feeding into a highly unbalanced load resistance (R, = 1.0 Q, R,
= 1.0 Q, R, = 0.05 Q), with an initialization procedure which ignores the harmonics on the armature side, and
considers only the second harmonics on the field structure side, as discussed in Section 8.4.2. The final steady state
is practically present from the start. The mechanical part is totally ignored in the steady-state solution, because it

is assumed that the generator runs at synchronous speed. Again, for unbalanced conditions this is not quite correct

i (ka)

T

ANNAARAN
AVVVVUUY

0 50 100

Fig. 8.6 - Steady-state behavior of generator with highly
unbalanced load

because, in that case, the constant electromagnetic torque has oscillations superimposed on it which produce torsional
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vibrations whose effects are ignored.
After the steady-state solution at fundamental frequency has been obtained, the terminal voltages and

currents are converted to unnormalized symmetrical components to initialize the machine variables:

1 a a?||V,|, identical for currents (8.38)

(a = &), The inverse transformation is

(D U O L

v
Vil=11 a® a||Vys|, identical for currents (8.39)

neg

8.4.1 Initialization with Positive Sequence Values
If the positive sequence voltage is obtained as a peak (not RMS) phasor value |V |e"™, then from Eq.

(8.39),

pos|

V(1) = \pr| cos(f + ¥,

V() = |Vpos\ cos(r + v, - 120°) (8.40)

v = |V,

pos

| cos(or + v, + 120°)
Inserting these voltages into the transformation of Eq. (8.7) produces

3 .
Vd—pos(t) = % \pr| sm(ypw - 9)

VoposD) = %Vw COS(Y,,; ~ 0) (8.41)

where 0 is the angle between the position of the quadrature axis and the real axis for phasor representations (Fig.

8.7). This angle is related to the rotor position B, on the electrical side by

By = +8 + g (8.42)
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The positive sequence values v, and v, in Eq. (8.41) are dc quantities and hence do not change as a function of time;
the argument (t) can therefore be dropped. From Eq. (8.41) it is evident that v, and v, can be combined into a

complex expression
q-pos * ]Vdfpas - T = "pos (843)

with V. being the complex quantity \Vpos|e”"°5. While V. is a phasor of frequency w in the network solution
reference frame, V e in Eq. (8.43) becomes a dc quantity in the d, g-axes reference frame. Similarly,

By on

q-pos * jid*pos - ﬁ Ipas (8.44)

1

with I, being the complex current |I,,|e*** with respect to the real axis. With V,,  and I,

direct
axis

guadrature
axis

v
g-pos

5 15

real axis for network

phasor solution

Fig. 8.7 - Definition of &

known, we still need the angle & to find the d, g-values. To calculate 8, use Eq. (8.9) and Eq. (8.10), with i, =
i, =iy = 0, as well as dA,/dt = 0 and dA,/dt = O (no currents in damper windings and all d, g-quantities constant

in symmetrical operation with positive sequence values only),

vd*pos = 7Ra id*pos B (")Lqiquas (8453)

vq*pos - 7Ra iquas * (’)Ldidfpos * (")Mdfiffpas (845b)

Eq. (8.452) and (8.45b) can be rewritten as a complex equation relative to the quadrature axis
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vquos +jvd*pas = (Ra +j(")Lq) (iquas +jidfpos) * qupas (8450)

where E . is a quantity whose position on the quadrature axis is important, but whose magnitude

EWOS = (de - o)Lq) idfpw + o)Mdfiﬁpos

is immaterial here. By inserting Eq. (8.43) and Eq. (8.44) into Eq. (8.45¢), and by multiplying with (v2/v3)e®, all
dc quantities become phasors in the network solution reference frame again. The angle 0 is then obtained from the

phasor equation

V2 o _ :
EAV“”’“ e =V, + R, +joL), (8.46)

quadrature
axis

I
a pos

real axis for network

phasor solution

Fig. 8.8 - Calculation of angle &

With & known, the initial values vy ,,(0), Vg 05(0), 140s(0), ig05(0) are found from Eq. (8.43) and (8.44). As

q-pos

mentioned before, the remaining currents i, 1i,, i, are zero from the positive sequence effects, except for i;, whose

initial value is calculated from Eq. (8.45b),

v () +Ri (0)-wL,i, (0
. _ q-pos a q-pos d”d-pos
lfprS(O) - def (8'47)
I o5(0) is used to initialize v;
Vf*pos(o) -7 Rf if*pos(o) (8 48)
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The initial value of the torque produced by the positive sequence quantities is needed in the mechanical part.

It is calculated from the fluxes A, ,,(0) = Lyig0(0) + Mgy 05(0) and Ay, (0) = Lyig,,(0) as

Tgenfpos(o) = )“dfpos(o) iquas B )\‘quas(o) id*pos(o) (849)

The initial positive sequence torque can also be calculated from energy balance considerations (wT = power

delivered to the network + losses in the armature windings),

3 « 3
(L)Tgmfpw(O) = ERe{I v+ = |2Ra (8.50)

pos ' pos 9 "pos

(division by 2 because the phasors are peak values).

8.4.2 Initialization with Negative Sequence Values®
If the network is balanced in steady state, then there are no negative sequence values. This part of the

initialization can therefore be skipped if the negative sequence (peak) phasor current

Lo = 0] € (8.51)

neg

obtained from the steady-state solution is negligibly small.

Negative sequence currents in the armature windings create a magnetic field which rotates backwards at a
relative speed of 2w with respect to the field structure. Second harmonic currents are therefore induced in all
windings on the field structure, which the EMTP takes into account in the initialization. These second harmonic
currents induce third harmonics in the armature windings, which in turn produce fourth harmonics in the field
structure windings, etc. Fortunately, these higher harmonics decrease rapidly in magnitude. They are therefore
ignored. Calculating the field structure harmonics or order higher than 2 could be done fairly easily, but the
calculation of the armature harmonics of order 3 and higher would involve solutions of the complete network at these
higher frequencies. While the network solutions for harmonics may be added to the EMTP someday, this addition
does not appear to be justified for this particular purpose.

First, the negative sequence current must be defined on the direct and quadrature axis. By starting with the

negative sequence currents in the three armature windings,

i) = |Im,g\ cos(of + a,,.)
it) = \Ineg| cos(wrf + @, + 120°) (8.52)

i) = |Im,g\ cos(of + 0, - 120°)

The negative sequence currents in the BPA EMTP can be incorrect (see beginning of Section 8.4).
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these d, g-axes values are obtained through the transformation (8.7),

idfneg(t) = _g ‘Ineg| Sin(‘xneg +0 + 2(,\)[)

L.l cos(a,,, + & + 2wi) (8.53)

. 3
o = 2

While the positive sequence d, g-axes currents are dc quantities, the negative sequence d, g-axes currents are second

harmonics. This is important to keep in mind when we represent them with a phasor of frequency 2w,

3 ,
Lyvoe = £1 el (8.54)
q-neg neg .
2
with the understanding that
Ly _negD) = —Im i, g-neg e/2el)
iyneD) = Relly . e (8.55)

For the initialization of i, and ij, the negative sequence values at t = 0 from Eq. (8.55) must be added to the
respective positive sequence values from Eq. (8.44) to obtain the total initial values i,(0) and i (0). The negative
sequence d, g-axes voltages are not needed in the initialization, but they could be obtained analogously to the
currents.

The second harmonic currents in the field structure windings are found by using the d, g-axes phasor current
of frequency 2w as the forcing function. The procedure is outlined for the direct axis; it is analogous for the

quadrature axis. From Eq. (8.1),

. d . . .
vffneg = 7Rflffneg - E(Mdfldfneg * Lﬁ”lffneg * MfDlDfneg)

+M,,i +L

. d . .
VD -neg -7 RD lD -neg E (MdD ldfneg fD"f-neg DD lD fneg) (8 . 56)

The voltages on the left-hand side are zero because the damper winding is always shorted, and the dc voltage source
supplying the field winding is seen as a short-circuit by second harmonic currents. With zero voltages, and knowing

that all currents are second harmonics, Eq. (8.56) can be rewritten as two phasor equations
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Rpvj20ly  j2oMp |1 | [j20M, (8.57)
J20Myy Ry +j20L |y | [20M,,| 47 |

which are solved for the two phasors I, | Their initial values are found on the basis of Eq. (8.55) as

D-neg*

ieg®) = ~ Il )

inneg(O) = -Im {IDfneg} (858)

The value i;,,,(0) is then added to i, (0) from Eq. (8.47) for the total initial field current, whereas iy, ., (0) is already
the value of the total damper current.
and Iy

The phasor currents I

o neg for the quadrature axis are obtained analogous to Eq. (8.58), by replacing

neg

subscripts f and D with g and Q. Their initial values on the basis of Eq. (8.55) are then

i 0) = Rell,_}

gfneg( g-neg

Iy e® = Rell, ) (8.59)

which are the total initial values since the respective positive sequence values are zero.
The negative sequence phenomena produce torques which influence the initialization of the mechanical part.
Recall that the electromagnetic torque on the electrical side is A4, - A,i;. With both fluxes and currents consisting

of positive and negative sequence parts, the total torque can be expressed as the sum of three terms,
Tgen - Tgenfpos + Tgenfneg + Tgenfpos/neg (860)

The positive sequence torque was already defined in Eq. (8.49), and the negative sequence torque is

Tgen—neg B )\‘d—neg lq -neg

™ Agoneg baneg (8.61)

The third term

Tgenfpos/neg B }“dfposquneg + }“dfneg qupos B }“quosldfneg B }“qfneg ldfpos (862)

is an oscillating torque produced by the interaction between positive and negative sequence quantities, with an
average value of zero. That it is purely oscillatory can easily be seen since all positive sequence values in Eq. (8.62)
are constant, and all negative sequence values oscillate at a frequency of 2w. This and other oscillating terms are
ignored in the initialization of the mechanical part, where torsional vibrations are not taken into account.

The negative sequence torque of Eq. (8.61) consists of a constant part, which must be included in the
initialization of the mechanical part, and of an oscillating part with frequency 4w which is ignored. To find the

constant part, the fluxes are first calculated as phasors,
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Adfneg - Ldldqfneg + Mdflffneg + MdDIDfneg (8633.)

Aq*neg - Lq[dq*neg * nglg*neg - MqQIQ*neg (8.63b)

With the definition of Eq. (8.55) for the instantaneous values of currents and fluxes, and after some manipulations

of the equations, it can be shown that the constant part is

RelA Hmil } - Im{A JRell }

gen-neg-constant - average dg-neg average dg-neg

(8.64a)
with

average

(Adfneg * Aqfneg) (864b)

(SR

The oscillatory part is not needed, but could be calculated from

A -A
N - ;
Tgen*negfascillalory = Im {w qufneg eﬂw} (8.65)

Identical values for the constant part are obtained from energy balance considerations (wT = power delivered to
network + losses in all windings),

-R) + \If

-neg

PRy + Iy *R,
Iy e *Ry) (8.66)

gen-neg-constant 1 g-neg

*Rp + |

neg

1
wT - S 13, R

* ‘IDfneg

Because 3rd and higher order harmonics are ignored in the armature windings, and 4th and higher order
harmonics are ignored in the windings on the field structure, the initial torque values are not exact. They are good
approximations, however, as can be seen from Table 8.1. This table compares the values obtained from the
initialization equations with the values obtained from a transient simulation (Fig. 8.9), for the severely unbalanced
case described in Fig. 8.6. The constant torque from the initialization procedure is almost identical with the average
torque of the transient simulation (difference 1.6%). Fig. 8.9 further shows that the initial torque from Eq. (8.73)
can be quite different from the average torque. Table 8.1 also compares the values for the 2nd and 4th harmonics
(not needed in the initialization, though). The values for the 2nd harmonic agree quite well, but not the values for
the smaller 4th harmonic. This is to be expected, because the 4th harmonic torque is influenced by 3rd harmonic
currents in the armature windings, which are ignored in this initialization procedure. The average value in Fig. 8.9
lies not exactly halfway between the maximum and minimum values because the 4th harmonic is phase-shifted with

respect to the second harmonic.
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gen initial value
(Mnm) , from EQ. (8.73)

/

3 - — - - —f—{— — - - average
2.5 A

-2.5

0 50 100

—_—

t (ms)

Fig. 8.9 - Torque obtained with transient simulation for case described in Fig. 8.6

Table 8.1 - Electromagnetic torque for test case of Fig. 8.6 (At = 46.2963 us)

From Fourier Analysis
Between 80 ms and
100 ms (MNm) Relative Error
Torque Component From Equations (%)
(MNm)

pos = 2.953 from (8.49)
or (8.50)
average neg = 0.017 from (8.64)
or (8.66)

sum = 2.970 3.019 1.62

2nd harmonic 4.673 4.634 0.84

4th harmonic 0.262 0.517 49.32

8.4.3 Initialization with Zero Sequence Values’

The initial zero sequence values are easy to obtain, either from the d, q, O-transformation of Eq. (8.7), or

from the symmetrical component transformation of Eq. (8.38). Physically, both are the same quantities, except that

°The zero sequence currents in the BPA EMTP can be incorrect (see beginning of Section 8.4).
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the d, g, O-transformation is normalized and the symmetrical component transformation chosen in Eq. (8.38) is not.

Since the d, q, 0-quantities are normalized,

. 1. . .
i(0) = ﬁ(la(o) + 1,(0) + i(0) (8.67a)

or
iy0) = y3Rell, } (8.67b)

The zero sequence quantities do not produce any torque, and therefore do not influence the initialization of

the mechanical part.

8.4.4 Initialization of the Mechanical Part'
The links between the electrical and the mechanical part are the angle (3,,(0) from Eq. (8.42), which is
converted to the mechanical side with Eq. (8.25), and the electromagnetic torques T,,, and T,,. from Eq. (8.32).

For the generator torque, the constant part is

T, gen—constant =T, gen —pos(O) + T, gen-neg -constant (868)

on the electrical side, which is converted with Eq. (8.25) to the mechanical side. Since torsional vibrations coming
from the oscillating torques of Eq. (8.62) and Eq. (8.65) in unbalanced cases are ignored in the steady-state
initializations, the oscillating term is left off in Eq. (8.68). For the exciter torque, the oscillating terms are ignored
as well. Then,

wTexcfconsmnt - vffpos(o) iffpos(o) * ‘Iffneg ‘ 2 Rexc (869)

N =

with I; ., from Eq. (8.57).
Without torsional vibrations, the speeds of all turbine-generator masses are one and the same, and the

acceleration of each mass is zero. Then Eq. (8.29) simplifies to

[K] [e] - [Tturbine] B [Tgen/exc] B (“)[Dself] (870)

with w being the synchronous angular speed and [D,,] being the diagonal matrix of self-damping terms D,. The sum
of the turbine torques must, of course, equal the sum of the electromagnetic and speed self-damping torques, so that

there is zero accelerating torque initially,

Z Tturbinefi - Tgenfconstant + Texcfconsmnt +t W Z Di (871)

9The initial angles in the BPA EMTP can be incorrect in unbalanced cases, because the negative sequence
torques are not included in Eq. (8.68) and (8.69). If Table 8.1 is typical, these torques are very small, however.
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Eq. (8.71) is used to find the sum of the turbine torques first, and then to apportion the total to the individual stages

from the percentage numbers to be supplied in the input (e.g., 30% of torque in high pressure stage, 26% in

intermediate pressure stage, etc.). The right-hand side of Eq. (8.70) is then known, as well as the angle of the

generator mass from Eq. (8.32a). [K] is singular. Assume the generator to be mass no. k (with 0, known); then

the remaining initial angles may be found in 2 ways:

1) Multiply the diagonal element K,, with an arbitrary large number (e.g., 10%°), and reset the k-th right-hand
side value to this number times 0,. This will, in effect, change the k-th equation to variable 6, = specified
value of 6,. Then solve the system of linear equations (8.70), preferably with a subroutine for tri-diagonal

matrices (required in the time-step loop anyhow).

2 Starting to the left of generator mass k, find the angles of the lower-numbered masses recursively from
il
Y RHS
0,.,=06+ L, i=k,..1 (8.72a)
K

i-1,i

(RHS = right-hand side terms of Eq. (8.70)), and starting to the right of generator mass k, find the angles

of the higher-numbered masses recursively from

n
Y RHS
0. =0+ MT i=k,...n

ii+l

(8.72b)

These recursive equations are derived by summing up rows 1,...i, or by summing up rows i,...n in Eq.
(8.70); in either case, most terms on the left-hand side cancel out because of the special structure of [K], as shown
after Eq. (8.30).

While the oscillating terms of T, and T,,, are ignored in finding the initial angles of the mechanical part,
they must be included in initializing the electromagnetic torques for solving the differential equations in the time-step

loop. This is best done using
T oon-10a0) = A£0)1,(0) = A,(0)i,0) (8.73)
where the currents are

id(O) = id—pos(o) + id—neg(o)

i,(0)

iq —pos(O) * iq—neg(o)

and the initial fluxes are calculated from Eq. (8.10). Similarly,

(")Texcftaml(o) = vffpas(o) lf(o) * Rexc {lf(o)}z (874)
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where

10 = ir i (0) + ir,, (0)

8.5 Transient Solution

The numerical methods for the transient solution part are based on [13]. The basic idea is to reduce the
machine equations to a three-phase Thevenin equivalent circuit, similar to that of Fig. 8.5 for the steady-state
initialization. The equivalent circuit for the transient solution differs from Fig. 8.5 mainly in two aspects:

(a) The impedance matrix [Z] of Fig. 8.5 becomes a resistance matrix [R], after integrating the
machine equations (8.9) with the trapezoidal rule of integration, and after reducing the seven
equations for all windings to three equations for the armature windings.

(b) The sinusoidal voltage sources E" of Fig. 8.5 become instantaneous voltage sources which must
be updated from step to step.

The updating procedure for the voltage sources requires the prediction of certain variables from the known
solution at t - At to the yet unknown solution at t. Different prediction methods have been tried over the years, and
their behavior with respect to numerical stability has gradually improved. Some earlier versions of the TYPE-59
synchronous machine model produced too much numerical noise [131], but beginning with version M36, the
prediction methods are quite stable and the simulation results are fairly reliable now [132]. Further progress with
respect to numerical stability can only be achieved if the overall EMTP algorithm is changed from a direct to an

iterative solution in each time step.

8.5.1 Brief Outline of Solution Method
Assume that the solution at t - At is already known, and that the solution at t has to be found next. Then
the method works roughly as follows:
(D) Predict the generator rotor angle [3(t) (first predicted variable).
2) Apply the trapezoidal rule of integration to the R-L branches of Fig. 8.2, in the direct axis as well
as in the quadrature axis. Conceptually, this converts each R-L branch into an equivalent
resistance in parallel with a known current source, as indicated in Fig. 8.10(a) and (b). The zero

sequence consists of only one branch (Fig. 8.10(c)).
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ud(t-At)+ud(t)

, vf(t-At)+vf(t)
2

(a) d-axis

(4

s, _<_ \
(b) g-axis

(c) zero sequence

Fig. 8.10 - Resistive networks resulting from trapezoidal rule of integration (u = speed
voltages defined in Eq. (8.75))

3) Reduce the e- and g-axis resistive networks of Fig. 8.10 to one equivalent resistance in series with
one equivalent voltage source as shown in Fig. 8.11. For this reduction, assume that v(t) = vt -
At), which is exact if the excitation system is not modelled, or use some other prediction (e.g.

linear extrapolation).

(a) Direct axis (b) Quadrature axis (c) Zero sequence

Fig. 8.11 - Resistive networks
Unfortunately, the speed voltages

u, = —wkq
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u, = 0, (8.75)

at time t are also unknown, but since fluxes can never change abruptly, their values can be
predicted reasonably well. With predicted values for uy(t), u(t) and v(t) (2nd, 3rd and 4th
predicted variable), the reduction is straightforward. Conceptually, branches M, f, D for the d-axis
in Fig. 8.10(a) are paralleled, and then connected in series with the c-branch (analogous for the g-
axis).

4) Convert the 3 resistive Thevenin equivalent circuits for d, q, O-quantities to phase quantities. If
this were done directly, then the resulting 3 x 3 resistance matrix would be time-dependent as well
as unsymmetric. To obtain a constant, symmetric matrix, the equivalent resistances of the d- and
g-axis are averaged, as indicated in Fig. 8.12, and the "saliency terms" Ry-R, / 2 @ iy(t) and R-R,

/2 i (t) are combined with the voltage sources e, and e, into one voltage source.

+ - + -R
Re*Rq . RaRq Ra*Rg RRa
i i
2 d / 2 d q
- ="
1
4 | becomes becomes
! : one one
: ! source source
t
_____ J
o— o—
(a) direct axis (b) quadrature axis
R 1
oo
o— 4Y; r+---|--- -1
' !
I VIR
v e A B D equiv
o o

(c) zero sequence
(d) phase quantities

Fig. 8.12 - Modified resistive networks

This can only be done at the expense of having to use a predicted value for iy(t) and i (t) (5th and
6th predicted variable). After conversion to phase quantities, the d, q, O-networks become one

three-phase network, with three source voltages behind a symmetric, constant resistance matrix
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[Requiv]-

5) Solve the complete network, with the machine representation of Fig. 8.12(d). In the EMTP,
current sources in parallel with [R,,,;,] are used in place of voltage sources in series with [R,,,;,].

6) From the complete network solution in phase quantities, extract the generator voltages and convert
them to d, q, O-quantities. Calculate the armature currents in d, q, O-quantities and the field
structure currents, and use them to find the electromagnetic torques of the generator and exciter
from Eq. (8.32) at time t. Then solve the equations of the mechanical part.

@) Compare the predicted values of 3, uy, u,, iy, i, with the corrected values from the solution of step
(6), and repeat steps (6) and (7) if the difference is larger than the acceptable tolerance. When
returning to step (6), it is assumed that the terminal voltages in phase quantities remain the same.

®) Return to step (1) to find the solution at the next time step.

Some of the implementation details, which have been omitted from this brief outline, are discussed next.

Variations of the iteration and prediction methods are described in Section 8.5.4.

8.5.2 Transient Solution of the Electrical Part
Consider the equations for the direct axis first, which are obtained from rows 1, 4, 6 of Eq. (8.9) and from

Eq. (8.10a) as

v R | Le My M| digdr|
vl = -R{if|- M, Ly Mp||dijdr|+|o (8.76a)

0]  [Rillin] My My Lyylldiydr [0

with u, being the speed voltage from Eq. (8.75), or in short-hand notation,

bl = -[RIL] - (L] [g} - [l (8.76b)

Because of numerical noise problems in pre-M32 versions of the BPA EMTP, this equation is integrated with the

"damped trapezoidal rule" of Section 2.2.2"', with a damping resistance matrix [R,] in parallel with [L],

1+« 2
- = [L
|~ o At[] (8.77)

[R) -

where « is the reciprocal of the damping factor defined in Eq. (2.21). For o = 1 there is no damping, while o =
0 is the critically damped case. In the present version of the BPA EMTP, a default value of (1 + a)/(1 - «) = 100

is used.

UThe (unreleased) UBC version with synchronous machines uses the normal trapezoidal rule. By setting o
= 1 in the input, the BPA EMTP would use the normal trapezoidal rule as well.
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Applying the damped trapezoidal rule of Eq. (2.20) for v = L di/dt to Eq. (8.76), with v replaced by [u] -
[v] - [R][i], results in

[v(0)] = [w(@)] + [hist(c - Ar)] ~{[R] + % L1 [i®)] (8.782)
with the known history term
hist(t-Ad)] = (- a[R] + % L]} [iGc - AD)] - [z - AD] + afu(z - AD)] (8.78b)

At

Eq. (8.78a) described a voltage source [u(t)] + [hist(t - At)] behind a resistance matrix

(R = 1R+ 4% 1L 8.79)

Subscript "comp" is used because such equivalent resistive networks are called "resistive companion models" in
network theory [133].

For interfacing the synchronous machine equations with the network equations, the field structure quantities
are eliminated from Eq. (8.78). Dropping subscript "comp" and using subscripts d, f, D again, the field structure

currents can be expressed from the last two rows of Eq. (8.78a) with [R,,,,] from Eq. (3.79) as

-1 R

a
R

i{n)

ip(0)

Ry Ry, ]| [hist(t-An

hist (1-At)

v f(l)

0

i(0) (8.80)

RfD Ry dD

which, when inserted into the first row of Eq. (8.78a), produces a single equation for the d-axis,

V(1) = e, - R,if0) (8.81)

with the reduced companion resistance

R, R, ['|R
/o a
R, =R,_-[R, R, I (8.82a)
d dd ar Ttap
R Rpp| [Rap
the voltage source
e, = ut) + hist]“(t - Ap) (8.82b)
and the reduced history term
R, R, [!|histv(t)
histj = hist, - R, Ryl T L[ f (8.82¢)
Ry, Rpp hist
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By predicting the speed voltage uy(t) = -w()A(t), and by assuming that v(t) = v(t - At), the simple
resistive network of Fig. 8.11(a) is obtained, with a voltage source e, behind the companion resistance R;. If R < <

2L/At in all R-L branches of Fig. 8.10(a), then

2L//
R, ~ ¢

8.83a
TRy (8.83a)

Therefore, Eq. (8.81) essentially represents the trapezoidal rule solution of a voltage source behind the subtransient
reactance X,". In publications based on [13]. R, is called a,,.

If the dynamic behavior of the excitation system is to be simulated as well, then using v(t) = vt - At)
implies a one time-step delay in the effect of the excitation system on the machine. Such a delay is usually
acceptable, because At is typically much smaller than the effective time constant between the input and output of the
excitation systems. Alternatively, some type of prediction could be used for v(t).

The derivations for the g-axis are obviously analogous to those just described for the d-axis, and lead to the

single equation for the g-axis,
v, (0 =e, - R i () (8.84)
with the voltage source

e, = u0) + hist,"(t - Ap) (8.85)

Here, only the speed voltage u,(t) = w(t)A4(t) must be predicted because the voltage v (f) is zero. The g-axis
resistive network is shown in Fig. 8.11(b). Again, if R < < 2L/At in all R-L branches of Fig. 8.10(b), then

2L
R ~ 4 (8.83b)
T At
Therefore, Eq. (8.84) essentially represents the trapezoidal rule solution of a voltage source behind the subtransient
reactance X,". In publications based on [13], R is called a,,.

The equations for the zero sequence quantities (row 3 in Eq. (8.9) and Eq. (8.10c)) are also integrated with

the damped trapezoidal rule, which leads to

V() = histy(t ~ Aty ~ Ry iy(0) (8.86a)

with the companion resistance

(8.86b)

and the known history term
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histy(t - At) = (%LO - aRa) iyt~ AD) — avy(t-Ar) (8.86¢)

The zero sequence resistive network of Eq. (8.86a) with e, = hist,(t - At) is shown in Fig. 8.11(c). In publications
based on [13]. R, is called a;.

The reduced generator equations (8.81), (8.84) and (8.86a) can be solved in one of two ways:

(D) Find a three-phase Thevenin equivalent circuit (resistive companion model) for the network seen

from the generator terminals, and solve it together with the generator equations.

2) Add the reduced generator equations to the network equations, and solve them simultaneously.

The first approach was used in [98]. It has the advantage that iterations can easily be implemented for the
correction of predicted values. However, generator must be separated by distributed-parameter lines with travel time
for reasons of numerical efficiency, so that an independent three-phase Thevenin equivalent circuit can be generated
for each generator (otherwise, M generators would have to be interfaced with one 3 x M-phase Thevenin equivalent
circuit). If there are no such lines in reality, artificial stub-lines with T = At must be used to separate the generators.
This can result in incorrect answers. For this reason, the first approach has been abandoned in the EMTP.

With the second approach, there is no restriction on the number of generators connected to the network,
or even to the same bus. However, it does require the prediction of certain variables, which makes this approach
more sensitive to the accumulation of prediction errors. It is the only method retained in the present BPA EMTP,
and only this method is discussed here. To solve the generator equations with the network equations, the generator
resistive networks of Fig. 8.12 in d, q, 0-quantities must be converted to phase quantities, which produces a time-
dependent and unsymmetric 3 x 3 resistance matrix. To accommodate such matrices would have required a complete

restructuring of the basic (non-iterative) solution algorithm of the EMTP. Instead, an average resistance

R, = (R, + R)/2 (8.87)

is used on both axes. This requires "saliency terms" i,(Ry-R,)/2 on the d-axis and i(R-R,;)/2 on the g-axis, which
are added to the known voltage sources €4, €, by using predicted values for iy, i, (Fig. 8.12). For generators with
X" = X,", these saliency terms are practically negligible. For the IEEE benchmark model [74] with different values
of X;" = 0.135 p.u. and X" = 0.200 p.u., the companion resistances are R; = 3.5844 p.u. and R, = 5.3103 p.u.
for At = 200 ps. These values are practically identical with 2L;"/At = 3.5810 p.u. and 2L,"/At = 5.3052 p.u.,
as mentioned in Eq. (8.83). The voltage drop across the saliency terms (R4-R,)/2 would be 20% of the voltage drop
across (R;+R,)/2 with At = 200 ps.

With the average resistance of Eq. (8.87), the modified equations in d, q, 0-quantities become

vd(t) edfmod Rav id(t)
VD] = €, moa| - R, i(0 (8.882)
vy(0) e Ry||iy(®
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where

R,-R,

€imed = €q i0) (8.88b)

d~ q
g-mod eq + ) Zq(l)

)
|

(8.88¢c)

Predicted values i, i, are used in the last two equations, and the voltage sources behind resistances are then converted

into current sources in parallel with the resistances,

, 1
La-source = R_edfmod (8.89a)
av
. g
qusource - R_equod (8.89b)
av
1

€0-source R € (8 . 890)

Finally, the d, q, O-quantities are converted to phase quantities with a predicted angle [3(t), which produces a resistive

companion model with current sources

. 1]
cosf sinf} —
. 21,
llfsource \/17 ldfsource
iz—source = @ COS(B?leO) Sin(Bileo) s iq—source (890)
. 3 V2.
lesource 1 ZOfsource
cos(f+120°) sin(p+120°) —
V2,
and parallel with
Rs Rm Rm
[Requiv] = Rm RS Rm (8913.)
Rm Rm Rs
where
R =R, +2R,)/3, R,=(R,-R,)/3 (8.91b)

Since this model is identical with the resistive companion model of Eq. (3.8) for coupled inductances, generators are

interfaced with the network equations as if they were coupled inductances. The matrix [R,]" enters the nodal

equiv.
conductance matrix [G] of Eq. (1.8) once and for all outside the time step loop, while the parallel current sources
are updated from step to step.

After the complete network solution has been obtained at time t, the generator phase voltages are converted
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to d, q, 0-quantities,

Va cosp cos(B-120°) cos(B+120°)||V:

v|= @ sinfB sin(B-120°) sin(B+120°)||v, (8.92)
3

v 1y2 1y2 142 v,
and the armature currents are found from

id - (edfmod B vd)/Rav
iq - (equod B vq)/Rav (893)

iy = (e, =~ Vy)/R,

The field structure currents are recovered from Eq. (8.80) for the d-axis, and from an analogous equation for the
g-axis. Finally, the fluxes A,, A, are calculated from Eq. (8.10a) and (8.10b), and the electromagnetic torques from

Eq. (8.32), which are then used to solve the mechanical equations as described next.

8.5.3 Transient Solution of the Mechanical Part

The mechanical part is described by Eq. (8.29), which can be rewritten as

V] {%} + [Dllw] + [KT[O] = [T,,] (8.94a)

with the speeds of the system of masses

[w] = [d_ﬁ} (8.94b)

and the net torque
[Tner] - [ turbine] B [T gen/exc] (8940)

The torque [T,,.,] provides the only direct link with the electrical part, with another indirect link through 0, =
[ which had to be predicted to solve the electrical part.

Applying the trapezoidal rule (or central difference quotients) to Eq. (8.94a) and (8.94b) yields

1 el —EJ(I—AI)] + (p) @1+ [zw(l—At)] + [k 10OI [ze(t—Al)]
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T + [T (t-A
_ 11,0 im(f Nl (8.95)

and

[o®] + [w@-An] _ [6(] - [6¢ - A)]

) Ar (8.96)
Replacing [0(t)] in Eq. (8.95) with the expression from Eq. (8.96) produces
{%m - D] - %{K}}[wm] - [T, (0)] + [hist(t-Ao)]
(8.97a)
with the known history term
[hist(1-Ar)] = {%[J] -[D] - %[K]} [w(z-An] - 2[K][6(z-An]
+ [T, (1-An)] (8.97b)

Normally, it is assumed that the turbine power is constant. In that case, the torque on each mass i is

calculated by using predicted speeds w;,

turbine, i

Turbine.s = — (8.98)

If constant turbine torque is assumed, then Eq. (8.98) is skipped. With the turbine torques from Eq. (8.98), and with
the electromagnetic torques at time t already calculated in the electrical part, Eq. (8.97a) can be solved directly for

the speeds [w(t)]. The matrices

- 2oy - A - 2i-mpy- A
(Al = A /] + [D] 5 K] and [B] A V1 -1D] > (K]

are tridiagonal, and remain constant from step to step. They are triangularized once and for all before entering the
time step loop, with a Gauss elimination subroutine specifically written for tridiagonal matrices, which saves storage
as well as computer time. Inside the time step loop, the information in the triangularized matrix is used to apply the
elimination to the right-hand sides, followed by backsubstitution ("repeat solution," as explained in Section III.1).

It is worth noting that the form of Eq. (8.94) is the same as the system of branch equations for coupled R-L-

C branches. In that analogy, the matrix [J] is equivalent to a matrix [L] of uncoupled inductances, the matrix [D]
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to a matrix [R] of coupled resistances, and the matrix [K] to an inverse capacitance matrix [C]' of coupled

capacitances. [T,.] would be equivalent to the derivatives [dv/dt] of the applied branch voltages.

8.5.4 Prediction and Correction Schemes
The synchronous machine code in the EMTP has undergone many changes, especially with respect to the

prediction and correction schemes. The presently used schemes, as well as variations of it, are summarized here.

8.5.4.1 Prediction of w and [

The speeds of all masses are predicted with linear extrapolation,

[w®)] = 2 [w( - AD] - [w(-2A7)] (8.99)

Since the speeds change slowly, in comparison with the electrical quantities, this prediction should be accurate
enough. Predicted speeds are needed in two places, namely for the prediction of speed voltages (see Section
8.5.4.3), and for the calculation of turbine torques from Eq. (8.98). The accuracy of the predicted generator rotor
speed w,,, is more important because there is no speed voltage correction in the present iteration scheme. The
accuracy of the turbine rotor speeds prediction is less important, because the torque calculations Eq. (8.98) are
corrected in the iteration scheme of Section 8.5.1, if constant turbine power is assumed (default option in UBC
EMTP, only option in BPA EMTP). If constant turbine torque is assumed, then the turbine speed predictions are
not needed at all.

Fig. 8.13 shows the speed and the electromagnetic torque of a generator by itself (no turbine connected to
it), which runs unloaded at synchronous speed and is then switched into a resistance load at t = 0 [134] (data in
Table 8.2). The generator slows down very quickly in this case. The curves were obtained with the UBC EMTP
without iterations (no return from step 7 to 6 in Section 8.5.1), and verified with a 4th-order Runge-Kutta-Merson
method (agreement to within 4 digits). Both the UBC and BPA EMTP had bugs in the speed calculation, which were
not noticed before in cases of small speed changes. They were corrected after J. Mechenbier proved their existence
by using principles of energy conservation as suggested by H. Boenig and S. Ranade [134].

The angle P of the generator rotor must be predicted so that the d, q, O-networks of Fig. 8.12 can be
converted to phase quantities for the complete network solution in step 5 of Section 8.5.1. There is no correction
for this conversion in the present iteration scheme. The angle [ is also needed for converting the voltage solution
back from phase to d, q, O-quantities in step 6 of Section 8.5.1; here, corrected values are obtained from the solution

of the mechanical part if steps (6) and (7) are iterated.
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Fig. 8.13 - Speed and electromagnetic torque of an unloaded generator when switched
into a resistance load. (a) Speed, (b) Electromagnetic torque.

In the UBC EMTP, the predicted value for [3 is calculated from the predicted speed w,,, with the trapezoidal
rule of integration (8.96),

o) = B - A0 + Tl 0 - 4D + @y, @) (8.100)
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M36 and later versions of the BPA EMTP use a predictor formula suggested by Kulicke [135], which is based on

the assumption that 3 is a fourth-order polynomial of t,
B =a,+ar+ay*+ar’ +art (8.101)
By using three known values of {3 at t - At, t - 2At, t - 3At, and two known values of the speed

o - %F: —a, + 2a,t + 3ay? + da,r (8.102)

att - At, t - 2At, the coefficients a,,...a, can be found from the solution of 5 linear equations. This is a Hermite

interpolation formula and leads to the predictor formula [7; p. 184, P6 in Table 5.1]

B@) = -AP@-Ar) -B(-2A0)} + B(r-3A1) + 6AH w, (1-A1) + w,, (t-2A0)} (8.103)

gen gen

Table 8.2 - Generator test case no. 1 [134]

Ratings: 160 MVA (three-phase), 15 kV (line-to-line), wye-connected.
Reactances: Xy =17pu., X' =0.245p.u., X;" = 0.185 p.u.
X, = L64p.u., X" = 0.185 p.u. (no g-winding)

X, = 0.15p.u., X5, = 0.14 p.u.

Time constants: Ty = 5.9s, Ty,," = 0.03046 s
T," =0.075s
Resistances: R, = 0.001096 p.u.

R, = 10® Q in steady state (no effect; added because some versions
cannot handle isolated generator)

R4 = 1 Q after switching att = 0

Moment of inertia: J = 999.947 (N-m)s*. One pole pair.

Terminal voltage: V, = 12.247 &?'9" kV (peak) in steady state in phase 1 (symmetrical in 3
phases).

Step size At = 200 pus. f = 60 Hz

With coefficients ay,...a, known, a predictor formula for w,,, = df/dt for use in the speed voltages could be written

down with Eq. (8.102) as well,

Atw(@) = 14Are(1-Af) + 17 Atw(t-2A1) - 27 B(1-Af) + 24B(-2A7)

+ 3B(r-3A7) (8.104)
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The BPA EMTP uses the predicted speed from Eq. (8.99), though. It is not clear whether the 4th order predictor
of Eq. (8.103) is really superior to the predictor of Eq. (8.99).

8.5.4.2. Averaging of d- and g-Axis Companion Resistances

Instead of an average resistance (R; + R,_/2 in Fig. 8.12, the M39 version of the BPA EMTP uses R, on
both d- and g-axes. To compensate for this, a term (R-R;) ® i, is added to the voltage source on the g-axis, and no
compensating term is needed on the d-axes. Whether this method is better than the averaging procedure of Fig. 8.12

is unclear. Both procedures are special cases of a class of averaging methods discussed in [136].

8.5.4.3. Prediction of i, i,

The armature currents iy, i, must be predicted so that the saliency terms i;(R,-R,)/2 and i (R -R,)/2 can be
combined with the known voltage sources €, €, (Fig. 8.12). No correction is made for this in the present iteration
scheme. Note that the saliency terms are practically zero if X" = X;". In the UBC version and in BPA versions
until M32, the predicted currents i, i, are also used to find predicted speed voltages, as described in the next section.

In the UBC EMTP, linear extrapolation is used,

i(7) = 2i(t - Ar) - i(t - 240 (8.105)

Hin

where "i" is either i; or i;. The BPA version uses a linear three-point predictor formula which smoothes numerical

oscillations. With the current known at t - At, t - 2At and t - 3At as

i(t-2At)

-

-
i(t) (predicted)

i(t-34t)

Fig. 8.14 - Linear prediction with smoothing

indicated in Fig. 8.14, averaged values are first found at the two midpoints by linear interpolation

it -2t ap - =340 +it-2A0
2 2
it - I%At) _ =240 . i(t - Ap)

Then a straight line is drawn through the two midpoints, with a slope of
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i(t - Ar) - i(t - 3A0)

slope =
P 2 At

to predict the current i(t),

oy~ S an L 3.
i(r) = 4z(t Ar) 2z(t 2Ar) 4z(t 3A1) (8.106)

This linear prediction with smoothing is conceptually similar to fitting a straight line through three points in the least
squares sense. Such a straight line least square fitting would have the same slope, but a value at t - 2At of {i(t - 3At)
+ i(t - 2At) + i(t - At)}/3 instead of {i(t - 3At) + 2i(t - 2At) + i(t - At)}/4 in Fig. 8.14, which would yield a

predictor

i) = %i(r—At) . %i(z—2At) - %i(t—3At) (8.107)

Which predictor performs best is difficult to say. All predictor formulas discussed in this section depend
solely on past points, and not on the form of the differential equations for iy, i,. Eq. (8.76), and an analog equation
for the g-axis, were tried at one time as Euler predictor formulas, but they performed worse than the predictors
discussed here. It might be worth exploring other predictor formulas, because the accuracy of the solution depends
primarily on the prediction of i, i,, especially if the speed voltages are calculated from iy, i, as well, as discussed
in the next section. One could use Eq. (8.103), for example, by replacing [} with i and w with di/dt calculated from
Eq. (8.76).

Fig. 8.15 shows the current in phase 1 after a three-phase short-circuit of a generator with unrealistically
low armature resistance R, = 0.0001 p.u. The data for this case is summarized in Table 8.3. Since speed changes

were ignored, the only predicted values are iy, ij, as well as speed voltages in the BPA EMTP.
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Fig. 8.15 - Current in phase 1 after a three-phase short-circuit. R, = 0.0001 p.u.
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Table 8.3 - Generator test case no. 2

Ratings: 400 MVA (three-phase), 18 kV (line-to-line), wye-connected
Reactances: X;=0.92p.u., X;' =0.18 p.u., X;" = 0.161 p.u.

X, =0.748 p.u., X" = 0.161 p.u. (no g-winding)

X, = X, = 0.082 p.u.

Time constants: Ty = 6.6s, T,," =0.05s
To" =0.05s
Resistances: R, = 10 p.u. (unrealistically low value)

R, = 10° p.u. (more realistic value)

R = 1 Q

Moment of inertia: J = « (constant speed)

Terminal voltage: V, = 4.926 ¢7*"" kV (peak) in steady state in phase 1 (symmetrical in
3 phases).

Step size At = 200 ps. f = 60 Hz

Disturbance: Three-phase short-circuit at terminals att = 0

In such a case with low damping, the errors caused by the prediction do accumulate noticeably if the simulation runs
over 5000 steps to t,,, = 1 s. The errors are decreased if the complete network solution is iterated (not yet available
as an option in the production codes of the EMTP). For comparison purposes, the exact solution is shown as well,
which was found for i, i, with the eigenvalue/eigenvector method discussed in Appendix I.1, and then transformed
to phase quantities with p from Eq. (8.23). Fig. 8.16 shows the results if the armature resistance is changed to a

more realistic value of R, = 0.001 p.u. As can be seen, the answers are now closer to the exact solution.

8.5.4.4. Prediction of Speed Voltages

Starting with M32 of the BPA EMTP, the speed voltages ug, u, of Eq. (8.75) are predicted in the same way
as iy, i, with Eq. (8.106). In some of these versions, the prediction was done in a synchronously rotating reference
frame, and then converted directly to phase quantities without going through d, q-axes parameters. This has been
abandoned in Feb. 1986, and the speed voltages are now again predicted in d, g-quantities because the latter turned

out to be superior when applied to test case no. 1 of Table 8.2.
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In pre-M32 versions of the BPA EMTP, and in the (unreleased) UBC version with synchronous machines,
the speed voltages u, = -wA, and u, = wA, are not predicted explicitly. Instead, the predicted currents iy(t), i,(t)

and the predicted speed w,,,(t) are used to calculate the speed voltages from Eq. (8.10a) and (8.10b). The field

gen

structure currents appearing in these equations are expressed as a function of iy with Eq. (8.80), which leads to the

expression

A = L") + Ay, (8.108)

with the known reduced inductance

R, R ['R
Ldreduced _ Ld _ [Ldf LdD] ) o 4 (8109)
Rp Rop| R
and the known flux A, for zero current (i; = 0),
R. R, ['|hist-v ()
Moo = [Ldf Ll row f f( (8.110)
Ry, Rpp hist

The reduced inductance L /"¢ is practically identical with L," if R < < 2L/At. For the IEEE benchmark model
[74] with At = 200 ps, wL; = 0.135129 p.u. compared to wL,;" = 0.135 p.u. In publications based on [13],

oL is called -a,, and oL, is called a,,.

8.5.4.5. Iteration Schemes

Up to now, the complete network solution is direct, without iterations. The iteration scheme of Section
8.5.1 does not repeat the network solution, and predicted values are therefore never completely corrected. There
is only one exception, namely the three-phase short-circuit at the generator terminals with zero fault resistance. In
that case the terminal voltages are always zero, and going back to step 6 in the iteration scheme of Section 8.5.1
should be a complete correction of all predicted values.

It is doubtful whether the predictors can be improved much more. Further improvements can probably only
be made if the network solution is included in the iterations as well. This could be a worthwhile option, not only

for machines, but for other nonlinear or time-varying elements as well.

8.6 Saturation

Saturation effects in synchronous machines can have an influence on load flow, on steady-state and transient
stability, and on electromagnetic transients. While transformer saturation usually causes more problems than
machine saturation (e.g., in the creation of so-called "temporary overvoltages"), there are situations where saturation
in machines must be taken into account, too.

To model machine saturation rigorously is very difficult. It would require magnetic field calculations, e.g.
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by finite element methods [181], which is already time-consuming for one particular operating condition, and
practically impossible for conditions which change from step to step. Also, the detailed data for field calculations
would not be available to most EMTP users. An approximate treatment of saturation effects is, therefore, commonly
accepted. The modelling of saturation effects is discussed in four parts,

(a) basic assumptions,

(b) saturation effects in steady-state operation, and

(c) saturation effects under transient conditions, and

(d) implementation in the EMTP

8.6.1 Basic Assumptions

The data which is normally available is the "open-circuit saturation curve" (Fig. 8.17), which shows the
terminal voltage as a function of the field current for open-circuited armature windings (no-load condition). In the
transient simulation, a flux-current relationship is required, rather than V = f(i;). This is easily obtained from Eq.

(8.9), which becomes

<
Il

g = OXy (8.111a)

(can be re-labelled as flux)

1.2 4
1.0 4

0.5 4

*f-no load
Fig. 8.17 - Open-circuit saturation curve

for balanced, open-circuit steady-state conditions, where both A, and the transformer voltages dA/dt, dA/dt are zero.

Since v, is equal to V3V gy, this equation can be rewritten as
VBV s = ©A, (8.111b)

where V| zys is the RMS terminal voltage of armature winding 1 (line-to-ground RMS voltage for wye-connected
machines). It is therefore very simple to re-label the vertical axis in Fig. 8.17 from voltage to flux values with Eq.
(8.111).

The saturation effects in synchronous machines do not produce harmonics during balanced steady-state
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operation, because the open-circuit saturation curve describes a dc relationship between the dc flux of the rotating
magnets (poles) and the dc field current required to produce it. The magnitude of the dc flux determines the
magnitude of the induced voltages in the armature, while the shape of the flux distribution across the pole face
determines the waveshape of the voltage. If the distribution is sinusoidal, as assumed in the ideal machine
implemented in the EMTP, then the voltage will be sinusoidal as well. In reality, the distribution is distorted with
"space harmonics," and it is this effect which produces the harmonics in synchronous machines.

There are many different ways of representing saturation effects [182], and it is not completely clear at this
time which one comes closest to field test results. More research on this topic is needed. At this time, the
representation of saturation effects in the EMTP is based upon the following simplifying assumptions:

1. The flux linkage of each winding in the d- or g-axis can be represented as the sum of a leakage flux (which
passes only through that winding) and of a mutual flux (which passes through all other windings on that axis

as well), as illustrated in Fig. 8.18,

a0 Ay, (8.112)

where

Ay = leakage flux unaffected by saturation,

A,, = mutual flux subjected to saturation effects.
In reality, the leakage fluxes are subjected to saturation effects as well because they pass partly through iron
[180], but to a much lesser degree than the mutual flux. Saturation effects are therefore ignored in the leakage
fluxes. The data is not available anyhow if only one saturation curve (open-circuit saturation curve) is given.
In terms of equivalent circuits, this assumption means that only some of the inductances are nonlinear (shunt
branch in star point in Fig. 8.2), while the others remain constant.

2. The degree of saturation is a function of the total air-gap flux linkage A,

A = ) (8.113a)

with
Mow = v * Ponga (8.113b)

and
)“mdfu - Mdu(id * Z.f * ZD) ’ A‘mqm - Mqu(iq * Z.g * lQ) (81130)
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mutual
flux A
m

Fig. 8.18 - Leakage fluxes and mutual flux

where subscript "m" indicates mutual, and "u" indicates unsaturated values. In Eq. (8.113c) it is important to

use the proper mutual inductances for the representation of the mutual flux. This leads back to the data

conversion problem discussed in Section 8.2. If Canay's characteristic reactance X, is not known, then assume

k = 1 in Eq. (8.14b), and use

from Eq. (8.20a) and (8.20c). In,this case, the equivalent star circuit of Fig. 8.2 shows the correct separation
Ag}iufied_el‘g’ %Zufgq_ggﬂ

into the mutual inductance M,, = M,, or M, for the mutual flux (subject to saturation) and into the leakage
inductances for the leakage fluxes (linear d-, f-, and D-branches). If Canay's characteristic reactance is used,
then Fig. 8.2 can no longer be used, as explained in Section 8.6.5.

Only one flux, namely the total air-gap flux, is subjected to saturation. The saturated mutual fluxes A4, A,

on both axes are found from their unsaturated values by reducing them with the same ratio (similar triangles

in Fig. 8.19),

A A

Mwd = Ppgn s Ay = A (8.114)

m-u m-u
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This assumption is based on the observation that there is only one mutual flux, which lines up with the pole axis

if A, is very small, and which will shift to one side of the pole as A,,, increases (Fig. 8.20).

\
RELD et
N

i) COMBINED CURRENTS

(a) flux from i; alone (A, = 0) (b) flux from i; and stator currents A, # 0

'mq

Fig. 8.20 - Flux in turbogenerator [181]. © 1981 IEEE

4. Saturation does not destroy the sinusoidal distribution of the magnetic field over the face of the pole, and all
inductances therefore maintain their sinusoidal dependence on rotor position according to Eq. (8.5).

5. Hysteresis is ignored, while eddy currents are approximately modelled by the g-winding, and maybe to some
extent with the D- and Q-windings. More windings could be added, in principal, to represent eddy currents

more accurately.

8.6.2 Saturation in Steady-State Operation

At this time, the saturation effects are only modelled correctly in the ac steady-state initialization if the
terminal voltages and currents are balanced. More research is needed before saturation can be represented properly
in unbalanced cases.

As explained in Section 8.4, the initialization of the machine variables follows after the phasor steady-state
solution of the complete network. The initialization for balanced (positive sequence) conditions is described in detail
in Section 8.4.1, and only the modifications required to include saturation effects will be discussed here.

The nonlinear characteristic of Fig. 8.17 makes it impossible to use the initialization procedure of Section
8.4.1 in a straightforward way. To get around this problem, it is customary to use an "equivalent linear machine"
in steady-state analysis which gives correct answers at the particular operating point and approximate answers in the
neighborhood. This equivalent linear machine is represented by a straight line through the operating point and the
origin (dotted line in Fig. 8.21). Whenever the operating point moves, a new straight line through the new operating
point must be used.

The concept of the equivalent linear machine is used in the EMTP as follows.

1. Obtain the ac steady-state solution of the complete network. From the terminal voltages and currents of the
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machine (positive sequence values), find the internal machine variables with the method of Section 8.4.1.

Assume that the machine operates in the unsaturated region at this time.

air gap
line

equivalent
linear machine

0 m

Fig. 8.21 - Linearization for steady-state analysis

Determine the total magnetizing current

M 2
i, = J(idJrieriD)z + [ W) (l},”'g*l'Q)Z (8.115a)
Mdu

with iy, i, i, being zero for balanced conditions. Eq. (8.115) assumes turns ratios of N;:N;:N,, = 1:1:1 (same

for quadrature axis). If any other turns ratios are used, the first term would be

My i,y = My, iy + My i+ My, 1 (8.115b)

and the second term

Moty = My, iy + My iy + Myy i (8.115¢)
with
My i, = (Myi,0" + (M, i,)° (8.115d)

Find the operating point on the nonlinear characteristic of Fig. 8.21. If this point lies in the linear region, then
the initialization is complete. Otherwise:

Calculate the ratio K from Fig. 8.21,
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(8.116a)

>
I

:n‘hx

Ol

and multiply the unsaturated mutual inductances with that ratio to obtained the saturated values of the equivalent

linear machine,

M,-K-M,: M, -K-M, (8.116b)

Use these values to repeat the initialization procedure of Section 8.4.1. Then re-calculate the magnetizing
current from Eq. (8.115). If it agrees with the previously calculated value within a prescribed tolerance, then
the initialization is finished. If not, repeat step 3. Convergence is usually achieved with 1 to 2 iterations of
step 3.

In the BPA EMTP steady-state solution, machines are now represented as voltage sources at the terminals,
and the terminal currents are obtained from that solution. With terminal voltages and currents thus known, their
positive sequence components can be calculated and then used to correct the internal variables for saturation effects.
Since this correction does not change the terminal voltages and currents, the complete network solution does not have
to be repeated in step 3.

This will also be true in future versions of the EMTP, where the machine will be represented as symmetrical
voltage sources behind an impedance matrix. Again, the terminal voltages and currents and their positive sequence
components will be known from the steady-state solution.

In unbalanced cases, the present representation will produce negative sequence values, while the future
representation will produce correct values. How to use these negative sequence values in the saturation corrections
has not yet been worked out. Since they produce second harmonics in the direct and quadrature axes fluxes, it may
well be best to ignore saturation effects in the negative sequence initialization procedure of Section 8.4.2 altogether.

The equivalent linear machine produces correct initial conditions for the different model used in the transient
simulation, as can easily be verified if a steady-state solution is followed by a transient simulation without any

disturbance.

8.6.3 Saturation under Transient Conditions

The equivalent linear machine described in Section 8.6.2 cannot be used in the transient solution, because
the proper linearization for small disturbances (as they occur from step to step) is not the straight line 0-C in Fig.
8.21 ("linear inductance"), but the tangent to the nonlinear curve in point C ("incremental inductance").

The saturation effect enters the transient solution discussed in Section 8.5 in two places, namely through
the speed voltages and through the transformer voltages. Consider the direct axis equations (8.76) first, which can

be rewritten as
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Ayq M *wlgﬂq *(J\)Amq
. d d
- R - 2y - 4 N (8.117)
[v] [R][7] a1 al | 0 0
A A 0 0

<D 'md.

for the d, f, D-quantities if each flux linkage is separated into its leakage flux and the common mutual flux,

Ay = Agq + Ay
}\.f = )“gff + )“md (8.118)
Ap = Agp * Ay

assuming turns ratios of Nyg:N;:N;, = 1:1:1 (analogous for quadrature axis). Only the terms with A4 and A, in Eq.
(8.117) are influenced by saturation, and only those terms are therefore discussed.

Consider first the speed voltage term -wA,,, in Eq. (8.117), which is properly corrected for saturation by
simply using the correct saturated value A,,,. The saturation correction has already been described in Eq. (8.114),
and is conceptually the same as the one used in Eq. (8.116) for the steady-state solution. Since the transient solution
works with predicted values of speed voltages wA, and wA,, as explained in Section 8.5.4.4, they are used directly
in Eq. (8.117) (not split up into two terms).

Next consider the transformer voltages -[dA,,/dt] in Eq. (8.117), where incremental changes ("incremental
inductances") are important. By using the tangent of the nonlinear characteristic in the last solution point, one can

linearize the flux-current relationship to

A = Moo * Mjopey, (8.119)
Xm slope=
T ,Mdu _ ”.2/ 510pe=Mslope
/ —
‘ solution at t-At
Aknee

Fig. 8.22 - Linearization around last solution point

with M, . being an incremental inductance (Fig. 8.22). This equation can be used over the next time step, because

slope
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the fluxes change only very slowly with typical step sizes of 50 to 500 us. In the EMTP implementation, the
problem is even simpler because the saturation curve is represented as a two-slope piecewise linear curve. In that
case, the linearization of Eq. (8.119) changes only at the instant where the machine goes into saturation, and at the

instant when it comes out again. With Eq. (8.113) and (8.115), the unsaturated total flux is
)“mfu - Mdu lm (8120)
which, inserted into Eq. (8.119), produces

)“m - )\‘knee * b}“mfu (81213)

with the ratio between incremental inductance M, and linear (unsaturated) inductance M,

slope

b = M slope

Mdu

(8.121b)

After saturation has been defined for the total flux, it must be separated into d- and gq-components again.

With assumption (3) from Section 8.6.1, and with Fig. 8.19,

}“mq - }“kneefq + b}“mqfu (81223)

where

A = AioeCOSP; A = ApeSinP; B = tant(A, /A, )

knee-d knee-q mq-u

(8.122b)
If Eq. (8.117), and the analogous equation for the quadrature axis, are solved with the trapezoidal rule of

integration, then the transformer voltage term affected by saturation,

v, ] = -d,)ld

is transformed with Eq. (8.122) into

01 = =22 (01 = V(8 - A0)

—é{[ka,da)] - DAy fC-AD) — [, (t-AD)] (8.123)

This equation shows how the transformer voltages must be corrected for saturation effects:

(a) multiply all mutual inductances by the factor b, and
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(b) add correction terms to account for the variation of the knee fluxes [A,...q], and [A .|
8.6.4 Implementation in the EMTP

Saturation effects were modelled for the first time in the M27 version of the BPA EMTP, based on the
concept of two independent saturation effects, one in the direct axis and the other in the quadrature axis. This was
replaced with a newer model in the M32 version, which was essentially the model discussed here. It was not quite
correct, however, because the correction terms in Eq. (8.123) related to the knee fluxes were not included. The
model described here was implemented for the first time in the DCG/EPRI version to be released in 1986.

The open-circuit saturation curve is approximated as a two-slope piecewise linear characteristic (0-1 and
1-2 in Fig. 8.22). The number of linear segments could easily be increased, but a two-slope representation is usually

adequate.

8.6.4.1 Steady-State Initialization

The initialization procedure is only correct for balanced networks at this time. The extension to unbalanced
cases is planned for the future. Until this is done, some transients caused by incorrect initialization can be expected
in unbalanced cases. Hopefully, they will settle down within the first few cycles.

The initialization follows the procedure of Section 8.6.2. For the reactances X, X,» which consist of a

constant leakage part and a saturable mutual part,

X, =X, + oMy X, = X, + oM, (8.124)

unsaturated values M, M, are first used to obtain the internal machine variables with the method of Section 8.4.1.
If the resulting magnetizing current lies in the saturated region, then the mutual reactances M;, M, in Eq. (8.124)
must be corrected with Eq. (8.116). The calculation of the internal machine variables is then repeated with saturated
reactances one or more times, until the changes in the magnetizing current become negligibly small.

With the two-slope piecewise linear representation implemented in the EMTP, the ratio K needed in Eq.

(8.116) is

K = Mslope lm + )\‘knee

M, i

du"m

(8.125)

with the meaning of the parameters shown in Fig. 8.22, and with i, calculated from Eq. (8.115).

8.6.4.2 Transient Solution
Saturation effects in the time step loop are modelled according to Section 8.6.3. The coefficient b of Eq.

(8.121b) is set to 1.0 in the unsaturated region, and to M,../M,, in the saturated region. Whenever the solution

slope!
moves from one region into the other, it is reset accordingly.
This coefficient b affects the values in the equivalent resistance matrix [R.,,,] of Eq. (8.91a) and in the

history term matrix of Eq. (8.82c). To include this coefficient, the inductance matrix of Eq. (8.76) is split up into
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md-u md-u md-u <Ld

[L] =D Lmdfu Lmdfu

™~

(8.126)

md-u <f

™~
™~

md-u md-u md-u <D

(analogous for quadrature axis). Whenever b changes, [L] is recalculated and then used to recalculate [R.,,] and
the history term matrix of Eq. (8.82c). With the two-slope representation implemented in the EMTP, there are only
two values of b, and the matrices could therefore be precalculated outside the time step loop for the two values of
b = 1and b = M,

of Eq. (8.18), however, which contains [Requiv]’I and therefore changes whenever the machine moves into the

/My,. The major effort lies in the re-triangularization of the network conductance matrix [G]

saturated region, or out of it.

An additional modification is required in the calculation of the history terms with Eq. (8.78b). As shown
in Eq. (8.123), the knee fluxes A,..(t) and A, (t - At) must now be included. Since the trapezoidal rule of
integration is not very good for the calculation of derivatives, the knee fluxes are included with the backward Euler
method. First, the knee fluxes A, 4(t) and A, (1) are predicted, using the three-point predictor of Eq. (8.106).
Then the trapezoidal rule expression

2
E {[}“kneefd([)] B [}“kneefd([ B Al)]}

is replaced with the backward Euler expression

i{[li,ﬁi‘f;”(t)] = [Ayep o = ADD (8.127)

and the voltage term [v,4(t - At)] is replaced by a voltage term which excludes the knee flux.

8.6.5 Saturation Effects with Canay's Characteristic Reactance

If saturation is ignored, then it does not matter whether Canay's characteristic reactance is used or not,
because it only affects the data conversion part. With saturation included, however, the nonlinear inductance can
only be identified as the shunt branch M,, in Fig. 8.2 if k = 1 in Eq. (8.14b). If Canay's characteristic reactance
is known, then k = 1. This factor k must then be removed again from the rotor quantities in Eq. (8.15a), by

multiplying the second and third row and column with its reciprocal value,

W
1
~.
W

cM cM

N leM. L, M (8.128)

i
E3
o

M, c*M, c’L

DDm

S
B
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where

(8.129)

x|

and where M, L, and L, are the modified parameters straight out of the data conversion routine of Appendix
VI1.4. As explained in the text between Eq. (8.17) and (8.18), the factor v3/v2 in Eq. (8.128) is needed to produce
turns ratios of Ny:Ni:Np = 1:1:1. Only with turns ratios of 1:1 can the fluxes be separated into their main and
leakage parts. The circuit of Fig. 8.23, which is equivalent to Eq. (8.128), has the correct separation into the mutual

inductance cM,, = 3/2 M,; subjected to saturation (for the mutual flux), and into the linear leakage

Fig. 8.23 - Equivalent circuit for direct axis with identity of leakage and main fluxes restored
from Fig. 8.2

inductances in the three branches d, f, D. For the quadrature axis, Fig. 8.2 can still be used, with M,, being the
nonlinear inductance, because Canay's characteristic reactance cannot be measured on that axis (current split between
g- and Q-windings unmeasurable because both windings are hypothetical windings).

Most EMTP users will not know Canay's characteristic reactance because it is not supplied with the standard
test data. Therefore, it has not yet been included in the saturation model in the EMTP, e.g. in the form of Fig. 8.23,
because of lower priority compared to other issues. When it is implemented, one would have to decide whether the

inductance ¢*M,, - ¢M, , which is mutual to both f- and D- windings, should be constant or saturable as well.
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9. UNIVERSAL MACHINE
Co-author: H.K. Lauw

The universal machine was added to the EMTP by H.K. Lauw and W.S. Meyer [137,140], to be able to

study various types of electric machines with the same model. It can be used to represent 12 major types of electric

machines:
1) synchronous machine, three-phase armature;
2) synchronous machine, two-phase armature;
3) induction machine, three-phase armature;
4) induction machine, three-phase armature and three-phase rotor;
&) induction machine, two-phase armature;
(6) single-phase ac machine (synchronous or induction), one-phase excitation;
@) same as (6), except two-phase excitation;
(8) dc machine, separately excited;
) dc machine, series compound (long shunt) field;

(10) dc machine, series field;

(11) dc machine, parallel compound (short shunt) field;

(12) dc machine, parallel field.

The user can choose between two interfacing methods for the solution of the machine equations with the rest
of the network. One is based on compensation, where the rest of the network seen from the machine terminals is
represented by a Thevenin equivalent circuit, and the other is a voltage source behind an equivalent impedance
representation, similar to that of Section 8.5, which requires prediction of certain variables.

The mechanical part of the universal machine is modelled quite differently from that of the synchronous
machine of Section 9. Instead of a built-in model of the mass-shaft system, the user must model the mechanical part
as an equivalent electric network with lumped R, L, C, which is then solved as if it were part of the complete electric

network. The electromagnetic torque of the universal machine appears as a current source in this equivalent network.

9.1 Basic Equations for Electrical Part

Any electric machine has essentially two types of windings, one being stationary on the stator, the other
rotating on the rotor. Which type is stationary and which is rotating is irrelevant in the equations, because it is only
the relative motion between the two types which counts. The two types are:

(a) Armature windings (windings on "power side" in BPA Rule Book). In induction and (normally) in
synchronous machines, the armature windings are on the stator. In dc machines, they are on the rotor,
where the commutator provides the rectification from ac to dc.

(b) Windings on the field structure ("excitation side" in BPA Rule Book). In synchronous machines the field
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structure windings are normally on the rotor, while in dc machines they are on the rotor, either in the form
of a short-circuited squirrel-cage rotor, or in the form of a wound rotor with slip-ring connections to the
outside. The proper term is "rotor winding" in this case, and the term "field structure winding" is only used
here to keep the notation uniform for all types of machines.

These two types of windings are essentially the same as those of the synchronous machine described in

Section 8.1. It is therefore not surprising that the system of equations (8.9) and (8.10) describe the behavior of the

universal machine along the direct and quadrature axes as well. The universal machine is allowed to have up to 3

armature windings, which are converted to hypothetical windings d, g, Oa ("a" for armature) in the same way as in

Section 8.1. The special case of single-phase windings is discussed in Section 9.3. The field structure is allowed

to have any number of windings D1, D2,...Dm on the direct axis, and any number of windings Q1, Q2,...Qn on

the quadrature axis, which can be connected to external circuits defined by the user. In contrast to Section 8, the

field structure may also have a single zero sequence winding Of ("f" for field structure), to allow the conversion of

three-phase windings on the field structure (as in wound-rotor induction machines) into hypothetical D, Q, 0-

windings.

With these minor differences to the synchronous machine of Section 8 in mind, the voltage equations for

the armature windings in d, g-quantities become

v, R, O|fi d Ay -WA g
=- - = + (9.1a)
v, 0 R,|i g dr|A g +0A,
with w being the angular speed of the rotor referred to the electrical side, and in zero sequence,
VOa = 7Ra iOa B d)\‘Oa /dt (9 lb)
The voltage equations for the field structure windings are
Vb1 Rpi|ins Apg
Vb2 Rpo| |ip2 Ap
. . dl .
- - - £ (9.2a)
dt
_VDm _RDm _iDm _}“Dm
Vor Roi| i Aoi
Vo Roz| |ige Ao2
. . dl .
- s (9.2b)
dt
_VQm_ _RQm_ _iQm_ _)“Qm_
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and

. Dy
by~ Ry~ — (9.2¢)

The flux-current relationships on the two axes provide the coupling between the armature and field structure sides,

-Ad- _id_
Ap; Ly My, Mpy o Mgy | i,
)”Dz My, Ly, Mpip, o Mpp, i,
= My, Mpip, Lp, - Mpopa|| . (9.3a)
MdDm MDI Dm MDZDm i LDm ]
_A‘Dm_ le
kq ,'q
XQ] Lq Mqu MqQZ Man iQ]
)”Qz Mqu LQ] MQIQZ MQIQn iQZ
= Mupo Mpigr Loy -+ My | . (9.3b)
Moon Moion Mpzon -+ Lon |
_)»Q”_ _iQn_

with both inductance matrices being symmetric. The zero sequence fluxes on the armature and field structure side
are not coupled at all,

Mo = Loaloa (9.3¢)
7‘0f = Loy (9.3d)

The universal machine has been implemented under the assumption that the self and mutual inductances in

Eq. (9.3a) and (9.3b) can be represented by a star circuit if the field structure quantities are referred to the armature
side, as shown in Fig. 9.1. This assumption
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Fig. 9.1 - Star circuit representation of coupled windings in

direct axis (analogous in quadrature axis)
implies that there is only one mutual (or main) flux which links all windings on one axis (A, in Fig. 8.18), and that
the leakage flux of any one winding is only linked with that winding itself. Strictly speaking, this is not always true.
For example, part of the leakage flux of the field winding (A, in Fig. 8.18) could go through the damper winding
as well, but not through the armature winding, which leads to the modified star circuit of Fig. 8.23 (synchronous
machines) or Fig. 9.2 (induction machines). The data for such models with unequal mutual inductances is seldom
available, however (e.g., Fig. 8.23 requires Canay's characteristic reactance, which is not available from standard
test data). The star circuit is therefore a reasonable assumption in practice. At any rate, the code could easily be
changed to work with the self and mutual inductances of Eq. (9.3) instead of the star circuit of Fig. 9.1.

With the star circuit representation of Fig. 9.1, the flux-current equations (9.3a) can be simplified to

Ay = Lyg iy + Ay
Aot = Llgpy ipy + Ay (9.4a)
/ ./
)”Dm = L/gﬂDm le + )‘md
with
Moy = My Gy + ipyet i) (9.4b)

where the prime indicates that field structure quantities have been referred to the armature side with the proper turns
ratios between d and D1, d and D2,...d and D,. All referred mutual inductances are equal to M, in this

representation, and the referred self inductances of Eq. (9.3a) are related to the leakage inductances of the star
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branches by

Ly =Ly, + M,
Ly, = Ly, + M, 9.5)
I
LDm - L&?Dm + Md

The voltage equations (9.1) and (9.2) are valid for referred quantities as well, if Rp,, ip,,... are replaced by Rp,',
ip,',... The quadrature axis equations are obtained by replacing subscripts d, D in the direct axis equations with q,
Q.

In the BPA EMTP Rule Book, the turns ratios are called "reduction factors," and the process of referring
quantities to the armature side is called "reduction" (referring quantities from one side to another is discussed in
Appendix IV.3).

9.2 Determination of Electrical Parameters
By limiting the universal machine representation to the star circuit of Fig. 9.1, the input parameters are

simply the resistances and leakage inductances of the star branches and the mutual inductance, e.g., for the direct

axis,

a <Ld
/ /
RDI ’ L&?DZ
/ /
RDm 4 L&?Dm
d 9

(analogous for the quadrature axis), and for the zero sequence on the armature and field structure side,

LOa ’

/ /
Ry, Ly

If the armature leakage inductance L, is known instead of the mutual inductance, then find M from Eq. (9.5),

M

=L

- L M =L -L

d Qd q q g

9-5



If neither L, nor M is known, then use a reasonable estimate. The BPA EMTP Rule Book recommends

L, =01L,, Ly, = 0.1L, (9.6)

which seems to be reasonable for round rotor synchronous machines, while for salient pole machines the factor is
closer to 0.2 than to 0.1. Compared to the large value of the magnetizing inductance of transformers, the value of
the mutual (or magnetizing) inductance My, M, from Eq. (9.6) (90% of self inductance) is relatively low because
of the air gap in the flux path.

Compared to the (m + 1) (m + 2) / 2 inductance values in Eq. (9.3a), the star circuit has only m + 2
inductance values. For the most common machine representation with 2 field structure windings, Eq. (9.3a) requires
6 values, compared to 4 values for the star circuit. This means that the star circuit is not as general as Eq. (9.3a),
but this is often a blessing in disguise because available test or design data is usually not sufficient anyhow to
determine all self and mutual inductances (see requirement of obtaining an extra inductance value X, in Section 8.2).

As already discussed for the synchronous machine in Section 8.2, the resistances and self and mutual
inductances (or the star branch inductances here) are usually not available from calculations or measurements. If
the universal machine is used to model a synchronous machine, then the data conversion discussed in Section 8.2
can be used (input identical to synchronous machine model in version M32 and later).

For three-phase induction machines, the data may be given in phase quantities. If so, Eq. (8.11) must be
used to convert them to d, q, O-quantities,

L,=L, =L - M,
L,=L, +2M,

with L, = self inductance of one armature winding,

M, = mutual inductance between two armature windings (BPA Rule Book uses opposite sign for M,).
L, in Eq. (8.11) is zero for an induction machine, where the saliency term defined in Eq. (8.5) does not exist. The
same conversion is used if the rotor windings are three-phase. The mutual inductance between stator and rotor
follows from Eq. (8.10).

d-Di ~ a-Di

=iy

(same for g-axis), with M, p;cos B being the mutual inductance between armature winding 1 and rotor winding Di
(i =1,...m), as defined in Eq. (8.5). Note that the factor v'3/v2 changes the turns ratio; if the turns ratio between
phase 1 and the rotor winding is 1:1, it changes to v3:v2 in d, q, O-quantities (see also Section 8.2). This extra
factor must be taken into account when rotor quantities are referred to the stator side.

For modelling three-phase induction machines, a modified universal machine with its own data conversion
routine has recently been developed by Ontario Hydro [138]. It uses the standard NEMA specification data to find
the resistances and self and mutual inductances of the equivalent circuit. It is beyond the scope of this treatise to

describe the conversion routine in detail. Essentially, the field structure (which is the rotor in the induction machine)
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has two windings to represent the rotor bars as well as the eddy currents in the deep rotor bars of large machines,
or the double-squirrel cage rotor in smaller machines. Since there is no saliency, d- and g-axis parameters are
identical. The assumption of equal mutual inductances (or the star circuit) is dropped, and the equivalent circuit of
Fig. 9.2 is used instead. Not surprisingly, this equivalent circuit is identical with that of the synchronous machine

in Fig. 8.23, because a synchronous

Fig. 9.2 - Equivalent circuit of induction machine with deep rotor bars

machine becomes an induction machine if the field winding is shorted. In contrast to the standard universal machine,
saturation is included in the leakage inductance branch of the armature as well, and another nonlinear inductance is
added between the star point and the star branches of the field structure windings. Fig. 9.3 shows comparisons
between measurements and simulation results with this modified universal machine model [138, 139], for a case of
a cold start-up of an induction-motor-driven heat transfer pump (1100 hp, 6600 V). Excellent agreement with the
field test results is evident for the whole start-up period, which proves the validity of the modified universal machine

model over the whole range of operation.
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9.3 Transformation to Phase Quantities

Eq. (9.1) to (9.3) completely describe the universal machine in d, q, O-quantities, irrespective of which type
of machine it is. To solve these machine equations together with the rest of the network, they must be transformed
to phase quantities. It is in this transformation where the various types of machines must be treated differently.
Fortunately it is possible to work with the same transformation matrix for all types, by simply using different matrix
coefficients.

For the case of a three-phase synchronous machine, the transformation has already been shown in Eq. (8.7).

If this equation is rewritten for the armature quantities only, then'

2, A,
Ayl = [T1" |Ay|  identical for [v], [i] (9.7a)
A A

3

with
cosp cos(B-120°) cos(B+120°)
— fi snllﬁ sin(B—ll20°) sin(ﬁ+1120°) ©.70)
V2 V2 V2

being an orthogonal matrix, which means that

[7] = [T]t;(lznsposed (9 . 7C)

The rotor position 3 is related to the angular speed w of the rotor by

w = dp/dt (9.7d)
The transformation matrix [T]! can be rewritten as a product of two matrices [137],
(71" = [PB)] [SI7! (9.8a)

with

In [137] and [139], [T]" is called [T]; similarly, [P] and [S] are called [P]" and [S]" there.
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cosp -sinf O
[PB)]! = |sinp cosp O (9.8b)
0 0 1

S

- =l
Bl

1
[s]' =0 — — (9.8¢)
2
1 11
B BB
each being orthogonal again,
[P ] - [P ]t;(lznsposed ’ [S] = [S]t;iznspoxed (98d)

The first transformation with the [S]'-matrix replaces the three-phase coils (displaced by 120° in space) by the three
equivalent coils d and q (perpendicular to each other) and O (independent by itself). This is the same transformation
matrix used for «, B, O-components in Eq. (4.48), except for a sign reversal of the B-quantities. The second
transformation with [P]! makes the d, g-axes rotate with the same speed as the field poles, so that they become
stationary when seen from the field structure. The field structure quantities are not transformed at all.

This approach with two transformations can be applied to any type of machine. For a three-phase induction
machine with a three-phase wound rotor, both the armature and field structure quantities are transformed with [S]
to get equivalent windings on the d- and g-axes, while the transformation with [P]" is only applied to the armature
side. For direct current machines, there is not transformation at all for both the armature and field structure side.

For two-phase armature windings displaced by 90° in space, the windings are already on the d, g-axes.

Therefore
St = 9.9a
S0 =] 9.92)
and
cosp -sin|
[Pl = P P (9.9b)
sinf  cosp

with the zero sequence winding missing.

For single-phase armature windings, there is only flux along one axis, or
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[s1'=1 (9.10a)
and
[P = cosp (9.10b)

with both the quadrature axis and zero sequence winding missing.
The EMTP uses only one transformation matrix [S]" and [P]" for all cases, and makes the distinction by

resetting the coefficients c,, c,, ¢, in these matrices,
C it Gt ey213 - /6 - ¢ 16
[s1! = 0 —C- W2 e Y2 (9.11)
c I3 Cy I3 c I3

with
c; = 1 for three-phase ac windings, and c; = 0 otherwise,
c, = 1 for two-phase ac windings, and ¢, = 0 otherwise,
¢, = 1 for single-phase ac windings and dc machines, and ¢, = 0 otherwise.

Since [S]! in Eq. (9.11) degenerates into 2 x 2 and 1 x 1 matrices for two-phase and single-phase windings, its
inverse cannot be found by inversion. Using Eq. (9.8d) instead of inversion works in all cases, however. The
matrix in Eq. (9.11) is slightly different from that in [137], because it is assumed here that only phases 1, 2 exist
for two-phase machines, and only phase 1 exists for single-phase machines. In [137], phase 1 is dropped for two-
phase machines, and phases 1 and 2 are dropped for single-phase machines.

For ac armature windings, [P]"! of Eq. (9.8b) is used, realizing that the zero sequence does not exist in the
two-phase case, and that the zero sequence as well as the g-winding do not exist in the single-phase case. For dc

armature windings, there is not second transformation with [P]™.

9.4 Mechanical Part

In contrast to the synchronous machine model, the universal machine does not have a built-in model for the
mechanical part. Instead, the user must convert the mechanical part into an equivalent electric network with lumped
R, L, C, which is then treated by the EMTP as if it were part of the overall electric network. The electromagnetic
torque of the universal machine appears as a current source injection into the equivalent electric network.

Table 9.1 describes the equivalence between mechanical and electrical quantities. For each mass on the

shaft system, a node is created in the equivalent electric network, with a

Table 9.1 - Equivalence between mechanical and electrical quantities
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Mechanical Electrical
T  (torque acting on mass) [Nm] i (current into node) [A]
o  (angular speed) [rad/s] v (node voltage) [V]
0  (angular position of mass) [rad] q (capacitor charge) [C]
J  (moment of inertia) [kgm?] C (capacitance to ground) [F]
K  (stiffness coefficient or spring [Nm/rad] 1/L  (reciprocal or inductance) [1/H]
constant)
D  (damping coefficient) [Nms/rad] 1/R  (conductance) [S]

(1 Nm = 0.73756 Ib-ft; 1 kgm* = 23.73 1b-ft*)

capacitor to ground with value J for the moment of inertia. If there is damping proportional to speed on this mass,
a resistor with conductance D is put in parallel with the capacitor (D, in Eq. (8.31)). If there is a mechanical torque
acting on that mass (turbine torque on generators, mechanical load on motors), a current source is connected to that
node (positive for turbine torque, negative for load torque). If there are two or more masses, inductors are used to
connect adjacent shunt capacitors, with their inductance values being equal to 1/K (reciprocal of stiffness coefficient
of the shaft coupling between two masses). If there is damping associated with this shaft coupling, then the inductor
is paralleled with a resistor whose conductance value is D (D, in Eq. (8.31)). The electromagnetic torque is
automatically added to the proper node as a current source by the EMTP.

Fig. 9.4 summarizes the equivalence between the mechanical and electric components. Representing the

mechanical system by an equivalent electric network can provide more
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Fig. 9.4 - Equivalence between mechanical and electric components

flexibility than the built-in model of the synchronous machine of Section 8. With this approach it should be easy to

incorporate gear boxes, distributed-parameter modelling of rotors, etc. The EMTP further provides for up to three
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universal machines sharing the same mechanical system.

9.5 Steady-State Representation and Initial Conditions

The steady-state representation of the ac-type universal machine is based on the assumption that the network
to which it is connected is balanced and linear. Only positive sequence quantities are used in the initialization, and
negative and zero sequence quantities are ignored if there are unbalances. The initialization procedure could
obviously be extended to handle unbalanced conditions as well, along the lines discussed in Section 8, but this

extension has been given low priority so far.

9.5.1 Three-Phase Synchronous Machine

For three-phase synchronous machine representations, any positive sequence voltage source behind any
positive sequence impedance can be used, as long as it produces the desired terminal voltages and currents when
solved with the rest of the network. For simplicity, a three-phase symmetrical voltage source directly at the terminals
is used for the steady-state solution. If the current (or active and reactive power output) from that solution is not
what the user wants, then the power flow iteration option of the EMTP can be used, which will iteratively adjust the
magnitude and angle of the three-phase voltage source until the desired active and reactive power output (or some
other prescribed criteria) have been achieved. Once the terminal voltages and currents are known, the rest of the
electrical machine variables are initialized in the same way as described in Section 8.4.1.

If the excitation system is represented by an electric network (rather than constant v,), then the EMTP
performs a second ac steady-state solution for the excitation systems of all universal machines, with the field currents
i; being treated as current sources [,cos(wt), with w; being an angular frequency which is so low that i, is dc for
practical purposes. This trick is used because the EMTP cannot find an exact dc steady-state solution at this time
(the network topology for dc solutions is different from that of ac steady-state solution; inductances would have to
be treated as closed switches, capacitances as open switches, etc.).

From the initialization of the electrical variables, the electromagnetic torque T, on the mechanical side

mech-gen

is known from Eq. (8.32b) as well. These torques are used as current sources i(t) = T COS(W et) In the

mech-gen

equivalent networks which represent the mechanical systems of all universal machines, with w,,, again being an
angular frequency so low that i(t) is practically dc. The EMTP then performs a third ac steady-state solution for the
initialization of the mechanical system quantities. Note that this three-step initialization procedure is direct, and does

not require either predictions or iterations.

9.5.2 Two-Phase Synchronous Machine

Armature currents in two-phase machines with equal amplitudes and displacements of 90° produce a rotating
magnetic field in the same way as symmetrical three-phase armature currents displaced by 120°. As long as this
condition is met (which is the balanced or positive sequence condition for two-phase machines), the initialization is

identical with the three-phase case after proper conversion to d, q, O-quantities. If the phase quantities are
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i,(®) = [I] cos(w .t + @)
i)(t) = |1 cos(w,t + & ~ 90°) 9.12)

with w, being the (synchronous) frequency of the supply network, then the d, g, 0-quantities are obtained with [S,]"
and [P,]" from Eq. (9.9) with ® = w, as

i, = |I| sin(e - 0)
i, = |I| cos(a - d) (9.13)

where 0 is the angle between the position of the quadrature axis and the real axis of the ac phasor representation.
Eq. (9.13) is indeed identical with Eq. (8.41) for the balanced three-phase machine, except for a factor of v3/v2

there.

9.5.3 Single-Phase Synchronous Machine

Converting a single-phase armature current

i(®) = I cos(wyi + ) 9.14)
into d, q, O-quantities results in

i) - %|1| sin(e - 8) - %|1| sinQRaw,t + o + )
i,=0 iph=0 (9.15)

with the first term being the dc quantity analogous to the positive sequence effect in three-phase machines, and the
second double-frequency term analogous to the negative sequence effect in Eq. (8.53) in three-phase machines. This
is a mathematical expression of the fact that an oscillating magnetic field in a single-phase armature winding can be
represented as the sum of a constant magnetic field rotating forward at synchronous speed (angular speed = 0
relative to field winding) and a constant magnetic field rotating backwards at synchronous speed (angular speed =
2w relative to field winding).

Since only the first term in Eq. (9.15) is used in the initialization now, the initial conditions are not totally
correct, and it may take many time steps before steady state is reached. The steady-state torque includes a pulsating
term very similar to Fig. 8.9 for the case of an unbalanced three-phase synchronous machine. As an alternative to
universal machine modelling, the three-phase synchronous machine model of Section 8 could be used for single-phase
machines, by keeping two armature windings open-circuited. Unfortunately, the initialization with negative sequence
quantities described in Section 8.4.2 is not yet fully correct in the BPA EMTP either, as explained in the beginning

of Section 8.4, though it has been implemented in an unreleased version of the UBC EMTP.

9.5.4 DC Machines

The initialization of dc machine quantities is straightforward, and follows the same procedure outlined in
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Section 9.5.1. In d, g, O-quantities, balanced three-phase ac quantities appear as dc quantities. Therefore, there is

essentially no difference between the equations of a balanced three-phase synchronous generator and a dc machine.

9.5.5 Three-Phase Induction Machine
In balanced steady-state operation, the angular speed w of the rotor (referred to the electrical side with Eq.

(8.25)) differs from the angular frequency w; of the supply network by the p.u. slip s,

s = 9.16)

The network sees the induction machine as a positive sequence impedance whose value depends on this slip s. The
negative and zero sequence impedances are of no interest if the initialization is limited to balanced cases.
Fig. 9.5 shows the well-known equivalent circuit for the balanced steady-state behavior of a three-phase

induction machine, which can be found in many textbooks. Its impedance can

Al
Ipos Ra Lla Llr

<3
-

Fig. 9.5 - Conventional equivalent circuit for steady-state behavior of
induction machines (subscript a for armature side, subscript r for rotor
side)

easily be calculated, and with the relationship between leakage, self and mutual inductances

Laa = Lgﬂa M
L =L, +M (9.172)
becomes
: 2
[
Zpos = Ra + ijL(m - ﬂ
r’ o (9.17b)
— + jo L
s S§rr

This single-phase impedance is used in phases 1, 2, 3 for the steady-state solution, provided there is only one
winding on the field structure (rotor).

For the general case of m windings on the field structure, the calculation is slightly more complicated. First,
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let us assume that the armature currents are
i(t) = |I| cos(w + )
i(t) = |I| cos(w,i + a - 120°)

i(t) = |I| cos(w, + a - 240°)

in balanced operation. Transformed to d, q, 0-quantities, the currents become
i,(0) = ﬁ || sin(sw 1 + o - O)
2

i(1) = L; |I| cos(sw,t + o - B) (9.18a)
i@®=0

which can be represented as a phasor of slip frequency sw,, projected onto the q, d-axes,

qd E phase (9.18b)
with L., = |I|e being the (peak) phasor current in the ac network solution reference frame, and with the
understanding that
i(0) = RL, "™
i) = ImiI e (9.18¢)

All d, g-quantities vary with the slip frequency sw,, and can therefore be represented as phasors in the same way as
the armature currents.
To obtain the impedance, the rotor currents must first be expressed as a function of armature currents.

Since all rotor voltages are zero, Eq. (9.2a) can be rewritten as

a4
0= IR 1L, - 5 10] (9.19)

with
(A.1=1L,)i, - [L,][] (9.20)

from Eq. (9.3a) (subscript "r" for rotor or field structure quantities, and "a" for armature quantities). Since there

is no saliency in three-phase induction machines, Eq. (9.19) and (9.20) are identical for the d- and g-axes, except
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that i, is i, in one case, and i, in the other case. The submatrices [L,,] and [L,] are obtained from the matrix of Eq.
(9.3a) by deleting the first row; [L,] is the first column and [L,] the m x m-matrix of what is left. If the rotor
windings are not shorted, but connected to an R-L network, then [R,] and [L,,] must be modified to include the
resistances and inductances of this connected network (for connected networks with voltage or current sources see
Section 9.5.8). Since [i,] and i, can both be represented as phasors with Eq. (9.18), the flux in Eq. (9.20) is also

a phasor which, after differentiation, becomes

LN = jso, Ly Ly, + 5o lL, 1 1L) ©.21)

Inserting this into Eq. (9.19) produces the equation which expresses the rotor currents as a function of the armature

current phasor,
(7,1 = -{[R,] + jsw (L, 1" jso L1, 9.22)

To obtain the direct axis rotor currents as complex phasor quantities, use Im{I_ 4} on the right-hand side of Eq.
(9.22), while the use of Re{l .} will produce the quadrature axis rotor currents.
The next step in the derivation of the impedance is the rewriting of the armature equations (9.1a) in terms

of phasor quantities. Since

d ;
EA"d = Jjsw A,

Eq. (9.1a) becomes

or with sw, = w, - w from Eq. (9.16),
Va= "R, - jo A, (9.23)
With the flux from the first row of Eq. (9.3a)

Ay = Loglyy + L, 11,1 (9.24)

where [L,] = [L,l', and with Eq. (9.22), Eq. (9.23) finally becomes

V.,=-R,+jo.L,) - jolL, 1{[R] + jst[er]}’ljst [Lm]}lqd

q s™aa
Therefore, the positive sequence impedance is

Z,, = R+ joo L, jo [L, R +jso L, 1) jso L] (9.25)
If there is only one winding on the rotor, then it can easily be shown that the impedance of Eq. (9.17b) is identical
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with that of Eq. (9.25), by using the definitions of Eq. (9.17a).

To summarize: The three-phase induction machine is represented as three single-phase impedances Z,,; from
Eq. (9.25) in the three phases 1, 2, 3. After the ac network solution of the complete network, the armature currents
are initialized with Eq. (9.18b), and the rotor currents with Eq. (9.22). The calculation with Eq. (9.22) is done
twice, with the imaginary part of I, to obtain the direct axis quantities, and with the real part of I to obtain the
quadrature axis quantities.

As mentioned before, the initialization works only properly for balanced cases at this time. If initialization
for unbalanced cases is to be added some day, then the procedures of Section 8.4.2 and 8.4.3 for the synchronous
machines should be directly applicable, because negative and zero sequence currents see the field winding as short-
circuits. Therefore, there is no difference between synchronous and induction machines in the negative and zero

sequence initialization.

9.5.6 Two-Phase Induction Machine
As already discussed in Section 9.5.2 for the two-phase synchronous machine, the equations for balanced
operation of a two-phase machine are identical on the d, g-axes with those of the three-phase machine. The only

difference is the missing factor v3/v2 in the conversion from phase quantities to d, g-quantities.

9.5.7 Single-Phase Induction Machine
The problem is essentially the same as discussed in Section 9.5.3 for the synchronous machine. Only

positive sequence values are used now, and the second term in

if0) = % || sin(sw, f + o - &) - % || sin((w, + )t + o + B) (9.26)

is presently ignored.

9.5.8 Doubly-Fed Induction Machine

If the rotor (field structure) windings are connected to an external network with ac voltage and/or current
sources, then the EMTP will automatically assume that their frequency is equal to the specified slip frequency sw,
and ignored the frequency values given for these sources.

Feeding the rotor windings from sources requires two modifications to the procedure of Section 9.5.5. In
these modifications, it is assumed that the external network is represented by a Thevenin equivalent circuit, with
voltage sources [Vy,.,] behind an impedance matrix [Z,.,] defined at slip frequency.

First, the rotor impedance matrix [R,] + jsw [L,] must be modified to include the external impedances,

(277 = IR,1 + jsw,IL,1 + [Z,

1ev]

9.27)

This modification must be done twice, for the direct axis quantities and for the quadrature axis quantities. Since
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[Z ] is in general different for the two axes, [Z,™"] is no longer the same on both axes.

Secondly, the left-hand side of Eq. (9.19) is no longer zero, but [V, ]. This will change Eq. (9.22) into

] = - 1211V,

hev

1+ Jjsw L, )1} (9.28)

Again, this calculation must be done twice. For the direct axis, use Im{I,} and the direct axis values [Z,™] and
[Vihe ], for the quadrature axis Re{l 4} and quadrature axis values [Z,™) and [V e, ]-

With these two modifications, the steady-state model of the induction machine is no longer a passive
] behind three single-phase impedance branches

impedance Z ., but becomes a three-phase voltage source [E

pos? source.

Zn' = R, + jo,L

‘pos s™aa

- jo, [L, 1 Z7° jswo, IL,,] (9.29)

The voltage source is found by calculating the direct axis contribution,

Ed = jws [Lar] [er;lf):il]il [VThevfd] (9303)

and the quadrature axis contribution,

E, = jo (L Z750 " Ve, ) (9.30b)

m-q

and then transforming to phase quantities,

2 .
= % ejﬁ(Eq + JE,)

source-1
. ) e (9.30¢c)
with E source-2 E source-1 e
- . ptj120°
and source-3 E source-1 €

Once the ac steady-state solution of the complete network has been obtained, the d, q, 0-armature currents

are initialized with Eq. (9.18b), while the rotor currents are initialized with Eq. (9.28).

9.6 Transient Solution with Compensation Method

For the transient solution with the compensation method, the machine differential equations (9.1) and (9.2)

are first converted to difference equations with the trapezoidal rule of integration. Then Eq. (9.1) becomes
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v (0 R, 0 0]li () A0 @A M| |hist,
vo|=-10 R, 0}|i,(®]| - % A |+ [+o@A o) + |hist, (9.31a)
Vo) 0 0 R,|iy,® Ao, (D) 0 hist,,

with the history terms known from the preceding time step,

hist, v (t-Ar) R, 0 0 t-Ar) A [(t-Ar)

. . 2

hzstq7 = - vq(t—At) -10 R, O] q(t—At) + ~ Aq(t—At) +
hist,, Vo (t-AD) 0 0 R,||i,,-An Ao (1-A1)

-w(t-AHi q(t—At)
+@(I-ADA (t-Ar) (9.31b)
0

The field structure equations (9.2) on the direct axis become

v, 0] [Ry, iy, @] (A, (0] [hist,,]

= - . . - = . + . (9.32a)

vo®| | Rop|iom®)| Apu®]  |histyy,

with the known history terms

hist, | [vpt-AD]  [R,, i, -An] @)

- . - . . + = . (9.32b)

hist,, | v, (t-AD) Ry, |lip(t-A0) PRy

On the quadrature axis, they are identical in form to Eq. (9.32), except that subscripts D1,...Dm must be replaced

by Q1,...Qn. Finally for Eq. (9.2¢),

. 2 .
VD = ~ R {0 - A Aaf + hist,, (9.33a)
with
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. . . 2
hlstaf = - vof(t—At) - Roflof(t—At) - Rofl JSE-Ar) + A Aof(t—At) (9.33Db)

As explained in Section 12.1.2, the network connected to the armature side of the machine can be

represented by the instantaneous Thevenin equivalent circuit equation

v v i\(0)
0| = [Vyo| + [Regun||2® (9.34)
v v i(0)

with a sign reversal for the current compared to Section 12.1.2, to change from a load to source convention.
Similarly, if external networks are connected to the field structure windings, they will also be represented by

Thevenin equivalent circuits with equations of the form

-VDI(I)- -VDI 70- [ ] -iDI(t)-
= . + RDfequiv . (9353-)

_VDm(t)_ _VDm -0] B - _iDm(t)_

Vo] ool T 1]ig/®]
=| o Roean|| - (9.35b)

_in(t)_ Vono| ] _i Qn(l)_

and

Vaf(t) = Vaffo * Roffequiv iaf(t) (9350)

The external network connected to the first three field structure windings is represented by a three-phase
Thevenin equivalent circuit (Section 12.1.2.3), whereas the external networks connected to the rest of the field
structure windings are represented by single-phase Thevenin equivalent circuits (Section 12.1.2.1). This limitation
results from the fact that the BPA EMTP could handle M-phase Thevenin equivalent circuits only for M < 3 at the
time the Universal Machine was first implemented. In practice, this limitation should not cause any problems
because the field structure windings are usually connected to separate external networks. An exception is the three-
phase wound rotor of induction machines, which is the reason why a three-phase equivalent circuit was chosen for
the first three rotor windings.

The solution of the machine equations is then roughly as follows:
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Solve the complete network without the universal machines. Extract from this solution the Thevenin
equivalent open-circuit voltages of Eq. (9.34) and (9.35), as well as the open-circuit voltages of the network
which represents and mechanical system.

Predict the rotor speed w(t) with linear extrapolation.

Transform Eq. (9.34) from phase to d, q, O-quantities with Eq. (9.7) if the armature windings are ac

windings,
Va Va-o la
Vol = |Vao| * Rphasefequiv i (9.36a)
Voa Voa-o Loa

where

Vi-o Vi

_ -1 _ -1
Vq o| = 11" P2y and [Rphasefequiv] = (71 [Requiv] 7] (9.36b)
Voa -0 v3 -0

For dc armature windings, the Thevenin equivalent circuit is already in the form of Eq. (9.36a) without
transformation.

Substitute Eq. (9.36a) into Eq. (9.31a), and substitute Eq. (9.35) into Eq. (9.32). This eliminates the
voltages as variables. Then solve the resulting linear equations for the m + n + 4 currents by Gauss
elimination, after the fluxes are first replaced by linear functions of currents with Eq. (9.3). Using the star
circuit of Fig. 9.1 instead of the more general inductance matrix of Eq. (9.3) simplifies this solution process
somewhat.

Calculate the electromagnetic torque on the electrical side,

T, (1) =i, (0)A0) - i0)A0) (9.37)

and convert it to T,,...(t) on the mechanical side with Eq. (8.25) if the mechanical system is not modelled
as a one pole-pair machine. Use T,..(t) as a current source in the Thevenin equivalent circuit which
represents the mechanical system and solve it to obtain the speed (as an equivalent voltage). Up to 3
universal machines can share the same mechanical system, because the EMTP uses an M-phase
compensation method for M < 3 (see Section 12.1.2.3).

If the speed calculated in (5) differs too much from the predicted speed, then return to step (3). Otherwise:
Update the history terms of Eq. (9.31b), (9.32b) for d- and g-axes, and (9.33b) for the next time step.
Transform the armature currents from d, q, O-quantities to phase quantities with Eq. (9.7) (only if the
windings are ac windings).

Find the final solution of the complete network by super-imposing the effects of the armature currents, of
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the field-structure currents (if they have externally connected networks) and of the current representing the
electromagnetic torque in the network for the mechanical system, with Eq. (12.8) of Section 12.
(10) Proceed to the next time step.

Since the variables of the mechanical system usually change much slower than the electrical variables,
because of the relatively large moment of inertia of practical machines, the prediction of the speed is fairly good.
As a consequence, the number of iterations typically lies between 1 and 3.

Interfacing the solution of the machine equations with the solution of the electric network through
compensation offers the advantage that the iterations are confined to the machine equations only. Furthermore, if
a small tolerance is used for checking the accuracy of the speed, the solution is practically free of any interfacing
error.

The only limitation of the compensation method is the fact that the universal machines must be separated
from each other, and from other compensation-based nonlinear elements, through distributed-parameter lines with
travel time. Stub lines can be used to introduce such separations artificially, but such stub lines create their own

problems. Because of this limitation, a second solution option has been developed, as described in the next section.

9.7 Transient Solution with Armature Flux Prediction

In the transient solution of the synchronous machine of Section 8, essentially voltage sources behind
resistances R, and average subtransient inductances (L," + L.")/2 are used, with the trapezoidal rule applied to the
inductance part. The voltage sources contain predicted currents and the predicted speed.

The prediction-based interface option for the universal machine also uses voltage sources with elements of
prediction in them, but just behind resistances R,, with no inductance part (Fig. 9.6). If we think of R, as belonging

to the electric network and not to the machine, then Eq.

Fig. 9.6 - Thevenin equivalent
circuit for universal machine

(9.1) becomes a simple relationship between armature voltages and fluxes,

v, Ay ~wA
v, |- _% A+ |ror, (9.38)
VO(I }“oa 0
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The fluxes always change smoothly, in contrast to the voltages which can suddenly jump in case of short-circuits.
Therefore, the fluxes are chosen as variables suitable for prediction. Furthermore, the fluxes A, )»q of induction
machines vary sinusoidally with slip frequency during steady-state operation, whereas the fluxes seen from a
synchronously rotating reference frame (rotating at the supply frequency w,) would remain constant. Because of this,
the fluxes seen from a synchronously rotating reference frame are predicted, rather than A4, A,. This requires a
transformation of Eq. (9.38) from the d, g-axes to the synchronously rotating reference frame [140]. Alternatively,
one can forget about the original transformation from phase quantities to the d, g-axes altogether, and transform the
phase quantities directly to the ds, gs-axes of the synchronously rotating reference frame. That means that df/dt =

 must be replaced by w,, which leads to

vds }“ds _(“)S}Vqs
vl - _% M| + |+ Ay 9.39)
VO(I }“oa 0

The only difference with Eq. (9.38) is the replacement of rotor speed w by the ac supply frequency w,. This simple
change works only for the voltage equations; for the flux-current relationships the synchronously rotating reference
frame cannot be used because that would make the inductances time-dependent rather than constant.

The fluxes Ay, A Ay, On the synchronously rotating axes are now predicted linearly,

qs?
_)“ds -pred }“ds(l -Ar) kds(l—zAl)
= 2| @-An)| - |A (1-2A0) (9.40)
qs qs
)“oa(t_Al) }‘oa(l_ZAt)

A qs-pred

oa-pred

and the backward Euler method (see Appendix 1.9) is then applied to Eq. (9.39),

Vds(l) }“ds -pred A‘ds(t_At) _ws)“qs -pred
Vqs(l) = - é )“qs ~pred B )“qs([_Al) + +ws)“ds ~pred (941)
Voa([) )“oa -pred )“oa([_Al) 0

With all quantities on the right-hand side known (either from the preceding time step or from prediction), the terminal

voltages are now known, too, and can be transformed back to phase quantities with

V(D) cos(wt) sin(w 1) 0 [V(®)
V@] = [-sin(wg) cos(wt) O] |V,0) (9.42)
V3(l) 0 0 1 voa(l)

The representation of the universal machine as three voltage sources v,(t), v,(t), v5(t) behind resistances R,
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in the complete electric network is only used on the armature side, whereas compensation-based interfaces are still

maintained for the field structure windings and for the mechanical system. With this in mind, the solution process

works roughly as follows:

1) With the universal machine represented as voltage sources behind R, (implemented as current sources in
parallel with R, in the EMTP), solve the complete electric network. Extract from this solution the Thevenin
equivalent open-circuit voltages of Eq. (9.35) if there are any external networks connected to the field
structure windings (see Section 9.6 for details about three-phase compensation on the first three windings,
and single-phase compensation on the rest). Extract as well the open-circuit voltages of the network which
represents the mechanical system.

2) Execute steps (2) to (9) of the compensation-based procedure described in the preceding Section 9.6, except
that the armature currents i,, i, i; (and iy, iy, i,, after transformation with [T 1) are now known from step
(1) and used directly in place of the Thevenin equations (9.36) for the armature part. The calculations for

the other parts remain unchanged.

3) Rotate the armature fluxes Ay, A, A, from the d, g-axes to the synchronously rotating ds, gs-axes
Agy| |cos(wr-P) -sin(wr-P) Of |4,
Ayl = |sin(wg-B) cos(wr-B) Of|A, (9.43)
A'0(1 0 O 1 }“oa

and use them to predict the voltage sources for the next time step with Eq. (9.40) to (9.42). Note that no

predictions for the speed and angle are needed here.
4) Proceed to (1) to find the solution at the next time step.

Experience has shown [140] that this interfacing option is as accurate as the compensation-based interface
of Section 9.6. It also requires less computation time. Its numerical stability can be partly attributed to the backward
Euler method in Eq. (9.41). As shown in Appendix 1.9, the backward Euler method is identical to the trapezoidal
rule of integration with critical damping, and is therefore absolutely numerically stable. However, Eq. (9.41)

involves predictions as well, and the comparison is therefore not completely correct.
9.8 Saturation
Saturation effects are only represented for the main flux (M, in Fig. 9.1), except for the special induction
machine model of Ontario Hydro, which includes saturation effects in the leakage fluxes as well.

The saturation curve of the universal machine is approximated as two piecewise linear segments for the d-

axis, the g-axis, or for both (Fig. 9.7). By using the star circuit of Fig. 9.1,
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Fig. 9.7 - Piecewise linear inductance

the piecewise linear representation can easily be implemented. Whenever the flux lies above the knee-point value

A the relationship of Eq. (9.4b) in the form of

knee>
Mg = Myl (9.44a)
is simply replaced by

)‘md = )‘sat * Mdfsat imd (944b)

on the direct axis, and analogous on the quadrature axis.
Residual flux can be represented as well. In that case, the characteristic of Fig. 9.8 is used. If the absolute

value of the flux is less than A, ., then the M,-branch is open-circuited,

imd =0 lf M‘md‘ < )‘residual (9453)
)‘md = )‘residual * Md imd Uc )“residual < M‘md| < )Lknee (945b)

and
Mg = A ¥ My iy 0 Al > A (9.45¢)
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T h e
decoupled approach of d- and g-axis saturation works reasonably well for salient-pole synchronous machines and
for dc machines with a definite field coil in one axis. However, when both the armature and field structures are
round with no pronounced saliency, as in most induction machines and in round-rotor synchronous machines, then
this decoupled approach leads to unacceptable results. Therefore, a "total saturation" option is available, which uses

a solution method very similar to that discussed in Section 8.6.
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10. SWITCHES

Any switching operation in a power system can potentially produce transients. For the simulation of such

transients, it is necessary to model the various switching devices, such as

circuit breakers,

load breakers,

dc circuit breakers,

disconnectors,

protective gaps,

thyristors, etc.
So far, all these switching devices are represented as ideal switches in the EMTP, with zero current (R = ) in the
open position and zero voltage (R = 0) in the closed position. If the switch between nodes k and m is open, then
both nodes are represented in the system of nodal equations, whereas for the closed switch, both k and m become

one node (Fig. 10.1). Itis

(m discarded)

(a) open (b) closed

Fig. 10.1 - Representation of switches in the EMTP

possible, of course, to add other branches to the ideal switch, to more closely resemble the physical behavior, e.g.,
to add a capacitance from k to m for the representation of the stray capacitance or the R-C grading network of an
actual circuit breaker. The characteristics of the arc in the circuit breaker are not yet modelled, but work is in
progress to include them in future versions.

Switches are not needed for the connection of voltage and current sources if they are connected to the
network at all times. The source parameters Tgr,rr and Tgrop can be used in place of switches to have current
sources temporarily connected for Tgrapr < t < Tgrop, as explained in Section 7. For voltage sources, this definition
would mean that the voltage is zero for t < Tgpapr and for t > Tgrop, Which implies a short-circuit rather than a
disconnection. Therefore, switches are needed to disconnect voltage sources.

Switches are also used to create piecewise linear elements, as discussed in Section 12.

10.1 Basic Switch Types
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There are five basic switch types in the EMTP, which are all modelled as ideal switches. They differ only

in the criteria being used to determine when they should open or close.

10.1.1 Time-Controlled Switch
This type is intended for modelling circuit breakers, disconnectors, and similar switching devices, as well

as short-circuits. The switch is originally open, and closes at T¢; os. It opens again after Tpey (if < t,,,), €ither

max.
as soon as the absolute value of the switch current falls below a user-defined current margin, or as soon as the
current goes through zero (detected by a sign change), as indicated in Fig. 10.2 For the simulation of circuit
breakers, the latter criterion for opening should normally be used. The time between closing and opening can be

delayed by a user-defined time delay.

iswiTcn iswrTcH
current forced

. to zero 1in next step
switch opens

3

} CURRENT MARGIN

A —
/ & } CURRENT MaRGIN
current forced N
to zero in next step s switch opens
(a) current going through zero (b) current less than margin

Fig. 10.2 - Opening of time-controlled switch

The closing takes place at the time step nearest to T o4 in the UBC version (Fig. 10.3(a)), and at the time
step where t > T, s for the first time in the BPA version (Fig. 10.3(b)).

CLOSE TCLOSE
1 1 I T 1 | T 1 T I ] I
T — t T - t
closed here closed here
(a) UBC version (b) BPA version

Fig. 10.3 - Closing of time-controlled switch
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Teose < 0 signals to the EMTP that the switch should be closed from the very beginning. If the simulation
starts from automatically calculated ac steady-state conditions, then the switch will be recognized as closed in the
steady-state phasor solution.

The BPA EMTP has an additional time-controlled switch type (TACS-controlled switch type 13), in which
the closing and opening action is controlled by a user-specified TACS variable from the TACS part of the EMTP.

With that feature it is easy to build more complicated opening and closing criteria in TACS.

10.1.2 Gap Switch

This switch is used to simulate protective gaps, gaps in surge arresters, flashovers across insulators, etc.
It is always open in the ac steady-state solution. In the transient simulation, it is normally open, and closes as soon
as the absolute value of the voltage across the switch exceeds a user-defined breakdown or flashover voltage. For
this checking procedure, the voltage values are averaged over the last two time steps, to filter out numerical
oscillations. Opening occurs at the first current zero, provided a user-defined delay time has already elapsed. This
close-open cycle repeats itself whenever the voltage exceeds the breakdown or flashover voltage again, as indicated

in Fig. 10.4

VOLTAGE OPENS OPENS OPENS

ACROSS SWITCH J j i
BREAKDOWN

N VOLTAGE

| . e VV o e 7 h
DELAY TpELAY TpELAY PBREAKDOWN

TcLosE VOLTAGE

T LI

CLOSES CLOSES CLOSES

Fig. 10.4 - Repetition of close-open operation for gap switch

It is well known that the breakdown voltage of a gap or the flashover voltage of an insulator is not a simple
constant, but depends on the steepness of the incoming wave. This dependence is usually shown in the form of a
voltage-time characteristic (Fig. 10.5), which can be measured in the laboratory for standard impulse waveshapes.
Unfortunately, the waveshapes of power system transients are usually very irregular, and voltage-time characteristics
can seldom be used, therefore. Analytical methods based on the integration of a function

F= ("M@ - v)dt (10.1)

4
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Fig. 10.5 - Voltage-time characteristic of a gap

could easily be implemented. In Eq. (10.1), v, and k are constants, and breakdown occurs at instant t, where the
integral value F becomes equal to a user-defined value [8]. For k = 1, this is the "equal-area criterion" of D. Kind
[172]. Neither the voltage-time characteristic nor Eq. (10.1) has been implemented so far.

The BPA EMTP has an additional gap switch type (TACS-controlled switch type 12), in which the
breakdown or flashover is controlled by a firing signal received from the TACS part of the EMTP (Section 13).
With that feature, voltage-time characteristics or criteria in the form of Eq. (10.1) can be simulated in TACS by

skilled users.

10.1.3 Diode Switch

This switch is used to simulate diodes where current can flow in only one direction, from anode m to
cathode k (Fig. 10.6). The diode switch closes whenever v, > v, (voltage values averaged over two successive time
steps to filter out numerical oscillations), and opens after the elapse of a user-defined time delay as soon as the
current i, becomes negative, or as soon as its magnitude becomes less than a user-defined margin.

k I j m
{cathode) (anode)
.

1mk

Fig. 10.6 - Diode switch
In the ac steady-state solution, the diode switch can be specified as either open or closed.
10.1.4 Thyristor Switch (TACS Controlled)
This switch is the building block for HVDC converter stations. It behaves similarly to the diode switch,

except that the closing action under the condition of v,, > v, only takes place if a firing signal has been received from

the TACS part of the EMTP (Section 13).
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10.1.5 Measuring Switch
A measuring switch is always closed, in the transient simulation as well as in the ac steady-state solution.
It is used to obtain current, or power and energy, in places where these quantities are not otherwise available.
The need for the measuring switch arose because the EMTP does not calculate currents for certain types
of branches in the updating procedure inside the time step loop. These branches are essentially the polyphase coupled
branches with lumped or distributed parameters. The updating procedures could be changed fairly easily to obtain

the currents, as an alternative to the measuring switch.

10.2 Statistical Distribution of Switching Overvoltages

Since circuit breakers can never close into a transmission line exactly simultaneously from both ends, there
is always a short period during which the line is only closed, or reclosed, from one end, with the other end still open.
Travelling waves are then reflected at the open end with the well-known doubling effect, and transient overvoltages
of 1 p.u. at the receiving end are therefore to be expected. In reality, the overvoltages can be higher for the
following reasons:

(a) the line is three-phase with three different mode propagation velocities,

(b) the network on the source side of the circuit breaker may be fairly complicated, and can therefore

create rather complicated reflections,

(©) the line capacitance may still be charged up from a preceding opening operation ("trapped charge"

in reclosing operations),

(d) the magnitude of the overvoltage depends on the instant of closing (point on waveshape),

(e) the three poles do not close simultaneously (pole spread).

In the design of transmission line insulation, it would make little sense to base the design on the highest
possible switching surge overvoltage, because that particular event has a low probability of ever occurring, and
because the line insulation could not be designed economically for that single high value. Furthermore, it is
impossible or very difficult to know which combination of parameters would produce the highest possible
overvoltage. Instead, 100 or more switching operations are usually simulated, with different closing times and
possibly with variation of other parameters, to obtain a statistical distribution of switching surge overvoltages. This

is usually shown in the form of a cumulative frequency distribution (Fig. 10.7).
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Fig. 10.7 - Cumulative frequency distribution of receiving end
overvoltages from 100 digital computer and TNA simulations [18].
Reprinted by permission of CIGRE

For the left-most curve in Fig. 10.7, an overvoltage of 1.6 p.u. or higher would have to be expected in 5%
of the switching operations. Insulation design for withstanding a certain overvoltage often refers to a 2% probability.
The withstand voltage of insulators does not only depend on the peak value, but on the waveshape as well. For
irregular waveshapes, as they occur in switching surges, it is very difficult to take the waveshape into account, and
it is therefore usually ignored.

The BPA EMTP has special switch types for running a large number of cases in which the opening or
closing times are automatically varied. The output includes statistical overvoltage distributions, e.g., in the form
of Fig. 10.7. There are two types, one in which the closing times are varied statistically, and the other in which they
are varied systematically. How well these variations represent the true behavior of the circuit breaker is difficult to
say. Before the contacts have completely closed, a discharge may occur across the gap and create "electrical” closing

slightly ahead of mechanical closing ("prestrike"). There is very little data available on prestrike values, however.
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10.2.1 Statistics Switch

The closing time T ose Of each statistics switch is randomly varied according to either a Gaussian (normal)
distribution, or a uniform distribution, as shown in Fig. 10.8. After each variation, for all such switches, the case
is rerun to obtain the peak overvoltages. The mean closing time T and the standard deviation o are specified by the
user. In addition to closing time variations of each individual switch, a random delay can be added, which is the

same for all statistics switches, and which always follows a uniform distribution.

}f(T) £(T)
4
| 1
2/3o
P : T
T ° T o
g 9 8 &
& [ P
1.0 1.0 =4
0.5 0.5
T — = T
T T

Fig. 10.8 - Probability distribution for the closing time T o Of the statistics switch. f(T) =
density function, F(T) = cumulative distribution function

There is also an option for dependent "slave" switches, in which the closing time depends on that of a "master”

switch,

T CLOSE-slave ~ T, CLOSE-master * Trtmdom (102)

with

T 1. 0sE-master statistically determined closing time of a "master" statistics switch,

T andom = random time delay defined by a mean time and standard deviation.
This slave switch may in turn serve as a master switch for another slave switch. Slave switches are usually used to
model circuit breakers with closing resistors. The first contact to close would be the master switch, with the next
one or more contacts to close being slave switches.

Statistics switches can also be used for random openings, instead of closings, but this option is less
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important. In realistic simulations, the current interruption only occurs at the first current zero after Tpy, and there
are only a few combinations of phase sequences in which the three poles of a three-phase circuit can interrupt. It

may be just as easy to simulate these combinations directly, rather than statistically.

10.2.2 Systematic Switch

Each systematic switch has its closing time systematically varied, from T, to T,,, in equal increments of
AT. If this is done for the three poles of a three-phase circuit breaker, it can result in a very large number of cases

which have to be run automatically, as indicated in Fig. 10.9.

|
TCLOSE.-C
.
_\\ 60 cases with NA= 5, NB= 3, NC= 4
\
AT \
¢ —\ \\
\ \
\
\
\
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\
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\
\
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! i B | T
! g S CLOSE-A
] ”’ II'
A’I‘ : I’ ! I’
B -.---------:--./--..--:--.’,'
7/’ ] ’
-_-_----------:‘/.’.----’--:'l’
TCLQSE-B
Fig. 10.9 - Three-dimensional space for three closing times T osg 4> Terosess
TCLOSEfC
Again, there is an option for dependent "slave" switches, in which the closing time is
Ty ost-siave = Tcrose-maser + Torrser (10.3)

where T greer 1S NOW a constant, rather than a random variable as in Eq. (10.2). As in the case of statistics switches,
slave switches are used to model the second (or third,...) contact to close in circuit breakers with closing resistors.

Slave switches do not increase the dimension of the vector space shown in Fig. 10.9 for three master switches.
10.3 Solution Methods for Networks with Switches

There is more than one way of handling changing switch positions in the transient solution part of the
EMTP. For the ac steady-state solution part, the problem is simpler, because the equations are only solved once.

In that case, it is best to use 2 nodes for open switches, and 1 node for closed switches, as shown in Fig. 10.1.
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In some programs, the switch is represented as a resistance R, with a very large value if the switch is open
and a very small value if the switch is closed. As explained in Section 2.1, very large values of R do not cause
numerical problems in solution methods based on nodal equations, but very small values can cause numerical
problems. This approach was therefore not chosen for the EMTP. The calculation of the switch current is trivial

in this approach, with

bw = G = V,) IR (10.4)

The compensation method described in Section 12.1.2 provides another approach for handling switches.
To represent M-switches, an M-phase Thevenin equivalent circuit would be precomputed with an equation of the

form

[vk] - [Vm] - [kaO] - [vmfo] - [RThev] [lkm] (105)

The switch currents, which are needed for the superposition calculation (Eq. (12.8) in Section 12.1.2), are simply

[ix,] = O if all switches are open or
] = [Rpped A v0) = [v,00 ) (10.6)

if all switches are closed. If only some switches are closed, then [Ry,.,] in Eq. (10.6) is a submatrix obtained from
the full matrix after throwing out the rows and columns for the open switches. The switch currents are automatically
obtained in this approach, and there should not be any numerical problems. The compensation-based method is not
used in the EMTP now, though it may be chosen in future versions for the inclusion of arc characteristics. It was
used in a predecessor version of the EMTP developed by the author in Munich. The treatment of switches in the
UBC EMTP, as discussed next in Section 10.3.1, is essentially the same as the compensation-based method, even
though the programming details are different.

A third approach is to change the network connections whenever a switch position changes. As indicated
in Fig. 10.1, there are two nodes whenever the switch is open, and only a single node whenever the switch is closed.

This approach has been implemented in the EMTP, in two different ways.
10.3.1 Network Reduction to Switch Nodes

In the UBC EMTP, and in an older version of the BPA EMTP, nodes which have switches connected are

eliminated last, as indicated in Fig. 10.10. Before entering the time step
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Fig. 10.10 - Matrix reduction for nodes with switches

loop, normal Gauss elimination is used on those nodes with unknown voltages (subset A) which do not have switches
connected to them. For the rest of the nodes of subset A with switches, the Gauss elimination is stopped at the
vertical line which separates the non-switch nodes from the switch nodes. This creates the reduced matrix illustrated
in Fig. 10.10(a). All switches are assumed to be open in this calculation.

Whenever a switch position changes in the time step loop, this reduced matrix is first modified to reflect
the actual switch positions. If the switch between nodes k and m is closed, then the two respective rows and columns
are added to form one new row and column using the higher node number between k and m, and the other row and
column for the lower node number is discarded. If the switch is open, no changes are made in the reduced matrix.
After these modifications, the triangularization is completed for the entire matrix of subset A, as indicated in Fig.
10.10(b). In repeat solutions, the addition of rows for closed switches must be applied to the right-hand sides as
well. In the backsubstitution, the voltage of the discarded lower node number is set equal to the voltage of the
retained higher node number.

Using this reduced matrix scheme has the advantage that the triangularization does not have to be done again
for the entire matrix whenever switch positions change. Instead, re-triangularization is confined to the lower part.
This scheme works well if the network contains only a few switches. If there are many switches, as in HVDC
converter station simulations, then this method becomes less and less efficient, and straightforward re-
triangularization may then be the best approach, as described in Section 10.3.2. When the method was first
programmed, only two rows and columns could be added. This has led to the restriction that a node with unknown
voltage can only have one switch connected to it in this scheme, because two closed switches connected to one node
would require the addition of three rows and columns (to collapse three nodes into one). This restriction no longer
applies to newer BPA versions which use the method of Section 10.3.2.

The current calculation for closed switches in the time step loop uses the row of either node k or m in the
reduced matrix (where the switch was assumed to be open) after the right-hand sides have been modified by the
downward operations with the upper part of the triangular matrix. In effect, this sums up the currents through the

branches connected to k or m, which must be equal to the switch current. In the ac steady-state solution, the switch
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currents are no calculated at all, but simply set to zero at t = 0. This is obviously incorrect, but the values will be
correct at At, 2At,...t,..
10.3.2 Complete Re-Triangularization

In newer versions of the BPA EMTP, the reduction scheme discussed in the preceding section is no longer
used. Instead, the matrix is built and triangularized completely again whenever switch positions change, or when
the slope of piecewise linear elements changes. The current is calculated from the original row or either node k or
m, with all switches open, with the proper right-hand side.

With this newer scheme, any number of switches can be connected to any node, as long as the current in
each switch is uniquely defined. A delta-configuration of closed switches, or two closed switches in parallel, would
therefore not be allowed. Also, a switch cannot connect two voltage sources together, which is unrealistic anyhow
because it would create an infinite current. The switch currents are now calculated in the ac steady-state solution

as well, and switch currents are therefore correct at all times, including att = 0.

10.3.3 Switch-Closing

When the EMTP prints a message that a switch is closed after T seconds, T will always be an integer
multiple of At, because the EMTP cannot handle variable step sizes so far. The actual closing time T will therefore
differ somewhat from the user-specified time T o4, as explained in Fig. 10.3.

The network will already have been solved, with the switch still open, when the decision is made to close
the switch at time T. As shown in Fig. 10.11, all voltages and currents at t = T are therefore the "preclosing”
values. After the network solution at t = T, the matrix is rebuilt and re-triangularized for the closed switch position,
and in the transition from T to T + At, it is assumed that all variables change linearly with finite slope, rather than

abruptly.

«— T

/r"‘\s——

T T T T o=

Fig. 10.11 - Switch closing or opening at time T

In many cases, the linear transition with a finite slope indicated in Fig. 10.11 is a reasonable assumption. For

example, if the voltage v were the voltage across a capacitor, then v could not change abruptly anyhow. On the other
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hand, if it were the voltage across an inductance it could indeed jump, as indicated by the dotted line in Fig. 10.11.
Such voltage jumps are very common in HVDC converter stations. The exact method for handling such jumps would
be the addition of a second "post-change" solution at T, after the "pre-change" solution at T , without advancing in
time. As explained in Appendix II, methods are now known to re-initialize at T,, but they have not yet been

implemented in the EMTP.

10.3.4 Switch Opening

The treatment of switch opening in the solution is similar to that of switch closing. Again, the network will
already have been solved, with the switch still closed, when the decision is made to open the switch at time T. To
explain the transition from T to T + At, Fig. 10.11 can again be used: all voltage and currents at t = T will be the
"pre-change" values, and after these values have been obtained, the matrix will be rebuilt and re-triangularized for
the "post-change" configuration. All variables are then assumed to vary linearly rather than abruptly in the transition
from T to T + At.

As already explained in Section 2.2.2,, not re-initializing the variables at T with a second "post-change"
solution creates numerical oscillations in the voltages across inductances. They can be prevented with the re-
initialization method of Appendix II, which has not yet been implemented in the EMTP, or with the damping
resistances discussed in Section 2.2.2. For many years it was thought that the numerical oscillations occur only
because the current is never exactly zero when the switch opens, with a residual energy L(Ai)?/2 left in the
inductance. It is now known that they also occur if Ai = 0. Decreasing At will not cure the oscillations either.

There are cases where the numerical oscillation, in place of the correct sudden jump, can serve as an
indicator of improper modelling. An example is transient recovery voltage studies, where a sudden jump in voltage
would indicate that the proper stray capacitances are missing from the model. Fig. 10.12 shows a simple example:
both switches I and II in the network of Fig. 10.12(a) are closed at t = O to charge the capacitor. Switch II opens
when the capacitor is charged up and when the current is more or less zero. Fig. 10.12(b) shows the numerical
oscillations in the voltage v, on the feeding network side. By adding a stray capacitance to the left side of the switch,
as illustrated in Fig. 10.12(c), the transient recovery voltage on the feeding side would no longer have the unrealistic

jump, as shown in Fig. 10.12(d).
10.4 Arc Phenomena in Circuit Breakers
When the contacts of a circuit breaker open, they draw an electric arc which maintains the current flow until

interruption takes place at current zero. In high voltage circuit breakers, the arc resistance is negligibly small if

normal load currents or high short-circuit currents are
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Fig. 10.12 - Capacitor charging and discharging

interrupted. In the interruption of small inductive currents (e.g., in switching off an unloaded transformer), the arc
resistance is higher because of the falling arc characteristic, and may be important in deciding whether current
interruption is successful or not. Immediately after current interruption, a transient recovery voltage builds up across
the contacts, which can lead to reignition if it exceeds the dielectric strength which re-appears as the gap between
the contacts is being de-ionized.

There is no circuit breaker arc model in the EMTP now, but work is in progress to add one. Static arc
models are not good enough, and differential equations describing the arc must be used instead. Most experts

working on current interruption problems use a modification of an equation first proposed by Mayr, of the form

dg _ 1 [ i g] (10.7)

i <\ Pl

where
g = arc conductance,
i = arc current,
t(t) = conductance-dependent time constant,
P(g) = conductance-dependent heat dissipation.
The parameters t(t) and P(g) are dependent on the characteristics of the particular circuit breaker. A detailed

investigation into the usefulness of various arc equations is presently being done by CIGRE Working Group 13.01
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("Practical Application of Arc Physics in Circuit Breakers").

If high-frequency oscillations develop in the arc current prior to interruption, as they sometimes do in
switching off small inductive currents or in other current-chopping situations, then reignition may occur within 1/4
cycle after current interruption (the term "restrike" is used to describe resumption of current conduction if it occurs
1/4 cycle or longer after current interruption, which most likely occurs in the interruption of capacitive currents).
For deciding whether reignition occurs, the arc equation of Eq. (10.7) cannot be used. Instead, the transient
recovery voltage is compared again the dielectric strength, which increases as a voltage is compared against the
dielectric strength, which increases as a function of time, and if it exceeds it, then reignition occurs. For the

breakdown itself, Toepler's equation can be used, which is of the form [173]

g - %[0’ i(u) du (10.8)

where
k = constant,
S = gap spacing
i = current in gap (starting from an extremely small value).

v = voltage across gap.
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11. SURGE ARRESTERS AND PROTECTIVE GAPS

To protect generators, transformers, cables, SF¢-basses, and other devices against levels of overvoltages
which could permanently destroy their non-self-restoring insulation, surge arresters are installed as close as possible
to the protected device. Short connections are important to avoid the doubling effect of travelling waves on open-
ended lines, even if they are short busses. Surge arresters have normally not been used for the protection of
transmission lines, because one can easily recover from insulator flashovers with fast opening and reclosing of circuit
breakers (self-restoring insulation). Some utilities are studying the possibility of using surge arresters on
transmission lines, too, to limit switching surge overvoltages.

Protective gaps are seldom used nowadays, except in the protection of series-capacitor stations.

11.1 Protective Gaps

Protective gaps are crude protection devices. They consist of air gaps between electrodes of various shapes.
Examples are horns or rings on insulators and bushings, or rod gaps on or near transformers. They do protect
against overvoltages by collapsing the voltage to practically zero after sparkover, but they essentially produce a short-
circuit which must then be interrupted by circuit breakers. Also, their voltage-time characteristic (Fig. 10.5) rises
steeply for fast fronts, which makes the protection against fast-rising impulses questionable.

Protective spark gaps are still used to protect series capacitors. There, the sparkover does not increase the
transmission line current, but actually reduces it because the line impedance increases when the series capacitor is
by-passed. Since the spark gap is unable to interrupt the current, a by-pass circuit breaker must be closed to
extinguish the arc in the spark gap (Fig. 11.1). This by-pass breaker must be opened again if the series capacitor

is to be re-inserted. In the future, protective spark gaps may be replaced by metal-oxide surge arresters.

by-pass —

circuit breaker

protective ) C : {

spark gap
linear or nonlinear
R-L circuit to limit
discharge current

ission
ttjansm n | 1 L
line 1

Fig. 11.1 - Series capacitor protection scheme



Protective gaps are simulated in the EMTP with the gap switch discussed in Section 10.1.2.
11.2 Surge Arresters

There are two basic types of surge arresters, namely silicon-carbide surge arresters, and metal-oxide surge
arresters. Until about 10 years ago, only silicon-carbide arresters were used, but the metal-oxide arrester is quickly

replacing the older type to the extent that some manufacturers produce only metal-oxide arresters now.

11.2.1 Silicon-Carbide Surge Arrester

Silicon-carbide arresters consist of a silicon-carbide resistor with a nonlinear v-i characteristic, in series with
a spark gap (Fig. 11.2). The spark gap connects the arrester to the system when the overvoltage exceeds the
sparkover voltage, and the resistor limits the follow current and enables the arrester to "reseal" (interrupt the current
in the gap). To facilitate resealing, so-called "active spark gaps" have been designed in which an arc voltage builds
up after some time. A resistor block in series with the gap is not very high (typically 4 cm), and to produce the
desired sparkover voltage and nonlinear resistance for a particular voltage level, many such blocks are stacked

together in a series connection. To achieve reasonably uniform
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Fig. 11.2 - Nonlinear characteristic of a 220 kV silicon-carbide surge arrester

voltage distribution along the stack, parallel R-C grading networks are used, which are normally ignored in
simulations.

Silicon-carbide arresters are modelled in the EMTP as a nonlinear resistance in series with a gap which has
a constant sparkover voltage. In reality the sparkover voltage depends on the steepness of the incoming wave, as

shown in Fig. 11.3 [174]. Since surges in a system have very irregular shapes, rather than the linear rise used in
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the measurements of Fig. 11.3, the steepness dependence of the sparkover voltage is not easy to implement, as
already discussed in Section 10.1.2. The nonlinear resistance in series with the gap is either solved with the
compensation method (Section 12.1.2), or with the piecewise linear representation (Section 12.1.3).

In silicon-carbide surge arresters with current-limiting gaps, a voltage builds up across the gap after 200
to 400 us, which is best modelled as an inserted ramp-type voltage source [175], as shown in Fig. 11.4. This ramp
voltage source is not part of the EMTP arrester model now, but it can easily be added as an extra voltage source,
after one trial run to determine when sparkover occurs. This gap voltage is only important in switching surge
studies. In lightning surge studies, it can be ignored because of the time delay of 200 to 400 us. Useful IEEE

guidelines for modelling silicon-carbide arresters are found in [175].
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high voltage, lightning and switching surge protection

o oW
Il

Fig. 11.3 - Arrester sparkover voltage-time characteristic for wavefronts with linear rise [174].
Reprinted by permission of Plenum Publishing Corp. and Brown Boveri Oerlikon

It is doubtful whether very sophisticated models with dynamic characteristics, such as the "type-94 modern-
style SiC surge arrester" based on [176] in the BPA EMTP, are useful, because it would be almost impossible to
obtain the required data. Brauner [177] has developed a model with dynamic characteristics with special reference

to GIS insulation coordination, which appears to require less data than the type-94 arrester.
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Fig. 11.4 - Arrester gap characteristic

11.2.2 Metal-Oxide Surge Arrester

Metal-oxide or zinc-oxide surge arresters are highly nonlinear resistors, with an almost infinite slope in the
normal-voltage region, and an almost horizontal slope in the overvoltage protection region, as shown in Fig. 11.5.

They were originally gapless, but some manufacturers
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Fig. 11.5 - Voltage-current characteristic of a 1200 kV gapless metal-oxide surge
arrester [183]. © 1982 IEEE

have re-introduced gaps into the design. Its nonlinear resistance is represented by a power function of the form

q
i:p[L) (11.1)

vref

where p, v, and q are constants (typical values for ¢ = 20 to 30). Since it is difficult to describe the entire region
with one power function, the voltage region has been divided into segments in the BPA EMTP, with each segment

defined by its own power function. In the UBC EMTP, only one function is allowed so far. For voltages
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substantially below v,;, the current is extremely small (e.g., i = p®0.5* = p®10® for v/v,,; = 0.5), and a linear

ref
representation is therefore used in this low voltage region. In the meaningful overvoltage protection region, two
segments with power functions (11.1) are usually sufficient.

The static characteristic of Eq. (11.1) can be extended to include dynamic characteristics similar to hysteresis
effects, through the addition of a series inductance L, whose value can be estimated once the arrester current is
approximately known from a trial run [10]. A metal-oxide surge arrester model for fast front current surges with
time to crest in the range of 0.5 to 10 us was proposed and compared against laboratory tests by Durbak [178]. The
basic idea is to divide the single nonlinear resistance into m parallel nonlinear resistances, which are separated by
low pass filters, as illustrated in Fig. 11.6 for two parallel nonlinearities, which is usually sufficient in practice. The
R,-L, circuit is the low pass filter which separates the two nonlinear resistances defined by i(v,) and i,(v,). The
inductance L, represents the small but finite inductance associated with the magnetic fields in the immediate vicinity
of the surge arrester, while R, is used only to damp numerical oscillations (see Section 2.2.2). C is the stray
capacitance of the surge arrester. The model of Fig. 11.6 can easily be created from existing EMTP elements. If
three such models were connected to phases a, b, ¢, then the six nonlinear resistances would have to be solved with

the compensation method with a six-phase Thevenin equivalent circuit.

Fig. 11.6 - Two-section surge arrester model for fast
front surges [178]
A somewhat different model (Fig. 11.7) has been proposed by Knecht [179]. It consists of a nonlinear
resistance R(v), a more or less constant capacitance C, and a linear, but frequency-dependent impedance Z(w).
No IEEE guidelines have yet been published for the modelling of metal-oxide surge arresters. The energy
absorbed in them is an important design factor, and should therefore be computed in whatever type of model is used.
Since energy absorption may change as the system is expanded, it is important to check whether ratings which were
appropriate initially may possibly be exceeded in future years. Energy absorption capability is probably more of a
limitation for switching surges than for lightning surges. The sharp change from the almost vertical to the almost
horizontal slope, which limits overvoltages almost ideally at the arrester location, could produce oscillations with

overshoot at locations some distance from the arrester, especially in substations with long bus runs. This may be
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another factor worth watching for.
Metal-oxide surge arresters are generally solved with the compensation method in the EMTP, with iterations
using Newton's method as explained in Section 12.1.2. The piecewise linear representation is less useful because

the highly nonlinear characteristic of Eq. (11.1) is not easily described by piecewise linear segments.

{
R(v) c% E] z(w)
)

Fig. 11.7 - Alternative surge arrester model

If the surge arrester is equipped with a shunt spark gap, as illustrated in Fig. 11.8, then it is still represented

as a nonlinear resistance in the solution process except that the function for

Rl(i) gap

Rz(i)

|

Fig. 11.8 - Metal oxide surge
arrester with shunt spark gap

that resistance will change abruptly from R,(i) + R,(t) before sparkover to R, (i) after sparkover. If the surge arrester

is equipped with a series spark gap, then a very high resistance is added to R,(i) + R,(i) to represent the series gap

before sparkover.
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12. SOLUTION METHODS IN THE EMTP

The basic theory behind the solution methods for the transient simulation and for the ac steady-state phasor
solution has already been explained in Section 1. Extensions of the basic theory for more complicated network
elements have mostly been discussed in the sections dealing with these elements. What remains to be explained here
are the various options for handling nonlinearities, the load flow option, and methods for initializing variables with

more than one frequency component.

12.1 Inclusion of Nonlinear Elements

The most common types of nonlinear elements are nonlinear inductances for the representation of
transformer and shunt reactor saturation, and nonlinear resistances for the representation of surge arresters.
Nonlinear effects in synchronous and universal machines are handled in the machine equations directly, and are
therefore not described here.

Usually, the network contains only a few nonlinear elements. It is therefore sensible to modify the well-
proven linear methods more or less to accommodate nonlinear elements, rather than to use less efficient nonlinear
solution methods for the entire network. This has been the philosophy which has been followed in the EMTP. Three

modification schemes have been used over the years, namely

1) current-source representations with time lag At (no longer used),
2) compensation methods, and
3) piecewise linear representations.

12.1.1 Current-Source Representation with Time Lag At

Assume that the network contains a nonlinear inductance with a given flux/current characteristic A(i), and
that the network is just being solved at instant t. All quantities are therefore known at t - At, including flux A(t - At),
which is found by integrating the voltage across the nonlinear inductance up to t - At. Provided At is sufficiently
small, one could use A(t - At) to find a current i(t - At) from the nonlinear characteristic, and inject this as a current
source between the two nodes to which the nonlinearity is connected for the solution at instant t. In principle, any
number of nonlinearities could be handled this way.

Fig. 12.1 shows a current-limiting device where this simple method was used for the two
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Fig. 12.1 - Current-limiting device

nonlinear inductances. The simulation results are plotted in Fig. 12.2. The numerical oscillations around t = 1.4
cycles seem to be caused by the time lag At, since they disappear with more sophisticated techniques in Fig. 12.11.
Since this method is very easy to implement, it may be useful in special cases, provided that the step size

At is sufficiently small. It is not a built-in option in any of the available EMTP versions, however.
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Fig. 12.2 - Simulation results with current source representation

12.1.2 Compensation Method

In earlier versions of the EMTP, the compensation method worked only for a single nonlinearity in the
network, or in case of more nonlinearities, if they were all separated from each other through distributed-parameter
lines. It appears that the type-93 nonlinear inductance in the BPA EMTP still has this restriction imposed on it, but
for most other types, more nonlinearities without travel time separation are allowed now.

The extension of the compensation method to more than one nonlinearity was first implemented for metal
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oxide surge arresters, and later used for other nonlinear elements as well.

In compensation-based methods, the nonlinear elements are essentially simulated as current injections, which
are super-imposed on the linear network after a solution without the nonlinear elements has first been found. There
are rare situations where a network solution without the nonlinearity is impossible, as in the case of Fig. 12.3. With
the nonlinear branch removed, the current injected into node 1 from the current source would not have any path to
return to neutral. The EMTP would stop with the error message "diagonal element of node-2 very small" (matrix
singularity). A remedy would be to represent the nonlinearity as a parallel combination of a (normal) linear branch
and of a (modified) nonlinear branch. A related problem occurs if the nonlinear branch is disconnected from the

network, as in Fig. 12.4. When the

1 2
~AA—
CURRENT NONLINEAR
SOURCE ? BRANCH
i(¢)

Fig. 12.3 - Unsolvable network if nonlinear
branch removed

k m
open
switch nonlinear
voltage branch
source I

Fig. 12.4 - Disconnected nonlinear branch

EMTP tries to calculate the Thevenin equivalent resistance for the nonlinear branch by injecting current into node
m, a zero diagonal element will be encountered in the nodal conductance matrix, and the EMTP will stop with the
error message "diagonal element in node-m too small." The remedy in this case is the same: represent the nonlinear
branch as a linear branch in parallel with a (modified) nonlinear branch. The BPA manual also suggests the insertion

of high-resistance paths where needed, but warns that the resistance values cannot be arbitrarily large.
12.1.2.1 One Nonlinear Element

Let us assume that the network contains only one nonlinear element between nodes k and m, as indicated

in Fig. 12.5. The compensation theorem states that this nonlinear branch can be
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excluded from the network, and be simulated as a current source i instead, which leaves node k and enters node m
if the nonlinear element is treated as a load and not as a source. The current i,,, must fulfill two equations, namely

the network equations of the linear part (instantaneous Thevenin equivalent circuit between nodes k and m),

vkm = Vkme B RThev ikm (121)

(subscript "0" indicates solution without the nonlinear branch, v,,, = v, - v,,), and the relationship of the nonlinear

branch itself,
vkm - f(ikm ’ dikm/dt ) L ’) (122)

The value of the Thevenin resistance Ry, in Eq. (12.1) is pre-computed once before entering the time step
loop, and re-computed whenever switches open and close.

The network equations (1.8b) can be rewritten as

G 1IV,] = [k,] (12.3)

with [k,] being the known right-hand side from Eq. (1.8b). To find the Thevenin resistance, a current of 1 A must
be injected into node k, and drawn out from node m. Therefore, replace [k,] with a vector whose components are
all zero, except for +1.0 in row k and -1.0 in row m. Then perform one repeat solution with this right-hand side
vector, which will produce a vector [ry,.,]. This vector is the difference of the k-th and m-th columns of the inverse

matrix [G,,]". Then
RThev = rThevfk B rThevfm (124)

If one of the voltages, say in node m, is known (voltage source, or grounded node), then -1.0 does not appear in [k,]

because node m belongs to set B of the nodes rather than to set A. In that case,
RThev = rThevfk (125)

If the voltages in both nodes k and m are known, then
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RThev =0 (126)

If the solution fails because of matrix singularity, it is likely that one of the situations illustrated in Fig. 12.3 and 12.4
has been encountered, and remedies discussed there should then be used.
The solution with compensation proceeds as follows in each time step:
1) Compute the node voltages [v, ] without the nonlinear branch, with a repeat solution of Eq. (12.3). From
this vector, and from the other known voltages [v;], extract the open-circuit voltage vy, o = Vi - Vimo-
2) Solve the two scalar equations (12.1) and (12.2) simultaneously for i,,,. If Eq. (12.2) is given analytically,
then the Newton-Raphson method is usually used (example: zinc-oxide arrester models). If Eq. (12.2) is
defined point-by-point as a piecewise linear curve, then the intersection of the two curves must be found

through a search procedure, as indicated in Fig. 12.6 for a nonlinear resistance.

v
km=o0 nonlinear eq. (12.2)

network eq. (12.1)

solution

- — -~ — —— —

.1
km

Fig. 12.6 - Simultaneous solution of two equations

3) Find the final solution by superimposing the response to the current i,

[VA] = [VAfO] - [rThev] ikm (127)

Superposition is permissible as long as the rest of the network is linear.

Step (1) is the normal solution procedure for linear networks. Step (2) takes little extra time because it
involves only two scalar equations. Step (3) requires N additional multiplications and additions if N = number of
voltages in set A. Therefore, the extra work of steps (2) and (3) is rather small compared to repeated refactorizations

of [G,4], which would be required for general, nonlinear networks.

12.1.2.2 Two or More Nonlinear Elements Separated by Travel Time
Lines with distributed parameters decouple the network equations for the two ends. This is not astonishing
because the phenomena at one end are not immediately seen at the other end, but travel time t later. Nonlinear

elements decoupled by distributed-parameter lines can therefore be solved independent of each other, because each
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has its own "area" Thevenin equivalent equation (12.1) decoupled from the others. The [ry,.,]-vector of a particular
nonlinearity will only have nonzero entries for the nodes of its own area. Therefore, all [ry,.,]-vectors can be merged
into a single vector, at the expense of another vector which contains the area number for each component [50]. This

is schematically indicated in Fig. 12.7.
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Fig. 12.7 - Disconnected subnetworks I, II, III, IV

-

12.1.2.3 Two or More Connected Nonlinear Elements

The compensation method can also be used to simulate the effect of M nonlinear branches with current
sources. Then, M vectors [Irye, 1], [T1hey.m] Must be pre-computed (and re-computed whenever switches change
position). The first vector is found by inserting +1.0 and -1.0 into the appropriate locations for the first nonlinear
element, and then performing a repeat solution. This procedure is repeated for the 2nd,...M-th nonlinear element.
The Thevenin equivalent resistance becomes an M x M- matrix [Ry,.,] in this case. The first column of this matrix
is created by calculating the differences Iy, i - I'rher.mi fOr all M nonlinear elements i = 1,...M from [ry,, ], the
second column by doing the same from [ryy,, ], etc.

In the solution process, step (1) in Section 12.1.2.1 remains identical, but step (2) now requires the solution

of M nonlinear equations
Vend = Dinol = Ry, 1 [i,,] (12.82)
Step (3) uses M vectors [Ine, 1]s---[Ihey.m] 10 place of one vector,
il = Waod = [Foe-i b e add | L] (12.8b)

with [i,,] being a vector with M components. If there are N voltages in set A, then N x M multiplications and

additions are required in Eq. (12.8). As M becomes large, this effort may become larger than simply re-solving
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[GAA] v =1k, + (ikm added in appropriate places) | (12.9)

with one repeat solution, because the N x M-matrix in Eq. (12.8) is full, whereas sparsity methods are used in
performing a repeat solution with the triangularized matrix of Eq. (12.9). In the BPA EMTP, repeat solutions of
Eq. (12.9) are used if M > 1, whereas Eq. (12.8) is used in the UBC EMTP.

The M-phase compensation method can be combined with the advantages of element separation through
travel time discussed in Section 12.1.2.2. For example, three surge arresters in phases Al, B1, C1 at the sending
end of a line and three surge arresters in phases A2, B2, C2 at the receiving end are best solved as two disconnected
groups, each with M = 3, rather than as one group with M = 6, though the latter approach would work as well if
the program allows for M > 3. The merging procedure discussed in Section 12.1.2.2 is essentially the same, except

that each vector is replaced by M vectors.

12.1.2.4 Nonlinear Inductance

The simultaneous solution of the network equation with the nonlinear equation, as illustrated in Fig. 12.6,
is straightforward if the nonlinear branch is a nonlinear resistance defined by v,,,, = f(i,), or if it is a time-varying
resistance with v,,, = R(t) ® i,,,. For nonlinear inductances, this solution process is not so direct because the

nonlinear characteristic is now in the form

A = fi) (12.10)

with the flux A being the integral over the voltage v = v, - v,

Al = Mt-Ap) + f’mv(u)du (12.11)

In the EMTP, this problem is solved by using the trapezoidal rule of integration on Eq. (12.11), which converts the

flux A(t) into a linear function of v(t),

Al = %v(r) + hist(t-Ar) (12.12a)

with the known history term

hist(t-Ar) = A(t-Ar) ~+ %v(tht) (12.12b)

Inserting Eq. (12.12a) into Eq. (12.10) produces a resistance relationship, by first shifting the origin by + hist (t -
At), and then rescaling the A-axis into a v-axis with a multiplication factor of 2/At. This v(i)-characteristic is solved
with the network equation in the same way as for any other nonlinear resistance.

As an alternative, the network equation v = v, - Ry,,i could also be converted into a flux-current

relationship, by using v = 2(A-hist)/At from Eq. (12.12).
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12.1.2.5 Newton-Raphson Method

If an M-phase Thevenin equivalent circuit must be used, in cases where the M nonlinear elements are not
separated by travel time, then a system of nonlinear equations must be solved. The Newton-Raphson iteration
method is the best approach for systems of nonlinear equations. It includes the scalar case (one nonlinear equation)
as well.

To illustrate the method, assume that the nonlinear elements are nonlinear resistances. Then Eq. (12.8a),

rewritten here for convenience as

[vkm] - [vkme] * [RThev] [lkm] =0 (12133)

must be solved, whereby [i,,] can be replaced by a diagonal matrix [f(v )], whose elements are the i-v-

characteristics of the M nonlinear resistances (e.g., as defined in Eq. (11.1)),

lip,] = [f(v,)] (12.13b)

Experience has shown that convergence is faster if Eq. (12.13) is solved for voltages rather than for currents.

Applying the Newton-Raphson method to Eq. (12.13) produces

i _
[R — |+ U] [Av,,] = Vepol = Vil = [Rpye, 1 LAV, ] (12.14)

Thev ]
km

where the matrix on the left-hand side ("Jacobian matrix") and the right-hand side are evaluated with approximate
answers from the last iteration step h-1. The improved solution is found by solving the system of linear equations

for [Av,,], with
[vkm(h)] = [Vkm(h?l)] * [Avkm] (12 15)

In Eq. (12.14), [df,,/dv,,] is a diagonal matrix of the derivatives of the i-v-characteristics, which destroys the
symmetry of the Jacobian matrix. To maintain symmetry, the following modification can be used: multiply the

Jacobian matrix with the inverse matrix [df,,/dv, ]", and solve the equations for the variables [AX],

df}(ﬂl
dv

-1
{[RThev] * }[A)C] = [Vkme] B [vkm] - [RThev] lVf(vkm)] (12163)

km

The Jacobian matrix is now symmetric, and the diagonal elements of [df,,/dv,,]" are simply the reciprocals of

df,./dv,,. After [Ax] has been found, the voltage corrections are

Aka

Av, = — 2
km df,, ldv,,, (12.16b)

This modification is used in the UBC EMTP.
In the BPA EMTP, symmetry is achieved by working with the inverse matrix [Ry,.,]". Multiplying Eq.

(12.13a) with this inverse matrix and applying the Newton-Raphson method to it produces
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df,
-1, km
{[RThev] [d

Vkm

}[Avkm] = Ry 1 {1 0] ~ ]}~ V)] (12.17)

If the inverse matrix exists, then this procedure is as straightforward as Eq. (12.16). [Ry,,] can be singular,
however, if nonlinear elements are directly connected to voltage sources. In the scalar case, Ry, would become
zero, as shown in Eq. (12.6), whereas the respective row and column in [Ry,.,] becomes zero in the M-phase case.
This has to be treated in a special way in Eq. (12.17), whereas no special cases arise with Eq. (12.16).

To start the iterations with either Eq. (12.16) or (12.17), an initial guess for the voltages is needed. Since
currents in nonlinear elements tend to change less from step to step than voltages, it is best to use the old currents
[ixm(t - At)] from the preceding time step and the new open-circuit voltages [v,,, ,(t)] to obtain an initial voltage guess
from Eq. (12.13a). This voltage guess is used for [v,,] in Eq. (12.16a) or (12.17), as well as for [df,/dv,,] and
[f(v,,)]. This procedure seems to require the least number of iterations, and has therefore been implemented in the

UBC EMTP.

12.1.2.6 Numerical Problems
As long as the EMTP works with a fixed step size At, numerical problems can arise with nonlinear elements.
If At is too large, artificial negative damping or hysteresis can occur, as illustrated in Fig. 12.8 (solution proceeds

from 1 to 2 to 3 in consecutive steps). This can cause

} 2
Ll ’

v
km /

km .

Fig. 12.8 - Artificial negative damping

numerical instability. Since the dotted nonlinear characteristic would give identical answers, it is obvious that the
shape of the characteristic between sampled points does not enter into the solution, that is, the nonlinear characteristic
is only used in a "spotty" way. Piecewise linear resistances and inductances, as discussed in the next section, appear
to be more stable numerically (or possibly absolutely stable), but they may cause "overshooting" problems.
Another problem is related to automatic ac steady-state initialization. Since nonlinear elements are
approximated as linear elements in the ac phasor solution, a sudden jump can occur at t = 0 between the linear and
nonlinear representations. For nonlinear inductances, the problem can be minimized through proper voltage source
rotations, as discussed in Section 12.1.3.3. The problem will be resolved when the superposition of harmonics

(Section 12.4) becomes available to the users.

12.1.3 Piecewise Linear Representation
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12.1.3.1 Piecewise Linear Inductance

As discussed in Section 6.6.2, the saturation characteristics of modern transformers can often be represented
accurately enough as a piecewise linear inductance with two slopes (Fig. 12.9). Such a piecewise linear inductance

can be simulated with two linear inductances L, and

A SATURATION -

------ - ASATURATION

Fig. 12.9 - Piecewise linear inductance with
two slopes

L, in parallel (Fig. 12.10), provided that the flux in L, is always computed by integrating the voltage v - v
independent of the switch position. The switch is close whenever |A| > Agaruration> and opened again as soon as
[A| < Agaruration- Fig. 12.11 shows the simulation results for the current-limiting device of Fig. 12.1 if two-slope

piecewise linear inductances are

Lp
-
K — p m
Ly
A
fe———— v —_—]
km

Fig. 12.10 - "Switched inductance’
implementation of two-slope piecewise linear
inductance
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60 Hz

Fig. 12.11 - Simulation results for case of Fig. 12.1 with
two-slope piecewise linear inductances

used. The numerical oscillations around 1.4 cycles present in Fig. 12.2 have now disappeared.

Using a switch to make the changeover from an inductance value of L, to L, in [G] of Eq. (1.8) is simply
a programming trick, which has been used in the UBC EMTP and in older versions of the BPA EMTP, and has
sometimes been called "switched inductance" (or "switched resistance"). In newer versions of the BPA EMTP, [G]
is changed directly and re-triangularized whenever the solution moves from one straight-line segment of a piecewise
linear inductance to another segment ("pseudolinear inductance or resistance in BPA EMTP Rule Book). In this
direct matrix change approach, the recursive updating of the history term of Eq. (2.8) would be wrong whenever
the slope changes. It is therefore better to use the non-recursive formula (2.7), where the branch current must first
be determined from Eq. (2.6) with the inductance value of the old slope, while Eq. (2.7) requires the inductance
value of the new slope at instants of changeover.

The two-slope piecewise linear inductance in the UBC EMTP has an option for starting the simulation from
a user-specified residual flux A, Which overrides any internally calculated flux. With this option, the piecewise
linear characteristic 1-2 with slope L, is used to point 2 where the slope is switched to L, (Fig. 12.12). The flux A,
at the switching point is precalculated in such a way that the simulation will move directly into the normal two-slope
characteristic thereafter. This procedure works well if the saturation is driven high enough to reach at least point
3. If not, some special tricks are used, which are described in more detail in the UBC User's Manual (parameter
IFLUX on time card).

In addition to the normal piecewise linear inductance, the BPA EMTP also has one with hysteresis behavior
("type-96 pseudo-nonlinear hysteretic reactor"), as illustrated in Fig. 12.13. Moving along any linear segment is
still described by the same differential equation v = L di/dt used for any other linear inductance. Therefore, the
representation in the transient solution part of the EMTP is the simple equivalent resistance 2L./At in parallel with
a current source known from the history in the preceding time step (Fig. 2.8). The equivalent resistance must be

changed, however, whenever the simulation moves from one segment into another. The fact that
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)‘residual 71
—_— i

Fig. 12.12 - Representation of residual flux in UBC
EMTP

[
7=

Fig. 12.13 - Piecewise linear inductance with hysteresis

the linear segment does (in general) not pass through the origin is automatically taken care of by the history terms.
Starting from a residual flux is permitted. This representation with hysteresis can be tricky to use, and the reader

is therefore referred to [119] for more details.

12.1.3.2 Piecewise Linear Resistance

Either the "switching" approach or the direct matrix change approach for nonlinear inductances works
equally well for nonlinear resistances. History terms are of course not needed in this case. Each linear segment with
a slope of R = dv/di is represented in the EMTP as a voltage source vgygg in series with a resistance R, or a current

source Vgyee/R in parallel with a resistance R (Fig. 12.14).
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(a) piecewise linear (b) voltage source (©) current source
segment representation representation

Fig. 12.14 - Piecewise linear resistance

12.1.3.3 Numerical Problems

With the direct matrix change approach, there is no reason to limit the shape of the nonlinear characteristic
to only two slopes. Newer versions of the BPA EMTP therefore permit essentially any number of piecewise linear
segments ("type-98 pseudo-linear reactor" and "type-99 pseudo-linear resistance” in the BPA EMTP Rule Book).
While multi-slope piecewise linear elements are more useful than two-slope elements, they can also create special
problems which do not exist with two-slope elements, especially for the nonlinear resistance: if the piecewise linear
resistance is used to model a silicon-carbide surge arrester with a spark gap, then the EMTP does not automatically
know which segment it should jump to after sparkover (Fig. 12.15). The user must therefore specify the segment
number as part of the input data (e.g., segment 2-3 in Fig. 12.15). This may require a trial run, unless the network

seen from the surge

Fig. 12.15 - Jump after sparkover (--- generally
unknown network characteristic at instant of
sparkover)

arrester location is relatively simple!. For the 2-slope resistance in the UBC EMTP shown in Fig. 12.15, this
problem does not arise.

All piecewise linear representations cause "overshoots," because the need for changing to the next segment

'If only single-phase lossless lines were connected to the surge arrester, then the slope of the network
equation would simply be Ry, = > 1/Z

hev surge *
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is only recognized after the last point (¢ in Fig. 12.16) has gone outside its proper range. The simulation will

therefore follow the dotted line into the next segment, rather

Fig. 12.16 - Overshoot in
piecewise linear
representation

than the specified solid line at point x. Caution is therefore needed in the choice of At to keep the overshoot small.
The overshoot is usually less severe on piecewise linear inductances because the flux, being the integral over the
voltage, cannot change very quickly. The proper cure for the overshoot problem would be an interpolation method
which moves the solution backwards by a fraction of At to point x in Fig. 12.16, and then restarts the solution again
at that point with At. The points along the time axis would then no longer be spaced at equal distances. This method
is used in the transients program NETOMAC [15].

Both the piecewise linear representation and the compensation method suffer from the fact that nonlinear
inductances are approximated as linear inductances in the ac phasor solution, at least until the superposition of
harmonics discussed in Section 12.4.2 has become available to most users. The problem should not occur with
nonlinear resistances which represent surge arresters. The voltages across these nonlinear resistances should be low
enough in the steady-state solution to either draw negligibly small currents (metal oxide arresters), or be below
sparkover voltage (silicon-carbide arresters). Transformers and shunt reactors do saturate in normal steady-state
operation, however, and a jump from the linear to the nonlinear characteristic will therefore occur at t = O (Fig.

12.17). Whether the jump occurs in A or i, or in both depends

A characteristic for
{steady-state solution
T solution /
point y Jump
/
/

—_— i

Fig. 12.17 - Jump between steady-state and transient
solution
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to some extent on the type of representation. This problem can be minimized by rotating the voltage sources in such
a way that one of the three flux phasor A,, Ay, Ac has zero angle (Fig. 12.18). For balanced network conditions,

one flux would be at zero value at t = 0, and the other

Ay

Ac

Fig. 12.18 - Flux phasors (A(0) = Re{A})

two fluxes would be 86.6% of their peak value. Hopefully, this would be below the knee point of the saturation
curve. Note that fluxes and voltages are 90° out of phase when doing this rotation (checking that one of the currents

is close to zero at t = 0 will verify the correctness of the rotation).

12.2 Load Flow Option

A load flow (power flow) option was added to the EMTP in 1983 by F. Rasmussen (Elkraft, Denmark).
It adjusts the magnitudes and angles of sinusoidal sources iteratively in a sequence of steady-state solution, until
specified active and reactive power, or specified active power and voltage magnitude, or some other specified
criteria, are achieved. This will create the initial conditions for the subsequent transient simulation.

Without the load flow option, the steady-state conditions are obtained by solving the system of linear nodal

equations (1.21) only once. These equations are

Y 1V, = ] — [Y ] [Vl (12.18)
with user-specified magnitudes and angles for the voltage sources [V;] and for the current sources [I,]. The resulting
power flows may or may not be what the user wants. There are many cases, however, where the details of the initial

power flows in the network do not influence the results of the transient simulation. For example, the switching surge

overvoltages on the line in the network of Fig. 12.19 are not influenced by the power flow pattern within the feeding
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switched line
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V3

Fig. 12.19 - Network configuration for switching surge study

network, as long as the feeding network does not contain nonlinear elements. The only important parameters are
the (frequency-dependent) impedance of the feeding network (which does not depend on power flows anyhow), and
the pre-closing voltage V. This is true because a linear network can always be represented by a Thevenin equivalent
circuit which requires only these two parameters. The value of the open-circuit voltage V is normally specified by
the user (e.g., 5% above rated voltage), rather than obtained from a load flow solution. Any combination of source
voltages V,, V,, V5 which produces the same V¢ would create identical overvoltages. One could therefore simply
assume equal source voltages V, = V, = V,, make one trial steady-state solution to get V"™, and then multiply the
voltages with the factor V¢/V™ for the final simulation. A load flow solution is not needed in this case.

The best methods for load flow solutions are based on the Newton-Raphson method. When Rasmussen
added a load flow option in 1983, he was aware of that, but he could not afford the tremendous programming effort
involved in its implementation. Instead, he developed a simpler method, which would serve his needs and at the
same time require as little program changes as possible. This led to the method discussed next, which is somewhat
similar to the Gauss-Seidel methods used in the early days of load flow program development. An improved
approach, which also requires a minimum of program changes, is discussed in Section 12.2.2. It is clear, however,
that one would eventually have to use Newton-Raphson methods, and re-program the steady-state solution routine

completely, if further improvements are needed.

12.2.1 Rasmussen's Load Flow Method

Nodes at which the user specifies active power P and reactive power Q (or some other combination of P,
Q, voltage magnitude, and voltage angle) are treated as voltage sources in the direct solution of the system of linear
equations (12.18). For a network with 100 nodes, in which P, Q is specified at 9 nodes, and where one node is the
slack node (| V|, O specified), the solution of the 90 equations (12.18) amounts essentially to a reduction of the
network to 10 voltage source nodes. After this solution, Rasmussen calculates the current at P, Q-nodes from the

equations of set B which have been left out in Eq. (12.18),
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I, = Z Y V for all nodes k of set B, except for slack node (12.19)

km " m
m=1

and then the power from

P -jO = LV, (12.20)

The calculated values of P,, Q, are then compared with the values specified by the user. Based on these differences,
corrections are made to the angle 0, and magnitude |V, | of each voltage V,,

P -P

AG _ k- k-specified 25 F
A .

I (12.21)

5(‘Pk‘ + |Pk—5peciﬁed|)
and

A‘Vk‘ _ Qk - Qkfspeciﬁed - 2000 F

1 (12.22)

E (| Qk‘ + |Qk—speciﬁed‘ )
F is a deceleration factor which decreases from 1.0 to 0.25 in 500 iterations, with the formula

_ 2
_ [ 1000 - A (12.23)
1000

(h = iteration step). Once the voltages have been corrected, another direct solution of Eq. (12.18) is obtained. This
cycle of calculations is repeated until A®, and A|V,| become sufficiently small.
The method of Rasmussen is comparable to the Gauss-Seidel load flow solution method applied to the

reduced system

[Y e = [V,] =[] (12.24a)

where

[V e = [Vyp] — [Yp, 1 1Y, 17 (Y] (12.24b)

and where [I,] was assumed to be zero to simplify the explanations. For the 100-node example, the performance
of Rasmussen's method would therefore have to be compared against the Gauss-Seidel method for a 10-node system
(with one slack node), and not for a 100-node system. Since the Gauss-Seidel method converges faster for smaller

systems, the reduction implied in the Rasmussen method is an advantage over straightforward Gauss-Seidel methods.
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If the standard Gauss-Seidel load flow method were applied to the reduced system, the corrected voltages

would be found from

YreducedV @# _ Pkfspeciﬁed -J Qkfspeciﬁed _ YreducedV (h-1)
kk k - km m

Vk*(hil) nodes of set B except K

for each node k of subset B (except for the slack node). A slightly modified method uses equations in the form in

which they are normally written for Newton's methods,

(_ Qk _ Bk;(educed‘vk‘z) Aﬁk

Py = P pecified (12.25)

AlV,|

P o+ Greduced vV 2
( k kk ‘ k‘ ) |Vk|

= Qk B Qkfspeciﬁed (1226)

The coefficients on the left-hand side are often called H,, and L,, in the load flow solution literature. By comparing
Eq. (12.25) and (12.26) with Eq. (12.21) and (12.22), one can see that Rasmussen basically assumed fixed values
for H,, and L,,, independent of the type of network and the system of units used (p.u., VA, kVA, or MVA). The
influence of the chosen system of units seems to be more or less eliminated by using relative values AP/P and AQ/Q
in Eq. (12.21) and (12.22). The method of Rasmussen may be sensitive to the type of network being studied.

Convergence may be slow, as for any Gauss-Seidel related method, even if the reduced system is small.

12.2.2 Current Source Iteration Method?
From stability studies it is known that much better convergence can be obtained by representing the P, Q-
nodes as current sources in the reduced network of Eq. (12.24). The current sources are obtained from the voltage

solution of the preceding iteration step,

I ) _ Pk -specified ) Qk -specified
=
*(h-1)
Vk

(12.27)

for all nodes k of set B except for slack node
With [I;] thus known, Eq. (12.24) is solved directly for an improved voltage solution [V;] (except for the slack
node). For the 100-node example, 99 equations would have to be solved, compared to 90 equations in Rasmussen's
method. However, convergence is potentially much faster. For the single-phase 5-node test system of Fig. 12.20,
it took 9 iterations to converge to an accuracy of |AP| / |P|, |AQ| / |Q| < 107 for all nodes. Rasmussen's method

was not run for this case, but it would probably require many more iterations.

The assistance of Dr. Mansour, Li Quang-gi and I.I. Dommel in running the experiments for this section is
gratefully acknowledged.
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5 1
(slack node)

Fig. 12.20 - Single-phase 5-node test system (node 1 = slack node, nodes
2,3,4,5 = P, Q-nodes)

The test case supplied by BPA for the load flow option is shown in Fig. 12.21. It consists of a three-phase
generator (terminals A1, B1, C1) with series resistances, which feeds through a delta/wye-connected transformer
and through coupled inductances into a three-phase voltage source (slack nodes). P, Q is specified at the three
generator terminals Al, B1, C1. The entire system is balanced, and is therefore equivalent to a 2-node single-phase
(positive sequence) network with only one P, Q-node and one slack node. Rasmussen's method takes 133 iterations
to converge to accuracy defined in the BPA test case data. When the current source iteration method was first tried
on it (with high hopes), it failed unexpectedly. The reason turned out to be the floating delta connection of the
transformer, which makes the admittance matrix on the generator side singular (or extremely ill-conditioned). The
sum of the three currents I,, + I, + I, becomes slightly nonzero (because of round-off errors) in the iteration
process, and this extremely small zero sequence current will be injected into an infinite zero sequence impedance

on the delta side, which produces a large zero sequence voltage. This causes the method to diverge.

a/Y slack node
trans-— coupled with symmetrical
former inductances voltage sources
Al r----1 ,
— r
P,Q — —A— AN

1
| I
| |
Bl = I
P,Q — o—A— —
J !
! [
c1 =
P,Q __, o—A— —vrn—
Lee-J

Fig. 12.21 - BPA test case for load flow option

To resolve this problem, one can connect shunt impedances to nodes Al, B1, C1 to make the matrix
nonsingular. Since node 1 is a synchronous machine, and since such a machine should properly be represented as

current sources in parallel with the negative sequence impedances to handle unbalanced cases (Section 8.4), a natural
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choice would be

I (12.28)

With this shunt impedance, and with a modification of Eq. (12.27) to account for the current in this impedance,

I® = Rk*speciﬁed - ‘]Qk*SpeCiﬁed . y@-D
k

v Z (12.29)

shunt
the current source iterations converge in 45 iterations, which is faster than Rasmussen's method, but much slower
than expected from the experience with the 5-node test system of Fig. 12.20.

It is known from stability studies that shunt impedances speed up convergence if they are determined in such

a way that they would produce the specified power at the rated voltage, or
|V

|2
7z _ rated (12 30)
h . .
e Pspeciﬁed -J Qspeciﬁed

where P, Q is negative for loads and positive for generation. With this shunt impedance, the current source iteration

method does indeed converge quickly in 5 iterations. Fig. 12.22 shows

Re{VAl}
(kV)

!

10 |

a Rasmussen
x  Zghunt from Eq.(12.29)
o Zghupt from Eq.(12.30)
8 T T T T 1

0 20 40 __,

number of steps

(a) Real part of V,,
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Im{VAl} -5
(kV)
-6
-7 "a Rasmussen
X Zshunt from Eq.(12.29)
0 Zgpyne from Eq.(12.30)
0 20 40 .

number of steps
(b) Imaginary part of V,,

Fig. 12.22 - Voltages as a function of iteration step for test case of Fig. 12.21

the real and imaginary part of voltage V,, for Rasmussen's method, and for the current source iteration method with

Z g from Eq. (12.29) and from Eq. (12.30). From a convergence standpoint, Z,,,, from Eq. (12.30) is obviously

from Eq. (12.29)

‘shunt shunt

best, but if one wants to represent the synchronous machine properly in unbalanced cases, Z

should be used.

shunt

A. Yan started implementing this method in Ontario Hydro in 1985/86. A few issues remain to be resolved.
One is the treatment of P, |V |-nodes where active power and voltage magnitude are specified. If one is willing to
pre-calculate the internal impedance of the network as seen from each P, |V|-node, then one can construct an

approximate Thevenin equivalent circuit after the solution at each iteration step. With V.. and I, being the

known values at a P, |V|-node, and with Z,., having been pre-calculated once and for all, the open-circuit voltage

Ve Of the Thevenin equivalent circuit (Fig. 12.23) is simply

v

Thev

- anawn B ZThev Ik}wwn (12 3 1)
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Fig. 12.23 - Thevenin equivalent circuit

If we assume that this Thevenin equivalent circuit is now correctly defined by V., and Z,.,, and that V and I are

allowed to change, then we obtain a relationship between Q and | V|,
0 = B(|V,,,| |V|cosa - |V|?) + G|V, | |V]sina (12.32)

where « is the angle between V.., and V, and G + jB = 1/Z;,,. Since the angle « is more related to active power
flows than reactive power flows, it is reasonable to assume that o does not change if the Q - |V|-relationship is
altered. With «, G, B and |V, | known, and with the specified node voltage magnitude being used for | V|, Eq.
(12.32) can be solved for Q. This value of Q is then used in calculating the current for the next iteration step from
Eq. (12.29). For the 5-node test system of Fig. 12.20, this method converged in 16 iterations when nodes 4 and 5
were treated as P, |V|-nodes, with nodes 2 and 3 remaining P, Q-nodes.

The treatment of P, Q-nodes and P, |V|-nodes in three-phase unbalanced cases is still under development.
To obtain realistic answers, the user cannot specify power or voltage magnitude values more or less arbitrarily at
each one of the three phases. Instead, one must know how the load or generator reacts to unbalanced conditions.
As explained in Section 8.4, synchronous machines must be modelled as symmetrical voltage sources behind (or

symmetrical current sources in parallel with) a 3 x 3 impedance matrix calculated from Z,,, = Z,,, and Z To

obtain results which are physically possible, the same representation would have to be used in the load flow
iterations. Similar models valid for unbalanced conditions would have to be developed for the universal machine,

and for other devices which appear in the EMTP as loads or generators.
12.3 Steady-State Solutions without Harmonics

The linear ac steady-state phasor solution at one frequency has already been described in Section 1, and the
models of the various elements which must be used in that solution have been discussed in the respective sections.
The routine for the steady-state solution was added by J.W. Walker, originally to obtain ac steady-state initial
conditions automatically. Later, it became a useful tool on its own, e.g., for studying complicated coupling effects

between circuits on the same right-of-way (example in Fig. 4.25). The EMTP therefore has an option to terminate
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the run after the steady-state solution, and to tabulate the phasor values in as much detail as the user may wish.

12.3.1 Thevenin Equivalent Circuits

If a large network is to be solved repeatedly, with only a few parameters varied each time, then it may be
best to generate an M-phase Thevenin equivalent circuit for the large network first, as illustrated in Fig. 12.24. The
parameters of the Thevenin equivalent circuit can easily be obtained with the EMTP from M + 1 steady-state

solutions of the large network as follows:

M
UNCHANGED PART OF THE N lc
NETWORK TO BE REDUCED ;a M‘
3 I
TO THEVENIN 2a L
EQUIVALENT CIRCUIT 2c
2M
S— J
—V

N branches which will be modelled in detail,
or whose parameters will be varied.

Fig. 12.24 - Parameter variation in branches 1, ... M

(1) Remove the branches 1,...M (which may be coupled among themselves) from the large network. Obtain a
steady-state solution, and record the open-circuit branch voltages across the node pairs 1a-2a, 1b-2b,... at the
locations where the M branches were removed. If the branches are all connected from node to ground, then
these branch voltages are simply node voltages. This first steady-state solution produces the open-circuit

voltage vector of the M-phase Thevenin equivalent circuit,

V1a72a
Vip 2
Vied = . (12.33)
_V1M—2M_
(2) Find the impedance matrix
Zaa Zab ZaM
(Z) = Zoa Zoo -+ Zom (12.34)
Zia Zop - Ly

of the Thevenin equivalent circuit column by column with M steady-state solutions. First, short-circuit all

voltage sources in the large network (easiest way to do this is to set their amplitudes to zero; simply removing

12-23



them from the data file would create open circuits), and cancel all current sources (set amplitudes to zero or
remove them from data file). To obtain column k of [Zy,.,], connect one current source of 1.0 A (RMS) to
node 1k, and a second current source of -1.0 A (RMS) to node 2k, and ask for a steady-state solution. Then

the elements of the k-th column of [Z,,,] are simply the RMS-branch voltages,

Zak Vla -2a
Zbk Vlb -2b

= . (12.35)
_ZMk_ _VlM -2M |

With [V, and [Zy,,.,] known, the large (unchanged) part of the network is described by the M-phase

Thevenin equivalent circuit of Fig. 12.25, with its branch equation

V1 = Vo] - 25, 111 (12.36)
[vThevJ [ZThev]
o -\ o
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Fig. 12.25 - M-branch Thevenin equivalent circuit

where [V] and [I] are branch voltages and currents. If these branches are passive, with a branch impedance matrix

[Z,..ncn] Whose values are to be varied repeatedly, then
V1 = [Zy0n) 1] (12.37)

which can be solved with Eq. (12.36) for the currents,
U] = (Zp ] + Zen] ™ [V 1 (12.38)

EMTP users may want to write their own program to solve Eq. (12.38), rather than use the EMTP for it.

12-24



Such a Thevenin equivalent circuit was used by BPA to study resonance problems on a shunt-compensated
transmission line which is switched off at both ends, but which is still capacitively coupled to parallel circuits on the
same right-of-way. Because of complicated transposition schemes, the complete network is fairly large, whereas
the Thevenin equivalent circuit of the network seen from the three shunt reactor connection points A, B, C has only
a3 x 3 [Zy,]-matrix. Fig. 12.26 shows the results of this study, in which the inductance of the shunt reactors was

varied in small steps from 5.85 to 6.00 H.

peok
current (A)

1000

S00

1 A 1

585 590 595 600
Lshunt (H)

Fig. 12.26 - Resonance in shunt reactors

Thevenin equivalent circuits are in principle only valid at the frequency at which they are calculated. In the
preceding example it would be known, however, that an open-ended line is seen by the shunt reactor as a capacitance
up to some frequency way above 60 Hz, and that the coupling to energized lines is capacitive as well. The Thevenin

impedance is therefore Zy,., = 1/(jwC), or in the matrix case
[CI = jwlZy,,]

The capacitance matrix representation would then be useful for transient studies (up to a certain frequency) as well.

12.3.2 Frequency Scan
The first addition to the steady-state solution routine was a loop to vary the frequency automatically from

fntof

max?

either in linear steps of Af or on a logarithmic scale. At each frequency, the solution is obtained in the
same way as before. This option has become known as "frequency scan." Instead of getting voltages and currents

as a function of time, their magnitudes and angles are obtained as a function of frequency. This option is very useful
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for finding the frequency-dependent impedance of a network seen from a particular location. To obtain the
impedance, all voltage sources are short-circuited and all current sources are removed. A current source of 1 A is
then added across the two nodes between which the impedance is to be obtained. The branch voltage will be equal
to the impedance. Fig. 12.27 shows an example, where the impedance between two phases was computed with the
frequency-scan option of the EMTP, as well as indirectly measured with a phase-to-phase fault (time response
Fourier transformed to frequency response), as part of a study to investigate potential subsynchronous resonance

problems.

120.

Z-EQ (OHMS)

30.0 40.0 $0.0 60.0
FREQUENCY (HZ)

1
10.0 20.0

Fig. 12.27 - Comparison between impedance calculated with
frequency scan and measured impedance [184]. © 1984
IEEE

12.3.3 Different Frequencies in Disconnected Parts

The BPA EMTP is capable of finding the steady-state solution in networks with sources having different
frequencies, provided that the network is disconnected into subnetworks, with each subnetwork only containing
sources with the same frequency. The need for this capability arose primarily in connection with universal machine
initialization (Section 9.5). For example, the armature windings of a synchronous machine and the connected power
system must be solved for ac conditions, whereas the field circuit requires a dc solution.

The same capability can be used to handle trapped charge on an isolated line, and HVDC links. In the latter
case, the converters are either represented as impedances or current sources on the ac side, and as voltage sources
on the dc side. This ignores the current harmonics on the ac side and the voltage harmonics on the dc side, but it
does produce reasonable initial conditions for the transient simulation. Fig. 12.28 shows simulation results for a dc

transmission line with six-pulse converters, which were connected through converter transformers to ac networks
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Fig. 12.28 - Rectifier and inverter voltage, with simulation
starting from approximate initial conditions

represented as three-phase Thevenin equivalent circuits. At least in this case, the final steady state was reached
almost immediately.
The theory behind this single solution with multiple frequencies is very simple. Assume that there are two

subnetworks 1 and 2 with frequencies f, and f,. Since they must be disconnected, Eq. (1.20) has the form

] 0 jvil) Lzl

_ (12.39)
0 [X]]|IV,] [£,]

and all that is required is that frequency f, be used in forming [Y,] and f, in forming [Y,].

For dc solutions, an inductance branch becomes a short-circuit and the two nodes therefore collapse into
one node. To solve dc conditions exactly would therefore require program modifications, which have been regarded
as a low-priority item until now. Instead, dc sources are represented as ac sources of the form Vcoswt or Icoswt,

with ® being very low (typically f = 10° Hz). Inductances are then very low impedances, rather than short circuits.
12.4 Steady-State Solution with Harmonics

Steady-state harmonics in high-voltage transmission systems are primarily produced by transformer (and
possibly shunt reactor) saturation, by HVDC converter stations, and by large rectifier loads (e.g., aluminum
reduction plants). In rectifiers and inverters, the magnitude of harmonics is reasonably well known, and these
harmonics can therefore be represented as given current or voltage sources in harmonic load flow programs
specifically designed for harmonics studies. In contrast, harmonics generated by transformer saturation depend
critically on the peak magnitude and waveform of the voltage at the transformer terminals, which in turn are
influenced by the harmonic currents and the frequency-dependent network impedances.

Transient simulations with the EMTP will contain harmonics effects either from transformer saturation of
from converters. If the simulation is carried out long enough to let the transients settle down to steady-state

conditions, then the waveforms will contain the harmonics with reasonable accuracy up to a certain order, depending
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on the step size At. A Fourier analysis program is available as a support routine in the EMTP to analyze such
waveforms. This approach is discussed first. There are cases, however, where it would be desirable to have the
harmonics already included in the steady-state initial conditions, because steady-state harmonics do sometimes have

an effect on the transients. This is discussed next in Section 12.4.2.

12.4.1 Harmonics from Linear ac Steady-State Solution followed by Transient Simulation

A simple method for obtaining saturation-generated harmonics is to perform a transient simulation with the
EMTP which starts from approximate linear ac steady-state conditions. For the initial ac steady-state solution, the
magnetizing inductances of transformers are represented by their unsaturated values. In the transient simulation, the
only disturbances will then be the deviations between the linear and nonlinear magnetizing inductance representations.
The transients caused by these deviations will often settle down to the distorted steady state within a few cycles.

This simple method works only well if the final distorted steady state is reached quickly in a few cycles.
Such is the case in the example cited in Section 6.6.2 (Fig. 6.13 and 6.14), where steady state was reached within
approximately 3 cycles. For lightly damped systems, it may take a long time before the final steady state is reached.
Fig. 12.29 shows the voltages at
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Z
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Fig. 12.29 - Voltages with harmonic distortion on a 500 kV
line (simulation starts from approximate linear steady state)

both ends of a 500 kV-line with shunt reactors which go into saturation at 0.92 p.u. of rated flux at the sending end
and at 1.05 p.u. of rated flux at the receiving end. Because of low damping, the steady state is reached only after

a long time. It is such cases where the steady-state solution method described in the next section is useful.

12-28



12.4.2 Harmonics from Steady-State Solutions

The method described in this section [185] has been implemented in Ontario Hydro's EMTP by A. Yan in
1985, as part of joint work undertaken by the EMTP Development Coordination Group (DCG) and EPRI. It should
become available to users of the DCG/EPRI version of the EMTP in 1986 or 1987.

To obtain the harmonics directly from phasor equations, the nonlinear inductances must be replaced by
current sources, which contain the fundamental frequency component as well as the harmonic frequency components
(Fig. 12.30). The network itself is then linear, and the voltages at any frequency are therefore easily found by
solving the system of linear equations (12.18). The nonlinear effects are represented as current sources in the vector
[I,]. The complete solution is found with two iterative loops. First "power flow" iterations are used to obtain an
approximate solution at fundamental frequency, while the second "distortion" iterations take the higher harmonics

into account and correct the fundamental frequency solution as well.

node m

Sty |

(a)

node m

@ |

(b)

current
source i

Fig. 12.30 - Replacing nonlinear inductances
by current sources. (a) Network with nonlinear
inductance, (b) network with current source

12.4.2.1 "Power Flow" Iterations

In the "power flow" iterations, an approximate linear ac steady-state solution is found which represents the
Vius/Irms-curves of the nonlinear inductances correctly, but does not include harmonic distortion. For the nonlinear
inductance, say at node m in Fig. 12.30, the original data may already be in the form of a Vy,,/Izys-curve, as shown
in Fig. 12.31. If not, it is straightforward to convert the A/i-curve into a Vyy/Izus-curve, with the support routine
CONVERT (Section 6.10.4). To start the iteration process, a guess for the RMS voltage V, is used to find the RMS
current I (Fig. 12.31). This current, with the proper phase shift of 90° with respect to V,,, is inserted into the
current vector [I,] in Eq. (12.18), and a new set of voltages [V,] is then found by solving the system of linear
equations. This solution process is repeated, until the prescribed error criterion for the current I, is satisfied. Note
that the admittance matrix [Y] in Eq. (12.18) remains constant for all iteration steps; therefore, [Y] is only

triangularized once outside the iteration loop. Inside the iteration loop, the downward operations and
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backsubstitutions are only performed on the right-hand side, by using the information contained in the triangularized

matrix ("repeat solutions").

Ims

I I
m ms

Fig. 12.31 - V;,,s/Iys characteristic of a nonlinear
inductance

In these "power flow" iterations at fundamental frequency, the Vyys/Izys-curve is used as an approximation
to the curve relating the fundamental frequency current I, to the fundamental frequency voltage V,. If Vi, were
equal to V,, then I\, would contain harmonics,® which are ignored. The approximation does provide a good starting
point, however, for the following "distortion" iterations, in which harmonics are included.

If the network contains nodes of the load flow option type, e.g., active power P and reactive power Q
specified rather than current I, then the adjustments to achieve constant power can easily be incorporated into this

iterative loop by using Eq. (12.29), or a similar equation, at the beginning of each iteration step.

12.4.2.2 "Distortion" Iterations
The "power flow" iterations produce a steady-state solution at fundamental frequency only, without
harmonic distortion. To obtain the harmonics, the RMS voltages found from the "power flow" iterations are used

in an initial estimate for the flux. Since v = dA/dt, and assuming that the peak voltage phasor is |V |e/®, or

wr) = |V|cos(wit + ¢) (12.40)

as a function of time (w, = angular fundamental frequency), it follows that the flux is

_ WV .
M) o sin(w,? + ) (12.41)

With A(t) known, one full cycle of the distorted current i(t) is generated point-by-point with the A/i-curve (Fig.
12.32). If hysteresis is ignored, then it is sufficient to produce one quarter of a cycle of i(t), since each half-cycle

wave is symmetric, and since the second half is the negative of the first half of each cycle.

3Subscripts 1, 2,... are used in this section to indicate the order of the harmonic (1 = fundamental).
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The distorted current i(t) in each nonlinear inductance is then analyzed with the support routine Fourier

Analysis, which produces the harmonic content expressed by

k
iy = Y || sin(w,z + ¢,) (12.42)

n=1
with
w, = Nw, (12.43)

being the angular frequency of the n-th harmonic. Experience has shown that it is usually sufficient to consider the
fundamental and the odd harmonics of order 3 to 15, and to ignore the higher and even harmonics. At each harmonic
considered (including the fundamental), the harmonic component from Eq. (12.42) is entered into [I,] with its proper
magnitude and angle for all nonlinear inductances, and the voltages at that harmonic frequency are then found by
solving the system of linear equations (12.18). Known harmonic current sources from converters and other harmonic

producing equipment are added into the vector [I,].

t BE

sdeve deooee=

Fig. 12.32 - Generating i(t) from A(t)

Taking the fundamental and the odd harmonics 3, 5, 7, 9, 11, 13 and 15 into consideration requires 8
solutions of that system of equations, with [Y] obviously being different for each of the harmonic frequencies. For
lumped inductances L and capacitances C, it is clear that values w,L and w,C must be used as reactances and
susceptances in building [Y]. Lines can be modelled as cascade connections of nominal m-circuits, as long as the
number of w-circuits per line is high enough to represent the line properly at the highest harmonic frequency. It is
safer, however, to define the line data as distributed parameters, and to generate the exact equivalent m-circuit at each
frequency, as explained in Sections 4.2.1.2 and 4.2.1.3.

Once the voltages have been found for the fundamental and for the harmonics, an improved flux function

A(t) can be calculated for each nonlinear inductance from the peak voltage phasors |V, |e?!, |V,|e®, etc.,
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k

1%
NWOIEDY Vil sin(w,r + ¢,) (12.44)

n=1 @,

With A(t) known, i(t) is again generated point-by-point as shown in Fig. 12.32, and then analyzed with the support
routine Fourier Analysis to obtain an improved set of harmonics expressed as Eq. (12.42). These are then again used
to find an improved set of harmonic voltages. This iterative process is repeated until the changes in the harmonic
currents are sufficiently small. Experience has shown that 3 iterations are usually enough to obtain the harmonic

currents with an accuracy of +5%.

12.4.3 Discrepancies between Harmonics in Steady-State and Transient Solution

The method described in the preceding section turns the EMTP into a harmonics load flow program. If it
is used that way, without a transient simulation following the steady-state solution, then the problems discussed in
this section do not apply.

If the method is used as an improved initialization procedure for a subsequent transient simulation, then
discrepancies can appear between the results from the steady-state and transient solutions. These discrepancies were
not expected at first. They are cased by the unavoidable discretization error of the trapezoidal rule, which is used
for lumped inductances and capacitances in the EMTP. In the steady-state solution for the n-th harmonic, correct

reactance values w, L. would normally be used, while the transient simulation would see a somewhat larger reactance

ko,L, with
ol 8)
k=-— =/ (12.45)

as explained in Section 2.2.1. The susceptance is also too large by the same factor k (Section 2.3.1). While a small
At can keep the correction factor k of Eq. (12.45) reasonably close to 1.0 (e.g., At = 50 us leads to a correction
factor of k, = 1.0015 at the 7th harmonic, or to an error of 0.15%), it can never be avoided completely. Even small
errors can shift the resonance frequencies of the network. Fig. 12.33 compares the impedance at the location of the
nonlinear inductance in the problem of Fig. 6.13, as it would be seen by a steady-state phasor solution and by a
transient solution with the correction factor of Eq. (12.45). To emphasize the difference in Fig. 12.33, the line was

modelled as a cascade connection of three-phase nominal m-circuits,
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Fig. 12.33 - Frequency response with and without correction factor k (At = 200
ps)

rather than with distributed parameters. Since the EMTP uses other, more accurate, method for solving the equations
of distributed-parameter lines, the differences would be much less with distributed-parameter representations.

In the transient simulation, the discretization correction factor of Eq. (12.45) is unavoidable, and the answers
will therefore be slightly incorrect. In such situations, it may be best to introduce the same correction factor into
the initialization with the steady-state solution method of Section 12.4.2, to avoid discrepancies between initial
conditions and transient simulations. With this modification, the discrepancies between the initialization procedure
of Section 12.4.2 and subsequent transient simulations of an otherwise undisturbed network become practically
negligible.

Fig. 12.34 shows the transient simulation results for the same case used for Fig. 6.13, except that the
initialization procedure of Section 12.4.2 was now used. It can be seen that the initial conditions must have contained

more or less correct harmonics because no disturbance is noticeable after t = 0. Fig. 12.35 shows similar results
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Fig. 12.34 - Same case as in Fig. 6.13, except simulation
starts from steady state with harmonics

for the case used in Fig. 12.29, with the initialization procedure of Section 12.4.2. The improvement from the

inclusion of harmonics in the initialization is quite evident in the second example.
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Fig. 12.35 - Same case as in Fig. 12.29, except simulation
starts from steady state with harmonics
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12.4.4 Ferroresonance

An attempt was made to apply the method of Section 12.4.2 to ferroresonance cases, but with little success.
In ferroresonance phenomena, more than one steady-state solution is possible. It depends very much on the initial
conditions and on the type of disturbance which one of these possible steady states will be reached. The method of
Section 12.4.2 is therefore not useful for ferroresonance studies. The EMTP can be used for the simulation of
ferroresonance phenomena, however, though it will not give any insight into all possible steady-state conditions.
In that sense, EMTP simulations are somewhat similar to transient stability simulations, which also do not give global

answers about the overall stability of the system.
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13. TRANSIENT ANALYSIS OF CONTROL SYSTEMS (TACS)
Co-Author: S. Bhattacharya

The program part TACS (acronym for Transient Analysis of Control Systems) was developed 10 years ago
by L. Dubé. In 1983/84, Ma Ren-ming did a thorough study of the code, and made major revisions in it,
particularly with respect to the order in which the blocks of the control system are solved [187]. More improvements
will be made in the future by L. Dubé and others. Because changes are expected anyhow, and because L. Dubé was
not available for co-authoring this section, the general philosophy of the solution method in TACS and possible
alternatives are emphasized more than details of implementation.

TACS was originally written for the simulation of HVDC converter controls, but it soon became evident

that it had much wider applications. It has been used for the simulation of

(a) HVDC converter controls,

(b) excitation systems of synchronous machines,
(©) current limiting gaps in surge arresters,

(d) arcs in circuit breakers,

and for other devices or phenomena which cannot be modelled directly with the existing network components in the
EMTP.

Control systems are generally represented by block diagrams which show the interconnections among
various control system elements, such as transfer function blocks, limiters, etc. Fig. 13.1 is a typical example. A
block diagram representation is also used in TACS because it makes the data specification by the user simple. All
signals are assigned names which are defined by 6 alphanumeric characters (blank is included as one of the
characters). By using the proper names for the input and output signals of blocks, any arbitrary connection of blocks
can be achieved. Amazingly, there is no uniform standard for describing the function of each block in an
unambiguous way, except in the case of linear transfer functions [189]. Users of the EMTP should be aware of this.

The control systems, devices and phenomena modelled in TACS and the electric network are solved
separately at this time. Output quantities from the network solution can be used as input quantities in TACS over
the same time step, while output quantities from TACS can become input quantities to the network solution only over
the next time step. TACS accepts as input network voltage and current sources, node voltages, switch currents,
status of switches, and certain internal variables (e.g., rotor angles of synchronous machines). The network solution
accepts output signals from TACS as voltage or current sources (if the sources are declared as TACS controlled

sources), and as commands to open or close switches (if the switch is a thyristor or a TACS controlled switch).
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Fig. 13.1 - Typical block diagram representation of a control
system
The present interface between the network solution and TACS, and possible alternatives to it, are explained

first. The models available in TACS are described next, followed by a discussion of the initialization procedures.

13.1 Interface between TACS and the Electric Network

To solve the models represented in TACS simultaneously with the network is more complicated than for
models of power system components such as generators or transformers. Such components can essentially be
represented as equivalent resistance matrices with parallel current sources, which fit directly into the nodal network
equations (1.8). The equations of control systems are quite different in that respect. Their matrices are
unsymmetric, and they cannot be represented as equivalent networks.

Because of these difficulties, L. Dubé decided to solve the electric network (briefly called NETWORK from
here on) and the TACS models (briefly called TACS from here on) separately. This imposes limitations which the
users should be aware of. As illustrated in Fig. 13.2, the NETWORK solution is first advanced from (t - At) to t
as if TACS would not exist directly. There is an indirect link from TACS to NETWORK with a time delay of At,
inasmuch as NETWORK can contain voltage and current sources defined between (t - At) and t which were computed
as output signals in TACS in the preceding step between (t - 2At) to (t - At). NETWORK also receives commands
for opening and closing switches at time t, which are determined in TACS in the solution from (t - 2At) to (t - At).
In the latter case, the error in the network solution due to the time delay of At is usually negligible. First, At for this
type of simulation is generally small, say 50 us. Secondly, the delay in closing a thyristor switch is compensated
by the converter control, which alternately advances and retards the firing of thyristor switches to keep the current
constant in steady-state operation. With continuous voltage and current source functions coming from TACS, the
time delay can become more critical, however, and the user must be aware of its consequences. Cases have been
documented where this time delay of At can cause numerical instability, e.g., in modeling the arc of circuit breakers

with TACS [188].
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next step from t to t+At

Fig. 13.2 - Interface between NETWORK and TACS solution

Once NETWORK has been solved, the network voltages and currents specified as input to TACS are known
between (t - At) and t, and are then used to bring the solution of TACS from (t - At) to t. No time delay occurs in
this part of the interface, except that TACS itself has built-in delays which may not always be transparent to the user.

If the EMTP is re-written some day to eliminate the time delay from TACS to NETWORK, two approaches
(and possibly others) could be used:

(a) Predict the output from TACS at time t, and use the predicted values to solve the NETWORK and then
TACS from (t - At) to t. Use the output from TACS as corrected values, and repeat the solution of the two
parts again from (t - At) to t. If the differences between the predicted and corrected values are still larger
than a specified tolerance, then do another iteration step with a repeat solution, until the values have
converged to their final values. This approach is conceptually easy to implement, but its usefulness depends
on the convergence behavior. Two or three iteration steps, on average, would probably be acceptable. This
method would make it possible to add other corrections in NETWORK and TACS where only predictions

are used now (e.g. correction of predicted armature currents in synchronous machines).
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b)

Fig. 13.3 - Form of difference equations for a control system. [X;grnva] =
internal variables, [x,,;] = output signals, and [#] = input signals

Do not solve the equations in TACS completely, but reduced them to an input-output relationship at time
t, by eliminating variables which are internal to TACS. This approach has been used successfully in a
stability program for the representation of excitation systems [72]. Assume that the trapezoidal rule of
integration (or any other implicit integration method) is applied to the differential equations of the control
system. Assume further that the variables are ordered in such a way that the internal variables [X;yrgryaril
come first, then the output signals [X,;y] which become input to NETWORK (v, in an excitation system)
and finally the input signals [u] which come from the output of NETWORK (Vigruvmvar 10 an excitation
system). Then the equations would have the form of Fig. 13.3(a). By eliminating the internal variables
[Xivternar] With Gauss elimination, the reduced system of equations in the bottom rectangle of Fig. 13.3(b)

is obtained, which has the form
[Aour] oyl + A1 1ul = [b] (13.1)
or in the case of an excitation system,
v =b’

Qour Vs * Ay ViERMINAL

In the latter case, this equation would have to be incorporated into the synchronous machine model of
Section 8. Limiters can be handled as well with this approach, as explained in [72].

Method (b) could be implemented in a number of different ways. For control systems which can be

represented by one transfer function, the implementation would be very simple, because TACS already produces an

equation of the form of Eq. (13.1), as explained later in Eq. (13.7). For more complicated systems, the existing

code of TACS could be used to solve the equations of system twice, e.g., in the case of the excitation system, for

2 predicted values of Viggyvinar- 1he two solutions vi(t) and v, (t) would create 2 points in the Viggvinar - Vi - plane,

and a straight line through them would produce Eq. (13.1) indirectly.

13.2 Transfer Function Block with Summer

The transfer function block (Fig. 13.4) is used to describe a relationship between input U(s) and output X(s)

in the Laplace domain,

X(s) = G(s) U(s) (13.2a)

where the transfer function is a rational function of order n,

N, + Njs...+ N s"
D, + D;s...+ D;s"

G(s) = K

with m < n (13.2b)
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The Laplace operator is replaced by jw to obtain the steady-state frequency response at any angular

frequency w, including dc. For transient solutions, s is replaced by the differential operator d/dt, which converts

Eq. (13.2) into a linear n-th order differential equation

dx dx du d™u
Dyx + DlEm+ D, v = K| Nyu + NlE...+ N, o (13.3)
N+ Nys +Nmsm
U(s) ~ K = — X(s)
DO+ Dls +D_s

Fig. 13.4 - Transfer function block

In TACS, the n-th order differential equation is re-written as a system of n first-order differential equations

by introducing internal variables for the derivatives of u and x

dx _dx, o dx,
X, = E s X, = _dl‘ s eee een xn = —d[
du du du
u, = T u, = 7;, ...... u, = T”;l (13.4)

With these internal variables, Eq. (13.3) becomes an algebraic equation

Dyx + D x, ... + D,x, = K(Nyu + Nyu, ... + N, u,) (13.5)

To eliminate these internal variables again, the differential equations (13.4) are first converted into difference

equations with the trapezoidal rule of integration,

2 2 .
x.(0) = EXH(I) - {xt-Ap) ~+ Exﬂ(tht)} for i =1,...n (13.6a)

u,(t) = lujfl(t) - {uj(tht) + Aituﬂ(tht)} forj=1,...m (13.6b)

t

where x, = x and uy;, = u.
Expressing x, as a function of x,, in Eq. (13.5) with Eq. (13.6), and then again expressing X, , as a function

of x_, etc., until only x is left, and using the same procedure for u, produces a single output-input relationship of

the form [189]
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cx(t) = Kdu(t) + hist(t - Ar) (13.7)

This is the equation which is used in the transient solution of the control system. After the solution at each time step,
n history terms must be updated to obtain the single term "hist" for the solution over the next time step. If recursive

formulas are used, then

hist,(t) = Kd u(t) - ¢ x(t) - hist,(t-Ar) + hist,(t-Ar)

hist(t) = Kd,u(t) - ¢;x(t) - hist(t-Ar) + hist, (t-A)

hist (t) = Kd, u(t) - c,x(t)
with (13.8)
hist = hist,

The coefficients c,, d, are calculated once at the beginning from the coefficients N;, D, of the transfer

function, with the recursive formula

if/i 2 i i+ 2 i+ n 2 n
¢, = ¢, + (-2{() ()'Di+ N ) 'D, ...+ O ) D,) (13.9)

where (ji) is the binomial coefficient, and where the starting value is

¢, - 2(; (%]’Di, with ¢ = ¢, (13.10)
The formulas for d, are identical, if D is replaced by N, and if the upper limit is m rather than n.

Instead of a single input signal u, TACS accepts the sum of up to five input signals u,,...us, as illustrated
in Fig. 13.5 (subscripts 1,2,... are no longer used to indicate internal variables of a block from here on). To model
a summer by itself, a zero-order transfer function block is used with K = N, = D, = 1. This zero-order transfer

function is contained in Eq. (13.7) as a special case, with K = ¢ = d = 1 and hist = 0.
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1
-u, l
y . NO+ le + ...
-u DO+Dls+... — X
3
+u
4 -ug

Fig. 13.5 - Transfer function with summer (4 = u, - u, - u; + u, -
Us)

If the control system consists solely of interconnected transfer function blocks and summers, then the entire
system is described by using an equation of the form (13.7) for each one of the blocks. For the example of Fig.

13.6, there would be four equations

x|
e, -Kd, Kd 0 Kd, 0 ||| [nis)]
Kd, 0 0 ¢ 0 -Kd|lx| s,
Kd e, 0 0 0 0 || s
0 0 -Kd, c, O 0 u,| |hist,
1N

which is the same form as in Fig. 13.2(a), with

X nrernar 1 = X X5 X3

Kopr] = Ix,]

(u] = [u, u,)
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—atll d g

X

3

Fig. 13.6 - Control system with linear transfer functions

In TACS, this system of equations

(A, 11X] + [4,,]1u] = [hist] (13.11)

is solved by first performing a triangular factorization on {[A,,]. [A, ]} before entering the time step loop. In each
time step, the unknown variables [x] are then found by

(a) assembling the right-hand side [hist],

(b) performing a downward operation on it,

(©) doing a backsubstitution to obtain [x], and

(d) updating the history terms of each block.

The solution procedure is very similar to the one indicated in Fig. 13.3(b), except that the elimination does
not stop on the vertical line which separates the columns of [X;yrgraar] @and [Xoyurl, but continues to the diagonal
(indicated by dots in Fig. 13.3(b)). Since the matrix is unsymmetric here, both the upper and lower triangular matrix
coming out of the triangularization must be stored, in contrast to the matrix in NETWORK where only the upper
triangular matrix is stored. Since the matrix is sparse, optimal ordering techniques are used to minimize the number
of fill-in elements. Only the nonzero elements are stored with a compact storage scheme similar to the one discussed

in Appendix III. Whether pivoting is needed is unclear to the authors.

13.3 Limiters

There are two types of limiters, the windup limiter with clipped output ("static limiter" in the EMTP Rule
Book) and the non-windup limiter with clamped output ("dynamic limiter" in the EMTP Rule Book). The windup
limiter can be visualized as a measuring instrument in which the needle (position = output signal) can only be seen
within a limited window, but the needle is allowed to move freely (wind up) outside the window (Fig. 13.7(a)). In
the non-windup limiter, the needle is restrained from moving outside the window (Fig. 13.7(b)). In both cases, the

movement of the needle is described by differential equations. The equation describing the limiting function has the
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same form in both cases, but the criteria for backing off are different.

lower upper lower upper
limit limit limit limit

X

(a) Windup limiter (b) Non-windup limiter

Fig. 13.7 - Limits in a measuring instrument

13.3.1 Windup Limiter
The output x of the windup limiter of Fig. 13.8 is

Ku , if x,, < Ku < X ok
x = if Ku<x, (13.12)
X if Ku>x_,

max

Either one of the three equations is still a linear algebraic equation of the form of Eq. (13.7), with¢c = d = 1, hist

= 0 inside the limits, and ¢ = 1, d = 0, hist = (X,,,, Or X,,;,) at the limit. The proper way of handling this limiter
is to change the linear equations (13.11) at instants when x hits the limit and when it moves off the limit again. This
requires occasional re-triangularizations, which are no different in principle from those required in NETWORK

whenever switch positions change or when the solution in piecewise linear elements moves from one segment to

another.
X
max

X e

max
u
—™G(s) slope=K [* X .

X - X

min
X_ . Ku
min
(a) Block diagram representation (b) Limiting action
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o—A~ . i °

IN ouT
Vmax I— T— Vmin
o— —O

(c) Clipping circuit implementation for
K=1 (diode A conducts when vy > v
diode B conducts when vy < v

max?

min

Fig. 13.8 - Windup limiter

If there are only a few limiters, one could also use the compensation method described in Section 12.1.2.
Assume that the control system contains only two limiters which limit x; and x,. In that case, one could precalculate
column i and column k of the inverse matrix of [A,,] with two repeat solutions before entering the time step loop.
In each time step, the variables would first be calculated as if no limits exist. Call this solution [X,,J- If both x;
withour A4 Xy inoue r€ oOULside their limits, then the necessary corrections Ahist and Ahist, in the right-hand side of Eq.

(13.11) to produce limited values are found by solving the two equations

X timit| iowinow| (P Di||ARISE;
= + . (13.13a)
e~ timit kwithowr]  (Pri Die||APESE
If only X, o 1 Outside its limits, then
X timit = Xiwiow * Dy AMISL;
Ahist, = 0 (13.13b)
The final solution is found by superposition,
by by
by by Ahist,
[X] - [xwithoul] * Ahis tk (13130)

The coefficients b in Eq. (13.3) are the elements of column i and k of [Z_] .

At the time when TACS was first written, both the re-triangularization procedure and the compensation
method were regarded as too costly, and the simpler method discussed in Section 13.4 was introduced instead. It
suffered initially from unnecessary time delays, which have now been mostly removed with the recent code changes
of Ma Ren-ming in version M36. Whether re-triangularization or compensation will be used in future versions to
remove the remaining time delays remains to be seen.

In comparing Fig. 13.8(a) with the piecewise linear representation of network elements discussed in Section
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12.1.3, one notices that the slope in the saturated region is always zero (hard limit) rather than finite (soft limit).
In rewriting TACS, it may be worth considering whether soft limits would be a useful enhancement. In Fig. 13.8(c)
the limits become soft if the internal resistances of the diodes and dc voltage sources are taken into account, or if
resistors are specifically added for that purpose. The equation for soft limits, with the notation from Fig. 13.9,

would be

Ku if x, < Ku < x,,,
X o= { Xy + K -ugy) I Kuo< xg (13.14)

xmax * I{ITlaX(u_u l'f' Ku 2 xmax

max)
These equations have again the form of Eq. (13.7), and soft limits can therefore be implemented in the same way
as hard limits. As a matter of fact, the hard limit would become a special case of the soft limit of Eq. (13.14) by

simply setting K, or K . to zero.

X
slope=K
max
X — - —
max ‘
]
]
u_, '
min 0
i
u ,
: max u
!
slope‘=K
|
|
----- X .
min
slope=K .
in

Fig. 13.9 - Soft limits

13.3.2 Non-Windup Limiter

In the windup limiter, the output of a transfer function block is just clipped, without affecting the dynamic
behavior of the transfer function block on the input side itself. In a non-windup limiter, this is no longer true. Here,
the dynamic behavior of the transfer function block is changed by the limiting action.

Before describing the limiting action with equations, it is important to understand that non-windup limiters
should only be used with first-order transfer functions. For second and higher-order transfer functions, it is no
longer clear which variables should be limited. Take a second-order transfer function G(s) = 1/ 2 as an example.
It can easily be shown [190] that backing off the limit will occur in three different ways in this case, depending on
whether the internal variables dx/dt or d’x/dt% or both, are forced to remain at zero after the limit is hit. This

ambiguity can only be removed if the user defines the problem as two cascaded first-order transfer function blocks,
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with the proper limits on each of them. Even for the first-order transfer function, the meaning of the limiting
function is confused if it has any zeros (N; # 0) [191]. It is because of these ambiguities why the limiter in the
current-controlled dc voltage source described in Section 7.6.2 may be incorrect.

To make the definition of non-windup limiters unique, they should only be allowed on first-order transfer

functions with no zeros of the form

K

s =
G(s) [+ sT (13.15)
The equations are
x+T%:Ku if x, <x <X,
X =X if x<x,, and (Ku-x) <0 (13.16)
X =X, if x>x, and (Ku-x)>0

X

max
u —p L —» x

1+sT
—
min
(a) Block diagram
representation
¥ ax 7 T
" i(t) R c a |V
(input) T — 1 |(output)
— U
*min X Zener I
Ku diode -
(b) Limiting action (c) Circuit implementation

Fig. 13.10 - Non-windup limiter

For operation within the limits, the differential equation is converted to the algebraic equation (13.7). That
equation, and the equations valid at the limit, are all linear algebraic equations, as in Eq. (13.12) for the windup
limiter. The non-windup limiter can therefore be handled in exactly the same way as the windup limiter, either with

re-triangularization or with the compensation method. While the windup limiter has the coefficients c = d = 1, and
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hist = O inside the limits, the non-windup limiter has

d=K

2T
c=]1+=
[3)

hist = Ku(t - Af) - (1 . %) Xt - Ab)

For deciding when to back off, the derivative T dx/dt = Ku - x must be used, rather than Ku.

Changing from a hard to a soft limit would also be possible with the non-windup limiter. In the
implementation of Fig. 13.10(c), the limits would become soft if R, # 0, where R, can either be the internal
resistance of the Zener diode, or a resistor specifically added to create soft limits.

From the limited (unpublished) information available to the authors, it appears that TACS handles the non-
windup limiters with a pseudo-compensation method, in which corrections are made to the right-hand sides [hist]
in Eq. (13.11) a priori at the beginning of each time step. As explained above Eq. (13.13), a correct implementation
of the compensation method requires a complete solution of the control system without limiters, followed by
superposition of correction terms for which elements of [A_]* are needed. This does not seem to be done in TACS,
and the treatment of limiters is therefore somewhat suspicious. Since TACS does reset the variable to its limit value
whenever it exceeds its limits, the answers are probably correct, except that the procedure is unable to eliminate the
time delays in closed loops discussed in Section 13.4.

The pseudo-compensation method also seems to create subtle differences in the way it backs off the limit.

It seems to use the equation

T
E{Zx(t) = X! = Ku(t) - x(t)

in the first step after backing off, which would be the backward Euler formula if the factor 2 were missing, while

Eq. (13.7) would back off with

u(t) + ut-Ary  XO + Xy,
2 2

T
E {x(t) - xlimit} = K

13.4 Limiter Implementation with Possible Time Delay

With the code changes of Ma Ren-ming in 1983/84, the variables are now ordered in such a way that most
of the time delays which were caused by limiters no longer exist in version M36 and later versions. For example,
the open loop control system of Fig. 13.11 was originally solved in the sequence S;, G,(s), G5(s), S,, S; and finally
G,(s), because of a rule that transfer function blocks feeding into special or supplemental device blocks S should be

solved first. This has been changed, and the blocks are now solved in their functional order S;, G,(s), G,(s), S,,
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G;(8), S;. With this order, it is simple to observe the limits on the output x,, without having to re-triangularize the
matrix or without having to use the compensation method, because x is limited first before any other variables are
computed. In the system of equations (13.11), this means that the equation for G,(s) must be the last one, with
enforcement of the limits on x, being done in the backsubstitution. Ma Ren-ming observes correctly [187] that there
is no difference between n-th order and zero order transfer functions, or between windup and non-windup limiters
in this simple ordering scheme.

A more complicated example for the new ordering rule is shown in Fig. 13.12, with 10 transfer function
blocks of which three have limits. The first four blocks G,, G,, G;, and G, form one set of equations which are
disconnected from the others. This first set of equations is solved simultaneously, with rows in Eq. (13.7) ordered
G,, G,, G;, and G,. With this order, the output of G, is the first variable to be found in the backsubstitution. By
keeping it within its limits at that point, the properly limited value will be used in the rest of the backsubstitution in
finding the outputs of G;, G,, and G,. Using the known output of G,, the output of G, is found from one single
equation, and knowing the output of G, the output of G, is found from another single equation and then kept within
its limits. Finally, the equations for G,, Gq, Gy, and G,, for another independent set of equations, and if ordered in
that sequence, the limits on the output of G,, can again be easily observed because it is the first variable found in the
backsubstitution. So in spite of feedback loops and limiters, the control system of Fig. 13.12 is now solved
simultaneously without the time delays observed in pre-M36 versions. Note that this ordering scheme developed
for easy implementation of limiters may not completely minimize the fill-ins in the triangularization, but this is a

small price to pay for the proper implementation of limiters.

/—' Xl max

u —»{ S G,(s) P G,(s) S
1 L2

G3(S) — S, X

*1 mif
Fig. 13.11 - Simple open loop control system
Time delays cannot be avoided completely with the new ordering scheme. Fig. 13.13 shows an example
where two limiters are within the same loop. In this case, TACS inserts a time delay of At (if not explicitly done

so by the user) and the solution is then no longer simultaneous. Note that with re-triangularization or with the

compensation method, the solution of that system would again become simultaneous.
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f max

(s) - GS(S)

Gl(s) G

GS(S) — X

X X X
L@ G,(s) 3G3(s) - 10 Gyp(s Gg(s) |l
T
min
Fig. 13.12 - Control system with feedback loops
ya ya
+u Gl(s) - GZ(S) - G3(s) —’-IGA(S) X
- ~ -
time
delay At he—ro CG5(s)

Fig. 13.13 - Two limiters within same loop

13.5 Signal Sources

TACS has signal sources built into it, similar to the voltage and current sources in NETWORK. They serve
as input signals to transfer function blocks and other blocks. In the system of equations (13.11), they are handled
as known values in vector [u].

Resident sources are signal sources with reserved names, which are available by simply referring to their
names. Resident sources can also be used as voltage or current sources in NETWORK through the TACS-
NETWORK interface. They are

TIMEX = simulation time in seconds (0 in steady state),

ISTEP = number of time step,

DELTAT = step size in seconds,

FREQHZ = network frequency in Hz of first sinusoidal source,

OMEGAR = 2nFREQHZ,

ZERO = 0.0,
MINUSI = -1.0,
PLUS1 = +1.0,
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INFTY = + (very large number which still fits computer system),
PI = m.
There are also signal sources with data specifications supplied by the user, such as
single rectangular pulse,
sinusoidal function,
repetitive pulse,
repetitive ramp function,
node voltage from NETWORK,
switch current from NETWORK,
special NETWORK variables (e.g., rotor angle of machines),
switch status,

any voltage or current source defined in NETWORK.

13.6 Special Devices

Transfer function blocks, limiters and signal sources are not enough to model realistic control systems.
Other building blocks have therefore been added to TACS under the heading of "Special Devices" ("Supplemental
variables and devices" in the EMTP Rule Book). They make TACS extremely versatile, but they do not fit neatly
into the control system equations (13.7). They are therefore solved sequentially, rather than simultaneously as for
the transfer function blocks, with the user controlling the sequence. In Fig. 13.11, the special device S, would be
solved after G, has been solved, and S, would be solved after G, has been solved. The solution would still be
simultaneous in this case. In general, the sequence of calculations is more complicated, with non-simultaneous
solutions through time delays. For details, the reader should consult the EMTP Rule Book.

All special devices can either be designated as input devices, as output devices, or as internal devices by
the user. To make the solution as much simultaneous as possible, the user should keep the number of internal
devices as low as possible, and use input or output devices instead whenever possible. The rules for the designation
are as follows:

(a) Input devices: All inputs must either be TACS signal sources or output from other input devices. They are

essentially used to pre-process signals before they enter transfer function blocks (e.g., S, in Fig. 13.11).
(b) Output devices: Their output must not be used as input to any other block, except to other output devices.

They are essentially used to post-process control system outputs for its own sake, or before passing them

on as voltage or current sources or switching commands to NETWORK (e.g. S, in Fig. 13.11).
©) Internal devices: They are inside the control system (e.g., S, in Fig. 13.11).

The behavior of the special devices is either defined through user-supplied FORTRAN expressions, or with
built-in types.

13.6.1 FORTRAN-Defined Special Devices
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The FORTRAN expression can be more or less as general as allowed by the FORTRAN-IV language itself
(for details see the EMTP Rule Book). Algebraic operators (+-" etc.), relational operators (.EQ. etc.), logical
operators (.AND. etc.), FORTRAN intrinsic functions (SIN, EXP, etc.) and special functions defined in the EMTP
Rule Book can be used. In the example

ANGLE = DEG(AT AN(CNTRL - BIAS2)) + 36.2,

the output signal is ANGLE, while the input signals are CNTRL and BIAS2. AT AN is the arctangent function,
while DEG is a special function for converting radians to degrees.

A FORTRAN expression of the form

VARIABLE = VARIABLE + {Arithmetic Expression}

is not allowed, because it gives rise to sorting problem within TACS.

13.6.2 Built-In Special Devices
There are 17 built-in special devices at this time, for which the user supplies the parameters only. They
are
(a) accumulator and counter,
(b) controlled integrator,
(c) digitizer,
(d) frequency sensor,
(e) input-IF component,
(f) instantaneous min/max,
(g) level-triggered switch,
(h) min/max tracking,
(i) multi-operation time-sequenced switch,
(j) point-by-point user defined nonlinearity,
(k) pulse transport delay,
(1) relay-operated switch,
(m) RMS value,
(n) sample and track hold,
(o) signal selector,
(p) simple derivative (backward Euler),
(q) transport delay.
Details about their characteristics can be found in the EMTP Rule Book.

13.7 Initial Conditions

The ac steady-state solution for the electric network is found first, before TACS variables are initialized.

All variables from NETWORK are therefore available for the automatic initialization in TACS, but not the other way
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around. This may cause problems, e.g., if a TACS output defines a sinusoidal voltage source in NETWORK whose
initial amplitude and phase angle, supplied by the user, could differ from the values coming out the TACS
initialization. An iterative steady-state solution between NETWORK and TACS would resolve such discrepancies,
but they are probably so rare that such an iteration scheme cannot be justified. An error message (possibly with
termination) would be useful, however.

The automatic initialization of TACS variables is complicated and not foolproof at this time, and
improvements are likely to be added in the future. The present initialization procedure is therefore only described
in broad terms.

The input and output signals of transfer function blocks are usually dc quantities in steady state. For dc

quantities, the output-input relationship of the transfer function (13.2b) becomes

NO
Xpe = K — 1y, (13.17)

which is the same form as Eq. (13.7) for the transient solution, with ¢ = 1, d = Ny/D,, and hist = 0. If the entire
control system consists of transfer function blocks only, a system of equations can be formed, similar to Eq. (13.11),
and solved for the unknown TACS variables [x,]. This is essentially what TACS does automatically now. The
variables [x,] are not needed directly, but only indirectly for initializing [hist] in Eq. (13.11) before entering the time
step loop.

Unfortunately, control systems are more complicated. Any sophisticated control system has integrators G(s)
= K 1/ . Their steady-state output must now be supplied by the user, but these values are not always easy to find.
For example, the output of an unbounded integrator with nonzero input is a continuously increasing ramp function.
In practice, integrators are always bounded within upper and lower limits. Therefore, the steady-state output of a
bounded integrator is either at its minimum or maximum value, which TACS could distinguish from the sign of the

input signal. A realistic steady-state equation of a bounded integrator for nonzero input would therefore be

X _ { 'xmin lf udc <0

de X if u,, >0

max

(13.18)

Evaluation of the steady-state output value of a bounded integrator with zero input or of an unbounded integrator is
impossible from the knowledge of its input alone.

Further complications are introduced because TACS signal sources are not restricted to dc quantities in
steady state. They could be pulse trains, sinusoidal functions, and other periodic functions. To automate the
initialization procedure for all such eventualities is therefore still an unresolved issue. At this time, the user must

supply initial conditions in complicated cases and for most special devices.
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APPENDIX I - NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

"Computers are influencing network theory by demanding methods of analysis adapted to the solution of
computer-sized problems," as stated by F.H. Branin [2], but very little of this influence has shown up yet in
textbooks on electric circuits and networks, not even in most of the recently published books. In this appendix, an
attempt is made to summarize some of the numerical solution techniques for solving ordinary differential equations,
which one might consider in developing a general-purpose program, such as the EMTP. Since power system

networks are mostly linear, techniques for linear ordinary differential equations are given special emphasis.
I.1 Closed Form Solution

Let us assume that the differential equations are written in "state-variable form," and that the equations are

linear,

dx = +
[E}—[A][x] HOR (L1

with a constant square matrix [A], and a vector of known forcing functions [g(t)]. There is no unique way of writing
equations in state variable form, but it is common practice to choose currents in inductances and voltages across

capacitances as state variables. For example, Eq. (I.1) could have the following form for the network of Fig. I1.1:

i
—_— L
close I
v(t) at t=0 Ve I c

Fig. 1.1 - Energization of an R-L-C network

d|| R 1 !
dt L Lli||=v®
- + L (L.2)
av, l 0 v, 0
|| C

With Laplace transform methods, especially when one output is expressed as a function of one input, the

system is often described as one n"-order differential equation, e.g., for the example of Fig. 1.1 in the form

Such an n"-order differential equation can of course always be rewritten as a system of n first-order differential

equations, by introducing extra variables x, = dx,/dt, X, = dx,/dt, to X, = dx,,/dt, for the higher-order derivatives,
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with x; = x. In the example, with x, = i and x, = di/dt,

R L dx, IR R dv(r)
di c ' d
* = * +
dx,
1 0 dr 0 1 2 0
which, after pre-multiplication with
1101
R L|"
{1 R
10 - =
L L

produces another state-variable formulation for this example. While [A] of this formulation differs from that in Eq.
(I.2), its eigenvalues are the same.

The closed-form solution of Eq. (I.1), which carries us from the state of the system at t - At to that at t, is

RO1=e 4 xe-Ad+ 1 e lghnldu, (1.3)

"

where the matrix e is called the "transition matrix." Eq. (I.3) contains the case where [x(t)] is simply desired

as a function of t by setting At = t. The computational task lies in finding this transition matrix. Since there is no

closed-form solution for the matrix exponential e!4/!

, the way out is to transform this matrix to a diagonal matrix,
whose elements can easily be evaluated by using the eigenvalues A, of [A] and the matrix of eigenvectors (modal
matrix) [M] of [A]. and then to transform back again. An efficient method for finding eigenvalues appears to be the
"QR transformation" due to J.G.F. Francis [3], and for finding eigenvectors the "inverse iteration scheme" due to
J.H. Wilkinson [4], which has also been described in modified form by J.E. Van Ness [5]. With [A] and [M]

e[AJA[

known, where [A] is the diagonal matrix of eigenvalues A,, is diagonalized!,

[M]fle[A]At[M] _ [eAAI]
Once the diagonal elements ¢"2* have been found, this can be converted back to give

e[A]AI _ [M] [eAAI] [MfI] (14)

where
[e*] = diagonal matrix with elements !,

[M] = eigenvector (modal) matrix of [A], and

'Tf [M] diagonalizes [A], it will also diagonalize €A/, The matrix exponential is defined as the series of Eq.
(I.13), and then one simply has to show that [M] not only diagonalizes [A], but all positive powers [A]" as well.
Since [A] = [M][A]IM]" it follows that [A]* = (IMI[AIIM]Y(MIIAIIM]Y...(IMIAIIM]Y) of [A]" =
[MI[A™M[M]!. Therefore, [M]'[A]"[M] = [A"] is again diagonal.
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A

1

With Eq. (I.4), Eq. (I.3) becomes

= eigenvalues of [A].
@] = [M] 4] M1 '[x-A0] + 1 (M) [e2] M1 [g@)] du 1L5)

The "convolution integral" in Eq. (I.5) can be evaluated in closed form for many types of functions [g(t)].
For the network of Fig. 1.1, the eigenvalues can be obtained by setting the determinant of [A]-A[U] to zero
( [U] = identity matrix),

al— ~I=

or

R R 1
)”1, Sl = () -

1 (L.6)
2L 20 LC

IfR < 2V(L/C), then the system is underdamped?, and the argument under the square root will be negative, giving

a pair of complex eigenvalues
Y B . . R _ 2
L2 = 0B with o = A B=y 7 G (€7
For a specific case, let us assume that R = 1Q, L = 1H, C = 1F. then

+ J@ — eirjlzo”

and

1 1 ] [M]—l_ \/E 2J120 -1

120 1120 . i
e/ e’ ]\/g _g 7120 1

If we set At = t to obtain the state variables simply as a function of time and of initial conditions, then Eq. (I.5)

becomes

2f R > 2%*sqrt(L/C), then the system is overdamped, giving two real eigenvalues. The critically damped
case of R = 2 * sqrt(L/C) seldom occurs in practice; it leads to two identical eigenvalues. This latter case of
"multiple eigenvalues" may require special treatment, which is not discussed here.
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i(0)
le “sinout e“(cospr +isinBt) vA0)
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o -1 [cos(B(z-u)) - isin(ﬁ(t-u))]"(u)
. % fot V3 du

e Wsin(B(r-u))v(u)

i(7)
V(D)

e (cosPr - isin[Bt —ie""sinﬁt
] B 3 3

with o and [ as defined in Eq. (I.7). If we were to assume that the voltage source is zero and that v,(0) = 1.0 p.u.,
then we would have the case of discharging the capacitor through R-L, and from Eq. (I.8) we would immediately

get (realizing that i(0) = 0),

e® sinfPr

. 2
l(t) = -=
;3

v(f) = e (cosPr + isin[3t)
3

Could such a closed-form solution be used in an EMTP? For networks of moderate size, it probably could.
J.E. Van Ness had no difficulties finding eigenvalues and eigenvectors in systems of up to 120 state variables [5].
If the network contains switches which frequently change their position, then its implementation would probably
become very tricky. Combining it with Bergeron's method for distributed-parameter lines, or with more
sophisticated convolution methods for lines with frequency-dependent parameters, should in principle be possible.
Where the method becomes almost unmanageable, or useless, is in networks with nonlinear elements. Another
difficulty would arise with the state-variable formulation, because Eq. (I.1) cannot as easily be assembled by a
computer as the node equations used in the EMTP. This difficulty could be overcome, however, since there are
ways of using node equations even for state-variable formulations, by distinguishing node types according to the
types of branches (R, L, or C) connected to them.

Where do Laplace transform methods fit into this discussion since they provide closed-form solutions as
well? To quote F.H. Branin [2], "...traditional methods for hand solution of networks are not necessarily best for
use on a computer with networks of much greater size. the Laplace transform techniques fit this category and should
at least be supplemented, if not supplanted, by numerical methods better adapted to the computer >" He then goes
on to show that essentially all of the information obtainable by Laplace transforms is already contained in the
eigenvalues and eigenvectors of [A]. It is surprising that very few, if any, textbooks show this relationship. The

Laplace transform of Eq. (I.1) is

s[X(9)] - [x(0)] = [A][X(5)] + [G(s)] (1.9a)
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or rewritten
(s [U] - [A]) - [X($)] = [x(0) + [G()] (1.9b)
From which the formal solution in the s-domain is obtained as
[X(9)] = (LUl - [4]1) " - (x(0)] + [G$)] ) (1.10)

The computational task in Eq. (I.10) is the determination of the inverse of (s[U]-[A]). The key to doing this
efficiently is again through the eigenvalues and eigenvectors of [A]. With that information, the matrix (s[U]-[A])

is diagonalized,
M- (s [U] - [A]) - [M] = s [U] - [A] (I.11)
and then the inverse becomes
(s[Ul -[A1)" =M - (s U -A)" - M I1.12)

in which the inverse on the right-hand side i now trivial to calculate since (s[U]-[A]) is a diagonal matrix (that is,
one simply takes the reciprocals of the diagonal elements). To quote again from F.H. Branin [2], "...one of the more
interesting features of this method is the fact that it is far better suited for computer-sized problems than the
traditional Laplace transform techniques involving ratio of polynomials and the poles and zeros thereof. In
particular, the task of computing the coefficients of the polynomials in a network function P(s)/Q(s) is not only time-
consuming but also prone to serious numerical inaccuracies, especially when the polynomials are of a high degree.
The so-called "topological" formula approach [25] to computing these network functions involves finding all the trees
of a network and then computing the sum of the corresponding tree-admittance products. But the number of trees
may run into millions for a network with only 20 nodes and 40 branches. And even if this were not enough of an
impediment, the computation of the roots of the polynomials P(s) and Q(s) is hazardous because these roots may be
extremely sensitive to errors in the coefficients. In the writer's judgment, therefore, the polynomial approach is just
not matched to the network analysis tasks which the computer is called upon to handle. The eigenvalue approach
is much better suited and gives all of the theoretical information that the Laplace transform methods are designated
to provide. For example, the eigenvalues are identical with the poles of the network functions. Moreover, any
network function desired may be computed straightforwardly and its sensitivity obtained, either with respect to

frequency or with respect to any network parameter. Finally, even the pole sensitivities can be calculated..."

1.2 Taylor Series Approximation of Transition Matrix

The matrix exponential e**' can be approximated by a power series, derived from a Taylor series

expansion,
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e = U]+ Arta) ¢ Z P - B P S (1.13)

This series is, in effect, the definition of the matrix exponential.

Using Eq. (I.13), necessarily with a finite number of terms, appears to offer a way around the computation
of eigenvalues. However, "the method runs headlong into another kind of eigenvalue problem which limits its
usefulness: namely, that when the matrix [A] has a large eigenvalue (which means a small time constant), the
integration step At must be kept small in order to permit rapid convergence of Eq. (I.13)" [2]. This refers to the
problem encountered in "stiff systems", where there are large differences between the magnitudes of eigenvalues,
and where the largest eigenvalues produce "ripples" of little interest to the engineer, who is more interested in the
slower changes dictated by the smaller eigenvalues, as indicated in Fig. I.2. The method of using Eq. (I.13) becomes

numerically unstable, for a given finite

small ripples of
little interest

|

Fig. 1.2 - Response of a "stiff system"

number of terms if At is not sufficiently small to trace the small, uninteresting ripples. It is, therefore, not a practical
method for an EMTP. It exhibits the same proneness to numerical instability as the Runge-Kutta method discussed
in Section 1.5, which is not too surprising, since this method becomes identical with the fourth-order Runge-Kutta
method if 5th and higher-order terms are neglected in Eq. (I.13), at least if the forcing function [g(t)] in Eq. (I.1)
is zero ("autonomous system"), as further explained in Section I.5. Since this method is not practical, more details

such as the handling of the convolution integral in Eq. (I.3) are not discussed.

1.3 Rational Approximation of Transition Matrix

A rational approximation for the matrix exponential, which is numerically stable and therefore much better

than Eq. (I.13), is due to E.J. Davison® [6],

3This was pointed out to the writer by K.N. Stanton when he was at Purdue University (now President of
ESCA Corp. in Seattle)
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N L (U] - E[A] + A_t2 [A]? - A—t3 [A]P )"

) 4 12 1.14)

([U] + E[A] + A_tz[A]2 + A—t3[z‘1]3 ) |
) 4 12

A lower-order rational approximation, which is also numerically stable for all At, neglects the second and high-order

terms in Eq. (I.14).

WA - (U] —%[A] Yl ([ + %[A] ) (I.15)

This is identical with the trapezoidal rule of integration discussed in the following section.

Would it be worthwhile to improve the accuracy of the EMTP, which now uses the trapezoidal rule, with
the higher-order rational approximation of Eq. (I.14)? This is a difficult question to answer. First of all, the EMTP
is not based on state-variable formulations, and it is doubtful whether this method could be applied to individual
branch equations as easily as the trapezoidal rule (see Section 1). Furthermore, if sparsity is to be exploited, much
of the sparsity in [A] could be destroyed when the higher-order terms are added in Eq. (I.14). By and large,
however, the writer would look favorably at this method if the objective is to improve the accuracy of EMTP results,

even though it is somewhat unclear how to handle the convolution integral in Eq. (I.3).
1.4 Trapezoidal Rule of Integration

Since this is the method used in the EMTP, the handling of the forcing function [g(t)] in Eq. (I.1), or
analogously the handling of the convolution integral in Eq. (I.3), shall be discussed here. Let Eq. (I.1) be rewritten

as an integral equation,

[x(0] = [x(-An] + ft fm ( [A] bx(u) + [g@)] ) du 1.16)

which is still exact. By using linear interpolation on [x] and [g] between t-At and t, assuming for the time being that

[x] were known at t (which, in reality, is not true, thereby making the method "implicit"), we get

x(®] = [x(-An] + %[A] *([x(@-An] + [x(@] ) + % - ([g-An] + [g@] ) 1.17)

Linear interpolation implies that the areas under the integral of Eq. (I.16) are approximated by trapezoidals (Fig.
1.3); therefore the name "trapezoidal rule of integration". The method is identical with using "central difference

quotients" in Eq. (I.1),
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[x(] - [x(@-An] _ [4] [x(t-An] + [x(®] , 1g(-An] + [g(®)

At 2 ) (1.18)

g(t) Ppr—

t-At t

Fig. 1.3 - Trapezoidal rule of integration

and could just as well be called the "method of central difference quotients". Eq. (I.17) and (I.18) can be rewritten

as

(1 - %{A] ) ] = (U] + %{A] ) - (e-AD)] + % ( gt-AD] + [g®)] ) (1.19)

which, after premultiplication with ([U]-Ate[A]/2), shows that we do indeed get the approximate transition matrix
of Eq. (I.15).

Working with the trapezoidal rule of integration requires the solution of a system of linear, algebraic
equations in each time step. If At is not changed, and as long as no network modifications occur because of
switching or nonlinear effects, the matrix ([U]-Ate[A]/2) for this system of equations remains constant. It is
therefore best and most efficient to triangularize this matrix once at the beginning, and again whenever network
changes occur, and to perform the downward operations and backsubstitutions only for the right-hand side inside
the time step loop, using the information contained in the triangularized matrix. The solution process is broken up
into two parts in this scheme, one being the triangularization of the constant matrix, the other one being the "repeat
solution process" for right-hand sides (which is done repeatedly inside the time step loop). this concept of splitting
the solution process into one part for the matrix and a second part for the right-hand side is seldom mentioned in
textbooks, but it is very useful in many power system analysis problems, not only here, but also in power flow
iterations using a triangularized [Y]-matrix, as well as in short-circuit calculations for generating columns of the
inverse of [Y] one at a time. For more details, see Appendix III.

It may not be obvious that the trapezoidal rule applied to the state variable equations (I.1) leads to the same
answers as the trapezoidal rule first applied to individual branch equations, which are then assembled into node
equations, as explained in Section 1. The writer has never proved it, but suspects that the answers are identical.
For the example of Fig. I.1, this can easily be shown to be true.

The trapezoidal rule of integration is admittedly of lower order accuracy than many other methods, and it

is therefore not much discussed in textbooks. It is numerically stable, however, which is usually much more
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important in power system transient analysis than accuracy by itself. Numerical stability more or less means that
the solution does not "blow up" if At is too large; instead, the higher frequencies will be incorrect in the results (in
practice, they are usually filtered out), but the lower frequencies for which the chosen At provides an appropriate
sampling rate will still be reasonably accurate. Fig. 1.4 illustrates this for the case of a three-phase line energization.
This line was represented as a cascade connection of 18 three-phase nominal m-circuits. The curve for At = 5°

(based on f = 60 Hz, i.e., At = 231.48 us)

VOLTAGE
+i0rPU.

}

1.0

|
o
O

T

f cycles —et¢

1.0 15 2.0

Fig. 1.4 - Switching surge overvoltage at the receiving end in a three-phase open-ended
line

cannot follow some of the fast oscillations noticeable in the curve for At = 0.5°, but the overall accuracy is not too
bad. The error between the exact and approximate value at a particular instant in time is obviously not a good
measure by itself for overall accuracy, or for the usefulness of a method for these types of studies. In Fig. 1.4, an
error as large as 0.6 p.u. (at the location of the arrow, assuming that the curve for At = 0.5° gives the exact value)
is perfectly acceptable, because the overall shape of the overvoltages is still represented with sufficient accuracy.
A physical interpretation of the trapezoidal rule of integration for inductances is given in Section 2.2.1. This
interpretation shows that the equations resulting from the trapezoidal rule are identical with the exact solution of a

lossless stub-line, for which the answers are always numerically stable though not necessarily as accurate as desired.
LI.5 Runge-Kutta Methods
These methods can be used for any system of ordinary differential equations,

de, _
[E] =[f(x], 0] (1.20)

There are many variants of the Runge-Kutta method, but the one most widely used appears to be the following

fourth-order method: Starting from the known value [x(t-At), the slope is calculated at the point O (Fig. 1.5(a)),
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(1)
BT - A wean ), 8 ) (1.212)

which is then used to obtain an approximate value [xV] at midpoint 1,

D] = [ x(-An) ] + % [ Ax® ] (1.21b)

s
S
\O" P : (1)
t-At t t-At t t
(@ (b) (© (d)
Fig. 1.5 - Fourth-order Runge-Kutta method
Now, the slope is recalculated at midpoint 1 (Fig. I.5(b)),
[ Ax@ ] ) 7
— = xV, -A— 1.21
Y [Ax™] 5 I (L.21¢)
and this is used to obtain a second approximate value [x®] at midpoint 2,
1
[x®] =[x(-An] + 5 | Ax@ ] (1.21d)
Then the slope is evaluated for a third time, now at midpoint 2 (Fig. 1.5(c)),
[ Ax® ] @ Ar
= X , [—— 1.21
Y [fCIx™] 3 ) 1 (I.21e)
which is used to get an approximate solution in point 3 at time t,
[x®] =[x(-Ar) ] + [ Ax©® ] 1.21%)

Finally, the slope is evaluated for a fourth time in point 3,
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[C))]
% =[f (L) ] 1.21g)

From these four slopes in 0, 1, 2, 3 (Fig. 1.5(d)), the final value at t is obtained by using their weighted averages,

At [Ax D ] [ Ax® ] [ Ax® ] [ Ax® ]
= -Ap)] + = - + 2 + +
x@®] = [x(-An)] z ( A Y 2 Iy A )

1.22)
The mathematical derivation of the Runge-Kutta formula is quite involved (see, for example, in [7]).
Intuitively, it can be viewed as an exploration of the "direction field"* at a number of sample points (0,1,2,3 in Fig.
1.5). There are variants as to the locations of the sample points, and hence as to the weights assigned to them. There
are also lower-order Runge-Kutta methods which use fewer sample points.
As already mentioned in Section 1.2, the fourth-order Runge-Kutta method of Eq. (I.21) and (1.22) is
identical with the fourth-order Taylor series expansion of the transition matrix if the differential equations are linear,
at least for autonomous systems with [g(t)] = O in Eq. (I.1). In that case, Eq. (I.1) becomes

[AxY ]

= [A] [x(-An] , [xP]=([Ul + H[A] ) [x (1-An)
At 2

With these values, the second slope becomes

[Ax®] 0 Ao
L2 = (M) AP - x A)

and

2
@] = ([U] + %{A] . AT’[A]Z ) - -AD]

Then the third slope becomes

[Ax 9]

= + E 2 A_tz 3y . -
A (4] 5 [A] 1 [A]) - [x(-An)]

and

2 3
@] = ([U] + Ar [A4] + AT’[A]Z ; ATI[AP ) - [x-A)]

*If the slopes are calculated at a number of points and graphically displayed as short lines, then one gets a
sketch of the "direction field", as indicated in Fig. 1.5(d).
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from which the fourth slope is calculated as

@ 2 3
TAXTT A « A AP+ AL 4P - AT 4y - -an)
At 2 4

Finally, the new value is obtained with Eq. (I.22) as
Ar? Ar? Ar
x(®] = ([U] + At [A] + = [A] + — [A] + — [A]*) - [x(t-A0)]
2 6 24
which is indeed identical with the Taylor series approximation of the transition matrix in Eq. (I.13).
If [A] is zero in Eq. (I.1), that is, if [x] is simply the integral over the known function [g(t)], then the fourth-

order Runge-Kutta method is identical with Simpson's rule of integration, in which the curve is approximated as a

parabola going through the three known points in t-At, t-At/2, and t (Fig. 1.6).

g(t) 7

Fig. 1.6 - Simpson's rule

The Runge-Kutta method is prone to numerical instability if At is not chosen small enough. "It becomes
painfully slow in the case of problems having a wide spread of eigenvalues. For the largest eigenvalue (or,
equivalently, its reciprocal, the smallest time constant) controls the permissible size of At. But the smallest
eigenvalues (largest time constants) control the network response and so determine the total length of time over which
the integration must be carried out to characterize the response. In the case of a network with a 1000 to 1 ratio of
largest to smallest eigenvalue, for instance, it might be necessary to take in the order of 1000 times as many
integration steps with the Runge-Kutta method as with some other method which is free of the minimum time-
constant barrier” [2}. This problem is indicated in Fig. 1.2: Though the ripples may be very small in amplitude,

they will cause the slopes to point all over the place, destroying the usefulness of methods based on slopes.

1.6 Predictor-Corrector Methods

These methods can again be used for any system of ordinary differential equations of the type of Eq.

(I.20).To explain the basic idea, let us try to apply the trapezoidal rule to Eq. (I.20), which would give us
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x®] = [x@-An] + % (LfCx-Anl, e=Ae) ] + [P 2e) 1) (1.23)

In the linear case discussed in Section 1.4, this equation could be solved directly for [x]. In the general (time-varying

or nonlinear) case, this direct solution is no longer possible, and iterative techniques have to be used. This has

already been indicated in Eq. (I.23) by using superscript (h) to indicate the iteration step; at the same time, the

argument "t" has been dropped to simplify the notation. The iterative technique works as follows:

1. Use a predictor formula, discussed further on, to obtain a "predicted" guess [x”] for the solution at time
t.

2. In iteration step h (h=1,2,...), insert the approximate solution [x®"] into the right-hand side of Eq. (I.23)
to find a "corrected" solution [x™].

3. If the difference between [x™] and [x®V] is sufficiently small, then the integration from t-At to t is
completed. Otherwise, return to step 2.
Eq. (I.23) is a second-order corrector formula. To start the iteration process, a predictor formula is needed

for the initial guess [x©]. A suitable predictor formula for Eq. (I.23) can be obtained from the midpoint rule,

[xg)] = [x(t=2A0)] + 2A¢ [ f (x(t-AD), 1-AD) ] (1.24)

or from an extrapolation of known values at t-3At, t-2At, and t-At,

1 = [x(-3A0)] + %At( [ Alx@-An], t-Ap) 1 + [ Alx(z-24A0], 1-24A0) 1) (1.25)

The difference in step 3 of the iteration scheme gives an estimate of the error, which can be used

(a) to decide whether the step size At should be decreased (error too large) or can be increased (error very
small), or
(b) to improve the prediction in the next time step.

It is generally better to shorten the step size At than to use the corrector formula repeatedly in step 2 above. In using
the error estimate to improve the prediction, it is assumed that the difference between the predicted and corrected
values changes slowly over successive time steps. This "past experience" can then be used to improve the prediction
with a modifier formula. Such a modifier formula for the predictor of Eq. (I.25) and for the corrector of Eq. (1.23)

would be

ioed = x0T+ == (Ix(-80] ~ 5 %y] ) (1.26)

Besides the second-order methods of Eq. (I.23) to Eq. (I.26), there are of course higher-order methods.
Fourth-order predictor-corrector methods seem to be used most often. Among these are Milne's method and

Hamming's method, with the latter one usually more stable numerically. The theory underlying all predictor-
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corrector methods is to pass a polynomial through a number of points at t, t-At, t-2At, ..., and to use this polynomial
for integration. The end-point at t is first predicted, and then once or more often corrected. Obviously, the
convergence and numerical stability properties of the corrector formula are more important than those of the
predictor formula, because the latter is only used to obtain a first guess and determines primarily the number of
necessary iteration steps. The predictor and corrector formula should be of the same order in the error terms. There
are different classes of predictors: Adams-Bashforth predictors (obtained from integrating Newton' backward
interpolation formulas), Milne-type predictors (obtained from an open Newton-Cotes forward-integrating formula),
and others. Note that those formulas requiring values at t-2At, or further back, are not "self-starting"; Runge-Kutta
methods are sometimes used with such formulas to build up enough history points.

It is questionable whether non-self-starting high-order predictor-corrector formulas would be very useful
for typical power system transient studies, since waves from distributed-parameter lines hitting lumped elements look
almost like discontinuities to the lumped elements, and would therefore require a return to second-order predictor-
correctors each time a wave arrives. In linear systems, the second-order corrector of Eq. (I.23) can be solved

directly, however, and is then identical with the trapezoidal rule as used in the EMTP.
1.7 Deferred Approach to the Limit (Richardson Extrapolation and Romberg Integration)

The idea behind these methods is fairly simple. Instead of using higher-order methods, the second-order
trapezoidal rule (either directly with Eq. (I.17) for linear systems, or iteratively with Eq. (I.23) for more general
systems) is used more than once in the interval between t-At and t, to improve the accuracy. Assume that the normal
step size At is used to find [xV] at t from [x(t-At)], as indicated in Fig. 1.7. Now repeat the integration with the
trapezoidal rule with half
exact

value of x
(2)
X

t-4t —_— t

Fig 1.7 - Richardson
extrapolation

the step size At/2, and perform two integration steps to obtain [x?]. With the two values [xV] and [x?], an
intelligent guess can be made as to where the solution would end up if the step size were decreased more and more.

This "extrapolation towards At=0" (Richardson's extrapolation) would give us a better answer
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@] = @] + % (@] - 9]) 1.27)

The accuracy can be further improved by repeating the integration between t-At and t with 4,8,16,...
intervals. The corresponding extrapolation formula for At - 0 is known as "Romberg integration."

Whether any of these extrapolation formulas are worth the extra computational effort in an EMTP is very
difficult to judge. Some numerical analysts seem to feel that these methods look very promising. They offer an

elegant accuracy check as well.
1.8 Numerical Stability and Implicit Integration

The writer believes that the numerical stability of the trapezoidal rule has been one of the key factors in
making the EMTP such a success. It is therefore worthwhile to expound on this point somewhat more.

The trapezoidal rule belongs to a class of implicit integration schemes, which have recently gained favor
amongst numerical mathematicians for the solution of "stiff systems", that is, for systems where the smallest and
largest eigenvalues or time constants are orders of magnitude apart [70]. Most power systems are probably stiff in
that sense. While implicit integration schemes of higher order than the trapezoidal rule are frequently proposed, their
usefulness for the EMTP remains questionable because they are numerically less stable. A fundamental theorem due
to Dahlquist [71] states:

Theorem: Let a multistep method be called A-stable, if, when it is applied to the problem [dx/dt] = A[x],
Re(A) < 0, it is stable for all At > 0.
Then: (i) No explicit linear multistep method is A-stable.

(i) No implicit linear multistep method of order greater than two is A-stable.

(iii) The most accurate A-stable linear multistep method of order two is the trapezoidal rule.

To illustrate the problem of numerical stability, let us assume that a fast oscillation somewhere in the network
produces "ripples” of very small amplitudes, which do not have any influence on the overall behavior of the network,

similar to those shown in Fig. I.2. Such a mode of oscillation could be described by [72]

2
d—f +x =0, with x(©0) = 0, dx/di(0) = 107* (1.28)
di

with its exact solution being
x = 10 sin(t) (1.29)
The amplitude of 10 shall be considered as very small by definition. Eq. (I.28) must be rewritten as a system of

first-order differential equations in order to apply any of the numerical solution techniques,

dx, /dt
dx,/dt

0 1
-1 0

Xy

(1.30)

X
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with x;,=x and x,=dx/dt. The exact step-by-step solution with Eq. (I.3) is

x,(1) x,(t-Ar)
= elad (I1.30a)
x,(2) x,(1-Ar)
with
VT (1.30b)
1o '
Application of the trapezoidal rule to Eq. (I.30) gives
Ar?
1-— At
x,(1) 1 4 x,(t-Ar) L30)
= ; , ) .
0N NN VE A x(t-A)

It can be shown that

x[(t) + X)) = x[(t-At) + x,(t-Ar)

in Eq. (I.31) for any choice of At. Therefore, if the solution is started with the correct initial conditions x,2(0) +
X,,(0) = 1078, the solution for x will always lie between -10* and +10*, even for step sizes which are much larger
than one cycle of oscillation. In other words, the trapezoidal rule "cuts across" oscillations which are very fast but
of negligible amplitude, without any danger of numerical instability.

Explicit integration techniques, which include Runge-Kutta methods, are inherently unstable. They require

a step size tailored to the highest frequency or smallest time constant (rule of thumb: At < 0.2 T,;), even though this

mode may produce only negligible ripples, with the overall behavior determined by the larger time constants in stiff
systems. Applying the conventional fourth-order Runge-Kutta method to Eq. (I.30) is identical to a fourth-order

Taylor series expansion of the transition matrix, as mentioned in Section 1.5, and leads to

17A_t2+A_t4 Ath_tS
x,(1) 2 24 6 x,(1-Ar) L32)
N0 |y AT A2 A (A |
6 2 24

Plotting the curves with a reasonably small At, e.g., 6 samples/cycle, reveals that the Runge-Kutta method of Eq.
(I.32) is more accurate at first than the trapezoidal rule, but tends to lose the amplitude later on (Fig. 1.8). This is
not serious since the ripple is assumed to be unimportant in the first place. If the step size is increased, however,

to At > V2/7 cycles,
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Fig. 1.8 - Numerical solution of d>x/d> + x = 0; (a) exact,
(b) Runge-Kutta, (c) trapezoidal rule

then the amplitude will eventually grow to infinity. This is illustrated in table I.1 for At = 1 cycle.

Table 1.1 - Numerical solution of Eq. (I.28) with At = 1 cycle

t in cycles 1 2 3 4 5 6
exact 0 0 0 0 0 0
trapezoidal 0.58:10* -0.94-10* 0.96:10* -0.63-10* 0.06:10* 0.53-10*
rule

Runge-Kutta -0.004 -0.32 -18 -590 -6800 2,600,000

Ref. 72 explains that the trapezoidal rule remains numerically stable even in the limiting case where the time
constant T in an equation of the form
T dx,/dt = K x, - X, (1.33)
becomes zero. For T = 0, the trapezoidal rule produces
K x,(t) - %,(t) = - { K x,(t-At) - x,(t-At) } (1.34)
which is the correct answer as long as the solution starts from correct initial conditions K x,(0) - x,(0) = 0. Even
a slight error in the initial conditions,
K x,(0) - x,(0) = ¢
will not cause serious problems. Since Eq. (I.34) just flips the sign of the expression from step to step, the error
€ would only produce ripples + € superimposed on the true solution for x,.
Semlyen and Dabuleanu suggest an implicit third-order integration scheme for the EMTP, in which second-
order interpolation (parabola) is used through two known points at t - 2 At and t - At, and through the yet unknown

solution point at t [73]. Applying this scheme to Eq. (I.30) produces

x,(0)

x,(1)

x,(t-Ar)
x,(1-Ar)

x,(1-2A1)
x,(1-2A1)

a b
-b a

c d
-d ¢

+

(1.35)

with
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Eq. (I.35) gives indeed higher accuracy than the trapezoidal rule, but only as long as the step size is reasonably
small, and as long as the number of steps is not very large. After 40 cycles, with a step size of 6 samples/cycle, Eq.
(I.35) would produce peaks which have already grown by a factor of 20,000. This indicates that the choice of the
step in Eq. (I.35) is subject to limitations imposed by numerical stability considerations, whereas the trapezoidal rule
is not. A step size of 6 samples/cycles is not too large for fast oscillations which have no influence on the overall
behavior. The trapezoidal rule simply filters them out. High-order implicit integration schemes are therefore not
as useful for the EMTP as one might be thought to believe from recent literature on implicit integration schemes for

stiff systems.
1.9 Backward Euler Method

The major drawback of the trapezoidal rule of integration of Section 1.4 is the danger of numerical
oscillations when it is used as a differentiator, e.g., in

v=Ldi/dt 1.36)

with current i being the forcing function. A sudden jump in di/dt, which could be caused by current interruption in

a circuit breaker, should create a sudden jump in the voltage v. Instead, the trapezoidal rule of integration produces

undamped numerical oscillations around the correct answer, as explained in Section 2.2.2. These oscillations can

be damped out by adding a parallel resistor R, across the inductance. Section 2.2.2 shows that critical damping is

achieved if R, = 2L/At. In that case, the "damped" trapezoidal rule of Eq. (2.20) transforms Eq. (I.36) into

L . .
V() = A li(®) - i(r-An] (1.37)

which is simply the backward Euler method. Therefore, the "critically damped" trapezoidal rule and the backward
Euler method are identical.

In general, the undamped trapezoidal rule is better than the backward Euler method, because the latter
method produces too much damping. It is a good method, however, if it is only used for a few steps to get over

instants of discontinuities (see Appendix II).
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APPENDIX II - RE-INITIALIZATION AT INSTANTS OF DISCONTINUITY

The numerical oscillations which occur in the voltages across inductances at points of discontinuities in di/dt,
or in currents through capacitances at points of discontinuities in dv/dt, oscillate around the correct answer. These
numerical oscillations can therefore be eliminated from the output if the output is smoothed, e.g., for the voltage

across an inductance,

D Ouated = 5 10+ v,0-80)] (L1

If this smoothing algorithm is not just applied to the output, but added directly into the trapezoidal rule solution

method, then we obtain

VL(t)snwothed =L l(t)_Tlft_At) (IIZ)

which is simply the backward Euler method (Appendix 1.9). B. Kulicke [15] recognized that such a backward
difference quotient can be used to restart the solution process smoothly after a discontinuity, with the correct jumps
in v, across L, or in i through C. The backward Euler method does have absolute numerical stability, but it is not
as accurate as the trapezoidal rule. It is therefore only used to restart the solution with new initial conditions. B.
Kulicke also recognized that it is best to use half the step size with the backward Euler method to make the matrix
[G] needed for that backward difference solution identical with the matrix [G] of Eq. (I.8), which is needed for the
trapezoidal rule solution after the discontinuity anyhow. In what follows, Kulicke's method of re-initialization is
explained in detail for the inductance; the derivations for the capacitance equations are analogous. There are three

steps in Kulicke's method, namely

(a) interpolation to obtain variables at the point of discontinuity,
(b) network solution at At/2 after the discontinuity for the sole purpose of re-initialization,
(©) re-initialization of history terms at the point of discontinuity.

These three steps are then followed by the normal trapezoidal rule solution method.
(a) Interpolation

Assume that current is to be interrupted at current zero in a circuit breaker. The EMTP solution will give
us answers at points 1, 2, 3 (Fig. II.1), with current zero crossing being discovered at point 3. Kulicke then uses
linear interpolation to locate the zero crossing at point 0, and then calculates the values of all variables and history
terms at that point 0, again with linear interpolation. The solution is then restarted at point 0, with the same At as
before, but the uniform spacing along the time axis will be disturbed at that point, which would have to be recognized
in the output. For Kulicke's method to work, e.g., by re-solving the network in point 3 with the switch open, is
unclear at this time, and may require more work than linear interpolation. Interpolation would also help to eliminate

overshooting of knee-points in piecewise linear elements.
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Fig. II.1 - Linear interpolation to locate point of
discontinuity

(b) Network solution at t +At/2

Let us call the instant of discontinuity t,, with the argument t, used for quantities before the jump, and t,,
for quantities after the jump (Fig. I1.2). Let us also look at the jump in di/dt across an inductance, which is caused

by the switch opening. Since no jump can occur in this

i(e)

H —
-o“.‘
(t )Ld—‘. v(t)
M AR I

Fig. I1.2 - Voltage and current at point of discontinuity

current, we know that

i(t,,) = i(t,) (I1.3)

If we now use the backward difference quotient of Eq. (II.2) to solve the network at t,+At/2, then we obtain

i, + =5y = Sy, + %) i) (I1.4)

which is the same as Eq. (1.3a), except that the history term is now simply i(t,). For capacitance,the analogous

equation would be
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. At 2C At 2C
Loy =) = =+ =) - ==
i, + 2) Ar Wz, + 2) Ar wz, ) (11.5)

again with a modified history term of -2C*v(t, )/At in this case. The solution at t,+At/2 is therefore found in the
usual way with Eq. (1.8b), after [G] has been modified to account for switch opening or for whatever caused the
discontinuity, and after it has been re-triangularized. Notice that this matrix change and re-triangularization process
is required anyhow, even if Kulicke's re-initialization method is not used. The only difference for this extra solution
is in the right-hand side, since the history term is now i(t, ) instead of hist from Eq. (1.3b), with an analogous

modification of the capacitance history term.

(c) Re-initialization of history terms at ¢,

The extra network solution at t,+At/2 is made for the sole purpose of re-initializing variables at t,,. For
the inductance, assuming a linear change in current between t,, and t,+At/2, the voltage at t,, simply becomes
Vitys) = vi(t, + At/2) (I1.6)
which would then be used in Eq. (1.3b) to calculate the history term required for the next, normal solution at t,+At,
for which the triangularized matrix has already been obtained in step (b).
Similarly, assuming a linear change of voltage across capacitances, the current at t,, simply become

io(t,,) = ic(t, + At/2) (L7)
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APPENDIX III - SOLUTION OF LINEAR EQUATIONS, MATRIX
REDUCTION AND INVERSION, SPARSITY

The fastest direct method for solving a system of linear equations

YV, +Y,V, + ... Y\Vy =]

Y, V, + Y,V, + ... Y, \Vy =1,

YoV + YoV, + . YWy = Iy (II1.1)
for the unknown voltages V,, ... Vy, with given current I, ... I, is Gauss elimination, which in more or less
modified forms is also called triangularization, triangular factorization, LU decomposition, Gauss-Banachiewicz,
Gauss-Doolittle, Crout, etc.

Gauss-Jordan elimination or diagonalization takes more operations for the solution of linear equations, but
for matrix inversion the differences in speed between Gauss and Gauss-Jordan seem to become negligible, since both
methods require essentially N° operations. The Gauss-Jordan method has therefore been chosen for the inversion
of small, but full matrices associated with coupled branches. For solving the complete network with Eq. (1.8b) or
Eq. (1.21), Gauss elimination with sparsity techniques is used, as discussed in Section III.4.

A comparison of operation counts between these two basic methods is shown in Table III.1. Choleski's
method is a modification of Gauss elimination for positive definite, symmetric matrices, whereby the square root is
taken of the diagonal elements to make the lower triangular matrix equal to the transpose of the upper triangular
matrix. This requires extra calculations which are difficult to justify. It has been claimed, however, that Choleski's
method works better for ill-conditioned matrices, probably because the square root operation brings numbers closer
together in orders of magnitude, e.g., 10° and 10 would become 10° and 102. The writer has never tested this

claim, and suspects that it applies only to (obsolete) fixed-point arithmetic.

Table III.1 - Number of operations for direct solution of a system of linear equations
1. Full matrices
Operations count for N equations in N unknowns. Taken from [75]

A. Unsymmetric matrix; storage requirement = N? for matrix

Number of operations
Method Process? Mult. Add./Sub. Div.
Gauss elimination for matrix N’-N N-N2+ N N
(triangularization) 3 3 3 2 6
1 repeat
solution N? N*-N 0
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Gauss elimination for matrix N-N’+ N N°-N? + 2N N
using scalar products® 3 2 6 3 3

1 repeat

solution N? N?-N 0
Gauss-Jordan for matrix N3 - N? N-N2+ N
(diagonalization) 2 2 2 2

1 repeat

solution N? N?-N 0

B. Symmetric matrix; storage requirement = N*V/, for matrix
Number of operations

Method Process? Mult. Add./Sub. Div.
Gauss elimination for matrix N° + N?2-2N N°-N N
(triangularization) 6 2 3 6 6

1 repeat

solution N? N?-N 0
Choleski (triangular- for matrix N° + N?2-2N N*-N N (+N
ization) 6 2 3 6 6 square roots)

1 repeat o

solution N2+ N N?-N
Gauss-Jordan for matrix N°-N N-N’+ N N
(diagonalization) 3 3 3 2 6

1 repeat

solution N? N?-N 0

a) In the process "for matrix" only the elements of the matrix are transformed. In the process "1 repeat

b)

solution," the transformation process is extended to the given vector [I] in the system of equations [Y][V]
= [I] and then [V] is found. If [I] changes only and [Y] remains unchanged, then only the process "1 repeat
solution" is used.

2. Sparse matrices for network solutions

Also called "Gauss-Banachiewicz and in slightly modified form "Gauss-Doolittle" (advantageous only for
desk calculators and for digital computers with scalar product as a single operation).

Impressive savings in storage requirements and number of operations possible. See Section III.4.

Because [Y] in Eq. (III.1) has usually strong diagonal elements, "pivoting" is not used in the solution

routines of the EMTP and its support programs.

is best to split the elimination process into two parts, one "for the matrix", and the other for "repeat solutions". This
situation occurs in the transient simulation over successive time steps as long as the network does not change because
of switching operations or nonlinear effects. As shown in Table III.1, the number of operations is much less for

repeat solutions than for a complete solution involving the process for the matrix. The savings are even more

If Eq. (IIL.1) is solved repeatedly with the same matrix [Y], but with different right-hand sides [I], then it
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pronounced with the sparsity techniques discussed in Section II1.4.

II1.1 Gauss Elimination

Most readers are probably familiar with this method, which will be explained for the following example:

2x; + 3%, - X, = 20
-6x, - 5%, + 2x, = 45
2x, - 5%, + 6%, - 6%, = -3 (111.2)
4x, + 6x, + 2x,- 3%, = 58

Step 1: Leave the first row unchanged”, and add such multiples of the first row to rows 2, 3, 4 that zeros are

produced in column 1 of these rows:

’ 3 1 0 20 unchanged

0 4 3 ) 15 add 3-times row 1

0 -8 7 6 23 add (-1)-times row 1
0 0 4 3 18 add (-2)-times row 1

this information must be saved if repeat solutions are to be
performed later

Step 2: Leave the second row unchanged?, as well as row 1, and add such multiples of the second row to rows 3,

4 that zeros are produced in column 2 of these rows:

2 3 -l 0 20 unchanged

0 4 -3 2 15

0 0 1 2 7 add 2-times row 2
0 0 4 3 18 add O-times row 2

save information if repeat solutions are to be performed later.

Step 3: Leave the third row unchanged?, as well as rows 1 and 2, and add such multiples of the third row 4 that

zeros are produced in column 3 of that row:

'In the transient simulation part of the EMTP, this row is divided by the diagonal element before proceeding
with the other row modifications.

Yibid.
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2 3 -1 0 20
unchanged
0 4 -3 2 15
0 0 1 -2 7
0 0 0 5 -10 add (-4)-times row 3

save information if repeat solutions are to be performed later.

After these "downward operations" of steps 1 to 3, the matrix has become "triangularized", with an "upper triangular

matrix",
2x, + 3%,- X4 = 20
4x, - 3%, + 2x, =15
Xy - 2%, = 7 (111.3)
5%, = -10

and the unknowns can now easily be found backwards by "backsubstitution": First, find xo 4, then x; from row 3,

etc., with the result

X, = -2
X; =3
X, =7
x, =1

The determinant is obtained as a byproduct in the downward operations: It is the product of the diagonal
elements in the triangular matrix of Eq. (III.3),
det {[A]} = 2¢4e1e5 =40
In the transient simulation, the system of linear equations is solved repeatedly with no change in the matrix,
but with changes in the "right-hand sides". In that case, the downward operations are only repeated for the vector
of the right-hand side (process "repeat solution" in Table III.1), using the multiplication factors indicated on the right
side in steps 1 to 3, which can conveniently be stored in the columns where the zeros are created. This produces

the "lower triangular matrix"

3
a1 2
21 0| 4

As an example, assume that a repeat solution of Eq. (III.2) is sought with right-hand sides of
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By repeating step 1 for the right-hand sides, we obtain

and after step 2

and finally after step 3

N =

which, after backsubstitution with the upper triangular matrix of Eq. (III.3), produces the results

X, = -2

X; =1
x, = 9/4
x, = -19/8

If the matrix is symmetric, then the lower triangular matrix need not be recorded for repeat solutions. The
information is already contained in the upper triangular matrix, since the rows of the upper triangular matrix divided
by its negative diagonal element are equal to the columns of the lower triangular matrix. Symmetry is exploited in
this way by the EMTP in the transient simulation part.

If the inverse of [Y] in Eq. (III.1) were known, then it appears to be more straightforward to make repeat
solution with simple matrix multiplications,

[Vl = [Y]'[1] (IIL.4)
This notational elegance is deceiving, however, because it ignores the computational burden of obtaining the inverse
matrix [Y]" in the first place. As it turns out, the numerical process for inverting the matrix takes us right back to
the elimination techniques for solving linear equations. Essentially, the inverse of a matrix is found by applying the

solution process to the N columns of the unit matrix as right-hand sides, which amounts to N repeat solutions, or
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N operations. On the other hand, the elimination process "for matrix" in Table III.1 requires only N¥3 operations,

with the number of operations in a repeat solution and in the multiplication of Eq. (III.4) both being N?. Therefore,

systems of linear equations should never by solved by using the inverse, because triangularization of the matrix takes
only 1/3 of the operations required for matrix inversion. There are only three excused for using the inverse, namely

(a) in cases where N is so small that computer time is insignificant,

(b) in cases where the matrix is used so often that the time spent for its one-time inversion is negligible
compared with the numerous multiplications with Eq. (II.4), as in the case of updating history terms of
couple branches in Eq. (3.9), with N usually being small as well, and

(©) in cases where the inverse matrix is needed explicitly, as in the computation of the capacitance matrix from
the potential coefficient matrix (Eq. (4.23) in Section 4.1.1.2), or in calculating (At/2)[L]"! of couple
branches (Eq. (3.8) in Section 3.2).

III.2 Gauss-Jordan Elimination by Diagonalization

This method is used for the inversion of small, full matrices of coupled branches in the EMTP, and for
matrix inversion in the support routine LINE CONSTANTS, in a version which exploits the symmetry of the matrix.
The writer chose it over inversion based on Gauss elimination many years ago because it requires basically the same
number of operations, namely N°/2 and because it is easier to program in a way which works for matrix inversion
as well as for matrix reduction. Gauss-Jordan elimination is very similar to Gauss elimination, except that in step
1 one does not only produce zeros in the column below the diagonal element, but above the diagonal as well. The
solution is available immediately after the downward operation; there are no linear equations, with the example of
Eq. (II1.2).

Step 1: Divide first row by Y,;, and add such multiples of the modified first row to all other rows that zeros are

produced in column 1 of these rows:

1 3/2 -1/2 0 10
0 4 -3 2 15
0 -8 7 -6 -23
0 0 4 -3 18

Step 2: Divide second row by Y,,, and add such multiples of the modified second row to all other rows that zeros

are produced in column 2 of these rows:

1 0 5/8 -3/4 35/8
0 1 -3/4 1/2 15/4
0 0 1 -2 7
0 0 4 -3 18

Step 3: Divide third row by Y;,, and add such multiples of the modified third row to all other rows that zeros are
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produced in column 3 of these rows:

1 0 0 172 0
0 1 0 -1 9
0 0 1 -2 7
0 0 0 5 -10

Step 4: Divide fourth row by Y,,, and add such multiples of the modified fourth row to all other rows that zeros

are produced in column 4 of these rows:

O = OO
- o OO

SO O -
SO~ O
N W =

This final step gives the solution, since the matrix has now been transformed into a unit matrix.

x, =1
X, =7
X; =3
X, = -2

II1.3 Subroutines REDUCT and CXRED for Matrix Inversion, Reduction and Solution
of Equations with Symmetric Matrices

By applying the Gauss-Jordan process simultaneously to N right-hand sides in the form of a unit matrix,
the inverse matrix will be produced. The unit matrix need not be stored as such, because the nontrivial values
generated in each step can conveniently be stored in the columns in which the zeros are created. After the final step,
the original matrix will have been changed to its inverse in its own place. Since the matrices requiring inversion are
all symmetric in the EMTP, Shipley's version of the Gauss-Jordan process is used [43], which takes advantage of
symmetry. In that process, the original matrix is replaced by its negative inverse. The subroutines REDUCT for
real matrices and CXRED for complex matrices use this version for matrix inversion as well as for matrix reduction.
In the reduction option, the last rows and columns M+1, ... N are eliminated, and operations in certain parts of the
matrix are skipped, which in effect changes the process from Gauss-Jordan to Gauss elimination. The subroutine
REDUCT has been changed in UBC in 1982 to solve linear equations with symmetric matrices by Gauss elimination
as well. The process works as follows, keeping in mind that the matrix is symmetric and that only elements in and

below the diagonal are processed, since a, = a,;. In step j, where j is counted backwards® from N, N-1, to M+1,

YEliminations are done backwards, eliminating Xy first, then Xy ;, etc., so that the last rows and columns can
be eliminated in the matrix reduction option.
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process row j as follows:

Yu" =d- Y k=1, ..N, except for j (I11.5)

with

d= - 1 d Ynew - d
Ty T (I11.6)
b

VAR At Y;"”- Y, k=1, .1, except for j (I11.7)

and
Y= d -y (IIL8)

) )

If M =0, this will produce the negative inverse. If 0 < M < N, this will produce a reduced matrix of order M.
The case of matrix reduction may warrant further explanations. Let the components in the vectors be

partitioned into 2 subsets 1 and 2. With corresponding partitioning of the matrices we get

vyl )] va] i)

PARVAIAIRRIA
or [Y,IIV.] + [Y,IIV,] = [1] (IIL.9)
[Y2,1[Vi] + [Y2l[V,] = [L] (I11.10)

The objective is to arrive at a reduced system of equations for subset 1. The procedure used in the subroutines is
that of Eq. (II1.5) to (IIL.8), but may be easier to understand with the following matrix equations:
Solve Eq. (III.10) for [V,],

[Vl = -[Yol '[YI[Vi] + [Yal'[L] (IIL.11)
and insert this into Eq. (II1.9), which yields the reduced system of equations
[Y,,“][V,] = [L] + [Dy,lIL] (II1.12)
with the reduced matrix
(Y3, = [Y o] - [Y 0l [Yol '[Ya] (1I1.13)
and the distribution factor matrix
D] = -[Y,[Yal! (I111.14)

The name "distribution factor matrix" for [D,,] comes from the fact that, when multiplied with the currents [I,] at
the eliminated nodes, it distributes their effects to the retained nodes 1, as can be seen from the right-hand side of

Eq. (IlT.12). This distribution factor matrix is never needed in the EMTP because reduction is only used in cases
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where [I,]=0; the subroutine REDUCT could easily be modified to produce [D },as well as the reduced matrix,
however, by simply omitting three FORTRAN statements. The transpose [D,,]' is the screening factor matrix

mentioned in Eq. (4.41) of Section 4.1.2.5

II1.4 Gauss Elimination with Sparsity Techniques

Sparsity has been exploited intuitively for a long time. In the days of hand calculations, any body solving

the three equations

3x, + 2x,-  6x4 = 7
X+ X = 10
X, - X3 = 2

would have picked the second and third equations first, e.g., to express X, and X; as a function of X;, and to insert
these expressions into the first equation to find x,. This is essentially the same ordering scheme which is used in
computer programs today.

Sparsity techniques have been used in power system analysis since the early 1960's by W.F. Tinney and
his co-workers [141] in the U.S.A., by H. Edelmann [142] in Germany, and by J. Carpentier [143] in France, and
by others. There is an extensive list of references on the subject, and improvements are still being made [144]. The
following explanations do not cover all the details, but they should be sufficient to understand how sparsity is sued

in the EMTP.

II1.4.1 Basic Idea
Let us assume that we have to solve the node equations for the network of Fig. III.1, and let us use an "X"

to indicate nonzero entries in the nodal admittance matrix of Eq. (IIl.1). Then the node equations

Fig. III.1 - Simple network

have the form
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v] ]
XX XX X| /AR'A
X X
X X Vil = 14 (II1.15)
X X
X x| [Va| |l
_Vs_ I
After triangularization, the equations will have the following form:
. 1
v] I
|}£ XX XX| v 12/
XXX X||?
XXX ||V = (I11.16)
X X| |y ,
x|
V. /
b

The triangular matrix is now full, in contrast to the original matrix which was sparse. The "fill-in" is, of course,
produced by the downward operations in the elimination process. This fill-in depends on the node numbering, or
in other words, on the order in which the nodes are eliminated. To show this, let us exchange numbers on nodes
1 and 5 (Fig. III.1), and solve the problem again. It will be the same problem and we will get the same solution

because assigning numbers to the nodes is really arbitrary. The node equations now have the form

Vl Il
X X § VZ 12
X X V5| =1, (II1.17)
X X
xxxxx V4| |l
Vs)  Is]
which becomes after triangularization:
_V i 11/
1
|X X| /
z \% L
x x|
e (ARN'A (II1.18)
X X| |y, ,
x|
_V5_ 15’
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Fig. ITI.2 - Nodes 1 and 5 re-
numbered

Now there is no fill-in at all (in general, there will be some fill-in). This saving was achieved by just numbering the
nodes in a slightly different order, or in other words, sparsity can be preserved by using "good" ordering.

The simplest "good" ordering scheme is as follow: Number nodes with only 1 branch connected first, then
number nodes with 2 branches connected, then nodes with 3 branches connected, etc. Better ordering schemes are
discussed in [141], with Scheme 2 probably being the best compromise between time spent on finding a near-optimal
order and the savings achieved through sparsity. Scheme 2 is used in the steady-state and transient solution part of

the BPA EMTP. The UBC EMTP uses re-ordering only in the transient solution part.
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Fig. II1.3 - Comparison of the numerical effort between matrix
inversion and ordered triangular factorization for typical power
networks [145]. © 1973 IEEE

Exploitation of sparsity is extremely important in large power systems because it reduces storage
requirements and solution times tremendously. The curves in Fig. III.3, taken from a tutorial paper by Tinney and
Meyer [145], clearly show this. The solution time for full matrices is proportional to N°. For sparse power systems

it increases about linearly. Typically, the number of series branches is about 1.6 x (number of nodes) and the
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number of matrix elements in the upper triangular matrix is about 2.5 to 3 times the number of nodes in steady-state
equations. The node equations (1.8) for the transient solution are usually sparser because distributed-parameter lines
do not contribute any off-diagonal elements.

Fig. II1.4 shows the steady-state nodal admittance matrix of a single-phase (positive sequence) network with
127 nodes and 153 branches, before triangularization in the lower triangular part, and after triangularization in the
upper triangular part, with optimal ordering base on Scheme 2. The fill-in elements are indicated by the symbol "O",
whereas "X" indicates the original elements. Because of fill-in, the number of off-diagonal elements in the upper

triangular matrix grows from 153 to 229, but this is still very sparse compared with 8001 elements in a full matrix.
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Fig. II1.4 - Nonzero pattern of symmetric matrix before triangularization shown below
diagonal and after triangularization shown above diagonal, for a network with 127 nodes

I11.4.2 Row-by-row Elimination with Static Storage

While there are many variations of the basic Gauss elimination and associated sparse storage schemes, the

best choice for power system analysis seems to be row-by-row elimination with static storage. This is the scheme

used in the EMTP. Its two basic concepts are:

(a)

The non-zero pattern of the triangularized [Y] - or [G] - matrix need not be known in advance (even though
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(b)

it could be obtained as a by-product of the re-ordering subroutine), but the nodes must be re-numbered near-
optimally for minimum fill-in.

As each row of the upper triangular matrix is built, it is stored away once and for all and never changed
again (static storage). Since the nodal matrices are symmetric in the steady-state as well as in the transient

solution part, the lower triangular matrix is not needed.

Concept (b) rules out the "textbook approach” to elimination shown in Section III.1, in which zeros are produced

column by column in the lower triangular matrix, because the resulting reduced matrices change with fill-in elements

from one elimination step to the next.

AW NN =

Row-by-row elimination on the matrix elements with static storage works basically as follows (Fig. IIL.5):

existing part of
upper triangular
matrix

row k ¢— working row

Fig. II1.5 - Row-by-row elimination

Set elimination step k = 0.

Increase k by 1.

Stop process if k > N.

Build row k of [Y] from branch tables in a one-dimensional "working row" array (or transfer data into
working row if [Y] is already available). Use either a full working row scheme or a packed working row
scheme, as discussed in Section II1.4.3

In the working row, eliminate Y, , (if nonzero) by adding the appropriate multiple of row 1 of the already
existing part of the upper triangular matrix. Then eliminate Y, , (if nonzero) in an analogous way, then Y, 5
etc., up to Y, ;. Note that rows of the existing part of the upper triangular matrix are only recalled from
storage, but not modified (static storage).

Store the diagonal element in a table of length N (or its reciprocal on computers where division takes more
time than multiplication), and add the nonzero elements Ym to the right of it (m > k) in compact form to
the existing part of the upper triangular matrix, e.g., with the row pointer/column index scheme of Section
IIT.4.4. Since the matrices in the EMTP are symmetric, only the upper triangular matrix has to be stored.
Return to step 2.

If there is only one solution, as in the steady-state initialization, then the right-hand side [I] is processed

together with [Y] as if it were an extra (N+1)-th column.

For the repeat solutions in the transient solution part, the downward operations are made with the rows of

the upper triangular matrix, since the elements of row k of the upper triangular matrix, divided by the negative

diagonal element, are the multiplication factors usually stored in column k of the lower triangular matrix. If
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YREC(K) is reciprocal of the diagonal element, if R(I) is right-hand side, if YU(J) are the off-diagonal elements of
row k of the upper triangular matrix, and if MU(J) are the column indices m of these elements, then elimination step
k of a repeat solution would be more or less similar to the following Fortran statements:
A = R(K) * YREC(K)
DO 10 J = (beginning of row), (end of row)
M = MU(QJ)
10 RM) = RM) - YUQJ) * A

I11.4.3 Working Row

For the working row discussed in step 4 of the preceding section, and indicated in Fig. III.5, a full row can
be used with a one-dimensional array of dimension N, in which zero elements are actually represented by zero
values. In the eliminations of step 5 and in storing nonzero elements in step 6 of the preceding section, each element
must be checked whether it is nonzero. This costs extra computer time, which is the price one has to pay for the
simplicity of the full working row scheme, where fill-ins "fall naturally" into their proper location during the
elimination process of step 5 (preceding section). A full working row scheme can be used in situations where the
extra time of checking for zeros is not very important in the total computer time. This is more or less the case in
the transient solution part of the EMTP, where the [G]-matrix is only triangularized occasionally, namely at the
beginning of the time step loop and whenever switches change their position. Therefore, the UBC EMTP and older
versions of the BPA EMTP use a full working row scheme. No additional storage is needed for that row, because
the one-dimensional array needed in the time step loop for the right-hand side is available at the time of
triangularization.

For utmost speed, packed working row schemes should be used, especially if the matrix is re-triangularized
frequently. This situation arose with the simulation of HVDC systems, where the switches representing the valves
open and close after every 20 steps or so. Newer versions of the BPA EMTP therefore use a packed working row
scheme, which is essentially the same as the one described in [146] in table IX. In spite of the necessity of additional

indexing tables, enough storage space and computer time is saved to justify the additional complications it entails.

I11.4.4 Row Pointer/Column Index Storage Scheme

Before discussing the compact storage of the upper triangular matrix, it should be remembered that a
separate array is used for the working row, e.g.,

REAL ROW(N) for a full working row and real (not complex)matrix elements,

REAL ROW(M) for a packed working row with M <N according to [146]

INTEGER NEXT(M), KOL(M)

A row pointer/column index scheme in the form discussed next, or in a similar form, seems to offer the best
choice in terms of ease of access and economy of space. Note that such a scheme cannot only be used for storing
the triangular matrix in compact form, but also for storing the original [Y]-matrix in compact form.

The diagonal elements (or their reciprocals on computers where division takes noticeably longer than
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multiplication) are stored in a one-dimensional array of dimension N, say in YDIAG (Fig. II1.6). The nonzero off-
diagonal elements of the upper triangular matrix are stored row-by-row in another one-dimensional array of
dimension larger than N, (typically 3.5*N), say in YU, with the starting address of each row available from a row-
pointer table of length N+!, say in KSTART. The address of the last entry in a row is simply the starting address
of the following row minus 1, which explains why an (N +1)-th entry is needed in KSTART. Obviously, the column
numbers get lost when elements are packed into YU. Therefore, an extra column index table, say MU, is required,

as indicated in Fig. III.6. The overhead burden of this extra table,

table of length table of length table YU for elements of upper
N for diagonal N + 1 for row triangular matrix and table MU
elements (or pointer for associated column indices

their reciprocals)

YDIAG KSTART YU MU
1 (real) 1 (integer) 1 | (real) (integer)
N N
N+1 = 3.5*N

Fig. II1.6 - Row pointer/column index storage scheme

of this extra table, which becomes less for complex elements in the steady-state solution because only YU would have
to be replaced by two tables but MU would still be a single table, is trivial for large matrices when the total storage
requirements are compared with the alternative of storing a full matrix in a two-dimensional array. Experience has
shown that the number of words for compact storage is proportional to N (as is the computer time), whereas the

number of words required for storing a full matrix is proportional to N? (Table II1.2). If N = 1000 in Table III.2,

Table II1.2 - Storage requirement for upper triangular matrix and for vectors needed for repeat solutions in case of
symmetric matrices [147]

real elements complex elements
compact storage 9.8 *N 152 *N
full storage N>+ N + 2N N’ + N + 4N
2

then 9,800 words would be needed for a real matrix and 15,200 words for a complex matrix, compared with 502,500

words and 1,005,000 words, respectively, for storing a full matrix. The savings are 98% and 98.5% respectively.
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II1.4.5 Special Techniques for Symmetric Matrices

The matrices [Y] for the steady-state solution as well as [G] for the transient solution are both symmetric.

Symmetry can be exploited in two ways:

(a) The lower triangular matrix need not be stored for repeat solutions, and

(b) only elements to the right of the diagonal must be processed in step 5 of Section III.4.2, which cuts the
operation count in the elimination process for the matrix approximately in half. No savings can be gained
in repeat solutions, however.

Point (a) has been discussed in Section II1.4.2; it results from the fact that a column of the lower triangular
matrix is equal to the respective row of the upper triangular matrix, divided by the negative diagonal element. This
point is exploited in the EMTP.

Point (b) is true because the multiplication factors needed for the elimination of Y, ;, Y, ... in step 5 of
Section I11.4.2 are already available in the dotted column of Fig. III.5. This is not exploited in the EMTP, since it
is difficult to access this dotted column directly without some additional indexing tables. A simple way out of this
problem would be to store elements of the dotted column, as they are created, in a separate table for the rows of the
lower triangular matrix, but that would defeat the advantage of point (a) above.

There is some advantage in dividing the rows of the upper triangular matrix by the diagonal element, in the
loop where they are stored in step (6) of Section III.4.2. This way, N multiplications are saved in the
backsubstitution of the repeat solution, at the expense of one extra multiplication for each off-diagonal element in
the triangular matrix. When the EMTP was first written, it was assumed that the matrix will only be triangularized
occasionally (before entering the time step loop and whenever switches change their position). Therefore, division
by the diagonal elements was chosen to keep the operation count in the repeat solutions inside the time step loop as
low as possible. In simulating HVDC systems, the savings in the time step loop may become less than the extra
operations needed for multiplying the off-diagonal elements with the reciprocal of the diagonal element.

With division by the diagonal elements, the matrix process is only modified in step (6) of Section II1.4.2.
In step (2) it must be realized of course that the elements of the upper triangular matrix are no longer Y,,,, but
Y/ Y-

The process for repeat solutions with the storage scheme of Section III.4.2 works roughly as follows.

Downward operations:

1. Set elimination step k = 0.

2 Increase k by 1.

3. Go to backsubstitution if k > N.

4 Get compact row k of the triangular matrix from storage, and

(a) save k-th component of right-hand side, A = R(K),

(b) multiply k-th component with reciprocal of diagonal element, R(KO = A * YREC(K)

(©) modify all components of right-hand side for which entries exist in row k of the
triangularized matrix (diagonal element excluded):

DO XX J = (beginning of row), (end of row)
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M = MU(QJ)
R(M) = R(M) - YUJ)*A
5. Return to step 2.

Backsubstitutions (R will be replaced by solution vector):

1. Set counter k = N.

2 Decrease k by 1.

3. Stop process if k = 1.

4 Get compact row k of the triangular matrix from storage, and find the solution for k-th component

with the following loop (diagonal element excluded):
A = R(K)
DO XX J = (beginning of row), (end of row)
M = MU(QJ)
XX A =A-YUQJ)*RQ)
RK) = A

5. Return to step 2.
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APPENDIX IV - ACTUAL VALUES VERSUS PER-UNIT QUANTITIES

The use of per-unit quantities has been customary for so many years in the electric power industry, that it
is not always recognized that actual values can be used just as easily, and that the per-unit system may have outlived
its usefulness. This writer sees no advantages in working with per-unit quantities, and feels much more comfortable
with actual values.

The widespread use f per-unit quantities probably started with network analyzers in the 1930's. For power
flow and short-circuit studies on network analyzers, per-unit quantities offered two advantages, namely scaling of
impedances to values available on the analyzer, and the possibility of representing transformers as simple series
impedances as long as their turns ratio was identical to the ratio of the base voltages on the two sides. Somewhat
similar arguments for per-unit quantities could be made in the early days of digital computers with fixed-point
arithmetic, where the order of magnitude of intermediate and final results had to be about the same. On modern
computers with floating-point arithmetic, there is no reason, however, why one shouldn't work directly with actual

values.

IV.1 Per-Unit Quantities

A per-unit quantity is the ratio of the actual value of a quantity to the base value of the same quantity [76,
p- 482]. It has been customary to use one common base power S, (apparent power) for the entire system (typically
100 MVA), and a different base voltage for each voltage level (e.g., Vi, = 115 kV and V. = 230 kV in a

115/230 kV system) as the base values. Then the per-unit quantities in a single-phase network are

- . Vbase
p.u actual
Sbase
v,
_ base
Vou = 5 (IV.1)
base
2
Y -y Vbase
p.u actual S
S base
_ . base
Zpu - Zaclual 2
V

It may be safest to use these single-phase equations for three-phase networks as well. In wy-connected equipment,
Si.e Would be the single-phase base power of one winding (e.g., 100/3 MVA) and Vase would be the base voltage
across each winding, namely the phase-to-ground base voltage (e.g., 113/v/3 kV and 230//3 kV). In delta-connected
equipment, S,,.. would again be the single-phase base power of each winding (e.g., 100/3 MVA), whereas the base
voltage V,,.. across each winding would now be the phase-to-phase base voltage (e.g., 115 kV and 23 kV).

The following, well-known formulas with three-phase base values were developed for positive sequence
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power flow studies, where the distinction between wye- and delta-connections gets lost in the conversion from three-

phase representations to equivalent single-phase representations for balanced operation:

\%
_ . base-phase-to-phase
Ip.u. - Iactual \/g

base-three-phase

Vv
V. = %l uumeratorand denominatoreither both phase-to-phaseor bothphase-to-ground)

base

Y _ . (Vbase -phase—to fphase)z (IV . 2)

pu. Yacrual

base-three-phase

Eq. (IV.2) cannot only be used for the conversion of positive sequence parameters, but for negative and zero
sequence parameters as well, as shown in the example of Section IV.3.

Per-unit quantities, as ratios of actual to base values, are meaningless if the base values are not listed as part
of the data as well. For example, the positive sequence series impedance of an overhead line is fully described by

three actual values,

R, + joLy, = 0.05 + j0.40 Q/km, f = 60 Hz

or if R', and L', are independent of frequency, by two values,

R’ = 0.05 Q/km, L', = 1.061 mH/km
On the other hand, the record for per-unit quantities consists of 5 values,
R',, + joL', = 9.45¢10° + j75.61¢10° p.u., f = 60 Hz, S, = 100 MVA (three phase), V. = 230 kV
(phase-to-phase).
With R', and L',

R, = 9.45¢10° p.u., L', = 20.06°10" p.u., S, = 100 MVA (three-phase), V.. = 230 kV (phase-to-phase),

the frequency could be dropped from the record, but the time base should then be added,
tbase = Is.

Adding the time base may seem superfluous, but there are stability programs which use cycles (of 60 Hz) as a time
base, in which case L', = 12.03¢10” p.u., t,, = 1/60s.

IV.2 Conversion from One Base to Another

If per-unit data is to be exchanged among utilities and manufacturers, then it is important to include the base
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values, especially if one party customarily uses base values which are different from those used by the other party.

For example, a transformer manufacturer lists the short-circuit input impedance in per-unit based on the voltage and
power nameplate ratings of the transformers,

Zmanufacturer -7 . nameplate
‘p.u. actual

2
( rmmeplate)

Iv.3)

In a particular case, these base values might be 660 MVA (three-phase) and 241.5 kV (phase-to-phase). Utility
companies generally use different base values (e.g., Sy, = 100 MVA, V,

mse = 230 kV). By solving Eq. (IV.3) for
Z,... and using Eq. (IV.2) to get back to per-unit quantities, one obtains

. . \% 2 S
tility 1 opl . by
VA A o) (IV.4)
base nameplate

Obviously, the per-unit quantity of the manufacturer will be quite different from the one used by the utility company.
In general, the formulas for conversion from base "1" to base "2" are

base 2 _ ybase 1 S, base 1 Vbase 2
I =] . _base 1, _vase 2
.. DU S %
base 2 base 1
\%
base 2 _ base 1 base 1
Vou "= Vour " (IV.5)
base 2
2
Ybase 2 Ybase 1, Sbase 1, ( Vbase 2)
p.u. p.u. S
base 2 base 1

IV.3 Actual Values Referred to One Side Transformer

The advantage of representing transformers as simple series impedances with per-unit quantities, as long

as their turns ratio is identical to the ratio of the base voltages, exists with actual values as well, if the quantities on

one side are referred to the other side. In the example of Fig. IV.1, quantities on the low voltage side are referred
to the high voltage side with

15
Ihigh = Ilaw ’ 241.5
vy . 24L5 (Iv.6)
high —  "low 15
15 2
Yhigh = Low ” (241 5)
2
7 241.5

high ~— Zlaw ’ (1—5)
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15 kV / 241.5 kv

O3+t

Fig. IV. 1 - Generator with step-up transformer. Generator data: X;" = X" = 10% based on
rating of 13.8 kV and 180 MVA. Transformer data: X, = X,.,, = 8% based on rating of
15/241.5 kV and 250 MVA

Zero

27.42% .66Q 27.420 18.66Q 18.66%
(a) positive (b) negative (c) zero

Fig. IV.2 - Positive, negative, and zero sequence networks seen from high side

This conversion to the high side is advantageous if the generator and step-up transformer are to be replaced by a
Thevenin equivalent circuit seen from the high side. With the data of Fig. IV.1, the positive, negative and zero

sequence networks of Fig. IV.2 are obtained as follows: For the transformer,

241.5°

X, = 0.08 ——— Q = 18.66 Q (seen high side)
’ 250
and for the generator,
B 13.8°
X, = 0-10 50 Q = 0.1058 Q (seen high side)
or
241.5.2

X

actual

= (0.1058 (—) Q = 27.42 Q (seen high side)

Note that the delta connection provides a short-circuit for the zero sequence currents (Fig. IV.2(c)). With X, =

X = 46.08 Q, X, = 18.66 (, the final three-phase Thevenin equivalent circuit of Fig. IV.3 is obtained by

Zero

converting the sequence reactances to self and mutual reactances with Eq. (3.4). The amplitude of the Thevenin
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voltages is set equal to the voltage seen on the high side for the particular operating condition, which may be 230

kV phase-to-phase in a particular case.

vVl 1o 3x3 reactance matrix
vl o B

v e Y b
2 AL ¢ X, X, X,
<~ y Xm Xs Xm
Xm Xﬂl XS
* - ?

Fig. IV.3 - Three-phase Thevenin equivalent circuit. Symmetric voltage sources V,, Vg, V. with RMS amplitude
of 230/V3 kV; x, = 36.94 Q, X, = -9.14 Q

One could also use per-unit quantities for the Thevenin equivalent circuits of Fig. IV.2, with the transformer
ratings as base values. In that case, X = 0.08 p.u. for the transformer, and with Eq. (IV.5),
X = 0.10 « (250/180) » (13.8/15)* p.u. = 0.1176 p.u.
for the generator. Then, X, = X, = 0.19756 p.u., X,,, = 0/08 p.u., which leads to X, = X,,, = 46.08 Q,

ZEro

X,eo = 18.66 Q with S, = 250 MVA (three-phase) and V. = 241.5 kV (phase-to-phase).
IV.4 Advantages of Actual Values
This writer prefers actual values over per-unit quantities for the following reasons:

1) Confusion may arise with per-unit quantities because the base values are not always clearly stated. This
confusion cannot arise with actual values.

2) The data record is shorter for actual values, as shown in the last paragraph of Section IV.1, even if S, in
the per-unit record is left off, with the understanding that it is always 100 MVA.

3) Actual values are fixed characteristics of a piece of equipment, independent of how this equipment is being
used. This is not true for per-unit quantities: If a 500 kV shunt reactor is temporarily used on a 345 kV
circuit, its per-unit values based on 500 kV would have to be converted to a base of 345 kV.

4) Since the ratio of transformer voltage ratings is not always equal to the ratio of base voltages, one has to

allow for "off-nominal" turns ratios (unequal 1:1) with per-unit quantities anyhow. If one has to allow for
any ratio, then a ratio of 1:1.05 for per-unit quantities is neither easier nor more difficult to handle than a
ratio of 15 kV:241.5 kV for actual values. Therefore, one might as well use actual values. Furthermore,
the simple series impedance representation of transformers with per-unit ratios of 1:1 (Fig. 3.3(c) with t =
1.0) can seldom be used in EMTP studies. For example, a three-phase bank of single-phase transformers
in wye-delta connection would require a 2x2 [Y]-matrix model for each transformer, or alternatively, an
equivalent circuit representation with uncouple reactances as shown in Fig. 3.3(b). The case of t = 1.0

offers no advantage whatsoever in that six-branch circuit.
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5) If test data is available in per-unit quantities, e.g., for generators or transformers, then conversions are even
necessary for per-unit values, since the base values do in general not agree with the nameplate ratings.
Therefore, one might as well convert to actual values. Furthermore, the EMTP does this conversion in
most cases anyhow, e.g., in the main program in the case of generators, or in supporting routines in the
case of transformers.

(6) All digital computers use floating-point arithmetic nowadays, and therefore accept numbers over a wide
range of magnitudes. Therefore, the numbers do not have to be of the same order of magnitude, and a turns
ratio of 15 kV:241.5 kV causes no more problems than a turns ratio of 1:1.05.

Sometimes the question is raised whether solutions with per-unit values aren't possibly more accurate than
solutions with actual values. Many years ago on computers with fixed-point arithmetic, per-unit values may indeed
have produced more accurate than the other. To show this, let us look at the steady-state solution of a single-phase
network with nodal equations,

[Yewal [Vaewal = acwal av.m
where [I,.,.] is given, and [V,.,.] is to be found. In general, the network will have two or more voltage levels,
which will be taken into account in [Y,,,] With the proper transformer turns ratios. To convert Eq. (IV.7) to per-
unit quantities, the base voltages are first defined in the form of a diagonal matrix,

Voase 1

base 2

[V, Iv.g)

ase] =

Vbase N

with the possibility of each node having its own base voltage. In reality of course, all nodes within one voltage level
would have the same base value. With S, being the same for the entire network, the current and voltage vectors

in per-unit and actual values are related by

Mu] = (1/Spe)[Viasel Toase] av.9)
Vaewal = [Viasel [V 1v.10)
Premultiplying Eq. (IV.7) with [V,,.]/S.., and replacing [V,...] with Eq. (IV.10) will produce the per-unit equations
(Y, 10V, ] = [L.] (IV.11)

with
(Yol = (1/Spe)[Viasel [V acra] [Vasel (IV.12)

Therefore, the conversion from actual to per-unit values consists of the transformation of the coefficient matrix

[Yeual into [Y,, ] with Eq. (IV.12). This transformation is very simple since [V,,.] is a diagonal matrix: Aside

base.

from dividing all elements by the constant S,,., each row i (i = 1, 2, ... N) is multiplied by V and each row k

base-i»

(k =1, 2, ...N) is multiplied by V,,..,. This is essentially a scaling operation.
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This scaling operation has no influence on the solution process if pivoting” is not used, but it may influence
the accumulation of round-off errors. This influence on round-off errors is difficult to assess. For a system of linear
equations, the following can however be said [77, p.39]: If scaling is done in such a way that it changes only the

exponent of the floating-point number (e.g., by using S,,, = 128 MVA or 2’, V = 128 kV or 2’ and V,,.,

base base 1

= 512kV or 2’ on a computer using base 2 for the exponents), and if the order of eliminations is not changed, then
the scaled (per-unit) coefficients will have precisely the same mantissas, and all intermediate and final results will
have precisely the same number of significant digits. Therefore, it is reasonable to assume that scaling will neither
improve nor degrade the accuracy of the solutions. M.D. Crouch of Bonneville Power Administration has shown

that this assumption is correct for power flow solutions with 48 bit precision.

IV.5 Per-Unit Voltage with Actual Impedances

Sometimes, overvoltage studies are made with impedances in actual values, but with voltage source
amplitudes scaled to 1.0 p.u. or similar values,

V = Vactual / V

p-u. base

This produces overvoltages expressed in per-unit, which is often preferred in insulation co-ordination studies. If
there are no nonlinear elements in the network, then this approach is quite straightforward. Actual values can be
obtained from the per-unit values by multiplying per-unit voltages and currents with V
V2

and per-unit power with

base>

base*

Some care is required, however, if the network contains nonlinearities. For nonlinear resistances or

inductances defined point-by-point with pairs of values v, i or {, i both values of each pair must be divided by V

base

in the input data. If the nonlinearities are defined by their piecewise linear slopes R;, R, ... or L,, L,, ..., and by

the "knee-point" v,, v,, ... or ¥, U5, ..., only these knee-point values must be divided by V., in the input data.

vase

YPivoting is generally not used in the EMTP, except in some subroutines for the inversion of small matrices
of couple branches.
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APPENDIX V - RECURSIVE CONVOLUTION

Consider the convoluted integral

s(p) = f;“ fit-uye 7@ Dy (V.1)

to be found at time t, with s(t-At) already known from the preceding time step. This known value can be expressed

as

s(t-Ar) = eP fw fa-uye 74D dy (V.2)
T+At

by simply substituting a new variable u,,, = u + At into Eq. (V.1). At the same time, the integration in Eq. (V.1)

can be done in two parts,

s@t) = f T fi-uye 74D gy + (7 fir-uye P D du
T T+At

which becomes

s@O = [T fe-we T du v e P - s(a-A0) (V.3)

with Eq. (V.2). Therefore, s(t) is found recursively from s(t-At) with a simple integration over one single time step

At. If we assume that f varies linearly between t-T-At and t-T, then [94]

s(t) = ¢, * s(t-At) + ¢, * {(t-T) + c; * f(t-T-At) V.4)
with the three constants
c, = e
1 1 -

¢, = = (1 - e
2 » A p? (V.5
C3 = 1 e’PAl‘ + 1 : (1 eprt)

p At p

V-1



APPENDIX VI - TRANSIENT AND SUBTRANSIENT PARAMETERS OF
SYNCHRONOUS MACHINES

The derivations are the same for the direct and quadrature axis. They will therefore only be explained for
the direct axis. Furthermore, it is assumed that field structure quantities have been rescaled (in physical or p.u.
quantities) in such a way that the mutual inductances among the three windings d, f and D are all equal, as explained
in Section 8.2, except that the subscript "m" (fore modified) is dropped from Eq. (8.15a), to simplify the notation.

The equations with this simpler notation are then

A L, M oMl
M- M L, M|l (VL1)
Al M M Lyl
and
drid] R0l [y
A I ol (VL.2)
i, 1di| |0 R,|lip| |0

In the past, it has often been assumed that the damper windings can be ignored for the transient effects,
which are associated with the open-circuit or short-circuit time constants T,,' or T,'. In earlier EMTP versions, this
assumption was made for the definition of the transient reactance X', with Eq. (VI.4), while for the definition of the
time constants the damper winding effects were always included. In later EMTP versions, the definition of the time

constants as well as of the transient reactance takes damper winding effects into account.

VI.1 Transient Parameters with Only One Winding on the Field Structure

If there is no damper winding, or if the damper winding were to be ignored, then there is only the field

winding f on the field structurel). The field current i, can then be eliminated from the second row of Eq. (VI.1)

oMy
L, L,*
Vi Vi

which, when inserted into the first row, produces

I)This is true for the direct axis. In the quadrature axis, the analogous assumption is that either the g- or the
Q- winding is missing.
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M . M
Ay = Ly =~ =) i, + —A, (VL3)
Lff Lff

The flux A; cannot change instantaneously after disturbance, and can therefore be regarded as constant at first. The
transient inductance which describes the flux/current relationship in the armature immediately after the disturbance

is therefore

Ay =L, - — (VL4)

The open-circuit time constant T,,', which describes the rate of change of flux A; for open-circuit conditions
(i, = 0) is obtained from Eq. (VI.2) as
T =Ly/ Ry (VL5)
As shown in the next section, the definitions of both L,' and T,,' change in the presence of a damper

winding.

VI.2 Subtransient and Transient Time Constants with Two Windings on the Field Structure
The open-circuit time constants are found by solving the equations for the currents i, i,. By substituting

the last two rows of Eq. (VI.1),

A M L, M ||i
. l i+ |7 7 (VL6)
Aol M M L, i,
into Eq. (VI.2), and by setting i; = O for the open-circuit condition, we get
ﬁ L M| R O]l
dt . - l v
i LA ! Ml (VL7)
diy, LiLpp - M?* | M -Lg| |0 Ry |ip 0
dt

The field winding voltage v, is the forcing function in this equation, while the open-circuit time constants must be
the negative reciprocals of the eigenvalues of the matrix relating the current derivatives to the currents in Eq.

(VL.7)®. They are therefore found by solving

o L +1][ R, L, +l)_ R R, M?
(

f
Lﬁ” LDD - M? r Lﬁ” LDD -M* T Lff LDD -M 2)2

*The theory is explained in Appendix I.1, where it is shown that there will be two modes of the oscillations
defined by terms multiplied with e*!* and e** (A = eigenvalues). Since the eigenvalues are real and negative
here, their negative reciprocals define the two time constants.
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for T. The results are

/
To 1Ly, Lop) | 1|(Ly _ Lop|®, , M? (VL8)
T, 2\R R,)  2N|R R, R/ R,

with the positive sign of the root for T, ', and negative sign for T,,". For some derivations, the sums and differences

of these two time constants are more useful because of their simpler form,

L
T, + T, =L+ 22 (V1.92)
0 o Rf RD
L L, -M?
/ /!
Tap Tay = (V1.9b)
' p

For the short-circuit time constants, i, in Eq. (VI.6) is no longer zero. Instead, we express it as a function

of i, i, and A, with the first row of Eq. (VIL.1),

.M M. M
Mij =25, -2 -2 a (VL.10)
Ld Ld !

which, when inserted into (VI.6) and (VI.2), produces

dlf +M-d_)“d

ar| ; Ly, M| R O]]i TL, a VLI
dip| 1y L - M| My Ll [0 R | |
dt L, dt

with subscript "s" added to define the inductances modified for short-circuit conditions,

Ly = Ly - MYL,, Ly, = Lpp - MY/, M, = M - M?/L, (VI.12)
Taking v, and dA,/dt as the forcing functions, we obtain the short-circuit time constants as the negative reciprocals
of the eigenvalues of the matrix in Eq. (VI.11). Since this equation has the same form as Eq. (VI.7), we can

immediately give the answer as

/ 2 2
To 1Ly, Lopg) ([ Eg _ Eoos|™, o M (VL13)
7, 2R R,]  2\| R R, R.R,

with the positive sign of the root for T,', and the negative sign for T,". Again, their sums and differences are easier

to work with,
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T, +T; = =2+ + (VI.14a)
R, R,
L, Ly, - M’
T, T, = LD 5 (VL.14b)
R, R,
There is also a useful relationship between the open- and short-circuit time constants,
L//
TiTi = T To 7 (VL 14c)
d

which can easily be derived from Eq. (VI.9b) and (VI.14b) by using the definition for L," given later in Eq. (VI.16).
It is not quite correct to treat dA,/dt in Eq. (VI.11) as a forcing function, unless R, is ignored. Only for R,
= 0 are the fluxes known from the first two rows of Eq. (8.9) as
Ay = Ag(O)coswt, A, = A (O)sinwt
with vy=0, v,=0 because of the short circuit. In practice, R, is not zero, but very small. Then the fluxes are still

known with fairly high accuracy it 1,(0) is replaced by A,(0)e™, where
== (=) (VL.14d)
q

is the reciprocal of the time constant for the decaying dc offset in the short-circuit current [105]. If R, were
unrealistically large, then the time constants could no longer be defined independently for each axis, and the data

conversion would be much more complicated than the one described in Section VI.4.
VI.3 Subtransient and Transient Reactances with Two Windings on the Field Structure
The subtransient reactance can easily be defined by knowing that the fluxes A;, A, cannot change

immediately after the disturbance. By treating them as constants, we can express i, i, as a function of i; with Eq.

(VI.6), which after insertion into the first row of Eq. (VI.1), produces

L+L,,-2M) . M
A, = [Ld—MZﬁD—DZ) iy + ——————[Lpp=MA, + Ly=M)A,] (VL15)
Ly Ly,M L,L,, M

By definition, the term relating A, to i, must be the subtransient inductance,

L, + Ly, - 2M
Lj=L,-M L 2 — (VL16)
LyLy, - M

To obtain the definition of the transient reactance is more complicated. For many years people have simply

assumed that the damper winding currents have already died out after the subtransient period is over, and have used
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Eq. (VI.4). Canay has recently shown, however, that this assumption can lead to noticeable errors [104], and that
the data conversion is just as easy without this simplification. For the data given in the first IEEE benchmark model
for subsynchronous resonance [74], 80% of the current associated with the transient time constant T,' flows in the
field winding, and another 20% in the damper winding after a short-circuit (values obtained while verifying the
theory for this section). Ignoring the damper winding for the definition of X,' would therefore produce errors in the
field structure as well as in the armature currents.

Adkins [105] and others derive the transient reactance with Laplace transform techniques. First, Eq. (VI.2)
is solved for the currents, after replacing the fluxes with Eq. (VI.6), which leads to the s-domain expression for their

sum,

—st(Rf+sLﬁ+RD +sL,,,~2sM)

(Ri+sLy) (Ry+sLpp)=s M2

M(I (9)+ D(s)) =

1s) + 1 (V(s))

where f(V;) is some function of the field voltage which is not of interest here. Inserting this into the first row of Eq.

(VI.1) produces

st(Rf+sLﬁ+RD+sLDD—25M)

(Ri+sLy) (Ry+sLpp)-s M2

Afs) = |L, - 1) + f (V)

with the expression in parentheses being the operational inductance L(s),
Ay(s) = Ly(s) Io(s) + £(V(s)) (VL17)

Through some lengthy manipulations it can be shown that it has the simple form

(1+sT;) (1+sT))

Lfs) =L, ; 7 (VI.18)
(1+sT,) (1+sT,)
The basic definition of L;' and L," in the IEEE and IEC standards is
1 L, L1, 5 11, ST
- (= (- (V1.19a)
Lfs) L, Ld/ L, 1+sTd/ Ld// Ld/ 1+sTd//
in the s-domain, or
1 1 1 1., -ur) 1 1., -wr/
=— +(—-—) "+ (—-——)
L0 L, Ld/ L, Ld// Ld/ (VI.19b)
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in the time domain3). The transient reactance can therefore be found by expanding 1/L,(s) from Eq. (VI.18) into

partial fractions,

11 @) T Ty sT, 1 (T)-T,) (/T sT)
LI : - = : (V1.20)
L Ly Ly 1,a@-1)) 1+s7T, Lo 1/@-T) 1+s7T)

and by equating the coefficient of the second term in Eq. (VI.19a), which describes what is read off the oscillogram
in the short-circuit test, with the coefficient of the second term in Eq. (VI.20), which describes the mathematical

model. Then, with the help of Eq. (VI.14c), we obtain

L L, L
! d /" d d / /1
T, 7 T, - = =) = Ty, + Ty, (V1.21)

d ¢ La
for the definition of the transient reactance or inductance.
Laplace transform techniques are downgraded in Appendix I for EMTP implementation, but for the type
of analytical work just described they are quite useful. The transient reactance can also be derived using the
eigenvalue/eigenvector approach of Eq. (I.5). The starting point for that approach is Eq. (VI.11), which has the

general form

[%} - 4] [x] +[g()]
of Eq. (I.1), with the solution
[x(®)] = [M] [e™] [M]? [x(0)] + fo " IM] [eAC0] IMTT [g(w)] du (V1.22)

If we treat the variables as deviations from the pre-short-circuit steady-state values, then the initial conditions for
these "deviation variables" are zero, and the first term in the above solution with [x(0)] drops out. This is in line
with the usual practice of assuming zero initial conditions in Laplace transform techniques. What is of interest then

is the expression under the integral. To obtain it, we must first find the eigenvector matrix [M] of

_LDDfo MsRD
M:Rf —Lﬁ%RD

1

[4] = ————
Lﬁ”sLDDs B M:

(VL.23)

which is

3)These definitions are used to read the inductance and time constant values from the oscillograms of the
short-circuit test.
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% ﬁ - Td/
~ R, R
M] = I3 M (V1.24a)
DDs T// s
R a R
D D
with its inverse
M, T’fﬁ
, 1 R, 'R
M) = (V1.24b)
L L M
w e i g
S D f

That [M][M]" = unit matrix can easily be verified by knowing that T," - L, /R, = Ly /R - T," from Eq. (VI.14a).
The forcing function vector [g(t)] is

Ms B LDDs

MS—LﬁcS

dx,
dr

M

@] = ———
LT,T/RR,

(VL.25)

The matrix with exponentials in Eq. (V1.22) contains the two diagonal elements ¢ /™" and ™"/, Since we are

only interested in the part associated with the transient time constant T,', we ignore the parts containing T," and

obtain
L M
£ 1) =
1 Rf Rf ~(-uIT, ~-w/T)
[M] [e2™] M = — e ¢ + [a 2x2 matrix]e a (V1.26)
T d_T d Ms LDDs T//
. Y
RD RD
Then
i, — transient i [product of matrix and vector| f, “aurzy Gy d
i, - transient from (V1.26) and (VI.25) 0 dt

which produces the 80%/20% split in the two field structure currents for the IEEE benchmark case mentioned at the

beginning of this section, when numerical values are inserted. Since

i, =

1 M . .
4 L—d),d*f(lf+lD)

d

the sum of i; and i, after multiplication with -M/L,, will give us the transient part of i; associated with T
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: L1 T T T oo @y,
Li-vransiem = L_ / T f € 7 u (V1.27)
d T, (T,+T,) 0

By comparing the coefficient in front of the integral with the coefficient of the second term in Eq. (VI.20), we can
see that the eigenvalue/eigenvector approach does indeed produce the same definition of the transient inductance as

the Laplace transform method.

VI.4 Canay's Data Conversion

Assume that M has been found from either Eq. (8.20a) or (8.20b) (subscript "m" dropped here), and that
the four time constants T,,', T,", T4', T," are known. If only one pair of time constants as well as X,', X," are
known, the other pari can be found from Eq. (8.12). We then obtain the two time constants of the "f-branch" and

"D-branch" of Fig. 8.2,

L L
T, = ;f, T, = R_D, with Ly = Ly = M, Ly = Ly, - M (V1.28)
f D

by solving the two equations

T

, + T

M-L L
Y = Ty + Ty) - 4 (Ty+T)) Md (V1.29a)

T\T, = Ty, Tgo" (Lparallel wmm /M) (VI.29b)

with L, e mim Deing the inductance of M, L, Ly, in parallel, which can be shown with Eq. (VI.16) to be
Lparallel MDD — M - Ld + Ld" (VIng)
Eq. (VI.29a) is obtained by multiplying Eq. (VI.9a) with (1-M/L,) and then subtracting it from Eq. (VI.14a), while
Eq. (VI.29)) is obtained from Eq. (VI.9b) with the definition of L;" from Eq. (VI.16). Once T, and T, are known,

the inductance of M, L; in parallel is found,

. i M(T, - T))
‘parallel Mf ~
T, T -1+ —M (VI.30)
‘parallel MfD

This equation is derived from rewriting Eq. (VI.9a) as

T, r, . %
M(_+_)_Tdo+TdoiT17T2
L I,
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and rewriting Eq. (VI.9b) as

r, T M
MEE+2)=(—2 - 1T
(L L)( ) T,

f D ‘parallel MfD

which produces M/L; after subtracting the second from the first equation. After addition of 1 to M/L; and division

by M the reciprocal of L follows. Then

parallel M
Ly = (Lpsaner mr * M) 7 (ML wie) (V1.31a)
Lo = (Lypaaner wn * Liparaiiel ) / Wparatiel mr = Loparaiiel i) (VL31b)

and
R, =LJ/T,, Ry =Ly/T,, Ly=L+M, Ly,=L, +M (V1.32)

Table VI.1 compares the results from the approximate data conversion of [74], from the data conversion
which ignores the damper winding in the definition of L;' by using Eq. (VI.4) instead of (VI.21) [106], and from
Canay's data conversion. The approximate data conversion produces an incorrect model with X,;'=0.156 instead
of 0.169 (transient short-circuit currents 8% too large) and with T,,' too large while T,," is too small. The data
conversion with the wrong definition of L;' produces an incorrect model with X,'=0.142 instead of 0.169 (transient
short-circuit currents 19% too large), but with correct time constants T,,' and T,,". The iterative method mentioned
in [74] is correct and produces the same answers as Canay's conversion, except that no procedure is given there on
how to perform the iterations.

To double-check whether Canay's data conversion is indeed correct, a system of seven equations of the form

[ digg / dt ] = [A] [igg] + [BI [V{]
was set up which describes the three-phase short-circuit condition. The values of Table VI.1 were first used to find
the matrix [A]. Then the eigenvalues of [A] were determined. The reciprocals of four of the eigenvalues differ from
the time constants T,', T,", T,', T," by no more than 0.05% for realistic values of R,=0.004 p.u., the reciprocal
of one eigenvalue agrees with T, of Eq. (VI.14d) to within 0.1%. Unrealistically large values of R, would produce
errors for reasons explained in Section VI.2; for R,=0.04 p.u., the error would still be only 4% for Tq' and 1% or

less for the other time constants.
VI.5 Negative Sequence Impedance

Negative sequence currents in the armature produce a magnetic field which rotates in opposite direction to
the field rotation, thereby inducing double frequency currents in the field structure windings. The negative sequence
impedance can therefore be obtained by setting s=j2w in Eq. (VI.18), and adding the armature resistance R, to it,

5 (1 + j20T) (1 + j20T))

ineg = Ry * JOLy ; m (VL.33)
(I +j2wT,) (1 + j2wT,)
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Table VI.1 - Data conversion for direct axis data from [74] (X; = 1.79 p.u., X;' = 0.169 p.u., X," = 0.135 p.u.,
X, =0.13p.u., T,' =435, T," = 0.032 s, f = 60 Hz).

Approx. Wrong L,' ” Canay
Conversion results
X (p-u.) 1.6999 1.7036 1.7218
Xpp (p-u.) 1.6657 1.6700 1.6655
R; (p.u.) 0.00105 0.002086 0.001407
Ry (p-u.) 0.00371 0.002045 0.004070
Implied model parameters
X, (p-u.) from (VI.21) 0.1564 0.1416 0.169
T, (s) from (VI.8) 5.466 4.3 4.3
Ty (s) from (VI.8) 0.0252 0.032 0.032
T,' (8) from (VI.13) 0.4744 0.3388 0.4000
T," (s) from (VI.13) 0.0219 0.0306 0.0259
T, = Ly/R; (s) 4.300 2.166 3.246
T, = Lyn/Ry (8) 1.192 2.166 1.085

“For conversion of [106] to work, X, had to be reduced by 1.4%.

and analogous for the quadrature axis. Then

Zneg = (Zd—neg + Z

with R, = Re{Z,.,} and X, = Im{Z,}.

If there is only one winding on the field structure, say only the Q-winding on the g-axis, then

/2 (V1.34)

qfneg)

, 1 +j 20T,
Z, e = R, + JoL, — (V1.33a)
1 +j2wT,
with
T," = (@L," /L) T," (V1.35b)

Egq. (VI.352) follows from (VI.33) by setting T,' = 0 and T,' = 0, and Eq. (VI.35b) from T," = Ly, / R,, with
Lyq, defined by Eq. (VI.12) and T,," = L, / Ry
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APPENDIX VII - INTERNAL IMPEDANCE OF STRANDED CONDUCTORS

For power line carrier problems, reasonably accurate attenuation constants are very important. Replacing
a stranded conductor by one tubular conductor of equal cross-section is not good enough for such purposes. Instead,

the internal impedance formula from [39] should be used

2.25 \Jop p o
/ / ¥
Rimemal = (")Limernal = ———— Q/m (VHl)
rom (2+n) 2
or with p/(mer?) = R’
/ / 4.5 1074 /—
Rintemal = (")Lintemal - 2‘/'*'_N R’ Q/m (VH2)

where

R' = dc resistance of one of the outer strands of a stranded conductor (£2/m)

e = relative permeability
Ho = 4e1e107 (H/m)
® = angular frequency
= conductor resistivity (Qm)
r = radius of each outer strand (m)
n = number of outer strands

The factor 2.25 was found experimentally from field plotting in an electrolytic tank. The formula give reasonably
accurate results at frequencies above 2-5 kHz for the most commonly used stranded conductors with the number of
outer strands either being 6, 12, 18 or 24.

Fig. VII.1 compares measured attenuation constants with those calculated with the above formula. In [39]
it is shown that the measured attenuation constants come from the aerial mode which has a slightly slower wave
velocity than the other aerial mode. That mode was chosen on the same basis here. However, input data were used
which differ slightly from those given in [39]:

1) Phase conductor 150 mm? Aldrey was assumed to have 37 strands (18 on the outside), as defined in DIN

48201, with conductor diameter = 15.8 mm, strand diameter = 2.25 mm, and conductor dc resistance =

0.223 Q/km (latter from Brown Boveri handbook).

2) The relative permeability of the steel earth wire was assumed to be 50 to 100 (a Siemens handbook says that

these are typical values, with the actual value depending on the current density).
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Fig. VII.1 - Comparison between measured and calculated attenuation constants
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