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Foreword
I am very pleased to write the foreword for LiDAR Remote Sensing and Applications 
authored by Prof. Pinliang Dong and Prof. Qi Chen, who are among leading experts 
in the field. With over 35 years of research experience in remote sensing and digital 
earth, I have witnessed extraordinary accomplishments of Earth observation from 
spaceborne, airborne, and ground-based platforms, using multispectral, hyperspec-
tral, radar, and light detection and ranging (LiDAR) instruments. Remote sensing 
has greatly improved our understanding of the natural and built environments and 
human-environment interactions. With its unique capabilities for collecting highly 
accurate three-dimensional coordinates of objects, LiDAR has been widely used 
in many areas including vegetation mapping, urban studies, and geosciences. I am 
glad that the authors have taken keen interest in writing a reader-friendly book on 
the subject.

This is a unique book in that it smoothly combines LiDAR principles, data process-
ing methods, applications, and hands-on practices, following an overview of remote 
sensing. An index map of LiDAR data and a list of abbreviations are also included 
to improve the readability of the book. For forest applications, readers can find 
examples such as creating leaf-on and leaf-off canopy height models in Susquehanna 
Shale Hills, PA; identifying disturbances from lightning and hurricane in mangrove 
forests in Florida; and estimating aboveground biomass in tropical forests in Ghana. 
For urban applications, readers can see examples such as road extraction, powerline 
corridor mapping, and population estimation in Denton, TX; parcel-based building 
change detection in Surrey, Canada; and road blockage detection in Port-au-Prince 
after the 2010 Haiti earthquake. For geoscience applications, readers can explore 
samples such as measuring dune migration rates in White Sands, NM; analysis of 
offset channels associated with the San Andreas Fault in California; and trend sur-
face analysis and visualization of rock layers in Raplee Ridge, UT. Undergraduate 
and graduate students will find that the 11 step-by-step GIS projects with LiDAR 
data can really help them understand LiDAR data processing, analysis, and applica-
tions, while professionals and researchers will benefit from various topics on LiDAR 
remote sensing and applications, along with over 500 references in the book.

I’d like to congratulate Prof. Dong and Prof. Chen on their achievements. 
Although no book can convey every detail in a field or discipline, LiDAR Remote 
Sensing and Applications contains enough information for undergraduate/graduate 
students, professionals, and researchers, and is worth reading more than once, in my 
humble opinion.

Guo Huadong
Academician, Chinese Academy of Sciences

President, International Society for Digital Earth (ISDE)
Editor-in-Chief, International Journal of Digital Earth

Beijing, China
June 2017
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Preface
The last decade has seen a rapid increase in the applications of light detection and 
ranging (LiDAR) in various fields. This book introduces the fundamentals of LiDAR 
remote sensing, LiDAR data processing, and LiDAR applications in forestry, urban 
environments, and geosciences. LiDAR data collected in 27 areas in the United 
States, Brazil, Canada, Ghana, and Haiti are included in the book, and a total of 
183 figures were created to introduce the concepts, methods, and applications in an 
easily understood manner, along with over 500 references. Compared with some 
other books on LiDAR, a unique feature of this book is the combination of LiDAR 
principles, data processing basics, applications, and hands-on practices. The 11 step-
by-step projects are mostly based on Esri’s ArcGIS software to support seamless 
integration of LiDAR products and other GIS data. Over 4.4 GB of LiDAR data for 
the projects are available online, fully tested in ArcGIS 10.2.2 and 10.4.1, and can be 
used for ArcGIS 10.2 and later versions. The first six projects are for basic LiDAR 
data visualization and processing, while the remaining five projects cover more 
advanced topics: mapping gaps in mangrove forests in Everglades National Park, 
FL, analyzing powerline corridor in Denton, TX, estimating small-area population 
in Denton, TX, measuring sand dune migration in the White Sands Dune Field, NM, 
and generating trend surfaces for rock layers in Raplee Ridge, UT.

This book includes many references to recent studies, and can be used as a 
textbook or reference book by undergraduate and graduate students in the fields 
of geography, forestry, ecology, geographic information science, remote sensing, 
and photogrammetric engineering. The hands-on projects are designed for under-
graduate and graduate students who have worked with vector and raster data in 
ArcGIS. The questions after Projects 4.1, 4.2, 5.1, 5.2, 6.1, and 6.2 can be used 
by instructors as homework or project assignments for senior undergraduate or 
graduate students. Professionals in industry and academia will also find this book 
useful.

We would like to thank the following entities and researchers for providing 
LiDAR and other data in the book: The OpenTopography facility based at the San 
Diego Supercomputer Center and supported by the National Science Foundation 
(NSF), the National Center for Airborne Laser Mapping (NCALM) funded by 
NSF for data collection through various projects, the Ministry of Economy, Trade, 
and Industry (METI) of Japan, the United States National Aeronautics and Space 
Administration (NASA), Rochester Institute of Technology, Kucera International 
(under sub-contract to ImageCat Inc. and funded by the Global Facility for 
Disaster Reduction and Recovery (GFDRR) hosted at The World Bank), the U.S. 
Census Bureau, the U.S. Geological Survey, the São Paulo Research Foundation 
(FAPESP, Brazil), City of Surrey (British Columbia, Canada), the IndianaMap 
Framework Data, the Texas Natural Resources Information System (TNRIS), 
Esri, Cheng Wang, Mehmet Erbas, Gherardo Chirici, Davide Travaglini, and 
Krzysztof Stereńczak. We also thank our students, colleagues, and friends for 
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their encouragement and support. Last but not least, we wish to thank our wives, 
children, and parents for their love and support, and Pinliang’s wife Yijin for 
designing the book cover.

Pinliang Dong

Qi Chen
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1

1 Brief Overview of 
Remote Sensing

1.1  FROM AERIAL PHOTOGRAPHY TO REMOTE SENSING

Photography from aerial platforms was initially conducted using ornithopters, bal-
loons, kites, pigeons, and gliders (Jensen 2006). In 1908, 5 years after the Wright 
brothers built the world’s first operational aircraft, an aircraft was first used as a 
platform for aerial photography. During World War I and World War II, aerial pho-
tography played an important role as a military photo-reconnaissance method. In 
the 1920s and 1930s, aerial photography became the standard information source 
for the compilation of topographic maps. From the 1930s until the early 1960s, 
black-and-white, color, and color-infrared aerial photographs were widely utilized 
by geologists, foresters, and planners for interpreting the Earth’s surface features 
(van Nowhuys 1937, Melton 1945, Desjardins 1950, Miller 1961). The use of aerial 
photographs improves the efficiency of many mapping applications because (1) aer-
ial photographs make it possible for mapping ground features in areas where field 
investigation is difficult due to poor accessibility; (2) stereo aerial photographs help 
the interpretation of ground features through incorporation of topographic informa-
tion; and (3) color-infrared aerial photographs provide spectral information beyond 
human vision. The main drawbacks of early aerial photographs were that (1) aerial 
photograph acquisition depended on the weather and (2) aerial photographs were 
normally recorded in an analog format and were not calibrated, which precludes 
quantitative analysis.

The term “remote sensing” was first coined by Evelyn Pruitt of the U.S. Office 
of Naval Research in the 1950s, and the traditional aerial photography gradually 
evolved into remote sensing around 1960. Sabins (1987) defined remote sensing as 
methods that employ electromagnetic energy to detect, record, and measure the char-
acteristics of a target, such as the Earth’s surface. Although many other definitions 
of remote sensing exist in literature (Colwell 1984, Fussell et al. 1986, Jensen 2006), 
it is commonly accepted that the basis for remote sensing is the electromagnetic 
spectrum (Figure 1.1). Since the late 1960s and early 1970s, many traditional aerial 
photographic systems have been replaced by airborne and spaceborne electro-optical 
and electronic sensor systems. While traditional aerial photography mainly works 
in visible bands, modern spaceborne, airborne, and ground-based remote sensing 
systems produce digital data that covers visible, reflected infrared, thermal infrared, 
and microwave spectral regions with different spatial, spectral, temporal, and radio-
metric resolutions. Traditional visual interpretation methods in aerial photography 
are still useful, but remote sensing encompasses more activities such as theoretical 
modeling of target properties, spectral measurement of objects, and digital image 
analysis for information extraction.



2 LiDAR Remote Sensing and Applications

There are two types of remote sensing systems: passive and active (Figure 1.2). 
Passive remote sensing systems measure reflected solar radiation in visible, near-
infrared, and mid-infrared wavelengths, or absorbed and then reemitted solar radia-
tion in thermal infrared wavelengths. Active remote sensing systems, on the other 
hand, emit radiation toward the target using their own energy source and detect the 
radiation reflected from that target. An important advantage for active sensors is 
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FIGURE 1.1 The electromagnetic spectrum. The numbers show wavelengths of spectral 
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their ability to obtain measurements independently of sun illumination conditions 
and largely independent of weather conditions. The following sections provide an 
overview of two passive remote sensing methods—multispectral remote sensing 
and hyperspectral remote sensing—and two active remote sensing methods—radar 
remote sensing and light detection and ranging (LiDAR) remote sensing.

1.2  MULTISPECTRAL REMOTE SENSING

In multispectral remote sensing, visible and reflected infrared (near infrared and 
mid-infrared) images are collected by recording the reflection of solar radiation 
from the earth using airborne and spaceborne sensors, whereas thermal infrared 
images are collected by recording emitted thermal radiation from the earth. An 
early example of airborne visible and reflected infrared sensors is the Airborne 
Thematic Mapper (ATM), an eleven-band prototype of the Thematic Mapper (TM) 
of the Landsat-4 satellite. In additional to airborne visible and reflected infrared 
multispectral sensors, airborne thermal infrared sensors also provide important 
data for many applications, especially geologic mapping and mineral explora-
tion. Hunt (1980) reported that silicates exhibit fundamental vibrational stretching 
modes in the 10 μm region. The reflection peak at or near the fundamental vibra-
tion frequency is called the reststrahlen or residual ray peak (Goetz 1989). Kahle 
(1984) reported that the absorption features of silicate rocks shift toward longer 
wavelengths with the decrease of silica content from quartzite through basalt. Since 
silicates make up the bulk of the crustal rocks, and the fundamental vibrational 
features of silicates are located in the 8–14 μm atmospheric transmission window, 
an emissivity minimum resulted from the reststrahlen can be detected with multi-
spectral sensors. Kahle and Rowan (1980) used multispectral thermal data from a 
Bendix 24-channel scanner for lithological mapping in the East Tintic Mountains 
in central Utah, USA. Their study showed that it is possible to discriminate among 
several rock types primarily based on their silica content. Since the spectral proper-
ties of minerals may be quite different in visible and reflected infrared region, it is 
possible to discriminate among carbonate rocks, quartzite, quartz latitic and quartz 
monzonitic rocks, latitic and monzonitic rocks, silicified altered rocks, and argil-
lized altered, if multispectral thermal data are combined with visible and reflected 
infrared data (Goetz 1989). The study by Kahle and Rowan (1980) provided the 
justification for the development of a multispectral scanner working in the thermal 
infrared region (Goetz 1989). In the early 1980s, the Thermal Infrared Multispectral 
Scanner (TIMS) was developed in the United States for remote sensing of non-
renewable resources. The TIMS instrument collects thermal emission energy in 
six bands near the peak of the Earth’s surface emission (8.2–8.6, 8.6–9.0, 9.0–9.4, 
9.4–10.2, 10.2–11.2, and 11.2–12.2 μm). Using TIMS data, Kahle and Goetz (1983) 
showed that it was possible to map quartz-bearing rocks. Gillespie et al. (1984) used 
TIMS data to map alluvial fans in Death Valley, California, and found that both 
composition and relative age were recognizable.

The use of airborne visible, reflected infrared, and thermal infrared sensors has 
a number of benefits. The user can select the wavebands of interest in a particular 
application, and the aircraft can be flown to specific user requirements concerning 
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time of day, flying direction, and spatial resolution. However, data acquisition using 
airborne systems is expensive compared with satellite recording, as aircraft missions 
are generally flown for a single user and do not benefit from the synoptic view avail-
able to satellite platforms.

A new era of spaceborne remote sensing began when the Explorer VI of the 
United States obtained the first satellite picture of the Earth in August 1959 
(European Space Agency 2014). From 1959 to 1972, Corona satellites of the United 
States were used for photographic surveillance. Civilian applications of satellite 
remote sensing began with the National Aeronautics and Space Administration’s 
(NASA) Landsat series. Since 1972, NASA has lunched Landsat  1 (1972), 
Landsat 2 (1975), Landsat 3 (1978), Landsat 4 (1982), Landsat 5 (1984), Landsat 6 
(1993, failed to reach orbit), Landsat 7 (1999), and Landsat 8 (2013). The multi-
spectral scanner and return-beam vidicon were the imaging systems in the first 
generation of Landsat (then called ERTS-1). The second generation of Landsat 
(Landsats 4 and 5) includes an MSS imaging system and a new sensor, the 
Thematic Mapper. The third generation of Landsat (Landsats 6 and 7) includes 
an Enhanced Thematic Mapper Plus (ETM+). A review of the three decades of 
Landsat instruments (Landsat 1–7) can be found in the works of Mika (1997). 
Landsat 8 launched on February 11, 2013 and was developed as a collaboration 
between NASA and the U.S. Geological Survey. With two science instruments—
the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS)—
Landsat 8 represents an evolutionary advance in technology. OLI provides two 
new spectral bands, one for detecting cirrus clouds and the other for coastal zone 
observation. TIRS has two narrow spectral bands in the thermal region which was 
formerly covered by one wide spectral band on Landsats 4–7. The Landsat satel-
lite series are a great contribution to remote sensing. In fact, it is the MSS aboard 
the first Landsat that gives most earth scientists their first look at images taken 
in a spectral region beyond that seen by human eyes. Other multispectral remote 
sensing satellites launched during this period include the Système Probatoire 
d’Observation de la Terre (SPOT) series developed by France—SPOT-1 (1986), 
SPOT-2 (1990), SPOT 3 (1993), SPOT4 (1998), SPOT 5 (2002), and SPOT 6 (2012); 
the India Remote Sensing Satellite (IRS) series started in 1988; the China-Brazil 
Earth Resource Satellite series started in 1999; and high-resolution satellites such 
as IKONOS (1999), QuickBird (2001), WorldView-1 (2007), GeoEye-1 (2008), 
WorldView-2 (2009), and China’s Gaofen (high resolution) satellite series started 
in 2013, among others. Multispectral data collected by these spaceborne platforms 
have been widely used in many application fields. Figure 1.3 is a color composite of 
Landsat-5 TM bands 4 (red), 3 (green), and 2 (blue) acquired on August 16, 1992, 
near Kunming, Yunnan, China.

1.3  HYPERSPECTRAL REMOTE SENSING

Compared with multispectral remote sensing that uses relatively broad spectral 
bands, hyperspectral remote sensing uses imaging spectrometers that measure 
near-laboratory-quality spectra in narrow spectral bands. Therefore, a complete 
reflectance spectrum can be derived from the spectral bands for every pixel in the 
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scene (Figure 1.4). It should be noted that there is no absolute threshold on the 
number of bands that distinguish between multispectral and hyperspectral remote 
sensing.

The Airborne Imaging Spectrometer (AIS) was the first of the high-resolution 
imaging spectrometers (Goetz et al. 1985a). The success of the AIS gave impetus to 
the development of an improved optical sensor, the Airborne Visible and Infrared 
Imaging Spectrometer (AVIRIS), which delivers calibrated images of 224 contiguous 
spectral channels within the wavelengths ranging from 400 to 2450 nanometers (nm) 
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FIGURE 1.3 Color composite of Landsat-5 TM bands 4 (red), 3 (green), and 2 (blue) 
acquired on August 16, 1992, near Kunming, Yunnan, China.
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FIGURE 1.4 The imaging spectrometry concept. A spectral curve can be extracted from 
hundreds of spectral bands for each pixel location.
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(Vane and Goetz 1993). Table 1.1 lists the configuration of five early airborne imag-
ing spectrometers.

The launch of NASA’s Earth Observing-1 (EO-1) platform in November 2000 
marks the first operational test of NASA’s “New Millennium” spaceborne hyper-
spectral technology for Earth observation. The theme of the EO-1 mission is the 
evaluation of advanced earth observation instruments through a combination of 
direct measurements of performance and a broad range of application studies 
(Ungar et al. 2003). The Hyperion imaging spectrometer onboard the EO-1 is the 
first high spatial resolution imaging spectrometer to orbit the Earth. Hyperion is 
capable of resolving 220 spectral bands (from 0.4 to 2.5 μm) with a 30-m resolution, 
covering a 7.5 km × 100 km land area per image. More information on the EO-1 
and Hyperion can be found in the works of Pearlman et al. (2003) and Ungar et al. 
(2003).

By collecting as many as hundreds of contiguous, inherently registered spectral 
images of the scene, the imaging spectrometers make it possible for direct identi-
fication of surface materials based on their diagnostic spectral characteristics and 
present the results as images, which greatly improves the discrimination of ground 
features and phenomena. For example, AVIRIS images have been used to measure 
and identify the constituents of rock units based on molecular absorption and par-
ticle scattering signatures. Applications of hyperspectral remote sensing include geo-
logic mapping and mineral exploration (Goetz 1984, Goetz et al. 1985b, Mustard and 
Pieters 1987, Farrand and Singer 1991, Kruse et al. 1993, Farrand and Harsanyi 1995, 
Cloutis 1996) and vegetation mapping (Galvâo et al. 2005, Li et al. 2005, Dong 2008, 
Kalacska and Sanchez-Azofeifa 2008, Thenkabail et al. 2011), among others. While 
new hyperspectral sensors are being developed, a new trend in research and devel-
opment is to combine multiple types of sensors on a single platform to better use 
the complimentary features of the sensors. For example, a LiDAR, Hyperspectral 
and Thermal airborne imager was developed by NASA Goddard Space Flight 
Center (Cook et al. 2013). Figure 1.5 shows a color composite image created from 
 CASI-1500 Visible and Near Infrared (VNIR) hyperspectral bands acquired in 
Surrey, BC, Canada, in May 2013.

TABLE 1.1
Configuration of Five Airborne Imaging Spectrometers

Sensor
Spectral Range 

(nm) Bands
Spectral 

Resolution (nm) Country
First 

Operation

CASI 430–870 288 2.9 Canada 1989

SFSI 1200–2400 122 10.0 Canada 1993

AIS-1 900–2100
1200–2400

128 9.3 USA 1982

AIS-2 800–1600
1200–2400

128 10.6 USA 1985

AVIRIS 400–2450 224 9.4–16.0 USA 1987
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1.4  RADAR REMOTE SENSING

Both airborne and spaceborne passive electro-optical sensors are hindered by cloud 
cover and sun illumination conditions. The limitation can be removed by active radar 
imaging systems that operate independently of lighting conditions and largely inde-
pendently of weather. A radar remote sensing system uses its own electromagnetic 
energy in microwave bands to “illuminate” the terrain and detects the energy return-
ing from the terrain, with the transmitter and the receiver in the same location. The 
way electromagnetic waves propagate through a material can be described by a radar 
equation. Neglecting the path losses, the radar equation may be written as follows 
(Fung and Ulaby 1983):

 
π

σ
π

=P
PG

R
A

R4 4
r

t t
rt

r
2 2  (1.1)

where Pr is the received power at polarization r, Pt is the transmitted power at polar-
ization t, Gt is the gain of the transmitting antenna in the direction of the target at 
polarization t, R is the distance between radar and target, σrt is the radar cross section, 
the area intercepting that amount of incident power of polarization t which, when 
scattered isotropically, produces an echo at polarization r equal to that observed 
from the target, Ar is the effective receiving area of the receiving antenna aperture 
at polarization r.
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FIGURE 1.5 Color composite image created from CASI-1500 VNIR hyperspectral bands 
acquired in Surrey, BC, Canada, in May 2013. Band 70 (1.0273 μm) is used as red, band 15 
(0.5020 μm) as green, and band 5 (0.4061 μm) as blue.
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The equation shows that the characteristics of radar images depend on radar sys-
tem parameters, such as incidence angle, wavelength (or frequency), and polariza-
tion, and target parameters, such as complex dielectric constant, surface roughness, 
and volume scattering (Fung and Ulaby 1983). It is therefore important to understand 
how radar waves interact with natural surfaces in order to conduct correct interpre-
tation of radar images. Figure 1.6 shows some major parameters in airborne radar 
remote sensing. More details of the parameters are described below.

 1. Incidence angle
The incidence angle is the angle between a radar beam and a line per-
pendicular to the surface. It is known as “local incidence angle” when the 
surface is not horizontal. Here, “depression angle (γ)” is used to refer to the 
angle between a horizontal plane and a beam from the antenna to a target 
on the ground (Figure 1.6). The character of depression angle can cause 
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FIGURE 1.6 Concepts in airborne radar remote sensing.
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shadows on radar images. In all cases except when the depression angle is 
equal to 0°, all slopes facing the radar (the foreslope) are shortened relative 
to their true length, with most of the shortening closest to the radar. The 
phenomenon is referred to as “radar foreshortening” (Simonett and Davis 
1983). If the curvature of a transmitted radar pulse causes the top of a tall 
vertical target to reflect energy in advance of its base, the distortion on the 
image is called radar layover. It occurs where the top of an object is closer to 
the radar than the bottom and is therefore recorded sooner. In mountainous 
areas, radar layover is often a severe problem that causes foreslopes of an 
image uninterpretable.

 2. Dielectric properties
The relative complex dielectric constant of a material, ε, consists of a real part, 
ε′, and an imaginary part, ε″. ε can be expressed as (Fung and Ulaby 1983)

 ε ε ε= ′ − ′′j . (1.2)

where ε is called the dielectric constant of the material, ε′ is referred to as 
the relative permittivity, and ε″ as the loss factor. For terrestrial rocks in 
an arid environment, the density of a rock is the major factor affecting the 
dielectric constant, but the dielectric constant variations do not have sub-
stantial influence on radar signal because most natural rocks have dielectric 
constants in a narrow range (Farr 1993). For soils, the complex dielectric 
constant is a function of frequency, soil moisture constant, and soil type 
(Fung and Ulaby 1983).

 3. Polarization
Polarization refers to the orientation of the electromagnetic vector of the 
transmitted radar signal. A radar wave may be transmitted with horizontal 
(H), vertical (V), or circular (left-hand circular—L, right-hand circular—
R) polarization. Transmitting and receiving electrical field vectors in the 
same direction is known as like-polarization (HH, VV), whereas transmit-
ting an electrical field vector in one direction (horizontal or vertical) and 
receiving electrical field vectors in the perpendicular direction is called 
cross-polarization (HV, VH). Because of the differences in the physical 
processes for the two types of signal returns, like-polarization images may 
be different from cross-polarization images. A radar system can have single 
polarization, dual polarizations, or four polarizations.

 4. Wavelength, surface roughness, and penetration
The radar wavelength can affect the scattered signal by defining a surface 
roughness and by determining the depth of penetration (Fung and Ulaby 
1983). Surface roughness is different from topographic relief in that it is 
determined by surface features comparable in size to the radar wavelength. 
For most natural surfaces, it is difficult to characterize them mathemati-
cally due to their complex geometry, but the root-mean-square height of the 
surface variations is an adequate approximation of surface relief (Sabins 
1987). The theoretical boundary between smooth and rough surfaces for a 
given radar wavelength (λ) and depression angle (γ) can be defined by the 
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Rayleigh criterion or the modified criteria of Peake and Oliver (1971), or 
a more stringent Fraunhofer criterion for defining a radar-smooth surface 
(Ulaby et al. 1982):

 
λ

θ
<h

32 cos
 (1.3)

  where h is the standard deviation of the height variation of the object, λ is the 
wavelength, and θ is the incidence angle referring to the vertical direction.

The radar wavelength also influences the depth of penetration of radar waves. The 
term “skin depth” is often used to define the depth below the surface at which the 
amplitude of the incident wave will have decreased to about 37% of its value at 
the surface (Fung and Ulaby 1983). A striking example of radar penetration is pro-
vided by the study of McCauley et al. (1982) in the Sahara Desert, where penetration 
of 1–6 m of the L-Band Shuttle Imaging Radar (SIR-A) was reported and details of 
ancient drainage patterns underlying the dry sand sheet were shown.

Like multispectral and hyperspectral remote sensing, radar remote sensing also 
uses airborne and spaceborne platforms. Airborne radar imagery was employed for 
geological investigations early in the 1960s (MacDonald 1969, Wing 1971). Since the 
1980s, new airborne radar systems such as SAR-580 (Canada), STAR-1 (USA), and 
CASSAR (China) have been developed for various applications. Since 1978, NASA has 
launched four temporary spaceborne radar systems: Seasat, SIR-A, Shuttle Imaging 
Radar-B (SIR-B), and Shuttle Imaging Radar-C (SIR-C/X-SAR). Other spaceborne 
radar systems include Almaz-1 (1991, Soviet Union), ERS-1 (1991, European Space 
Agency), ERS-2 (1995, European Space Agency), JERS-1 (1992, Japan), Radarsat-1 
(1995, Canada), Envisat-1 (2002, European Space Agency), ALOS/PALSAR (2005, 
Japan), and Radarsat-2 (2007, Canada). Applications of radar remote sensing can be 
found in many fields,  including geologic mapping (Blom and Daily 1982, Cimino 
and Elachi 1982, Breed et al. 1983, Evans et al. 1986, Fielding et al. 1986, Lynne 
and Taylor 1986, Sabins 1987, Gaddis et al. 1989, Evans and van Zyl 1990, Evans 
et al. 1990, Singhroy et al. 1993, Singhroy and Saint-Jean 1999, Guo et al. 1993a,b, 
1996, 1997, Moon et al. 1994, Mouginis-Mark 1995, Kruse 1997, Schaber et al. 1997, 
Wood et al. 1997, Mahmood et al. 1999, Schaber 1999, Pal et al. 2007), vegetation 
discrimination (Evans et al. 1986, Durden et al. 1989, Dobson et al. 1995, Harrell 
et al. 1997, Cloude and Treuhaft 1999, Sawaya et al. 2010, Evans and Costa 2013), 
and soil moisture evaluation (Dabrowska-Zielinska et al. 2002, Kasischke et al. 2007, 
van der Velde et al. 2012, Bourgeau-Chavez et al. 2013), among others. Schmullius 
and Evans (1997) analyzed radar frequency and polarization requirements for appli-
cations in ecology, geology, hydrology, and oceanography. Figure 1.7 presents SIR-C 
and Radarsat-1 images of a 15 km × 25 km area near Yuma, AZ, USA.

1.5  LiDAR REMOTE SENSING

LiDAR stands for Light Detection and Ranging, a technology that measures dis-
tances (or ranges) based on the time between transmitting and receiving laser sig-
nals. Both pulsed and continuous wave lasers can be used: pulsed lasers transmit 
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energy of very short duration and detect ranges based on amplitudes of the received 
signals; in contrast, continuous wave lasers detect ranges based on the phase differ-
ence between transmitted and received signals (Baltsavias 1999b). Pulsed lasers are 
most often used in terrestrial applications and thus are the focus of this book.

As can be seen from Figure 1.2, LiDAR is an active remote sensing method 
that can be used on spaceborne, airborne, and ground-based platforms. In 2003, 
NASA launched the Ice Cloud and Land Elevation Satellite (ICESat) which car-
ried the Geoscience Laser Altimeter System (GLAS), a laser profiler with 65-m 
footprint on the ground, to collect data about the polar ice caps, vegetation canopy, 
and other parameters. Airborne LiDAR is sometimes used interchangeably with 
Airborne Laser Scanning, Airborne Laser Swath Mapping, or Laser Radar. Ground-
based LiDAR is often called Terrestrial Laser Scanning, which includes Stationary 
Terrestrial Laser Scanning from a static vantage point on the surface of the earth and 
Mobile Terrestrial Laser Scanning from a moving vehicle.

An airborne or satellite LiDAR remote sensing system typically consists of (1) 
a laser range finder that detects ranges and (2) a positioning and orientation system 
that measures the location and orientation of the sensor, which in combination can 
derive the three-dimensional (3D) coordinates of the objects it detects. Since LiDAR 
can directly measure the geographic environment in three dimensions (3D), it does 
not have the problem of geometric distortion (e.g., relief displacement) associated 
with imaging that has to project the 3D world into a two-dimensional image space. 
In other words, a user does not have to worry about the issue of georeferencing, a 
nontrivial issue for image processing. This is one of the main advantages of LiDAR.
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FIGURE 1.7 SIR-C and Radarsat-1 images of a 15 km × 25 km area near Yuma, AZ, USA. 
(A) SIR-C L-HH image; (B) SIR-C L-HV image; (C) SIR-C C-HH image; (D) SIR-C C-HV 
image; (E) Radarsat-1 C-HH Standard Beam 4 image; and (F) Radarsat-1 C-HH Extended 
High Incidence Bean 3 image.
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Another advantage of LiDAR is that data can be collected at daytime or night-
time, as long as there is no heavy fog, smoke, or high levels of moisture such as rain, 
snow, and clouds between the laser system and the object. For example, LiDAR data 
can be collected at night when the wind is calm (Figure 1.8).

The most useful characteristic of LiDAR might be that the laser energy can pene-
trate through canopy gaps and measure canopy structural and terrain elevation along 
the direction of laser rays. In an optical image, the value of each pixel (gray scale or 
color) is dominated by the reflectance of the object surface, and users cannot really 
see the terrain under dense canopy (Figure 1.9A). However, laser energy can reach 

FIGURE 1.8 Ground-based LiDAR data collected at midnight for tree ferns in a tropical 
forest of HI, USA.
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FIGURE 1.9 Different views of Panther Creek, Oregon, based on optical imagery and 
LiDAR data. (A) Geoeye imagery and (B) DTM derived from airborne LiDAR.
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terrain so that an analyst can use the ground laser returns to generate continuous 
Digital Terrain Models under canopy (Figure 1.9B).

Compared with multispectral, hyperspectral, and radar remote sensing discussed 
in previous sections, LiDAR remote sensing is a relatively new field. Although lasers 
have been used for atmospheric research for decades (Goyer and Watson 1963), and 
laser altimeters have been used for measuring the distance from an orbiting space-
craft to the surface of the planet or asteroid, it was the development of high-accuracy 
global positioning systems and Inertial Measurement Units by the mid-1990s that 
made airborne LiDAR survey possible. The state-of-the-art LiDAR systems are capa-
ble of emitting over 1 million pulses per second. Reviews of LiDAR history and new 
systems can be found in the works of Baltsavias (1999a) and Mallet and Bretar (2009).

The subsequent chapters will introduce the principles of LiDAR remote sens-
ing, LiDAR data processing, and LiDAR applications in forestry and vegetation 
mapping, urban environments, and geosciences. As full-waveform LiDAR data is 
mainly used for forest analysis and their contribution is less obvious in other appli-
cation fields, the remaining chapters will focus on discrete-return LiDAR data and 
applications. To help readers better understand how LiDAR data is used to solve 
real-world problems, each of the subsequent chapters has several data processing/
analysis/application projects with step-by-step instructions. Esri’s ArcGIS software 
(version 10.2.2 or later) is used in most of the exercises, and data for the projects 
can be downloaded from http://geography.unt.edu/~pdong/LiDAR/. Although prior 
knowledge of LiDAR is not required, most of the projects assume that users have 
worked with vector and raster data in ArcGIS.
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2 Principles of LiDAR 
Remote Sensing

2.1  INTRODUCTION

Airborne LiDAR sensors can take discrete return measurements with multiple 
records per emitted pulse or full-waveform of a return signal at fixed time intervals 
such as 1 ns (about 15 cm sampling distance) (Figure 2.1). Full-waveform LiDAR is 
mainly used in forestry applications, whereas discrete return LiDAR can be used in 
many fields. This book focuses on discrete return LiDAR and applications. In this 
chapter, the following topics will be introduced: (1) basic components of LiDAR, 
(2) physical principles of LiDAR, (3) LiDAR accuracy, (4) LiDAR data formats, 
(5)  LiDAR systems, and (6) LiDAR resources. At the end of the chapter, three 
projects are available for a review of zonal statistics in ArcGIS, creating a LASer 
(LAS) dataset and working with LiDAR data using the LAS Dataset Toolbar in 
ArcGIS, and visualization of LiDAR data using QT Reader (Applied Imagery) and 
Fugroviewer (Fugro).

2.2  BASIC COMPONENTS OF LiDAR

Lasers with a wavelength of 500–600 nm are normally used in ground-based LiDAR 
systems, whereas lasers with a wavelength of 1000–1600 nm are used in airborne 
LiDAR systems. A typical airborne LiDAR system is composed of a laser scan-
ner; a ranging unit; control, monitoring, and recording units; differential global 
positioning system (DGPS); and an inertial measurement unit (IMU) (Figure 2.2). 
An integrated DGPS/IMU system is also called a position and orientation system 
that generates accurate position (longitude, latitude, and altitude) and orientation 
(roll, pitch, and heading) information. The laser scanning patterns can be zigzag, 
 parallel, or  elliptical (Figure 2.2). Based on ranges and scan angles, DGPS and IMU 
data, calibration data, and mounting parameters, collected laser points can be pro-
cessed and assigned (x, y, z) coordinates in the geographic coordinate system with 
the World Geodetic System of 1984 (WGS84) datum (Hug 1996, Hug and Wehr 
1997, Wehr and Lohr 1999).

2.3  PHYSICAL PRINCIPLES OF LiDAR

Both pulsed and continuous wave lasers are being used in LiDAR systems. Pulsed 
LiDAR systems measure the round-trip time of a short light pulse from the laser to 
the target and back to the receiver. Figure 2.3 shows amplitudes of transmitted (AT) 
and received (AR) light signals. If c is the speed of light, R is the distance between the 
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ranging unit and the object surface, and ts is the travelling time of a laser pulse; the 
following parameters can be calculated (Wehr and Lohr 1999):

 R c tRange: 
1
2

s= ⋅  (2.1)

 R c tRange resolution: 
1
2

s∆ = ⋅ ∆  (2.2)

 R c tMaximum range: 
1
2

max smax= ⋅  (2.3)

The LiDAR measurement process involving both detector and target characteristics is 
described by the standard LiDAR equation, which is derived from the radar  equation 
(see Equation 1.1 in Chapter 1). The standard LiDAR equation relates the power of 
transmitted (Pt) and received (Pr) signals, and can be expressed as (Wagner et al. 2006):
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where t is the time; D is the aperture diameter of the receiver optics; Pr is the power 
of received signal; Pt is the power of transmitted signal; λ is the wavelength; H is 
the flying height; R is the distance from the system to the target; ηsys and ηatm are the 
system and atmospheric transmission factors, respectively; νg is the group velocity 
of the laser pulse; and σ R dR( )  is the apparent effective differential cross section.

The power of received signal Pr(t) in Equation 2.4 can also be considered as the 
sum of the contribution of N targets (Mallet and Bretar 2009):
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where σ ′ t( )i  is the apparent cross section of illuminated areas within each range 
interval, η⋅P t t( ) ( )t sys  is the component from system contribution, and η σ⋅ ′t t( ) ( )atm i  is 
the environment contribution.
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FIGURE 2.3 Amplitudes of transmitted (AT) and received (AR) light signals. ts is the travel-
ing time of a laser pulse.
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2.4  LiDAR ACCURACY

LiDAR accuracy is usually determined by statistical comparison between known 
(surveyed) points and measured laser points, and is typically measured as the stan-
dard deviation (σ2) and root mean square error (RMSE) (Evans et al. 2009). Evans 
et al. (2009) also suggested that methodologies for determining and reporting vertical 
and horizontal accuracy of discrete return LiDAR data should follow standards as 
outlined in FGDC-STD-007 (Federal Geographic Data Committee 1998) and NGS-
58 (NOAA 1997). For bare earth surface on low to moderate slopes, the LiDAR data 
should conform to a minimum accuracy standard of less than 15 cm vertical and 
55 cm horizontal RMSE.

The main sources of LiDAR measurement errors include those that are laser 
induced, problems with the inertial navigation unit (INU) for estimating positions 
between GPS fixes, problems with the IMU for monitoring the pointing direction of 
the laser, filtering induced, and other problems (Huising and Pereira 1998, Hodgson 
and Bresnahan 2004). Laser induced errors are normally caused by grain noise and 
changes in height for the points on the terrain surface at a narrow angle (such as 
ridges and ditches). GPS/INU/IMU errors can be caused by initialization errors and 
variances in the measurements. Filtering errors are related to incomplete or excessive 
removal of laser points. In addition, false readings from some ground features such 
as water bodies can also cause LiDAR measurement errors (Huising and Pereira 
1998). Vertical accuracies of better than 15 cm can be obtained when the sensor alti-
tude is below 1200 m, and up to 25 cm when the sensor altitude is between 1200 and 
2500 m (Brinkman and O’Neill 2000). More detailed studies on LiDAR measure-
ment errors can be found in the works of Schenk (2001), Ahokas et al. (2003), and 
Hodgson and Bresnahan (2004).

2.5  LiDAR DATA FORMATS

In the early days of LiDAR data collection, many companies used a generic American 
Standard Code for Information Interchange (ASCII) file interchange system. The 
ASCII interchange files have several major problems: (1) reading and interpreting 
ASCII files can be very slow, even for small amounts of LiDAR data, (2) much of the 
useful information is lost, and (3) the format is not standard (Figure 2.4).

For better exchange of LiDAR point cloud data, the American Society for 
Photogrammetry and Remote Sensing (ASPRS) introduced a sequential binary 
LASer (LAS) file format to contain LiDAR or other point cloud data records. The 
ASPRS LAS 1.0 Format Standard was released on May 9, 2003; LAS 1.1 on May 7, 
2005; LAS 1.2 on September 2, 2008; LAS 1.3 on October 24, 2010; and LAS 1.4 
on November 14, 2011. With LAS 1.4, the LiDAR mapping community has the abil-
ity to customize the LAS file format to meet their specific needs. The LiDAR point 
cloud files used in the projects of this book are all in LAS format. The specifications 
of all LAS versions can be accessed on the website of ASPRS.

Each LAS file could consist of a public header block, any number of Variable 
Length Records (VLRs), point data records, and any number of Extended Variable 
Length Records (EVLRs). The public header block stores basic summary information 
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such as the number and boundary of the points. The VLRs store information such 
as map projection and other metadata. The EVLRs are mainly used to store wave-
form data. EVLRs are specified only in LAS 1.3 and 1.4, not in the earlier ver-
sions. Therefore, waveform LiDAR data has to be stored in LAS 1.3 or higher. While 
the public header block and point data records are always required, the VLRs and 
EVLRs are optional. Therefore, an LAS file does not necessarily include key infor-
mation such as the map projection of the LiDAR data. In such a case, a user needs to 
obtain such information from metadata files, data reports, or ask the data provider. 
Table 2.1 summarizes the basic structure of an LAS file.

Each record for point data stores information such as the point’s x, y, z, intensity, 
return number, number of returns (of a given pulse), scan direction, classification, 
GPS time, point source, etc. (Table 2.2). Note that the number of returns indicates 
how many returns were received for a given transmitting pulse whereas return num-
ber indicates whether a point is the first, second,…, or last return of the pulse. For 
example, if a point has a value of 4 for the number of returns and a value of 2 for the 
return number, this means that the point is the second return of a pulse that gener-
ated four returns.

If a digital camera is integrated with a LiDAR system, each laser point can be 
linked with an image pixel based on photogrammetric techniques. In such a case, a 
point data record could also store the spectral (e.g., blue, green, red, and near- infrared) 
values of the associated pixel. Such spectral information is very useful for realistically 
visualizing the scanned landscapes in three-dimensions (3D) (Figure 2.5).

FIGURE 2.4 Examples of LiDAR data in ASCII files. The numbers in each row are: (Left) 
classification code, x, y, z, and intensity; (Right) GPS time, x, y, z, and intensity.

TABLE 2.1
The Basic Structure of an LAS File

LAS File Section Note

Public header block Required

Variable length records (VLRs) Optional

Point data records Required

Extended variable length records (EVLRs) Optional
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TABLE 2.2
An Example Format for LiDAR Point Data
x

y

z

Intensity

Return Number

Number of returns

Scan direction flag

Edge of flight line

Classification

Scan angle rank

User data

Point source ID

GPS time

Red

Green

Blue

Wave packet descriptor index

Byte offset to waveform data

Waveform packet size in bytes

Return point waveform location

x(t)

y(t)

z(t)

FIGURE 2.5 Laser points rendered based on their (left) Z elevation and (right) camera 
pixels’ RGB spectral values.
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Because of the large variety of airborne LiDAR systems (some integrate cameras 
and waveform digitizers while others might not) and the collected data, many point 
data record formats have been defined, each of which has a different record length. 
For example, LAS 1.0 specifies two point data record formats whereas LAS 1.4 has 
expanded to 10 different formats, which allows a LiDAR vendor to choose a format 
that can record all of the information with minimal storage requirements.

Despite the diversity of point data record formats for storing laser points in an 
LAS file, one key attribute that each point data record must have is the classification 
of the point, which tells whether the laser point is returned from the ground, vegeta-
tion, building, water, etc. (Table 2.3). Table 2.3 is an example of a standard classifica-
tion scheme that is defined for point data record formats 6–10 in LAS 1.4.

For a laser point, class is probably the second most important information, next to 
the X, Y, and Z coordinates of the point. If laser points are not classified (i.e., the class 
value is 0 or 1), a LiDAR dataset is largely limited to 3D visualization of the point 
clouds. In contrast, a classified point cloud allows an analyst to conduct many useful 
analyses such as digital terrain model (DTM) generation using points classified as 
bare earth (class value of 2), vegetation mapping using points with class values of 
3–5, and building footprint extraction using points with class value of 6.

TABLE 2.3
ASPRS Standard Classes for Point Data Record 
Formats 6–10 in LAS 1.4

Classification Value Meaning

0 Created, never classified

1 Unclassified

2 Ground

3 Low vegetation

4 Medium vegetation

5 High vegetation

6 Building

7 Low point (noise)

8 Reserved

9 Water

10 Rail

11 Road surface

12 Reserved

13 Wire—guard (Shield)

14 Wire—conductor (Phase)

15 Transmission tower

16 Wire—structure connector (e.g., Insulator)

17 Bridge deck

18 Nigh noise

19–63 Reserved

64–255 User definable
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A few important things should be noted to properly understand and use point 
classes: (1) more than one classification standards have been specified in the LAS 
formats. In the LAS 1.4 format, the classification standard for point data formats 0–5 
is slightly different from the one for point data formats 6–10; for example, class 12 
refers to “overlap points” for point data formats 0–5 and is “reserved” for formats 
6–10. (2) Not every LiDAR vendor assigns the classification code in the same way. 
For example, points returned from water surface might be assigned to class 9 by 
one vendor and to class 2 by another vendor; vegetation points might be assigned 
to 3, 4, or 5 based on their heights by one vendor and to only 3 by another vendor. 
(3) Inconsistency could even exist in one LiDAR project. For example, a laser point 
from a building might be assigned to class 6 sometimes and to class 1 (unclassified) 
other times, probably by different technicians working in the project. Because of the 
above issues, a user should carefully check the documents provided by the LiDAR 
vendor to understand how points have been classified specifically. Additionally, visu-
alization software should be used to check the accuracy of point classification (see 
Project 2.3).

Last but not least, compressed LiDAR binary formats have been proposed by indi-
vidual developers (e.g., the .laz format) or companies (e.g., the ESRI’s.zlas format). 
These formats can reduce the file size to ~10%–20% of the corresponding LAS files. 
However, they have not been endorsed by professional societies such as ASPRS.

2.6  LiDAR SYSTEMS

The National Aeronautics and Space Administration (NASA) had several experimen-
tal laser mapping systems, including the Scanning Lidar Imager of Canopies by Echo 
Recovery, Shuttle Laser Altimeter, Laser Vegetation Imaging Sensor, Multi-Beam 
Laser Altimeter, and Geoscience Laser Altimeter System. In 2013, NASA developed 
the Goddard’s LiDAR, Hyperspectral and Thermal airborne imager (G-LiHT) for 
simultaneous measurements of vegetation structure, foliar spectra, and surface tem-
peratures at very high spatial resolution (~1 m) (Cook et al. 2013). Manufactures of 
commercial LiDAR systems include Riegl (Austria), Toposys (Germany), TopEye/
Blom (Sweden), and Optech (Canada), among others. A summary of the specifica-
tions of the NASA experimental systems and some commercial LiDAR systems can 
be found in the work of Mallet and Bretar (2009).

2.7  LiDAR RESOURCES

An incomplete list of LiDAR data sources and free software is provided below.
LiDAR data sources:

 1. Open Topography http://www.opentopography.org
 2. USGS Earth Explorer http://earthexplorer.usgs.gov
 3. United States Interagency Elevation Inventory https://coast.noaa.gov/

inventory/
 4. National Oceanic and Atmospheric Administration (NOAA) Digital Coast 

https://www.coast.noaa.gov/dataviewer/#

http://www.opentopography.org
http://earthexplorer.usgs.gov
https://coast.noaa.gov/inventory/
https://coast.noaa.gov/inventory/
https://www.coast.noaa.gov/dataviewer/#
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 5. Wikipedia LiDAR https://en.wikipedia.org/wiki/National_Lidar_Dataset_ 
(United_States)

 6. LiDAR Online http://www.lidar-online.com
 7. National Ecological Observatory Network—NEON http://www. 

neonscience.org/data-resources/get-data/airborne-data
 8. LiDAR Data for Northern Spain http://b5m.gipuzkoa.net/url5000/en/G_

22485/PUBLI&consulta=HAZLIDAR
 9. LiDAR Data for the United Kingdom http://catalogue.ceda.ac.uk/

list/?return_obj=ob&id=8049, 8042, 8051, 8053

Free LiDAR software:

 1. BCAL LiDAR Tools (Open source tools for visualization, processing, 
and analysis of LiDAR data. Requires ENVI.) http://bcal.geology.isu.edu/
Envitools.shtml

 2. FugroViewer (for LiDAR and other raster/vector data) http://www.
fugroviewer.com/

 3. FUSION/LDV (LiDAR data visualization, conversion, and analysis) http://
forsys.cfr.washington.edu/fusion/fusionlatest.html

 4. LAS Tools (Code and software for reading and writing LAS files) http://
www.cs.unc.edu/~isenburg/lastools/

 5. LASUtility (A set of GUI utilities for visualization and conversion of LAS 
files) http://home.iitk.ac.in/~blohani/LASUtility/LASUtility.html

 6. LibLAS (C/C++ library for reading/writing LAS format) http://www.liblas.
org/

 7. MCC-LiDAR (Multi-scale curvature classification for LiDAR) http://
sourceforge.net/projects/mcclidar/

 8. MARS FreeView (3D visualization of LiDAR data) http://www.merrick.
com/Geospatial/Software-Products/MARS-Software

 9. Full Analyze (Open source software for processing and visualizing LiDAR 
point clouds and waveforms) http://fullanalyze.sourceforge.net/

 10. Point Cloud Magic (A set of software tools for LiDAR point cloud visualiza-
tion, editing, filtering, 3D building modeling, and statistical analysis in forestry/
vegetation applications. Contact Dr. Cheng Wang at wangcheng@radi.ac.cn)

 11. Quick Terrain Reader (Visualization of LiDAR point clouds) http:// 
appliedimagery.com/download/

Additional LiDAR software tools can be found from the Open Topography Tool 
Registry webpage at http://opentopo.sdsc.edu/tools/listTools.

PROJECT 2.1:  REVIEW OF ZONAL STATISTICS FOR 
RASTER DATA IN ARCGIS

 1. Introduction
Zonal statistics are very useful in many applications, and will be used in 
Project 5-2. Zonal statistics tools in ArcGIS require two input datasets: 

https://en.wikipedia.org/wiki/National_Lidar_Dataset_(United_States)
https://en.wikipedia.org/wiki/National_Lidar_Dataset_(United_States)
http://www.lidar-online.com
http://www.neonscience.org/data-resources/get-data/airborne-data
http://www.neonscience.org/data-resources/get-data/airborne-data
http://b5m.gipuzkoa.net/url5000/en/G_22485/PUBLI&consulta=HAZLIDAR
http://b5m.gipuzkoa.net/url5000/en/G_22485/PUBLI&consulta=HAZLIDAR
http://catalogue.ceda.ac.uk/list/?return_obj=ob&id=80498042,8051,8053
http://catalogue.ceda.ac.uk/list/?return_obj=ob&id=80498042,8051,8053
http://bcal.geology.isu.edu/Envitools.shtml
http://bcal.geology.isu.edu/Envitools.shtml
http://www.fugroviewer.com/
http://www.fugroviewer.com/
http://forsys.cfr.washington.edu/fusion/fusionlatest.html
http://forsys.cfr.washington.edu/fusion/fusionlatest.html
http://www.cs.unc.edu/~isenburg/lastools/
http://www.cs.unc.edu/~isenburg/lastools/
http://home.iitk.ac.in/~blohani/LASUtility/LASUtility.html
http://www.liblas.org/
http://www.liblas.org/
http://sourceforge.net/projects/mcclidar/
http://sourceforge.net/projects/mcclidar/
http://www.merrick.com/Geospatial/Software-Products/MARS-Software
http://www.merrick.com/Geospatial/Software-Products/MARS-Software
http://fullanalyze.sourceforge.net/
http://appliedimagery.com/download/
http://appliedimagery.com/download/
http://opentopo.sdsc.edu/tools/listTools
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(1) a zone dataset which can be defined by raster cells that have the same 
value (such as land cover/land use types) or a polygon feature class (such 
as census blocks, parcels, and building footprints), and (2) a value raster. 
The output from zonal statistics can be a raster or a table. Table 2.4 lists 10 
zonal statistical measures, along with the data types for input value rasters 
and output rasters or numbers. Definitions of these 10 statistical measures 
can be found in ArcGIS Help documents.

This project is a review of zonal statistics for raster data in ArcGIS. The 
data used in this project includes a polygon shapefile (parcels.shp) and six 
other files with different extensions for 52 parcels and a raster (bldg_heights.
tif) with 0.5 m × 0.5 m cell size for heights of 52 buildings derived from 
LiDAR data (Figure 2.6). A perspective view of the buildings is shown in 
Figure 2.7. In addition to statistical measures of raster data in each parcel, a 
method for calculating the volume of individual buildings is demonstrated. 
Data for this project can be downloaded from the following webpage by 
right-clicking each file and saving it to a local folder: http://geography.unt.
edu/~pdong/LiDAR/Chapter2/Project2.1/.

The process of calculating building volume based on zonal sum is 
described here. Figure 2.8 shows a building height raster and a parcel poly-
gon (zone). Inside the parcel polygon, cells for empty space have a height 
value of 0, whereas building cells have positive heights.

Denote c as the cell size of the building height raster, and h1, h2, h3,…, 
hn as the heights of n building cells; the total volume of the building, V, in 
the parcel can be calculated as the sum of the volume of individual building 
columns:
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TABLE 2.4
Measures of Zonal Statistics in ArcGIS

Statistic Zone Dataset Input Value Raster Output

Majority Raster or polygon Integer Integer

Maximum Raster or polygon Integer, float Same as input

Mean Raster or polygon Integer, float Float

Median Raster or polygon Integer Integer

Minimum Raster or polygon Integer, float Same as input

Minority Raster or polygon Integer Integer

Range Raster or polygon Integer, float Same as input

Standard deviation Raster or polygon Integer, float Float

Sum Raster or polygon Integer, float Float

Variety Raster or polygon Integer Integer

http://geography.unt.edu/~pdong/LiDAR/Chapter2/Project2.1/
http://geography.unt.edu/~pdong/LiDAR/Chapter2/Project2.1/
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Since h1 + h2 + h3 + … + hn is the zonal sum, Equation (2.6) means that build-
ing volume can be calculated from the zonal sum of a building height raster. 
Alternatively, Equation (2.6) can be rearranged as:

 ( ) ( )= + + + + = + + + + V c h h h h c n h h h h n ·   · · /n n
2

1 2 3
2

1 2 3  (2.7)

FIGURE 2.7 Perspective view of 52 buildings derived from LiDAR data.

FIGURE 2.6 Parcels and height raster for 52 buildings (cell size: 0.5 m × 0.5 m).
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where (h1 + h2 + h3 + … + hn)/n is the zonal mean. Therefore, building vol-
ume can also be calculated from the zonal mean of a building height ras-
ter. The zones can be defined by building footprints, census blocks, census 
tracks, or other polygons, depending on the application.

 2. Project Steps
 1. Open an empty Word document so that you can copy any results from 

the following steps to the document. To copy the whole screen to your 
Word document, press the PrtSc (print screen) key on your keyboard, 
then open your Word document and click the “Paste” button or press 
Ctrl+V to paste the content into your document. To copy an active win-
dow to your Word document, press Alt+PrtSc, then paste the content 
into your document.

 2. Open ArcMap, and turn on the Spatial Analyst Extension.
 3. Open ArcToolbox → Spatial Analyst Tools → Zonal → Zonal Statistics 

as Table, use “pacels.shp” as the input feature zone data, “FID” as the 
zone field, “bldg_heights.tif” as the input value raster, “Zonal_Statistics” 
as the output table; check “Ignore NoData”, select “ALL” as statistics 
type, and click OK to obtain the results (Figure 2.9). Note: Using the 
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FIGURE 2.8 Building height raster and parcel polygon.

FIGURE 2.9 Zonal statistics as table tool in ArcGIS.
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default output table may produce erroneous results due to unknown rea-
sons, and it’s recommended to specify an output table in a local folder.

 4. The output table is shown in Figure 2.10. Since the input raster is a float 
raster, only six statistical measures (MIN, MAX, RANGE, MEAN, 
STD, and SUM) are created (see Table 2.1). It should be noted that 
the measurements are calculated based on parcel polygons, not just the 
building cells. However, as explained in Figure 2.8, the SUM field val-
ues can be used to calculate building volume. Add a new float field 
“BLDG_VOLUME” to the output table, then use Field Calculator and 
expression 0.5*0.5*[SUM] to obtain the BLDG_VOLUME field values 
(Figure 2.10).

 5. Save your ArcMap project and Word document.

PROJECT 2.2:  CREATING AN LAS DATASET USING LiDAR 
POINT CLOUDS FROM FREMONT, CA, USA

 1. Introduction
An LAS dataset is a stand-alone file that references one or more LiDAR 
data files in the LAS format. An LAS dataset can also have feature classes 
for surface constraints, such as breaklines, water polygons, and area bound-
aries. There are up to three files associated with an LAS database: LAS 
dataset file (.lasd), LAS auxiliary file (.lasx), and projection file (.prj). The 
.lasd file only stores references to actual LAS files and surface constraints, 
but does not import LiDAR point data from LAS files. A .lasx file is created 
when statistics are calculated for any LAS file in an LAS dataset. The .lasx 
file provides a spatial index structure that helps improve the performance 
of an LAS dataset. If LAS files do not have a spatial reference or have an 
incorrect spatial reference defined in the header of the LAS file, a projection 

FIGURE 2.10 Output table of zonal statistics with an additional field for building volume.
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file (.prj) can be created for each LAS file. In that case, the new coordinate 
system information in the .prj file will take precedence over the spatial ref-
erence in the header section of the LAS file.

In this project, an LAS dataset will be created using LiDAR data in the 
LAS format from Fremont, CA, USA. Since correct spatial reference is 
defined in the header of the LAS file, a projection file (.prj) is not needed. 
Once the LAS dataset is created, the user can start using the LAS dataset 
toolbar. Tools on the LAS dataset toolbar will also be used in this project.

 2. Data
LiDAR data from a 1 km × 1 km area in Fremont, CA, USA is used in this 
project. The LiDAR data was collected in 2007 with a point density of 5.17 
points/m2. The horizontal coordinate system is UTM Zone 10 N WGS84 
Meters [EPSG: 32610], and the vertical coordinate system is WGS84 
datum. This dataset is based on services provided to the Plate Boundary 
Observatory (PBO) by NCALM (http://www.ncalm.org). PBO is operated 
by UNAVCO for EarthScope (http://www.earthscope.org) and supported by 
the National Science Foundation (No. EAR-0350028 and EAR-0732947). 
An LAS file “Fremont.las” can be downloaded (by right-clicking the file 
and saving it to a local folder) from: http://geography.unt.edu/~pdong/
LiDAR/Chapter2/Project2.2/

 3. Project Steps
 1. Open an empty Word document so that you can copy any results from the 

following steps to the document. To copy the whole screen to your Word 
document, press the PrtSc (print screen) key on your keyboard, then open 
your Word document and click the “Paste” button or press Ctrl+V to paste 
the content into your document. To copy an active window to your Word 
document, press Alt+PrtSc, then paste the content into your document.

 2. Open ArcMap, go to the Customize menu, select “Extensions…”, and 
turn on the 3D Analyst Extension.

 3. Create an LAS dataset. Open ArcToolbox → Data Management Tools 
→ LAS Dataset → Create LAS Dataset. Use Fremont.las as input and 
Fremont.lasd as output, check the “Compute Statistics” option, and then 
click OK to create the LAS dataset. The LAS dataset is added to ArcMap 
automatically. Click the “Customize” menu of ArcMap, and then select 
Toolbars → LAS Dataset to load the LAS dataset toolbar (Figure 2.11). 
Since noises (such as flying birds) are not removed from the point clouds, 
it appears that the point clouds have substantial variations in elevation. 
Note that the ground elevation of the LAS dataset is negative because the 
dataset has an ellipsoid-based vertical coordinate system.

 4. Calculate the LAS dataset statistics. Open ArcToolbox → Data 
Management Tools → LAS Dataset → LAS Dataset Statistics, and 
use Fremont.lasd as the input LAS dataset and FremontLSD.txt as 
the output to generate a statistics report file (Figure 2.12). The report 
file  is automatically added to ArcMap as a table to show statistics of 
the LAS dataset (Figure 2.13). For example, there are 2,411,009 ground 
points in the 1 km × 1 km study area, which is 45.79% of all points. 

http://www.ncalm.org
http://www.earthscope.org
http://geography.unt.edu/~pdong/LiDAR/Chapter2/Project2.2/
http://geography.unt.edu/~pdong/LiDAR/Chapter2/Project2.2/
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FIGURE 2.11 LAS dataset toolbar and LAS dataset of the study area.

FIGURE 2.12 Calculating LAS data statistics.

FIGURE 2.13 LAS dataset statistics report file.
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The  elevation  of the ground surface in the study area changes from 
−26.54 to −13.02 m (the dataset has negative ground elevation because 
it has an ellipsoid-based vertical coordinate system).

 5. Use LAS dataset toolbar. Explore point symbology renderers, surface 
symbology renderers, filter, and pan tools (Figure 2.14).

 6. Create LAS dataset profile views. Use the LAS dataset profile view 
tool  to draw a straight line over the LAS dataset, and then move the 
 cursor to change the selection box and click on ArcMap to create a  profile 
view. Figure 2.15 shows several profile views from the LAS dataset.

Active LAS dataset layer

Surface symbology
renderers

LAS dataset
profile view

Pan tools
LAS dataset

3D view

Point symbology
renderers

FIGURE 2.14 LAS dataset toolbar.

(A)

(C)

(B)

(D)

FIGURE 2.15 Sample profile views of LAS dataset for Fremont, CA, USA. (A) Roofs, trees, 
vehicle, and ground; (B) trees, power lines, and ground; (C) trees and ground; and (D) vehi-
cles on road surface.
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 7. Create LAS dataset 3D views. Use the LAS dataset 3D view tool to 
create a 3D view, and use tools on the 3D view window to navigate the 
view (Figure 2.16).

 8. Save your ArcMap project and Word document.

PROJECT 2.3:  EXPLORING AIRBORNE LiDAR DATA

 1. Introduction
The objective of this project is to become familiar with some  common  LiDAR 
visualization software and to improve the understanding of airborne LiDAR 
data. The project area is the University of Hawaii at Ma-noa campus (Figure 2.17). 

FIGURE 2.16 3D view of LAS dataset.

FIGURE 2.17 The University of Hawai’i at Ma-noa campus.
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The LiDAR file is named UHM.las and can be downloaded from: http://
geography.unt.edu/~pdong/LiDAR/Chapter2/Project2.3/. The software tools 
used are Quick Terrain (QT) Reader (Applied Imagery) and Fugro. The soft-
ware tools are free and can be downloaded from the vendors’ websites. The 
following steps assume that you have installed the software on your computer.

 2. Project steps
 1. Open an empty Word document so that you can copy any results from the 

following steps to the document. To copy the whole screen to your Word 
document, press the PrtSc (print screen) key on your keyboard, then open 
your Word document and click the “Paste” button or press Ctrl+V to paste 
the content into your document. To copy an active window to your Word 
document, press Alt+PrtSc, then paste the content into your document.

 2. Start QT Reader and open UHM.las (choose File → Open Model(s) 
from the menu). Visually explore the data using your mouse: scroll 
with the middle button to zoom in/out, hold the left button and move to 
rotate the point cloud, or hold the right button and move to pan the point 
cloud. Write down at least five types of objects (e.g., trees and buildings) 
you can recognize from the point cloud.

 3. Explore different display modes by clicking Display → Show/Hide. 
Toggle on/off “Use Height Coloration” and “Use Vertex Colors” and 
display the study area in three colorations similar to Figure 2.18. Explain 
what each coloration represents (Hint: Go to Display → Settings → 
Height Coloration Settings to understand the Height Coloration Setting).

 4. Go to Analysis → Model Statistics and finish the following table:

 5. Start Fugro and open UHM.las. Click File → Lidar File Info and finish 
the following table:

 6. Click  on the toolbar to open 3D view. Display the data in the fol-
lowing coloration settings: elevation, intensity, classification, source ID, 

LiDAR Information Value

Map projection

Min/max “Return Number”

Min/max “Number of Returns”

Min/max “Scan Direction”

Min/max “Line Edge”

Min/max “Classification”

Min/max “Scan angle”

All “Point Source ID”

LiDAR Information Value

Date and year of data acquisition

LAS version

Number of VLRs

Number of 1st, 2nd, 3rd, and 4th returns

http://geography.unt.edu/~pdong/LiDAR/Chapter2/Project2.3/
http://geography.unt.edu/~pdong/LiDAR/Chapter2/Project2.3/
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and return number. Take screenshots and include them in your report 
(see Figure 2.19 for an example). Explain what “source ID” means in 
this file based on what you see.

 7. Pick a building on campus and use the Query Data tool  to determine 
its height. Document your steps of finding the height in your report, in 
which you should include screenshot of the building you select.

 8. Pick a large tree on campus and display the point cloud with coloration 
based on “Return Number” (see Figure 2.20 for an example). Make sure 

FIGURE 2.18 Examples of different colorations of LiDAR point clouds.
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that the tree you picked includes at least three types of returns (first, 
second, and third returns). Identify any 3D distribution patterns you see 
for the different returns and explain the pattern. Include in your report 
a screenshot of the tree you select.

 9. Save your Word document.

FIGURE 2.19 2D and 3D visualization of LiDAR point clouds.

FIGURE 2.20 Example of a tree’s point cloud rendered with “Return Number”.
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3 Basics of LiDAR 
Data Processing

3.1  INTRODUCTION

As explained in Section 2.2 of Chapter 2, values of ranges and scan angles, 
 differential global positioning system (DGPS) and inertial measurement unit 
(IMU) data, calibration data, and mounting parameters can be combined to derive 
(x, y, z) coordinates of LiDAR points. It is worth mentioning that since global posi-
tioning system (GPS) uses the World Geodetic System of 1984 (WGS84) datum, 
the originally derived three-dimensional (3D) coordinates are also georeferenced 
to the WGS84 datum and its ellipsoid (this means that z is ellipsoidal elevation). 
However, LiDAR users typically need orthometric elevation (i.e., elevation above 
mean sea level or a geoid model) for hydrological applications such as flooding or 
sea-level rise analysis. Moreover, each country or region often uses a horizontal 
datum that is more locally relevant (e.g., the NAD83 for the United States and 
Canada) in geographic information system (GIS) analysis. Therefore, a LiDAR 
vendor often needs to transform the original 3D coordinates of laser points from 
WGS84 to a new horizontal datum and/or a new vertical datum, especially upon 
the request of the end users.

The processing and analysis methods for LiDAR data are usually application-
specific (for example, multi-scale modeling for building extraction), and many new 
methods are being proposed. Therefore, it is difficult to provide a complete list of 
various LiDAR data processing and analysis methods. However, two basic steps 
are usually needed: (1) classification of laser points and (2) interpolation of discrete 
points into a continuous surface. For example, the generation of digital terrain model 
(DTM) requires the classification/extraction of ground returns and the interpolation 
of ground returns into raster or triangulated irregular network (TIN).

The classification of laser points means identifying the type of earth surface 
materials or objects that generate the laser returns/points. For example, a laser pulse 
that is transmitted from an airplane to a tree may generate three returns: the first 
return from the tree crown surface, the second return from the branches and foli-
age below the surface, and the last return from the ground below the tree. Some 
users may only want to classify the points into ground versus non-ground returns 
because their purpose is to use the ground returns to generate a DTM. However, 
a forester who is interested in analyzing canopy vertical structure might want to 
separate the points into three categories: on canopy surface, within canopy, and on 
the ground. Therefore, the classification scheme used in different applications could 
vary substantially. Despite these, a common class that needs to be extracted is the 
ground returns. This is because (1) ground returns are needed to generate “elevation” 
models for topography (i.e., DTM), arguably the most widely used geospatial data, 
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and (2) DTM is needed to produce different “height” products for surface objects 
above topography. For example, building height can be calculated as the difference 
between elevation of laser points on a building’s roof and DTM. Extracting ground 
returns from a point cloud is usually the first step of LiDAR data processing and the 
most important classification. Conventionally, this step is called “filtering” because 
the main driver of adopting airborne LiDAR data in its infancy stage (in the 1990s) 
was to generate DTM, which needs filtering out or removing non-ground returns. 
Because of its importance, filtering is introduced in Section 3.2 while classification 
of remaining non-ground returns is introduced in Section 3.3.

Unlike optical or radar imagery, airborne LiDAR data do not continuously mea-
sure or map the earth’s surface. Each laser pulse and its returns are essentially sam-
ples of the environment, even at very high point density. Interpolation is needed to 
produce spatially continuous digital products or maps from these discrete points. 
For example, interpolating the ground returns and the highest returns will generate 
DTM and DSM (digital surface model), respectively. Although various interpolation 
methods exist in software, they have to be fast enough to process massive LiDAR 
points and intelligent enough to predict the elevation at the unsampled locations. 
Section 3.4 will discuss some common interpolation methods.

Figure 3.1 is a typical flowchart showing the major steps for LiDAR point data 
processing. After collecting (x, y, z) coordinates of LiDAR points, sorting of the 
points can improve the efficiency of data rendering and processing (Auer and Hinz 
2007, Scheiblauer 2014, Shen et al. 2016). In addition to geometric processing of 
LiDAR points, it should be noted that LiDAR intensity information can also be use-
ful. A review of LiDAR radiometric processing can be found in the work of Kashani 
et al. (2015). In the remainder of this chapter, we will introduce filtering, classifi-
cation of non-ground returns, and spatial interpolation, respectively. Two ArcGIS 
projects are then presented to (1) create a DTM, a DSM, and a digital height model 
(DHM) for an area in Indianapolis, IN (USA), and (2) create a terrain dataset for an 
area in St. Albans, VT (USA).

Ranges and
scan angles

POS data
(DGPS, IMU)

Calibration data and
mounting parameters

(x, y, z) Coordinates of laser points

Sorting

Filtering and classification

Spatial interpolation

FIGURE 3.1 Flowchart of LiDAR point data processing.
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3.2  FILTERING

Filtering is used to remove non-ground LiDAR points so that bare-earth digital 
elevation models can be created from the remaining ground LiDAR points. Over 
the past two decades, many filtering methods have been developed (Axelsson 2000, 
Sithole and Vosselman 2004, Arefi and Hahn 2005, Tóvári and Pfeifer 2005, Chen 
et al. 2007, Kobler et al. 2007, Liu 2008, Chang et al. 2008, Meng et al. 2010, Wang 
and Tseng 2010, Chen et al. 2013, Pingel et al. 2013, Zhang and Lin 2013, Lin and 
Zhang 2014, Zhang et al. 2016, Nie et al. 2017). Most filtering methods are unsu-
pervised classifiers, which mean that users do not need to collect training data for 
ground and non-ground returns. However, they may have one or multiple parameters 
that need users to specify the values.

The design of a filtering algorithm is usually based on two criteria: (1) the ground 
has the lowest elevation compared to the objects above it (e.g., Kobler et al. 2007), 
and (2) elevation and slope change more slowly for bare earth than for DSM (e.g., 
Chen et al. 2007). However, the specific techniques that implement these criteria 
differ so dramatically that it is not possible to explain the details of each. As a start, 
readers can refer to Sithole and Vosselman (2004), which summarized characteris-
tics of filtering algorithms from different aspects including data structure, measure 
of discontinuity, and filtering concepts.

Among the large variety of filtering algorithms that have been developed, 
 surface-based approaches are probably the most popular and effective ones and have 
been implemented in many commercial or free software (e.g., Kraus and Pfeifer 
1998, Axelsson 2000, Chen et al. 2007). Surface-based approaches usually start 
with an initial surface that approximates the bare earth and then generates another 
approximate surface of the bare earth that utilizes the information from the previ-
ous step. This process could be repeated iteratively until the next surface does not 
substantially differ from the previous one. This is similar to the process of k-means 
or ISODATA (Iterative Self-Organizing Data Analysis Technique) classification for 
which the algorithm stops when the classification results from the next round do 
not differ from the previous round (in other words, the algorithm stabilizes or con-
verges). What is unique to LiDAR point cloud filtering is that an approximation of 
the bare earth surface has to be generated at each step, which is usually, but not 
always, implemented using interpolation methods. Surface-based approaches can be 
based on either TIN or raster.

3.2.1  TIN-Based MeThods

TIN is a vector-based data structure for representing continuous surface. Specifically, 
a TIN surface consists of a tessellated network of non-overlapping triangles, each of 
which is made of irregularly distributed points. TIN is well suited for constructing 
terrain surface from LiDAR points because: (1) LiDAR points are often irregularly 
distributed due to variations in scan angle, attitude (pitch, yaw, and roll) of the air-
plane, and overlaps between flight lines; (2) adding or removing points into TIN can 
be implemented locally without reconstructing the whole TIN; and (3) the speed of 
constructing a TIN is usually much faster than the grid-based interpolation methods. 
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They are many different triangulation networks, but the Delaunay triangulation is 
the standard choice.

The algorithm proposed by Axelsson (2000) is probably the most famous 
 TIN-based method, which works as follows: (1) the lowest points within a coarse 
grid are chosen as seed ground returns, which are used to construct an initial TIN. 
The grid size should be large enough (e.g., 50–100 m) to ensure that the lowest point 
within each grid cell are ground returns, (2) points are added into the TIN if they are 
close to the triangular facet and the angles to their overlaying triangular nodes are 
small, and (3) the densification of the TIN continues until no more ground returns 
can be added.

The main idea of Axelsson (2000) is to start with a small set of ground returns 
and then iteratively add the remaining the ground returns. Different from such an 
“addition” strategy, ground returns can also be extracted via “subtraction”: start with 
all returns and then iteratively remove non-ground returns; the remaining points in 
the end of iteration are ground returns. For example, Haugerud and Harding (2001) 
first used all returns to generate a TIN surface, which was smoothed using a 3 × 3 
moving window; then elevation difference was calculated between each laser return 
and the smoothed surface. If the difference was larger than a threshold, the point 
was removed. This process was repeated until a convergence threshold was reached. 
Note that their algorithm was designed for forest areas and it cannot efficiently 
remove large buildings with flat roofs. Because non-ground returns and their TIN 
facets appear as spikes on top of DTM, such “subtraction” algorithms are also called 
“despike” methods.

The TIN-based method proposed by Axelsson (2000) has some limitations in 
removing points belonging to lower objects and preserving ground measurements 
in topographically complex areas. Nie et al. (2017) proposed a revised progressive 
TIN densification method for filtering airborne LiDAR data using three major steps 
(Figure 3.2): (1) specify key input parameters; (2) select seed ground points and 
construct an initial Delaunay TIN; and (3) iterative densification of the TIN. Both 

Point cloud 
without outlier
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Seed points
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Initial TIN
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Judgement based on a
method similar to the
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Are
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An improved TIN
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Adding the new
detected ground
points into TIN
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points into TIN
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Test based on
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Are there newly
detected ground

points?
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FIGURE 3.2 Flowchart of the revised progressive TIN densification method for filtering 
airborne LiDAR points. (Adapted from Nie, S. et al. Measurement, 104: 70–77, 2017.)
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qualitative and quantitative analyses suggest that the revised progressive TIN den-
sification method can produce more accurate results than the method proposed by 
Axelsson (2000).

3.2.2  RasTeR-Based MeThods

An alternative data structure for terrain surface is raster. Various interpolation 
methods (also called interpolators) can be used to generate raster grids from points. 
Interpolators can be exact or inexact, depending on whether the interpolated surface 
will go through the points or not. Interpolators can also be different depending on 
whether the interpolated elevations exceed the range of LiDAR point elevations. 
This is different from TIN because the interpolated values always go through the 
LiDAR points (an exact interpolator) and never exceed the range of LiDAR points. 
Therefore, using rasters to store terrain surface offers much flexibility for the algo-
rithm developer to choose an appropriate interpolator. The interpolators that were 
often used are kriging, thin-plate spline (TPS), inverse distance weighting (IDW), 
and natural neighbors.

Similar to TIN-based approaches, raster-based filtering algorithms can be 
designed based on either an “addition” or “subtraction” strategy. As an example of 
the “additive” method, Chen et al. (2013) developed a multiresolution hierarchical 
classification (MHC) algorithm for separating ground from non-ground LiDAR 
point clouds based on point residuals from the interpolated raster surface. The MHC 
algorithm uses three levels of hierarchy from coarse to high resolutions, and the sur-
face is iteratively interpolated towards the ground using TPS at each level, until no 
ground points are classified. The classified ground points are then used to update the 
ground surface in the next iteration.

Kraus and Pfeifer (1998) were among the first to develop a “subtractive” ras-
ter filtering algorithm. Using simple kriging (also called linear interpolator in their 
paper), they first fitted a surface using all returns. Then, points with large positive 
 residuals are removed and the rest are assigned with weights according to their 
residuals: points with large negative residuals are more likely to be ground returns 
and  therefore assigned with larger weights. The surfaces are iteratively refitted with 
remaining points with weights until convergence.

Many algorithms interpolate raster grids and filter points at multiple spatial reso-
lutions or scales. Some progress from fine to coarse scales. For example, Evans and 
Hudak (2007) implemented a raster-based “subtraction” algorithm, which modified 
the method of Haugerud and Harding (2001) to generate raster surfaces at three 
gradually decreasing resolutions using TPS interpolation to iteratively remove non-
ground returns. In contrast, some algorithms use gradually increasing spatial resolu-
tions (Mongus and Žalik 2012). For example, Mongus and Žalik (2012) started with 
an interpolation at a spatial resolution of 64 m × 64 m and identified non-ground 
returns based on the interpolated surface; the interpolation and filtering processes 
gradually increased to 32, 16, …, and 1 m resolutions.

One of the main challenges in interpolation from points to raster is the demand-
ing computation involved because (1) a LiDAR file typically has several million 
points per square kilometer, and (2) interpolation usually involves the use of points 
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within each point’s local neighborhood, which requires extra computation resources 
for indexing and searching. Therefore, an efficient algorithm would minimize the 
use of interpolation in its filtering process. For example, Chen et al. (2007) first 
created a fine-resolution (e.g., 1 m) raster grid that contains the elevation of the low-
est points and then used image-based morphological operations (more specifically, 
opening) to remove aboveground objects such as buildings and trees. To identify 
buildings of different sizes, they used neighborhood windows of gradually increas-
ing sizes for morphological opening. Their algorithm used the fact that buildings 
have abrupt elevation changes at their edges to separate buildings from small ter-
rain bumps and thus is called edge-based morphological methods (Chen 2009). 
Ground points were identified by comparing each point with the final morphologi-
cally opened raster (which approximate the bare earth). Kriging was used finally to 
interpolate a smooth DTM. Since interpolation is used only once, the algorithm is 
fast and efficient.

3.3  CLASSIFICATION OF NON-GROUND POINTS

After separating ground and non-ground LiDAR points through filtering, non-
ground points can be further classified into buildings (Axelsson 1999), roads 
(Choi et al. 2008), vegetation (Cobby et al. 2003), and other classes. Various meth-
ods have been proposed for LiDAR point classification, including unsupervised 
classification (Haala and Brenner 1999, Vosselman 2000), bayesian networks 
(Stassopoulou and Caelli 2000), decision trees (Antonarakis et al. 2008), and 
support vector machines (Charaniya et al. 2004, Lodha et al. 2006, Secord and 
Zakhor 2007, Mallet et al. 2011, Lin et al. 2014). In addition, LiDAR intensity 
data (Flood 2001, Hui et al. 2008, Niemeyer et al. 2014) and multispectral image 
data (Bork and Su 2007, Secord and Zakhor 2007) can be combined with LiDAR 
point data for classification. A review of some of the LiDAR point classification 
methods can be found in the work of Yan et al. (2015). Figure 3.3 is a classification 
map of LiDAR points, and Figure 3.4 is a profile of LiDAR points derived from 
P-P′ in Figure 3.3.

3.4  SPATIAL INTERPOLATION

As discussed in Section 3.2, spatial interpolation is often used in the middle of the 
filtering process to identify ground points. No matter which filtering method is 
used, interpolation is needed in the end to generate a DTM from the filtered ground 
returns. Some additional LiDAR-based analysis such as building footprint analy-
sis or tree mapping (introduced in later chapters) are also needed to generate other 
continuous surface models such as DSM or DHM. Therefore, interpolation is a key 
technique in LiDAR data processing and analysis.

Spatial interpolation can be defined as predicting the values of a primary 
variable (such as elevation, temperature, etc.) at point locations within the same 
region of sampled locations. Li and Heap (2008) described a total of 38 methods 
in three categories (non-geostatistical, geostatistical, and combined) for spatial 
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interpolation. A comprehensive review of spatial interpolation in the environmental 
sciences can be found in the work of Li and Heap (2014). Additional information on 
spatial interpolation in geospatial analysis is available from de Smith et al. (2015). 
For LiDAR point data, spatial interpolation is normally used to create DTMs from 
ground points, and DSMs from the highest points within cells. This section briefly 
introduces two common spatial interpolation methods for LiDAR point data: IDW 
and natural neighbor.

P P΄

N

20 m

2 Ground
3 Low vegetation
4 Medium vegetation
5 High vegetation
6 Building

FIGURE 3.3 Classification of LiDAR points. P-P′ is the location of a profile shown in 
Figure 3.4.

P P΄

2 Ground
3 Low vegetation
4 Medium vegetation
5 High vegetation
6 Building

FIGURE 3.4 Profile of LiDAR points derived from P-P′ in Figure 3.3.
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IDW interpolation explicitly relies on Tobler’s First Law of Geography: 
“Everything is related to everything else, but near things are more related than  distant 
things.” (Tobler 1970). A simple model of IDW interpolation can be expressed as:
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where Zi is the observation at the ith point, Zj is the interpolated value at output 
location j, di is the distance between the ith input point and the output location j, 
and p is the power of distance. If di = 0 for some i, the observation Zi is used as the 
output. If p = 1, a simple linear distance is used. A faster rate of distance decay may 
be obtained if p > 1, but a common practice is to use p = 1 or p = 2. Figure 3.5 shows 
how to calculate the interpolated value Zi at the output cell location (triangle) from 
four observations (z1, z2, z3, and z4) using IDW interpolation with p = 2. More discus-
sions on IDW interpolation can be found in the work of de Smith et al. (2015).

Natural neighbor is an interpolation method developed by Sibson (1981). Natural 
neighbor interpolation uses weights for each of the input points based on their area 
of influence, which is determined by Voronoi (Thiessen) polygons around each input 
point (Figure 3.6). First, a Voronoi diagram is constructed for all points (Figure 3.6A). 
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FIGURE 3.5 Inverse distance weighting (IDW) interpolation.
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FIGURE 3.6 Natural neighbor interpolation. (A) Voronoi diagram for input points; 
(B) Output location (triangle symbol); (C) Weights for natural neighbors of the output location.
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A new Voronoi polygon is then created at the interpolation point (i.e., output location) 
(the triangle symbol in Figure 3.6B), and the proportion of overlap between the new 
Voronoi polygon and the initial Voronoi polygons are used as the weights (Figure 3.6C). 
A weighted average of neighboring observations (e.g., elevations of LiDAR points) is 
used as output. The equation for natural neighbor interpolation can be expressed as:
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where g(x, y) is the interpolated value at location (x, y), f(xi, yi) are the observations 
(i = 1, 2, 3, …, n), and wi are the weights. In Figure 3.6, the interpolated value at the 
triangle is calculated as: Zj = 0.3201 × 2.6 + 0.0101*2.3 + 0.1778 × 2.4 + 0.0084 × 2.8 + 
0.4341 × 2.9 + 0.0495 × 2.5 = 2.7. Additional discussions on natural neighbor inter-
polation can be found in the works of Li and Heap (2014) and de Smith et al. (2015).

PROJECT 3.1:  CREATING DTM, DSM, AND DHM FROM 
LiDAR DATA IN INDIANAPOLIS, IN, USA

 1. Introduction
Digital elevation models (DEMs) are the most common digital data repre-
senting the surface of the earth. Two common DEM products that can be 
generated from LiDAR data are DTM and DSM. DTM rasters can be cre-
ated by spatial interpolation of ground points selected from LiDAR point 
clouds. DSMs are usually created from the highest LiDAR points repre-
senting features on the earth’s surface, including buildings, trees, and other 
objects. Subtracting a DTM from a DSM of the same area can produce a 
DHM representing the heights of features on the earth’s surface, as if these 
features are placed on a flat, zero-elevation surface. Theoretically, values 
in a DHM should be zero or positive. However, it is very common to have 
negative values in DHM due to artifacts, accuracy issues in DTM and DSM, 
or interpolation processes. Many negative values in DHM are very close 
to zero, but some others can be substantially less than zero. In this proj-
ect, methods for creating DTM, DSM, and DHM rasters from LiDAR data 
and correcting errors in DHM will be introduced. An example of −41 m in 
DHM caused by laser penetration of glass roofs is also presented. It should 
be noted that creating DTM, DSM, and DHM is an important first step for 
many applications, as demonstrated in the projects of the next three chapters.

 2. Data
Public domain LiDAR data (IndianaMap Framework Data: http://www.
indianamap.org) for a 1.9 km × 2.1 km area in Indianapolis, IN, USA is used 
in this project. The LiDAR point clouds were collected in 2011 in a 3-year 
statewide project with a point density of 1.56 points/m2. The horizontal 
coordinate system is WGS84 [EPSG: 4326], and the vertical coordinate 
system is North American Vertical Datum 1988 (NAVD88). Ownership of 
the data products resides with the State of Indiana. This dataset is based on 

http://www.indianamap.org
http://www.indianamap.org
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processing services provided by the OpenTopography facility with support 
from the National Science Foundation under NSF Award Numbers 0930731 
and 0930643. The LiDAR data file “Indianapolis.las” can be downloaded 
(by right-clicking the file and saving it to a local folder) from: http://
geography.unt.edu/~pdong/LiDAR/Chapter3/Project3.1/

 3. Project Steps
 1. Open an empty Word document so that you can copy any results from 

the following steps to the document. To copy the whole screen to your 
Word document, press the PrtSc (print screen) key on your keyboard, 
then open your Word document and click the “Paste” button or press 
Ctrl+V to paste the content into your document. To copy an active win-
dow to your Word document, press Alt+PrtSc, then paste the content 
into your document.

 2. Open ArcMap, select Customize → Extensions…, and turn on the 
Spatial Analyst Extension.

 3. Open ArcToolbox → Data Management Tools → LAS Dataset → 
Create LAS Dataset. Use Indianapolis.las as input and Indianapolis.
lasd as output to create a LiDAR dataset. The LAS dataset is added to 
ArcMap automatically.

 4. Open the Properties form of Indianapolis.lasd, select the Filter tab, 
check “Ground” under “Classification Codes”, check “All Returns” 
under “Returns”, and then click OK.

 5. Open ArcToolbox → Conversion Tools → To Raster → LAS Dataset to 
Raster. Select “Indianapolis” from the drop-down list as the input LAS 
dataset, “dtm” as the output raster in the output folder, ELEVATION 
as the field value, Binning as the interpolation type, AVERAGE as the 
cell assignment type, NATURAL_NEIGHBOR as the void fill method, 
FLOAT as the output data type, CELLSIZE as the sampling type, 1 as 
the sampling value, and 1 as the Z factor, then click OK to create the 
output DTM raster (Figure 3.7). Note: You should select the input LAS 
dataset from the drop-down list because the filter was defined through 
the layer properties form in Step 4. If you use the browse button to 
select a LAS dataset as input, all the data points in the LAS files it refer-
ences will be processed, and the filter defined in Step 4 will not be used.

 6. Open the Properties form of Indianapolis.lasd, select the Filter tab, 
check “All Classes” under “Classification Codes”, check “Return 1” 
(first return) under “Returns”, then click OK. Use “dsm” as the output 
raster in Step 5 to create the output DSM raster (Figure 3.8).

 7. Open ArcToolbox → Spatial Analyst Tools → Map Algebra → 
Raster Calculator, use “dsm” − “dtm” as the expression and “dhm” 
as the output raster in the output folder to create the DHM raster 
(Figure  3.9). As can be seen in Figure 3.9, the minimum value of 
the DHM raster is −41.0 m. After identifying the areas with nega-
tive values in the DHM raster and comparing the areas with Google 
Maps images, it is found that most of the negative values are caused 
by laser penetration of glass roofs.

http://geography.unt.edu/~pdong/LiDAR/Chapter3/Project3.1/
http://geography.unt.edu/~pdong/LiDAR/Chapter3/Project3.1/
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 8. To correct the cell values in the DSM that are lower than the DTM, the 
CON function in the raster calculator can be used to create a new DSM 
(dsm2) (Figure 3.10). The syntax of the CON function in Figure 3.10 
means: If the DSM value is less than the DTM value, the DTM value 
will be used in the output new DSM; otherwise the original DSM value 
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FIGURE 3.7 Output DTM raster.
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FIGURE 3.8 Output DSM raster.
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is used. Figure 3.11 shows the new DSM, and Figure 3.12 shows the new 
DHM created by subtracting the DTM from the new DSM.

 9. Visualization of the new DHM in ArcScene. Open ArcScene, then 
click the “Add Data” button to add the new DHM. Open the Layer 
Properties form of the DHM layer and click the Symbology tab, choose 
“Stretched”, and then select a color ramp and click Apply. Then click the 
Base Heights tab, choose “Floating on a custom surface,” and select the 
new DHM raster. Then click the button “Raster Resolution…,” change 
Cellsize X and Cellsize Y to 1, and then click OK return to the Layer 

N

200 m
249.49 m

–41.00 m

FIGURE 3.9 DHM raster created from DSM and DTM.

FIGURE 3.10 Calculating a new DSM using the CON function.
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FIGURE 3.12 New DHM obtained from new DSM and DTM.
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FIGURE 3.11 New DSM obtained from Figure 3.15.
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Properties form. Click OK to see the results in ArcScene (Figure 3.13). 
Save the ArcScene project as Indianapolis_DHM.

 10. Save your ArcMap and ArcScene projects, and Word document.

PROJECT 3.2:  GENERATING A TERRAIN DATASET USING 
LiDAR DATA FROM ST. ALBANS, VT, USA

 1. Introduction
A TIN is a data model for topographic or non-topographic surfaces based 
on a connected network of non-overlapping triangles. The nodes of each 
triangle are the surface points with X, Y, and Z values. A terrain dataset is 
a multi-resolution TIN stored in a geodatabase. In other words, a terrain 
dataset has a series of TINs for different map scale ranges. When you are 
zoomed out to the entire study area, a coarse-resolution TIN is used to 
display the topographic surface; when you zoom in, increasing levels of 
detail are available from finer resolution TINs. Therefore, a terrain dataset 
can facilitate the storage and maintenance of vector-based surface measure-
ments to support spatial modeling in GIS.

In this project, a terrain dataset will be created using LiDAR point 
clouds from St. Albans in Vermont, USA. First, multipoint feature classes 
will be created from a LAS file for LiDAR data. Then the feature classes 
will be added to a feature dataset in a file geodatabase. Finally, new terrain 
datasets will be created in the feature dataset.

 2. Data
LiDAR data from a 2 km × 2 km study area in St. Albans, VT, USA is used 
in this project. The LiDAR data provided by the U.S. Geological Survey was 
collected in 2008 with a point density of 2.02 points/m2. The horizontal coor-
dinate system is Vermont State Plane NAD83 (2007) [EPSG: 32145], and the 
vertical coordinate system NAVD88 (Geoid 03) [EPSG: 5703]. This dataset is 
based on processing services provided by the OpenTopography facility with 

FIGURE 3.13 Visualization of DHM in ArcScene.
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support from the National Science Foundation under NSF Award Numbers 
0930731 and 0930643. LiDAR data file in LAS format “St-Albans.las” can 
be downloaded (by right-clicking the file and saving it to a local folder) from: 
http://geography.unt.edu/~pdong/LiDAR/Chapter3/Project3.2/

 3. Project Steps
 1. Open an empty Word document so that you can copy any results from the 

following steps to the document. To copy the whole screen to your Word 
document, press the PrtSc (print screen) key on your keyboard, then open 
your Word document and click the “Paste” button or press Ctrl+V to paste 
the content into your document. To copy an active window to your Word 
document, press Alt+PrtSc, then paste the content into your document.

 2. Open ArcMap, select Customize → Extensions…, and turn on the 3D 
Analyst Extension.

 3. Create LAS dataset St-Albans.lasd from LAS file St-Albans.las. Open 
Arctoolbox → Data Management Tools → LAS Dataset → Create LAS 
Dataset. Use St-Albans.las as input and St-Albans.lasd as output to cre-
ate a LiDAR dataset in your own folder. The LAS dataset is added to 
ArcMap automatically. The purpose of this step is to collect coordinate 
system information that can be used in Step 4 below.

 4. Convert the LAS file to multipoint feature class. Go to ArcToolbox → 3D 
Analyst Tools → Conversion → From File → LAS to Multipoint. Select 
St-Albans.las as input, dsmpts.shp as output feature class in your project 
folder, 0.5 as Average Point Spacing, 1 for Input Class Code (Figure 3.14A), 
and then scroll down and click the icon after the Coordinate System 
option (Figure 3.14B). On the XY Coordinate System panel of the Spatial 
Reference Properties form (Figure 3.15), select “Import…” to import 
the XY coordinate system from the LAS dataset St-Albans.lasd. For the 
Z Coordinate System panel in Figure 3.15, choose Vertical Coordinate 
Systems → North America → NAVD_1988. Then click OK to return to 
Las to Multipoint conversion form, and click OK. Figure 3.16 shows the 
attribute table of the multipoint feature class dsmpts.shp.

 5. Repeat Step 4, but use dtmpts.shp as output feature class, and 2 for 
Input Class Code to create a multipoint feature class for DTM.

(A) (B)

FIGURE 3.14 LAS to multipoint conversion.

http://geography.unt.edu/~pdong/LiDAR/Chapter3/Project3.2/
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 6. Create file geodatabase. Open ArcCatalog and connect to the folder 
for this project. Select Customize → Extensions…, and turn on the 3D 
Analyst Extension for ArcCatalog. Right click the empty space in the 
project folder in ArcCatalog, and select New → File Geodatabase to 
create a new file geodatabase “StAlbansGeoDB.gdb”.

 7. Create new feature dataset “TerrainDS”. Right click StAlbansGeoDB.
gdb in ArcCatalog and select New → Feature Dataset to create a feature 
dataset “TerrainDS.” Use the coordinate systems explained in Step 4 
and default values for other parameters.

 8. Import feature classes. Right click TerrainDS and select Import → 
Feature Class (multiple)… to import dsmpts.shp and dtmpts.shp from 
the project folder you specified in Step 4, then click OK.

FIGURE 3.16 Attribute table of multipoint feature class dmspts.

FIGURE 3.15 Selecting coordinate systems for LAS to multipoint conversion.



57Basics of LiDAR Data Processing

 9. Create new Terrain. Right click TerrainDS and select New → Terrain…, 
then use “StAlbans_Terrain” as the terrain name, and select dsmpts and 
dtmpts as the feature classes that will participate in the terrain, and 
0.5 m as the approximate point spacing, then click Next (Figure 3.17).

 10. Use the default values for pyramid type. For the terrain pyramid lev-
els, click “Calculate Pyramid Properties,” then click “Next” (Figure 3.18).

FIGURE 3.18 Creating terrain pyramid properties for a terrain dataset.

FIGURE 3.17 Creating a new terrain dataset.
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 11. Click “Finish” on the Summary form to create the terrain dataset 
“Stalbans_Terrain” (Figure 3.19), then click “Yes” to build the new ter-
rain. Select StAlbans_Terrain in the ArcCatalog Catalog Tree, then click 
the Preview panel to view the terrain dataset. You can also use Zoom In, 

FIGURE 3.20 Terrain dataset for the study area.

FIGURE 3.19 Summary of terrain settings.
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Zoom Out, and Pan tools on the ArcCatalog toolbar. Samples of the multi-
resolution terrain dataset are shown in Figures 3.20 through 3.22.

 12. Repeat Steps 9–11 to create a new Terrain “StAlbansDTM_Terrain” by 
selecting only the DTM feature class “dtmpts.shp”.

FIGURE 3.21 Details of terrain dataset.

FIGURE 3.22 More details of terrain dataset.
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 13. Repeat Steps 9–11 to create a new Terrain “StAlbansDSM_Terrain” by 
selecting only the DSM feature class “dsmpts.shp”. At this point, a total 
of five datasets have been created under the feature dataset “TerrainDS” 
(Figure 3.23).

 14. Save your ArcMap project and Word document.
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4 LiDAR for Forest 
Applications

4.1  INTRODUCTION

When a laser pulse hits a tree, its energy is reflected back to the sensor or scattered 
away from the crown surface, and the remaining component is transmitted through 
foliage gaps. The transmitted energy can be further reflected and scattered by foli-
age, branches, and stems at lower heights. The position and intensity of the reflected 
energy peaks along the path of travel are related to the vertical and horizontal struc-
ture of the canopy. LiDAR is a revolutionary remote sensing technology for vegeta-
tion mapping because (1) laser returns can be used to directly estimate information 
on vertical structure of vegetation, and (2) conventional optical and radar remote 
sensing signals are not very sensitive to variations in vertical vegetation structure 
compared with LiDAR.

Numerous studies have been conducted on small and large footprint LiDAR 
applications in forest studies, including discrete return LiDAR data (e.g., Chen et al. 
2006, Hudak et al. 2006, Jensen et al. 2008, Wang and Glenn 2008, 2009, Evans 
et al. 2009), full-waveform LiDAR data (e.g., Duncanson et al. 2010, Lefsky 2010, 
Fieber et al. 2015, Cao et al. 2016, Nie et al. 2016), and fusion of LiDAR and other 
remotely sensed data (e.g., Hyde et al. 2006, Erdody and Moskal 2010, Jones et al. 
2010, Puttonen et al. 2010, Clark et al. 2011, Sun et al. 2011). Some forest char-
acteristics such as canopy height, subcanopy topography, and vertical distribution 
of intercepted surfaces can be directly estimated from LiDAR data, whereas some 
other characteristics such as basal area, canopy volume, leaf area index (LAI), and 
aboveground biomass are usually estimated through modeling. Reviews of LiDAR 
for forest applications can be found in the work of Lim et al. (2003), Hyyppä et al. 
(2008), Mallet and Bretar (2009), Wulder et al. (2012), Balenović et al. (2013), Chen 
(2013), Man et al. (2014), and Lu et al. (2016). Figure 4.1 shows basic categories of 
LiDAR for forest applications.

The information extraction methods for LiDAR applications in forests can be 
broadly classified into two categories: individual tree based (Chen et al. 2006; Yu 
et al. 2010, Duncanson et al. 2014, Latifi et al. 2015) and area-based (Means et al. 
2000, Hudak et al. 2008, Yu et al. 2010, Latifi et al. 2015). This chapter introduces 
several topics on LiDAR applications in forest studies, including (1) canopy sur-
face height modeling and mapping; (2) LiDAR metrics for vegetation modeling; 
(3) individual tree isolation and mapping; (4) area-based modeling and mapping; 
and (5) modeling, mapping, and estimating biomass. At the end of the chapter, two 
 step-by-step projects are designed in ArcGIS for extracting canopy heights from leaf-
on and leaf-off LiDAR data in Susquehanna Shale Hills, PA, USA, and identifying 
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disturbances from hurricanes and lightning strikes to mangrove forests using LiDAR 
data in Everglades National Park, FL, USA.

4.2  CANOPY SURFACE HEIGHT MODELING AND MAPPING

Once a digital terrain model (DTM) is generated using filtered ground returns as 
described in Chapter 3, useful information about vegetation “height” over forested 
areas can be immediately derived by subtracting the underlying DTM elevation 
from the elevation of each point, a process called point cloud normalization or DTM 
detrending (Figure 4.2). From the detrended LiDAR point cloud, an analyst can cre-
ate a raster grid of a certain resolution (e.g., 1, 2, 5 m, etc.) and calculate various 
statistics (e.g., mean, median, and maximum) of height for laser points falling within 
each grid cell, which results in various vegetation height raster products. In this 
section, we focus on one particular type of vegetation height product: a raster grid 
that stores the upper surface (i.e., maximum) height of vegetation canopy, which 
hereinafter is called the canopy height model (CHM). In our discussion, CHM is 
essentially 2.5-dimensional (2.5D) instead of 3-dimensional (3D) because, at a given 
horizontal location, there is only one height; if a user is interested in constructing the 
complete 3D envelope of tree crowns that includes both the upper surface and lower 

Categories of LiDAR for forestry applications

Footprint size:
– Small footprint
   (a few centimeters)
– Large footprint
   (tens of meters)

Information extraction
method
– Area-based
– Individual tree-based

Sensor type:
– Discrete return
– Full waveform
– Sensor fusion

FIGURE 4.1 Categories of LiDAR for forest applications.

FIGURE 4.2 LiDAR point cloud before (left) and after (right) height normalization.
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boundary, more sophisticated techniques such as “wrapped surface reconstruction” 
(Kato et al. 2009) is needed. CHM, as a surface model, by itself carries important 
information about the amount and spatial distribution of vegetation materials over a 
geographical area. It is also the basis for mapping individual trees and deriving tree-
level information (such as height and crown size) as described in Section 4.4.

A CHM can be generated via two different processes: (1) first generate a digital 
surface model (DSM) from the original LiDAR point cloud (a point cloud with the 
raw x, y, z values), and then subtract DTM from DSM to derive CHM, or (2) first 
create a DTM-detrended point cloud (with x, y, height values) by subtracting each 
point’s Z elevation from its DTM elevation, and then generate a CHM from the 
detrended point cloud. Whatever method is used, interpolation is needed to generate 
continuous DSM or CHM models from discrete points.

The main challenge of CHM generation lies in the fact that the LiDAR sensor 
does not continuously measure but just samples the earth surface (i.e., LiDAR data 
acquisition is essentially a sampling process). Maximum is an order statistic for 
which the sample estimate is always less than or equal to the population parameter 
(i.e., the estimator is biased). Therefore, if CHM is generated by simply searching 
the laser point of maximum elevation or height within each cell, it would underesti-
mate the true maximum height. This issue has been recognized in numerous studies 
(e.g., Næsset 1997, Hyyppä and Inkinen 1999, Persson et al. 2002, Holmgren et al. 
2003, Gaveau and Hill 2003, Leckie et al. 2003). Another problem with sampling is 
that some cells, especially when they are small, might not have laser points within 
them, which appear as “pits” over crowns on a CHM (e.g., Baltsavias 1999, Ben-Arie 
et al. 2009, Popescu and Wynne 2004). An inaccurate CHM causes problems in the 
retrieval of individual trees and crown attributes (Nelson et al. 2000, Weinacker 
et al. 2004, Van Leeuwen et al. 2010), especially when crown shapes are complex 
and irregular (Mei and Durrieu 2004, Chen et al. 2006, Rahman and Gorte 2009, 
 Ben-Arie et al. 2009, Pitkanen et al. 2004).

Many approaches have been proposed to address the above problems. For exam-
ple, Van Leeuwen et al. (2010) fitted cone shapes to point clouds to compensate 
underestimation of tree height. However, such an approach is difficult to apply over 
forests with trees of different shapes. A better strategy to address these issues is 
interpolation. Note that choosing an appropriate interpolator is the key. As discussed 
in Chapter 3, some of the interpolators (e.g., inverse distance weighting – IDW) are 
exact and cannot make predictions beyond the range of the LiDAR point elevations, 
which cannot solve the problem of underestimation. Other interpolators such as thin-
plate spline (TPS) can generate predictions larger than the maximum elevation of 
laser points; however, they are sometimes over-sensitive to elevation changes of laser 
points and thus produce unrealistic predictions.

To reduce or eliminate the effects of data pits, Leckie et al. (2003) proposed a 
method to assign all LiDAR data into 25 cm × 25 cm grid cell and only the highest 
points in each cell were retained to generate CHM. However, many pits still remain 
because the highest points in some grid cells are in fact data pits. Some other studies 
have focused on post-processing of DSM or CHM to fill the pits using local func-
tions, such as using the median value in a neighborhood to replace a local pixel value 
(Hyyppä et al. 2000), or filtering pits using mean values (MacMillan et al. 2003). 
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While these local filtering functions can remove some pits, they also modify the crown 
shapes. Ben-Arie et al. (2009) proposed a semi-automated pits filling algorithm to 
identify and fill pits in a CHM and reported that the pit filling algorithm was visually 
superior to the tested smoothing filters (3 × 3 median, mean, and Gaussian) for filling 
data pits while preserving the edges, shape, and structure of the CHM. However, the 
CHM was derived from a DSM and a DTM which were created using IDW interpola-
tion of the original point clouds, and any subsequent processing of the DSM, DTM, 
or CHM will not correct the errors induced by the interpolation process. Therefore, 
accurate representation of canopy surfaces is needed to ensure high quality of a CHM.

Liu and Dong (2014) proposed a new method for generating CHMs from discrete-
return LiDAR point clouds to address the common problems of tree height under-
estimation and data pits in LiDAR-derived CHMs. Unlike the method by Leckie 
et al. (2003) which uses the highest points in grid cells (here the method is referred 
to as the highest points method), the method proposed by Liu and Dong takes into 
account the height distribution of LiDAR points in selection circles. In contrast to 
the semi-automated algorithm proposed by Ben-Arie et al. (2009) for interpolated 
raster surfaces, the Liu and Dong method is based on the original LiDAR point 
clouds in order to minimize the propagation of errors. Figure 4.3 shows the flow-
chart for pre-processing LiDAR point clouds. Figure 4.4 shows CHMs for simulated 
single tree LiDAR points generated using the method proposed by Dong (2010) (also 
see Equations 4.3 and 4.4). Results from real LiDAR data are shown in Figures 4.5 
through 4.8. As can be seen from the results, the method proposed by Liu and Dong 
produced better CHMs in comparison with some other methods.     

Read next
point p in Pn

Save point p to
output points Po

Read next
point p in Pn

Read first point p in Pn

Yes

No

Yes
Yes

End

No

No Is p the last
point in Pn?

Is p the last
point in Pn?

Is the height
of p below the percentage

threshold for selected
points?

Calculate height from DEM for each point in Pn

LiDAR point clouds

Non-ground LiDAR points (Pn)Ground LiDAR points (Pg)

Create DEM from Pg

Select points in Pn using a circle
centered at p with radius r

FIGURE 4.3 Flowchart for creating new point clouds Po. (From Liu, H. and Dong, P., 
Remote Sens. Lett., 5, 575–582, 2014.) 
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As explained earlier, CHM can also be generated as the difference between DSM 
and DTM. Therefore, accurate construction of DSM can help address the problems 
of height underestimation and “pit” in raster data. Tang et al. (2013) used a region-
based level set method to reconstruct 3D canopy surfaces. Based on the level set 
function φ ( )t x y, , , the zero-level set segments the image into several homogeneous 
regions by minimizing the following function F (Chan and Vese 2001):
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where Ω is a bounded open subset of ℝ2; u0(x, y) is a given image; (x, y) are pixel 
coordinates; c1 and c2 are the average of u0 inside and outside the evolving curve, H(∙) 

THD = 1.59 m THD = 1.04 m THD = 0.36 m

(A) (B) (C) (D)

(E) (F) (G) (H)

THD = 3.20 m

FIGURE 4.4 Grey-scale view (top) and perspective view (bottom) of simulated LiDAR 
point clouds for simulated tree crowns. (A) IDW interpolation of original non-ground points; 
(B) Median filtering of (A); (C) IDW interpolation using the highest points method; (D) IDW 
interpolation using the new method; and (E) through (H) are corresponding perspective views 
of (A) through (D) along with original non-ground point clouds. THD is the treetop height 
difference between the treetops in the point clouds and on the interpolated raster surfaces. 
(From Liu, H. and Dong, P., Remote Sens. Lett., 5, 575–582, 2014.)



68 LiDAR Remote Sensing and Applications

THD = 0.42 m THD = 0.21 m THD = 0.04 mTHD = 1.34 m

(C) (D)(B)(A)

(G) (H)(F)(E)

FIGURE 4.6 Grey-scale view (top) and perspective view (bottom) of LiDAR point clouds 
for a Douglas fir crown. (A) IDW interpolation of original non-ground points; (B) Median fil-
tering of (A); (C) IDW interpolation using the highest points method; (D) IDW interpolation 
using the new method. (E) through (H) are corresponding perspective views of (A) through 
(D) along with original point clouds. THD is the treetop height difference between the tree-
tops in the point clouds and on the interpolated raster surfaces. (From Liu, H. and Dong, P., 
Remote Sens. Lett., 5, 575–582, 2014.)

THD = 2.54 m THD = 0.37 m THD = 0.10 mTHD = 5.83 m

(A) (B) (C) (D)

(E) (F) (G) (H)

FIGURE 4.5 Grey-scale view (top) and perspective view (bottom) of LiDAR point clouds 
for a Douglas fir crown. (A) IDW interpolation of original non-ground points; (B) Median fil-
tering of (A); (C) IDW interpolation using the highest points method; (D) IDW interpolation 
using the new method. (E) through (H) are corresponding perspective views of (A) through 
(D) along with original point clouds. THD is the treetop height difference between the tree-
tops in the point clouds and on the interpolated raster surfaces. (From Liu, H. and Dong, P., 
Remote Sens. Lett., 5, 575–582, 2014.)
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is the Heaviside function; and δ(∙) is the Kronecker delta function. The first element in 
Equation 4.1 is the length of the contour, the second is the area within the contour, and 
the third and fourth terms are proportional to the energy inside and outside the contour.

THD = 0.65 m THD = 0.65 m THD = 0.02 mTHD = 1.34 m

(A) (B) (C) (D)

(E) (F) (G) (H)

FIGURE 4.7 Grey-scale view (top) and perspective view (bottom) of LiDAR point clouds 
for a redwood crown. (A) IDW interpolation of original non-ground points; (B) Median fil-
tering of (A); (C) IDW interpolation using the highest points method; (D) IDW interpolation 
using the new method. (E) through (H) are corresponding perspective views of (A) through 
(D) along with original point clouds. THD is the treetop height difference between the tree-
tops in the point clouds and on the interpolated raster surfaces. (From Liu, H. and Dong, P., 
Remote Sens. Lett., 5, 575–582, 2014.)

High : 53.87

Low : –0.11

High : 56.43

Low : –0.1

N N

0 10 m 0 10 m

(A) (B)

FIGURE 4.8 Comparison of canopy height models created from IDW interpolation of 
(A) all points and (B) remained points filtered by the new method. (From Liu, H. and Dong, P., 
Remote Sens. Lett., 5, 575–582, 2014.)
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The minimization of function F in Equation (4.2) is solved by taking the Euler-
Lagrange equations and updating the level set function φ  by gradient descent:
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Figure 4.9 shows some results of 3D tree canopy construction using the region-based 
level set method. The reconstructed 3D canopy surfaces allow for more accurate 
measurement of tree crown parameters, such as crown volume and radius.

4.3  LiDAR METRICS FOR VEGETATION ANALYSIS

CHM described in the previous section is to characterize the canopy surface 
“ maximum” height over space. However, over any particular area (e.g., a 1 m × 1 m 
grid cell, a tree crown, or a circular field plot), many laser points usually exist. Based 
on the height of these points, several statistical metrics (e.g., mean and standard devi-
ation) can be generated. These metrics can be used to characterize the 3D canopy 
structure and predict forest attributes that are needed for many practical applications 
(e.g., forest management, ecological modeling, and climate policy analysis). 

It is important to note that LiDAR does not directly “measure” most of the veg-
etation attributes that are needed in practice, such as basal area, canopy cover, stand 
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density, and biomass. Even for vegetation height, the LiDAR measurements are 
point-based while field-based measurements are tree-based. In other words, LiDA R- 
and field-based height measurements are at different scales. To address these dis-
crepancies, a common approach is to develop statistical (e.g., regression) models to 
indirectly “model” or predict the forest attributes over a geographical area using 
LiDAR-based metrics.

Based on previous studies (Means et al. 2000, Hudak et al. 2006, 2008), Evans 
et al. (2009) proposed 22 metrics for vegetation modeling. The metrics are listed 
below, where x = numeric variable, n = number of observations, μ = mean, and 
σ =  standard deviation. Note that, however, this is not a standard list of LiDAR 
metrics for vegetation analysis. Numerous alternative ways exist to calculate 
LiDAR metrics; for example, percentile heights can be calculated at any value 
(e.g., 90th, 80th, and 70th). Whether a LiDAR metric is optimal for predicting a 
forest attribute depends on many factors such as the type of statistical models used 
(e.g., parametric vs. non-parametric models), the scale of analysis (e.g., individual 
trees or plots), and the nature of the attribute (e.g., whether it is 1D canopy height 
or 3D volume). A user should consider the forest attribute of interest and carefully 
choose an appropriate way to calculate LiDAR metrics.

 1. Minimum;
 2. Maximum;
 3. Range: (max − min);

 4. Arithmetic Mean: 
∑

µ = =
x

N

i
i

N

1

 5. Standard Deviation (σ);
 6. Variance (σ2);
 7. Percentiles: 5th, 10th, 25th, 50th, 75th, and 95th percentile values (x);
 8. Median Absolute Deviation from Median: mediani(Xi – medianj(Xj));
 9. Dominate Mode: Value of the dominate mode in a kernel density estimate 

(x);
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 12. Interquartile range: 75th percentile (x) – 25th percentile (x);
 13. Coefficient of Variation: σ µ ⋅( / ) 100;
 14. Number of Modes: Number of modes from a kernel density estimate (x);
 15. Difference between Min and Max Mode: (maximum mode – minimum 

mode) from a kernel density estimate (x);
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 16. Canopy Relief Ratio: 
µ −

−
height height

height height
( ) Min ( )

M ax( ) Min ( )

 17. Percent of returns that are first, second, third, etc.: 
  ⋅
n return number

N
100

i

 18. Texture: σ(ni |> height(0) and <= height(1)|);
 19. Number of ground returns;
 20. Number of non-ground returns;

 21. Density: 
  ⋅
n nonground

N
100

i

 22. Stratified Density: 
> <  ⋅

n x and x

N
100

i 1 2

4.4  INDIVIDUAL TREE ISOLATION AND MAPPING

In forestry and ecology studies, tree-level information (e.g., height, crown size, diam-
eter at breast height (DBH), stem volume, and biomass) is often needed. For decades, 
researchers have attempted to map individual trees using remote sensing data; ini-
tially with aerial photos (e.g., Leckie et al. 1992; Wulder et al. 2000) and later with 
high spatial resolution satellite imagery (e.g., Chopping 2011). Airborne LiDAR data 
of high point density (~5 points/m2 or higher) can produce better results than high 
spatial resolution optical imagery because (1) all points in a LiDAR point cloud are 
accurately geo-referenced in 3D whereas pixels in an image or photo are projected to 
2D with distortion (such as relief displacement), (2) the basis of detecting trees from 
LiDAR data is the 3D shape of the trees whereas photo- or image-based tree detec-
tion replies on the pixel brightness variations within tree crowns (the latter is often 
affected by sun illumination conditions), and (3) LiDAR can provide direct estimates 
of tree height whereas it is much more difficult to do so using imagery. Because of 
these advantages, airborne LiDAR has gained popularity for tree mapping in the 
21st century.

Numerous methods of mapping trees from LiDAR data have been developed, and 
they can be broadly classified into categories based on either (1) 2D or 3D grid mod-
els of canopy (e.g., CHM) or (2) 3D point clouds. The developed methods differ in 
the complexity of algorithms, ease of setting up or tuning parameters, computation 
resource needed, processing speed, and type of trees (dominant trees only versus 
all trees including understory ones) that can be extracted. The rest of this section 
will introduce the grid- and point-based tree isolation algorithms, respectively, and 
discuss their strengths and weaknesses.

4.4.1  GRId-Based TRee MappING

The classical approaches to map individual trees are based on CHM, a 2D grid or 
raster of canopy height. A common strategy is to identify treetops by searching 
local maxima from CHM (Persson et al. 2002, Leckie et al. 2003, Maltamo et al. 
2004, Popescu and Wynne 2004, Monnet et al. 2010, Vastaranta et al. 2011). Several 
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challenges exist to detect trees from local maxima approaches: (1) trees of irregular 
shape could have hanging branches that appear as local maxima in the CHM; this is 
quite common for old, large deciduous trees, especially at leaf-off stage; and (2) the 
“pits” mentioned in Section 4.2 could create artificial low valleys and thus local 
maxima in CHM.

The local maxima that correspond to false treetops can be suppressed using two 
strategies: (1) smoothing CHM using low-pass filter to remove the “pits”, and (2) using 
variable window sizes for searching local maxima. Note that the minimal window size 
of searching local maxima is 3 × 3 pixels. The latter strategy means that the window 
size can be increased according to tree size. For example, Popescu and Wynne (2004) 
adaptively varied the window size with the height of each CHM pixel, according to a 
regression curve that can characterize the tree height-crown size relationship at a given 
site (Figure 4.10). The regression curve was calibrated from a field sample of trees for 
which tree height and crown radius were measured. Since larger window sizes were 
used to search local maxima for taller canopy, fewer false treetops were included in the 
results. In other words, the commission errors in treetop detection were reduced using 
variable window size (see the example in the top row of Figure 4.11).  

Chen et al. (2006) reported that although the use of variable window size based 
on regression curve can reduce the commission errors, it can also introduce omission 
errors in treetop detection. This is because the window size based on the regression 
curve is larger than crown size for about half of the trees (see Figure 4.10). When the 
window size is larger than the crown size, some true treetops might be missed (see 
the bottom row of Figure 4.11).

To detect the missed treetops, Chen et al. (2016) used the lower-limit of the pre-
diction interval of the regression model (Figure 4.10). This indeed can reduce the 
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FIGURE 4.10 Variable window size for searching local maxima based on either the regres-
sion curve (the solid line) or the lower limit of the prediction interval of the regression 
model (the dashed line). (Adapted from Chen, Q. et al., Photogramm. Eng. Remote Sens., 72, 
 923–932, 2006.)
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omission errors in treetop detection for some trees (see Figure 4.12B), but it will 
slightly increase the commission errors for others (Figure 4.12D). To reduce com-
mission and omission errors simultaneously, Chen et al. (2006) first smoothed the 
CHM with a maximum filter with variable window size (similar to the lower limit 
of the prediction interval in Figure 4.10 but with a different significance level). The 
resulted model was named Canopy Maximum Model (Figure 4.13), which was used 
to detect treetops with variable window size based on the lower-limit curve.  

 Using such a divide-and-conquer strategy, Chen et al. (2006) found that treetops 
can be properly detected (Figure 4.14A) while using variable window size based on 

FIGURE 4.11 Local maxima (dots) detected using fixed (left) and variable window size 
(right). The circles in the middle figures shows the variable window sizes used at each local 
maximum detected from fixed window size. The top figures are for a case of two field trees 
(one small in the lower-left corner, one very large tree in the middle); the bottom figures are 
for two trees that are tall but with small crown sizes.
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FIGURE 4.12 Treetops (dots) detected when window sizes vary with regression curves (A 
and C) or lower-limit of the prediction intervals of the regression model (B and D). α is the 
significance level.
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CHM (Figure 4.14B and D), but cannot be properly detected when using fixed win-
dow size (Figure 4.14C).

 Since treetop detection can provide (x, y) coordinates of individual trees, tree 
heights can be also estimated using the CHM value at the location of treetops. 
However, additional processing is needed to extract crown size, another key attribute 
of individual trees. Some methods can only extract crown size along limited direc-
tions. For example, Popescu et al. (2003) estimated crown radii by fitting four-order 
polynomial models to two perpendicular directions from treetops. Other methods 
used image segmentation to create crown segments for individual trees (Hyyppä 
et al. 2002, Morsdorf et al. 2003) and return the boundary of each crown. Among the 
various image segmentation methods, the marker-controlled watershed segmenta-
tion is probably the most popular one (Koch et al. 2003, Chen et al. 2006, Kwak et al. 

Maximum
filtering with
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window size

(A) (B)

CHM CHM

FIGURE 4.13 Generation of canopy maximum model (B) from CHM (A) by applying max-
imum filtering with variable window size.

(C) CHM,
fixed
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(D) CHM,
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(regression
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FIGURE 4.14 Searching local maxima for detecting treetops using (A) CMM and vari-
able window size based on lower limit curve; (B) CHM and variable window size based on 
lower-limit curve; (C) CHM and fixed window size; and (D) CHM and variable window size 
based on regression curve. (Adapted from Chen, Q. et al., Photogramm. Eng. Remote Sens., 
72, 923–932, 2006.)
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2007, Breidenbach et al. 2010, Hu et al. 2014). Using CHM as an example, this algo-
rithm can be understood intuitively as follows: punch a CHM with holes at the loca-
tion of treetops (which is called markers), invert the punched CHM and immerse it 
into water, and then build dams at the location where water from different crowns 
(watersheds) meet (Figure 4.15); the dams are used to delineate the boundary of tree 
crowns.

The key for the success of marker-controlled watershed segmentation is that 
treetops (markers) should be properly detected. Commission and omission errors in 
treetop detection will lead to over- and under-segmentation of tree crowns, respec-
tively. Chen et al. (2006) found that a laser scanner may miss the treetops so local 
maxima do not exist on a CHM for some trees. Based on the fact that treetops usually 
are horizontally near the center of tree crowns, Chen et al. (2006) used a distance-
transformed image to detect the missing treetops (Figure 4.16). 

With a CHM, it is relatively easy to detect large overstory dominant/co- dominant 
trees, but it is nearly impossible to find smaller understory suppressed trees. To address 
this problem, many different approaches have been proposed in recent years. For 
example, Duncanson et al. (2014) proposed a multi-layered crown delineation algo-
rithm as follows: first create tree crown segments using watershed segmentation based 
on CHM, then analyze the point cloud within each segment, find the point cloud for 
understory trees, generate a CHM using the understory point cloud, and finally apply 
marker-controlled watershed segmentation to the understory CHM for detecting trees.

Besides watershed segmentation, other segmentation methods were also used for 
tree crown mapping. For example, Reitberger et al. (2009) created 3D grid of voxels 
for canopy and used the normalized cut segmentation to detect both overstory and 
understory trees; Wang et al. (2008) used a voxel structure and a hierarchical mor-
phological algorithm to generate a crown region at different height intervals. Tree 
crowns are then reconstructed using a pre-order forest traversal approach, allowing 
the grouping of neighboring crown regions generated at the same height intervals. 
The method identifies both canopy and over-topped trees but is sensitive to both the 
voxel scale and the size of morphological elements (Wang et al. 2008). Liu et  al. 
(2015) proposed a new approach for individual tree crown delineation through crown 
boundary refinement based on a Fishing Net Dragging method and segment merging 
based on boundary classification; Strîmbu and Strîmbu (2015) presented a graph-
based segmentation algorithm for extracting tree crowns from LiDAR data.

FIGURE 4.15 Marker-controlled watershed segmentation. (Left) CHM, (middle) inverted 
CHM, (right) inverted CHM with dam built to separate the watersheds. Dark markers are 
treetops. (Adapted from Chen, Q. et al., Photogramm. Eng. Remote Sens., 72, 923–932, 2006.)
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4.4.2  poINT-Based TRee MappING

Another strategy of tree mapping is to group laser points into clusters that correspond 
to individual tree crowns. Such clustering algorithms usually assign a 3D point to its 
tree crown based on its proximity to the center of the tree crown. Therefore, correctly 
identifying the centers of tree crowns is the key for the success of such approaches, 
which is similar to the importance of searching treetops for grid-based methods.

Several clustering approaches have been developed to identify tree crown cen-
ters and separate point clouds from individual tree crowns. One such approach is 
the mean-shift mode-seeking algorithm. All laser points from a tree crown can be 
assumed to be sample data from a 3D density function, which has its mode or local 
maximum near the center of the tree crown, both horizontally and vertically. Mean-
shift estimates or reconstructs the density function using a smoothing function (also 
called kernel function), for which the key parameter is the kernel bandwidth. A band-
width that is too large or too small will create a density function that is too smooth 
or too rough and thus can lead to under- or over-segmentation of point cloud for tree 
mapping. In this sense, the bandwidth is similar to the window size for smoothing 
CHM using low-pass filters for grid-based approaches. Ferraz et al. (2012) proposed 
some bandwidth values for a Mediterranean forest in Portugal. However, the wider 
applicability of these values into other forests remains unclear.

(A) (B)

(C) (D)

10 m

FIGURE 4.16 Treetop detection and crown delineation using distance-transformed 
image. (A) CHM for which local maximum does not exist for the middle tree; (B) marker- 
controlled watershed segmentation using CHM and the two treetops based on local maxima; 
(C) distance-transformed image based on the results in (B) and the local maxima (treetops), 
and (D) final marker-controlled watershed segmentation based on the results in (C). (Adapted 
from Chen, Q. et al., Photogramm. Eng. Remote Sens., 72, 923–932, 2006.)
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Another approach of detecting tree crown centers and their associated points is 
to sort and process all points from the highest to the lowest based on their canopy 
heights or Z values and then sequentially assign them to individual tree crowns. 
Li et al. (2012) selected the highest point as the initial point of the first tree crown 
and checked the next highest point, which was assigned to the first tree crown if 
it was nearby or to a new tree crown if it was far away; this process was repeated 
until all points were classified. One of the challenges of applying such an approach 
is to set an appropriate threshold for determining whether a point is close to or far 
from the existing trees. Li et al. (2012) mentioned that the threshold should be adap-
tively changed according to tree height, similar to the variable window size used for 
searching local maxima in grid-based approaches (Popescu and Wynne 2004; Chen 
et al. 2006). Vega et al. (2014) calculated the k-nearest neighbor for each point, 
checked the points sequentially from the highest to the lowest Z, and initialized a 
new cluster if it was higher than its neighbors. However, a k value that is too large 
or too small can lead to under- or over-segmentation of tree point cloud. Therefore, 
they proposed to segment trees at several scales with different k values and assess 
the likelihood that a segment is a tree based on several criteria such as size, circu-
larity, orientation, and regularity. Overall, these methods have the same challenge 
as the grid-based approaches in that parameters need to be carefully chosen to avoid 
tree segmentation errors.

Trees can also be detected based on the density of points (Rahman and Gorte 
2009; Mongus and Žalik 2015). For example, Mongus and Žalik (2015) used loca-
tions of high point density to detect tree trunks, based on which trees were further 
segmented using watershed segmentation. 

4.4.3  ReMaINING ChalleNGes IN TRee MappING

Despite many years of research, various tree isolation methods are still subject to sev-
eral major challenges: (1) although it is relatively easy to detect trees in stands of sim-
ple canopy structure (e.g., plantations), the accuracy is often low for complex  forest 
conditions (e.g., multi-stemmed trees, old deciduous trees, multi-layered canopy). 
It is much more difficult to detect smaller suppressed trees than larger dominant/ 
co-dominant trees. (2) The generality of most tree isolation methods needs to be 
substantially improved. Although many studies reported superior, sometimes sur-
prisingly high, accuracy for their own study sites, the application of these methods 
at a different site is often less satisfactory. For example, Kaartinen et al. (2012) did 
an international benchmarking comparison of nine different methods for the same 
study site in Europe. They found that the methods did not perform much better and 
often worse than simple local maxima and watershed segmentation-based methods. 
(3) Few methods have proved their capacity in mapping trees over large areas (e.g., 
hundreds of kilometers or greater). This is especially the case for the 3D point- or 
voxel-based approaches, which are very computation-demanding. In contrast, CHM-
based approaches are relatively fast; however, they need to improve their performance 
in detecting overtopped trees. Overall, the wider use of LiDAR to map individual 
trees for practical forest management relies on further improvements in the accuracy, 
generality, and computational speed/efficiency in tree isolation algorithms. 
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4.4.4  ModelING aNd pRedICTING INdIvIdual TRee aTTRIBuTes

From the detected individual treetops and delineated tree crowns, an analyst can 
directly estimate a few key attributes that relate to the position and shape of indi-
vidual tree crowns, including tree center/top location (x, y, and z), tree height, crown 
size (radius or area), height to the live crown, and crown depth. However, due to 
occlusion of LiDAR energy by upper canopy, and even with very high point density, 
airborne LiDAR data is not dense enough to see the details of trunks, branches, and 
leaves of trees. LiDAR cannot directly measure properties (such as mass and weight) 
other than the location and geometry of trees. Therefore, if airborne LiDAR data 
is used other tree-level attributes such as DBH, basal area, stem volume, leaf area, 
and biomass have to be indirectly estimated, usually using statistical methods. This 
requires two types of data: (1) field data for these attributes need to be collected from 
a sample of trees, and (2) LiDAR metrics, as described in Section 4.3, need to be 
extracted for each delineated tree crown. The field data and LiDAR metrics for the 
sampled trees are used to calibrate the models, which are further used to predict the 
attributes for the remaining trees (not sampled in the field) based on their LiDAR 
metrics at the crown-level.

The above procedure works only if individual tree crowns are accurately delin-
eated. However, as discussed in the previous section, tree isolation of most forests is 
prone to errors. If the tree crown boundary is mistakenly delineated, the correspond-
ing tree-level LiDAR metrics will also be incorrect. In such a case, it is unrealistic 
to expect high accuracy of estimating attributes at the tree level. Before an ideal 
algorithm of tree isolation is developed, a more plausible direction of research is to 
determine how the total of the predicted attributes from LiDAR-based segments can 
be as close as possible to the total of the true attributes of the corresponding trees in 
the field over an area. This means that the LiDAR metrics and/or statistical models 
should be carefully chosen to ensure that the estimate of the totals is insensitive 
to tree segmentation errors. Chen et al. (2007) proposed the use of the geometric 
volume of tree crown segments (the volume under CHM) to predict basal area and 
stem volume within forest plots; they also developed theoretical parametric models 
based on general allometry theory to predict these two attributes using geometric 
volume. It was found that the theoretical models, even with only one predictor, had 
better performance than other data-driven empirical models, some of which were 
developed from over 40 LiDAR metrics. The encouraging results from such a study 
imply that, to improve prediction accuracy, biology and ecology theories should be 
utilized to the maximum extent to develop statistical models that are both general 
and interpretable.

4.4.5  a sIMulaTIoN sTudy foR TRee IsolaTIoN

Since accurate positions of individual trees in dense forests are difficult to obtain 
using GPS devices, LiDAR point cloud simulation based on known treetop locations 
can be helpful for development and validation of treetop detection and crown shape 
analysis methods. Dong (2009) used random points with random elevation varia-
tions near the surfaces of three simple geometric models (cone, hemisphere, and 
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half-ellipsoid) to simulate individual tree crowns. Based on observation of discrete 
return LiDAR point clouds for individual conifer and deciduous tree crowns in the 
Soquel State Demonstration Forest near Santa Cruz, CA, USA, Dong (2010) noticed 
that that a majority of LiDAR points distribute in a layer near the crown surface 
because laser pulses have a reduced probability of hitting the core of the crown, and 
proposed a revised model for simulating LiDAR point clouds for individual trees 
(Figure 4.17). Figure 4.17A shows LiDAR points of a conifer tree crown, with red 
points representing selected LiDAR points from the x-z plane to show the point dis-
tribution in a profile. In Figure 4.17B, the outer surface f2(x, y) of the points is a 
half-ellipsoid with semi-principal axes of length a, b, c (a = b = r < c), whereas the 
inner surface f1(x, y) is a half-ellipsoid with a = b = d. Theoretically, d can change in 
the range of 0 < d < r, depending on the tree species and season (leaf-on or leaf-off). 
For simplicity, d = r/2 is used to construct the model for generating simulation data 
(Figure 4.17B). Similar diagrams can be drawn for cone and hemisphere models.

Based on the model in Figure 4.17, random points can be generated in a circle 
with radius r in the x-y plane, and z values of the points can be calculated using the 
following equations:
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where t is a random number between 0 and 1. Equation (4.3) is for points above the 
shaded ring in Figure 4.17C, and Equation (4.4) is for points above f x y( , )1  and below 
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FIGURE 4.17 LiDAR points selected from a crown profile (A), 3D surfaces f1(x, y) and 
f2(x,  y) (B), and shaded and non-shaded areas for point simulation (C). (From Dong, P., 
Remote Sens. Lett., 1, 159–167, 2010.)
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f x y( , )2 . The surfaces f x y( , )1  and ( )f x y,2  can be defined by geometric models such 
as cone, hemisphere, and half-ellipsoid (Dong 2009). Figure 4.18 shows 12 simulated 
tree crowns with different radius r and number of points N, and a point density of 
about 8.8 points/m2.  

Using the three simulated tree crowns of different shapes (cone, hemisphere, and 
half-ellipsoid) in Figure 4.18D, Dong (2010) tested automated discrimination of dif-
ferent tree crowns using 3D shape signatures (Osada et al. 2002, Dong 2009, 2010). 
The 3D shape signatures of crowns (r = 5 m) obtained from sample circles with dif-
ferent sizes (radius s) and locations are shown in Figure 4.19. Correlation coefficients 
between the 3D shape signatures are listed in Tables 4.1 through 4.3. The results 
show that 3D shape signatures calculated from different sizes of sample circles may 
show different degrees of separability between crown shapes, and that slight devia-
tion (less than 20% of crown width) of the center of sample circles from the crown 
center does not change the 3D shape signatures notably. The results suggest that it is 
possible to separate different crown shapes in an automated manner once the tree-
tops are accurately detected.

Cone

Hemisphere

Half-ellipsoid

r = 2 m, N = 111 r = 3 m, N = 250 r = 4 m, N = 444 r = 5 m, N = 694

(A) (B) (C) (D)

FIGURE 4.18 Simulated tree crowns with different base radius and number of points. 
(A) r = 2 m, N = 111; (B) r = 3 m, N = 250; (C) r = 4 m, N = 444; (D) r = 5 m, N = 694; r—
radius, N—number of points. (From Dong, P., Remote Sens. Lett., 1, 159–167, 2010.)
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FIGURE 4.19 3D shape signatures of crowns (r = 5 m) obtained from sample circles with 
different sizes (radius s) and locations. First row: results from sample circles around the 
crown center; second row: results from sample circles centered at a point 1 m away from 
the crown center; third row: results from sample circles centered at a point 2 m away from 
the crown center. (Blue—cone, red—hemisphere, green—half-ellipsoid). (From Dong, P., 
Remote Sens. Lett., 1, 159–167, 2010.)

TABLE 4.1
Correlation Coefficients between 3D Shape Signatures Obtained from 
Sample Circles (with radius s) Centered at the Crown Center

s = 2 m s = 3 m s = 4 m

Cone Sphr Elps Cone Sphr Elps Cone Sphr Elps

Cone 1 0.79 0.96 1 0.93 0.67 1 0.97 0.69

Sphr 0.79 1 0.77 0.93 1 0.57 0.97 1 0.78

Elps 0.96 0.77 1 0.67 0.57 1 0.69 0.78 1

Source: Dong, P., Remote Sens. Lett., 1, 159–167, 2010.
Sphr, Semisphere; Elps, Half-ellipsoid.
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4.5  AREA-BASED MODELING AND MAPPING

As described in the previous section, isolating and mapping individual trees is techni-
cally challenging and prone to errors. It appears few studies have applied LiDAR to 
map individual trees at large spatial scales. Over areas of tens of square kilometers or 
larger, area-based approaches are more commonly used. This usually involves the fol-
lowing steps: (1) a sample of forest plots are set up in the field, where forest attributes 
are measured at the tree level and summarized at the plot level; (2) LiDAR metrics are 
extracted within these field plots; (3) LiDAR metrics are extracted for the whole study 
area by partitioning the study area into grid cells of equivalent size to field plots and 
calculating LiDAR metrics within each grid cell; (4) statistical models are developed 
to predict forest attributes using LiDAR metrics using the data at the plot level; and 
(5) the developed plot-level models are applied to each grid cell to predict and map for-
est attributes for the whole study area. Compared to tree-based approaches, more field 
work is involved because field data are collected at the plot level, not at the tree level; 

TABLE 4.2
Correlation Coefficients between 3D Shape Signatures Obtained from Sample 
Circles (with radius s) Centered at a Point 1 m away from the Crown Center

s = 2 m s = 3 m s = 4 m

Cone Sphr Elps Cone Sphr Elps Cone Sphr Elps

Cone 1 0.77 0.90 1 0.93 0.81 1 0.97 0.82

Sphr 0.77 1 0.59 0.93 1 0.71 0.97 1 0.86

Elps 0.90 0.59 1 0.81 0.71 1 0.82 0.86 1

Source: Dong, P., Remote Sens. Lett., 1, 159–167, 2010.
Sphr, Semisphere; Elps, Half-ellipsoid.

TABLE 4.3
Correlation Coefficients between 3D Shape Signatures Obtained from Sample 
Circles (with radius s) Centered at a Point 2 m away from the Crown Center

s = 2 m s = 3 m s = 4 m

Cone Sphr Elps Cone Sphr Elps Cone Sphr Elps

Cone 1 0.91 0.90 1 0.90 0.90 1 0.98 0.89

Sphr 0.91 1 0.68 0.90 1 0.73 0.98 1 0.84

Elps 0.90 0.68 1 0.90 0.73 1 0.89 0.84 1

Source: Dong, P., Remote Sens. Lett., 1, 159–167, 2010.
Sphr, Semisphere; Elps, Half-ellipsoid.
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however, the relevant LiDAR data processing is greatly simplified by just calculating 
LiDAR metrics within individual plots and raster grid cells. 

Caution should be exercised for several issues regarding area-based approaches. 
First, since the relationship is nonlinear and scale-dependent between LiDAR metrics 
and most forest attributes, the grid cell size for model prediction (i.e., minimal mapping 
unit) has to be equivalent to the field plot size. A critical issue is to choose the proper 
field plot size. When calculating plot-level forest attributes using tree-level attributes, the 
common practice is that a tree is included or excluded based on whether the tree trunk is 
inside or outside of the plot, even if the tree crown is partially inside the plot. However, 
the extraction of LiDAR metrics typically uses cookie-cutter approaches, so inconsis-
tency exists between LiDAR metrics and field data for trees near the edge of plots. Such 
“edge-effects” are more severe for small plots, leading to large errors in modeling forest 
attributes (Frazer et al. 2011). One way of reducing modeling errors is to use larger plots, 
which, however, also requires more field work per plot. The choice of proper field plot 
size and, in general, field plot design, is an important yet difficult issue. 

Second, LiDAR metrics at plot scale are commonly calculated based on either laser 
points or rasterized CHM cells, even if the same formulas as listed in Section 4.3 are 
used. The metrics based on points could be sensitive to the flight conditions and the 
sensor setting (Roussel et al. 2017). In contrast, CHM-based metrics can reduce such 
variations by focusing on only the canopy surface heights, which, however, miss the 
structural variations within canopy. Some researchers found that the different ways of 
generating metrics have small impacts on the performance of predicting forest attri-
butes. For example, Lu et al. (2012) extracted four sets of metrics based on (1) all returns, 
(2) first returns, (3) last returns, and (4) CHM cells for 77 plots in mixed conifer forests 
in the Sierra Nevada in California. They found that the coefficient of determination (R2) 
only slightly varied from 0.75 to 0.77 when the different sets of metrics were used to pre-
dict biomass. Chirici et al. (2016) compared point-based and CHM-based metrics to pre-
dict forest biomass over a study area of 36,360 ha with deciduous forests in central Italy. 
They found that the model-assisted estimates of forest biomass were similar for both 
sets of metrics, regardless of whether parametric or non-parametric methods were used.

Third, although numerous LiDAR metrics can be generated from a point cloud or 
CHM, the metrics used to predict forest attributes should be carefully chosen to both 
increase the accuracy and enhance the interpretability of the models (Chen 2013, 
Magnussen et al. 2016). Lu et al. (2016) summarized that LiDAR metrics can be 
classified based on whether they characterize (1) horizontal structure (2D), (2) verti-
cal structure (1D), or (3) both horizontal and vertical (i.e., 3D) structure of canopy. If 
forest attributes of interest are the total or density value of each plot (e.g., basal area, 
stem volume, biomass, or LAI), 3D LiDAR metrics should be used. Examples of 3D 
LiDAR metrics include canopy geometric volume proposed by Chen et al. (2007). 
When LiDAR height metrics are calculated by including both canopy and ground 
returns, they are also essentially 3D metrics (Lu et al. 2016).

4.6  MODELING, MAPPING, AND ESTIMATING BIOMASS

The elevated concentration of carbon dioxide (CO2), as a greenhouse gas, in the atmo-
sphere is of major concern to our earth. Forests can absorb CO2 in the atmosphere 
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via photosynthesis and release O2 to the atmosphere via respiration, the balance of 
which results in changes of forest biomass. Therefore, forest biomass is a key climate 
variable for the global carbon cycle and has attracted the attention of both scientists 
and policy makers. 

However, forest biomass is also an attribute that is very difficult to estimate. It 
can be estimated using field measurements such as tree height, stem diameter, and 
wood density by applying allometric models obtained from destructive sampling and 
weighing of dried vegetation (Zolkos et al. 2013, Lu et al. 2016), and in situ mea-
surements can be extended to larger areas using remote sensing methods (Frolking 
et al. 2009, Houghton et al. 2009). Conventional optical and radar imagery have the 
signal saturation problem in that the remotely sensed variables do not respond to 
biomass changes when biomass is relatively high (>100–200 Mg/ha); in contrast, 
LiDAR-derived height is strongly correlated with biomass even when biomass is 
as high as 1000 Mg/ha (Chen 2013). Therefore, LiDAR has emerged as the most 
promising technology for biomass estimation, especially over tropical forests when 
biomass density is high. Figure 4.20 shows some common LiDAR-derived and field-
measured parameters that can be used as input to regression models for biomass 
estimation. A review on LiDAR data for biomass studies can be found in the works 
of Chen (2013) and Man et al. (2014). Table 4.4 summarizes some previous studies 
on LiDAR-based biomass modeling. Like other forest attributes, biomass can be 
estimated using individual-tree or area-based approaches from LiDAR. Most previ-
ous studies have focused on area-based approaches, which is also the focus of this 
section.

Area-based approaches require estimates of biomass over field plots to develop 
LiDAR-based models. Plot-level biomass is commonly calculated as the sum of the 
tree-level biomass divided by plot area (i.e., biomass density in units such as Mg/ha). 
The most accurate way of measuring tree biomass is to destructively harvest the trees 
and weigh them. However, such a method is impossible to apply at the landscape 
level. Instead, tree biomass in the field is estimated from other easily measurable 
variables (mainly DBH and height, and sometimes wood density) using allometric 

LiDAR data

- Mean canopy height - Mean canopy height
- Basal area

- Biomass
- Diameter at breast height
- Canopy cover

- Ground return ratio
- Height of median energy
- Canopy reflection sum
- Quadratic mean canopy height

Ground data

Regression techniques

Evaluation (R2 and RSME)

FIGURE 4.20 LiDAR-derived and field-measured parameters for forest biomass estimation. 
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models. Therefore, the very first and extremely important step in biomass estimation 
is to choose an appropriate allometric model to estimate field-based biomass. Chen 
(2015) compared three types of allometric models in the United States: one based on 
DBH only (the Jenkins method), one based on DBH and height [the Forest Inventory 
Analysis regional method], and another based on the expansion of stem volume to 
biomass [the Component Ratio Method (CRM)]. It was found that the use of different 

TABLE 4.4
Summary of Previous Studies on LiDAR-Based Biomass Modeling

References Parameters Models Results

Nelson et al. 
(1988)

Average of the three greatest 
laser heights, mean plot 
height (all pulses and 
canopy pulses), distance 
between the top of canopy 
and a point 2, 5 or 10 m 
above ground

Two logarithmic equations R2 = 0.55

Means et al. 
(1999)

LiDAR canopy height, 
quadratic mean canopy 
height, canopy reflectance 
sum

Allometric equations on 
DBH

R2 = 0.96

Lefsky et al. 
(2002)

Max/min canopy height, 
canopy cover, variability in 
the upper canopy surface, 
total volumes of foliage 
and empty space in canopy

Stepwise multiple regression R2 = 0.86

Drake et al. 
(2002)

LiDAR canopy height, 
height of median energy, 
height /median ratio, 
ground return ratio

The tropical wet allometric 
equation

R2 = 0.93

Nelson et al. 
(2004)

Quadratic mean height of 
pulses in the forest canopy

Parametric linear regression, 
nonparametric linear 
regression

R2 = 0.66

Popescu 
et al. (2004)

Average/maximum crown 
diameter; maximum height

Regression models R2 = 0.82 (Pine), R2 = 
0.33 (hardwoods)

Zhao et al. 
(2009)

LiDAR-derived canopy 
height distributions canopy 
height quartile functions

A linear functional model and 
an equivalent nonlinear 
model

R2 = 0.95

García et al. 
(2010)

LiDAR height, intensity or 
height combined with 
intensity data

A stepwise regression R2 = 0.85 (Pine), R2 = 
0.70 (Spanish juniper), 
R2 = 0.90 (Holm oak)

Zhao et al. 
(2011)

LiDAR composite metrics Support vector machine and 
Gaussian processes

RMSE = 21.4 (40.5) 
Mg/ha

Source: Man, Q. et al., J. Appl. Remote Sens., 8, 081598, 2014.
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allometric models had substantial impact on the performance of LiDAR-based bio-
mass models over three study sites in the Western United States. For example, over 
the forests in the Lake Tahoe basin in California, he found that the R2 for one of the 
LiDAR-based biomass models varied dramatically from 0.51 to 0.92 when the allo-
metric models were switched from the Jenkins method to CRM.

However, it should be noted that it is a wrong practice to choose the allome-
tric model simply based on the maximum performance (e.g., as indicated by R2) of 
LiDAR-based biomass models. The gold standard of choosing an allometric model 
is to compare the predictions of allometric models with destructive measurements 
of tree biomass at the study area (e.g., Colgan et al. 2014). Practically, this is rarely 
done because of the labor-intensive and expensive process of destructive measure-
ments. Allometric models were usually developed using destructive measurements 
of trees at site(s) different from the site where the allometric models are applied to. 
The common criteria of choosing allometric models include the similarity of forest 
conditions between allometric model development site and application site, the num-
ber of harvested trees, the range of tree size, and similarity of fitness (e.g., R2 and 
root mean square error – RMSE) of the models. Overall, an analyst should choose an 
allometric model that was developed from a site with similar environmental condi-
tions, with a large sample of harvest trees that spans a large range of tree size, and 
with similar fit to the model.

The goodness of fit of allometric models is closely related to the predictors that 
are used to predict biomass. The most common predictor is DBH, followed by tree 
height, and wood density. Such an order also reflects the degree of difficulty or ease 
of measuring corresponding variables in the field. From the perspective of model 
generality, allometric models that include these three predictors may have better pre-
diction accuracy when they are applied beyond the sites where they were developed. 
For example, Chave et al. (2014) and Chen et al. (2015) fitted allometric models for 
over 4000 trees in the pan-tropics and found that the tree biomass has a nearly linear 
relationship with ρ × DBH2 × H, where ρ is wood density and H is tree height. This 
indicates the importance of these three variables in predicting biomass.

Understanding allometry of tree biomass as previously discussed provides key 
insights in improving the modeling of biomass using LiDAR data. Note that LiDAR 
can provide direct information only for H, not for DBH and wood density. Although 
previous research has been done to predict DBH and wood density from LiDAR 
data, their estimation relies on their correlations with H. Therefore, to provide infor-
mation about wood density and DBH independently from LiDAR-derived vegetation 
height, other data sources should be utilized. Since both the DBH-H relationship and 
wood density are dependent on species, the incorporation of information regard-
ing tree species or, in general, vegetation type can potentially improve the biomass 
estimation. Along this line of thought, Chen et al. (2012) used mixed-effects mod-
els to combine vegetation type information derived from aerial photographs with 
LiDAR metrics to estimate biomass. This is equivalent to developing vegetation-
type- specific biomass models. It was found that such a combination can improve the 
biomass estimation for a conifer forest in Sierra Nevada, CA. A similar study was 
done by Chen et al. (2016) in Brazil, in which they stratified field plots over agrofor-
estry plantations based on DBH-H relationship and wood density. They found that 
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the mixed-effects modeling of biomass based on such a stratification can improve the 
model R2 from 0.38 to 0.64 for their study site. 

Although the analysis of many studies just focused on the results of LiDAR-
based modeling of biomass over field plots, the biomass estimates over field plots 
by themselves are not very useful from an application perspective. This is because 
field plots only cover a tiny portion of forests over a study area. Forest managers and 
decision makers typically want to know the biomass over different locations, beyond 
the forest plots where trees are measured in the field. This requires “mapping” for-
est biomass over the whole study area. A user may also be interested in the mean or 
total biomass of the whole study area or a part of it. If we consider a study area as 
a geographic space tessellated with individual pixels, each pixel can be considered 
as a population unit and all pixels of the study year consist of the study population. 
From the perspective of sampling and statistics, the “estimation” of mean or total 
biomass of an area that consists of many pixels is a statistical inference process. 
Therefore, the specific applications of LiDAR-based biomass studies can be clas-
sified as either “mapping” biomass of individual pixels or “estimating” mean/total 
biomass of an area. Conventionally, geographers are interested in biomass mapping 
whereas foresters are interested in biomass estimation. Note that here we follow 
statisticians, for whom “estimation” specifically means the inference of population 
or subpopulation statistics from a probabilistic sample. However, the remote sens-
ing literature usually uses the word “estimate” or “estimation” at many different 
scales including individual trees, plots, pixels, or a study area without referring to 
sampling and inference. We do not use strictly one single definition throughout the 
book. Instead, readers need to interpret the specific meaning according to the con-
text of our discussion.

No matter if the application focus is biomass mapping or estimation, one big chal-
lenge is to characterize the errors of the estimated biomass at the pixel- or  population/
subpopulation-level. One very important factor that can affect the error analysis 
method is the sampling scheme of field plots, which could be probabilistic (e.g., 
simple random sampling (SRS) or stratified random sampling) or purposive (i.e., the 
location of field plots is determined on purpose to reduce the prediction errors and 
minimize the cost). Most LiDAR-based biomass studies used purposive field plots 
because the cost is too prohibitive and/or some locations might be inaccessible to 
collect probabilistic random samples. The error analysis of these studies has largely 
been limited to the calculation of model fitting statistics such as RMSE and R2, 
sometimes using cross-validation methods. However, the model fitting  statistics cal-
culated from purposive samples, even with cross-validation, do not have strict statis-
tical meaning (i.e., the sampling distribution of the fitting statistics is not Gaussian). 
Simply put, the fitting statistics of LiDAR-based biomass models based on purposive 
samples do not tell much information about the prediction performance of the same 
model applied to the population. More specifically, this means that an analyst may 
choose a purposive sample of field plots to develop a LiDAR-based model with very 
high R2 and very low RMSE for the plots themselves, but the RMSE and R2 could 
be much worse when the model is applied to the whole study area. So, the model fit-
ting statistics from purposive samples are often misleading, if not useless, when the 
purpose is to infer the model performance for the whole study area. 
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A more rigorous method of error analysis is to characterize the error of model 
predictions for all pixels of the study area. Chen et al. (2015) introduced an uncer-
tainty analysis method that can comprehensively characterize the errors in the whole 
process of LiDAR-based biomass modeling and prediction, including errors from 
field measurements, allometric modeling, tree-level biomass prediction, LiDAR 
data, and LiDAR-based biomass modeling and prediction. The method was applied 
to aboveground biomass (AGB) mapping in tropical forests in Ghana (Figure 4.21). 
The uncertainty analysis framework is useful in that (1) it allows mapping of biomass 
prediction uncertainty at the pixel level, (2) it can use both probabilistic and purpo-
sive samples, and (3) it is comprehensive and can help understand the error sources 
by quantifying the prediction errors caused by model parameters, predictors, and 
residuals, the three key components of a statistical model. 

Chen et al. (2016) further expanded the above framework of uncertainty analy-
sis from pixel level to any area that consists of multiple pixels (Figure 4.22). The 
method was applied to the biomass mapping and uncertainty analysis for an area of 
69,508 km2 in Northeastern Minnesota, USA. First, AGB was predicted at a pixel of 
13 m resolution, which is equivalent to the forest plot size. Then, AGB was aggregated 
to coarse spatial resolutions. Maps of uncertainty can be produced at different spatial 
resolutions (Figure 4.23). Such a method differs from others in that it characterizes the 
biomass prediction errors for every location, not just for the locations of the field plots.

The previous uncertainty analysis method is one of the model-based approaches. 
If a probabilistic sample of field plots is used, the mean and uncertainty of biomass 
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over the study area can be estimated using classical frequentist inference. Further, 
LiDAR-based biomass maps can be combined with probabilistic samples to reduce 
the uncertainty of the estimator of mean biomass via the model-assisted method 
(McRoberts 2010, Næsset et al. 2011). Note that the conventional model-assisted 
method requires wall-to-wall LiDAR-based biomass maps to estimate the popula-
tion mean and uncertainty. 

At the regional scales (over tens of thousands of square kilometers or larger), few 
studies have processed large amount of wall-to-wall airborne LiDAR data to apply 
model-based or model-assisted approaches for uncertainty analysis (see Chen et al. 
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2016 for an exception). It is not very cost-effective to use wall-to-wall LiDAR data 
if the purpose is to estimate the biomass and uncertainty not for individual pixels, 
but for the areal mean. For estimating areal mean biomass, a better strategy is to use 
samples of LiDAR data in combination with field plots, sometimes with wall-to-wall 
optical or radar imagery, to improve the estimates. Along this line, many uncertainty 
analysis methods have been developed (Ståhl et al. 2010, Gregoire et al. 2010, Næsset 
et al. 2011, Gobakken et al. 2012).

PROJECT 4.1:  EXTRACTING CANOPY HEIGHTS FROM 
LEAF-ON AND LEAF-OFF LiDAR DATA 
IN SUSQUEHANNA SHALE HILLS, PA, USA

 1. Introduction
The physical structure of trees derived from LiDAR data can be affected by 
seasonal changes (leaf-on and leaf-off) in canopy condition. For example, a 
leaf-on dense canopy may have concentrated LiDAR returns near the top of 
the canopy, with fewer returns from understory vegetation and the ground 
floor. In this project, leaf-on and leaf-off LiDAR data are separately used 
for canopy height extraction in a 1 km × 1 km study area in Susquehanna 
Shale Hills, PA, USA. CHMs are obtained by subtracting a digital terrain 
model (DTM) from a digital surface model (DSM). Since no field data is 
available for quantitative assessment, the results are only used for visual 
comparison. The objective is to understand that CHMs derived from leaf-
on and leaf-off LiDAR data are usually different, and that care must be 
taken when applying leaf-on models to leaf-off LiDAR data for estimating 
forest inventory attributes, and vice versa.

 2. Data
The LiDAR data was collected during peak leaf-on (July 2010) and leaf-
off (December 2010) conditions. The data in the 1 km × 1 km study area 
is based on data services provided by the OpenTopography facility with 
support from the National Science Foundation under NSF Award Numbers 
0930731 and 0930643. The LiDAR point density is 13.59 points/m2 (leaf-
on) and 15.52 points/m2 (leaf-off). The horizontal coordinate system is 
UTM Z18N NAD83 (CORS96) [EPSG: 26918], and the vertical coordi-
nate system NAVD88 (Geoid 03) [EPSG: 5703]. LiDAR data acquisition 
and processing were completed by the National Center for Airborne Laser 
Mapping (NCALM), funded by the National Science Foundation Award 
EAR-0922307, and coordinated by Qinghua Guo for the Susquehanna 
Shale Hills Critical Zone Observatory funded by the National Science 
Foundation Award EAR-0725019. LiDAR point clouds in LAS format 
“leaf-on.las” (Figure 4.24) and “leaf-off.las” for the study area can be 
downloaded (by right-clicking each file and saving it to a local folder) 
from: http://geography.unt.edu/~pdong/LiDAR/Chapter4/Project4.1/

http://geography.unt.edu/~pdong/LiDAR/Chapter4/Project4.1/
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 3. Project Steps

 1. Open an empty Word document so that you can copy any results from 
the following steps to the document. To copy the whole screen to your 
Word document, press the PrtSc (print screen) key on your keyboard, 
then open your Word document and click the “Paste” button or press 
Ctrl+V to paste the content into your document. To copy an active win-
dow to your Word document, press Alt+PrtSc, then paste the content 
into your document.

 2. Open ArcMap, and turn on the Spatial Analyst Extension and 3D 
Analyst Extension.

 3. Create a LAS dataset. Go to ArcToolbox  Data Management Tools 
 LAS Dataset  Create LAS Dataset, and use leaf-on.las as input to 
create a LAS dataset leaf-on.lasd.

 4. Create leaf-on DTM. Open the properties form of leaf-on.lasd and select 
the Filter panel. Select class “Ground” under “Classification Codes” in 
the Filter panel which means only ground points will be used for subse-
quent conversion and then click OK. Open ArcToolbox  Conversions 
 LAS Dataset to Raster, select “leaf-on.lasd” from the drop-down 
list as the input LAS dataset, “leafondtm” as the output raster in the 
output folder, ELEVATION as the field value, Binning as the inter-
polation type, AVERAGE as the cell assignment type, NATURAL_
NEIGHBOR as the void fill method, FLOAT as the output data type, 
CELLSIZE as the sampling type, 1 as the sampling value, and 1 as the 
Z factor; then click OK to create the output DTM raster (Figure 4.25). 
Note: You should select the input LAS dataset from the drop-down list 
because the filter was defined through the layer properties form. If you 
use the browse button to select a LAS dataset as input, all the data 
points in the LAS files it references will be processed, and the defined 
filter will not be used.

N
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FIGURE 4.24 Leaf-on LiDAR point clouds in the 1 km × 1 km study area.
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 5. Create leaf-on DSM. Open the properties form for leaf-on.lasd and 
select the Filter panel. Select “All Classes” under “Classification 
Codes” in the Filter panel, then select “Return 1” (First Return) under 
“Returns”, then click OK. Use the same process as Step 4 to create the 
leaf-on DSM “leafondsm” (Figure 4.26).

 6. Create leaf-on CHM. The leaf-on canopy height model is obtained by 
subtracting DTM from DSM in the Raster Calculator, which can be 
launched from ArcToolbox  Spatial analyst Tools  Map Algebra 
 Raster Calculator. Use “leafondsm” - “leafondtm” as the expression, 
“leafonchm” as the output, click OK to create the leaf-on CHM “leafon-
chm” (Figure 4.27).

 7. Create leaf-off CHM. Repeat Steps 3–6 using leaf-off LiDAR data 
to create leaf-off DTM (which should be very close to leaf-on DTM 
because topography does not change very much between two LiDAR 
acquisition dates), leaf-off DSM (Figure 4.28), and leaf-off CHM 
(Figure 4.29).

662.79 m

453.34 m
100 m

N

FIGURE 4.25 Output DTM converted from leaf-on LAS dataset.
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   8. Visual comparison of leaf-on and leaf-off CHM using the LAS Dataset 
Toolbar. In addition to visual comparison of the CHM spatial patterns 
in Figures 4.27 and 4.29, you can compare the leaf-on and leaf-off point 
clouds using the LAS Dataset Profile View tool on the LAS Dataset 
Toolbar as explained in Project 2.2. 

 9. Visual comparison of leaf-on and leaf-off CHM using the 3D Analyst 
Toolbar. The LAS Profile View tool in Step 8 provides profile views but 
does not include height and distance values. For better comparison of the 
CHMs, you can open the Customize menu of ArcMap and select Toolbars 
 3D Analyst to open the 3D Analyst toolbar. Select the leaf-on CHM as 
the 3D Analyst Layer on the toolbar, then click the Interpolate Line tool, 
and draw a straight line from the northwest (NW) corner to the southeast 
(SE) of the CHM (using double click to end the line). Now click the Profile 
Graph icon on the 3D Analyst Toolbar to display the NW-SE profile for the 
leaf-on CHM (Figure 4.30 top). Select the leaf-off CHM as the 3D Analyst 
Layer and repeat the above process to create the NW-SE profile for the 
leaf-off CHM (Figure 4.30 bottom). Using the same process, you can cre-
ate the NE-SW profiles for leaf-on and leaf-off CHMs (Figure 4.31). 

677.28 m

454.88 m
100 m

N

FIGURE 4.26 Output DSM converted from leaf-on LAS dataset.
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 10. Save your ArcMap project.
 11. Questions: (1) What are the major differences between the leaf-on and 

leaf-off CHM profiles in Figures 4.30 and 4.31? (2) Suppose you created 
a model to estimate DBH of individual trees using tree heights derived 
from leaf-off LiDAR data; can you apply the model to leaf-on LiDAR 
data? Why or why not?

PROJECT 4.2:  IDENTIFYING DISTURBANCES FROM 
HURRICANES AND LIGHTNING STRIKES TO 
MANGROVE FORESTS USING LiDAR DATA IN 
EVERGLADES NATIONAL PARK, FL, USA

 1. Introduction
Hurricanes and lighting strikes have impacted the mangrove forests along 
the coasts of Everglades National Park (ENP) in Florida, USA, producing 
gaps by causing the death of trees. To better understand the biological and 

29.17 m

0
100

N

FIGURE 4.27 Leaf-on canopy height model.
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environmental effects of these disturbances, a census of gaps at broader spa-
tial scales is needed. Field plot-survey methods can be difficult and expen-
sive, whereas optical remote sensing methods such as aerial photography 
may not be effective due to the lack of tree height information. Zhang et al. 
(2008) used LiDAR measurements derived before and after Hurricanes 
Katrina and Wilma (2005) to evaluate the impact of hurricanes and light-
ing strikes on the mangrove forests in ENP, and found that the proportion 
of high tree canopy decreased significantly after the 2005 hurricane season.
In this project, LiDAR data acquired in ENP in November 2012 is used to 
demonstrate a complete process in ArcGIS for identifying and mapping 
disturbances from hurricanes and lightning strikes to mangrove forests.

 2. Data
LiDAR point clouds with a point density of 7.95 points/m2 from a 1 km × 
1 km study area near Shark River in ENP is used in this project. The hori-
zontal coordinate system is UTM Z17N NAD83 (2011) [EPSG: 26917], and 
the vertical coordinate system NAVD88 (Geoid 12A) [EPSG: 5703]. LiDAR 
data acquisition and processing was completed by the National Center for 
Airborne Laser Mapping (NCALM—http://www.ncalm.org). NCALM 
funding was provided by the National Science Foundation (NSF) Division 

N

676.50 m
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FIGURE 4.28 Output DSM converted from leaf-off LAS dataset.

http://www.ncalm.org
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FIGURE 4.29 Leaf-off canopy height model.
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FIGURE 4.30 Northwest (NW) to southeast (SE) profiles derived from leaf-on CHM (top) 
and leaf-off CHM (bottom).
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of Earth Sciences, Instrumentation and Facilities Program, EAR-1043051. 
This dataset is based on data services provided by the OpenTopography 
facility with support from the NSF Award Numbers 0930731 and 0930643.
LiDAR data file “Mangrove.las” in LAS format can be downloaded (by 
right-clicking the file and saving it to a local folder) from: http://geography.
unt.edu/~pdong/LiDAR/Chapter4/Project4.2/

 3. Project Steps

 1. Open an empty Word document so that you can copy any results from the 
following steps to the document. To copy the whole screen to your Word 
document, press the PrtSc (print screen) key on your keyboard, then open 
your Word document and click the “Paste” button or press Ctrl+V to paste 
the content into your document. To copy an active window to your Word 
document, press Alt+PrtSc, then paste the content into your document.

 2. Open ArcMap, go to the Customize menu and select “Extensions...”. Check 
the Spatial Analyst Extension, 3D Analyst Extension, and ArcScan.

 3. Create LAS dataset. Open ArcToolbox  Data Management Tools  
LAS Dataset  Create LAS Dataset. Use Mangrove.las as input and 
Mangrove.lasd as output to create a LiDAR dataset. The LAS dataset is 
added to ArcMap automatically. Note: You should use an output folder 
that you have full control in this project. Do not use default output fold-
ers because they may be protected and you may not be allowed to edit 
files in the protected folders.

 4. Select ground points. Open the Properties form of Mangrove.lasd in 
ArcMap, select the Filter tab, select “Ground” under “Classification 
Codes”, then click OK.
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FIGURE 4.31 Northeast (NE) to southwest (SW) profiles derived from leaf-on CHM (top) 
and leaf-off CHM (bottom).
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 5. Create DTM. Open ArcToolbox  Conversion Tools  To Raster  LAS 
Dataset to Raster. Select “Mangrove” from the drop-down list as the input 
LAS dataset, “dtm” as the output raster in the output folder, ELEVATION 
as the field value, Binning as the interpolation type, AVERAGE as the 
cell assignment type, NATURAL_NEIGHBOR as the void fill method, 
FLOAT as the output data type, CELLSIZE as the sampling type, 1 as the 
sampling value, and 1 as the Z factor, then click OK to create the output 
DTM raster. Note: You should select the input LAS dataset from the drop-
down list because the filter was defined through the layer properties form 
in Step 4. If you use the browse button to select a LAS dataset as input, 
all the data points in the LAS files it references will be processed, and the 
defined filter will not be used.

 6. Create DSM. Open the Properties form of Mangrove.lasd in ArcMap, 
select the Filter tab, select “All Classes” under “Classification Codes”, 
select “Return 1” (First Return) under “Returns”, then click OK. Use 
“dsm” as the output raster in Step 5 to create the output DSM raster. 

 7. Create CHM. Open ArcToolbox  Spatial Analyst Tools  Map Algebra 
 Raster Calculator, use “dsm” - “dtm” as the expression and “chm” as 
the output raster in the output folder to create the CHM (Figure 4.32).

Shark river

100 m
25.30 m

N

–1.06 m

FIGURE 4.32 Mangrove canopy height model.
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FIGURE 4.33 Sample profiles for gaps in CHM.

Shark river

N

100 m

FIGURE 4.34 Binary raster for two categories: blue for 1’s (gaps, river segments, and tidal 
creeks), and green for 0’s (canopy over 5 m in height).



101LiDAR for Forest Applications

 8. Examine sample gap profiles. Zoom in to the gaps (dark holes in 
Figure 4.32), then open the “Customize” menu of ArcMap and select 
Toolbars  3D Analyst. Select the canopy height model “chm” as the 
3D Analyst Layer for the 3D Analyst toolbar, then use the “Interpolate 
Line” tool on the 3D Analyst toolbar to draw a straight line across a gap, 
and click the “Profile Graph” button on the toolbar to show the CHM 
profile. Repeat this process several times to determine a proper height 
threshold that can be used to extract possible gaps. Figure 4.33 shows 
four sample profiles for gaps in the CHM, and a height  threshold of 5 m 
(manually added dashed lines in Figure 4.33) is used to separate possible 
gaps from the CHM. Although this threshold is purely empirical, slight 
variations in the height threshold (for example, 6 m or 7 m) usually do 
not significantly change the size of the gaps because many gaps in the 
CHM have steep slopes on the edges, as can be seen in Figure 4.33.

 9. Create a binary raster using the height threshold (5 m). Open ArcToolbox 
 Spatial Analyst Tools  Map Algebra  Raster Calculator, use 
Con(“chm” <= 5, 1, 0) as the expression to create a binary output raster 
“binary_gaps” in the output folder (Figure 4.34), where blue cells (1’s) 
are for gaps, river segments, and tidal creeks; and green cells (0’s) for 
canopy over 5 m in height. The noises, river segments, and tidal creeks 
will be removed in the following steps.

FIGURE 4.35 ArcScan Toolbar in ArcMap.

FIGURE 4.36 Selecting connected cells using ArcScan Toolbar.
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 10. Edit gaps in binary raster. Open the “Customize” menu of ArcMap and 
select Toolbars  Editor. Right-click the binary raster layer “binary_
gaps” in the ArcMap table of contents, then select Editing Features  
Start Editing. Then open the Customize menu in ArcMap and select 
Toolbars  ArcScan. Select “binary_gaps” as the ArcScan Raster 
Layer for the ArcScan Toolbar (Figure 4.35).

 11. Open the Cell Selection menu on the ArcScan Toolbar and select “Select 
Connected Cells…”. Specify that the total area of connected cells in 
“Foreground” (blue cells) is less than or equal to 4 cells as shown in 
Figure 4.36, and click OK. The selected cells are shown as cyan cells 
in the sample window in Figure 4.37A. Now open the Raster Cleanup 
menu on the ArcScan Toolbar and select “Start Cleanup” to enable the 
tools under the Raster Cleanup menu. Click “Erase Selected Cells” in 
the Raster Cleanup menu to erase the selected cells (Figure 4.37B). 

 12. From Figure 4.37B, it can be seen that some gaps have isolated cells (noises 
or isolated trees). These cells can be selected using the same process as in 
Step 11 by choosing “Background” when searching for connected cells 
(see Figure 4.36). Once the background cells are selected (Figure 4.38A), 

(A) (B)

FIGURE 4.38 Filling selected background cells. (A) Connected cells less than four pixels 
are selected and (B) Selected background cells are filled with foreground color, then the clos-
ing operator is applied to the binary raster to clean the boundary.

(A) (B)

FIGURE 4.37 Removing selected foreground cells. (A) Connected cells less than four pix-
els are selected and (B) Selected foreground cells are erased.
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select “Fill Selected Cells” under the Raster Cleanup menu to change the 
selected green cells to blue. Select “Closing…” under the Raster Cleanup 
menu, put 0.5 as the number of pixels, and click OK to get the output 
(Figure 4.38B). Note that the isolated cells and boundaries in Figure 4.38A 
can also be cleaned using neighborhood statistics in ArcGIS Spatial 
Analyst Tools (such as majority or median filters in windows of 3 × 3 cells). 
However, the neighborhood filters will also bring major changes to the 
boundaries of the cell groups. Therefore, a better option is to use the math-
ematical morphological operators (erosion, dilation, opening, and closing) 
under the Raster Cleanup menu of the ArcScan Toolbar. 

 13. Remove river segments and tidal creeks. The river segments and tidal 
creeks in Figure 4.34 should be removed so that the extracted gaps can 
be converted to a polygon shapefile. Use the “Select Connected Cells” 
tool as explained in Step 12 to select foreground cells (blue cells) that 
are greater than 600 raster pixels (Figure 4.39A), then select “Erase 
Selected Cells” under the Raster Cleanup menu to obtain the final gaps 

N N

100 m100 m

(A) (B)

Shark river

FIGURE 4.39 Erasing river segments and tidal creeks. (A) Connected cells are selected and 
(B) Selected cells are erased.

(A) (B)

FIGURE 4.40 Sample area showing polygons for gaps in a mangrove forest. (A) original 
polygons extracted from LiDAR data and (B) simplified polygons.
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(Figure 4.39B). Click the Editor menu on the Editor Toolbar, and select 
“Stop Editing” to save the edits of “binary_gaps”.

 14. Convert binary raster to polygon shapefile. Open ArcToolbox  
Conversion Tools  From Raster  Raster to Polygon. Use “binary_
gaps” as the input raster, VALUE as the field, and “Mangrove_Gap1.
shp” as the output polygon shapefile, uncheck the “Simplify polygon”, 
then click OK to create the output polygon shapefile. Repeat the conver-
sion process using “Mangrove_Gap2.shp” as the output, and check the 
“Simplify polygon” option to create output polygon shapefile with sim-
plified boundaries. A GRIDCODE field is created in the attribute tables 
of output shapefiles where 1 is for gaps and 0 for background (canopy). 
Figure 4.40 is a comparison between the two output polygon shapefiles 
for mangrove gaps using the 1-m resolution CHM as the backdrop.

 15. Save your ArcMap project and Word document.
 16. Questions: (1) How do you remove the background polygons 

(GRIDCODE = 0)? (2) How do you remove the 1 m × 1 m gap polygons 
such as the one at the lower right corner of Figure 4.41? (3) How do you 
show the histogram of the gap sizes in the study area?

FIGURE 4.41 A 1 m × 1 m gap polygon (lower right corner) connected to a larger gap 
polygon.
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5 LiDAR for Urban 
Applications

5.1  INTRODUCTION

LiDAR has been widely used in many studies in urban environments. In the 
review by Yan et al. (2015a) on LiDAR for urban land cover classification, five 
applications were discussed: (1) urban morphology and green analysis, (2) urban 
flood risk modeling, (3) mapping power transmission lines, (4) modeling GPS/
airport signal obstruction, and (5) solar radiation assessment. Other applica-
tions of LiDAR in urban environments include building extraction and modeling 
(Haala and Brenner 1999, Maas and Vosselman 1999, Stilla and Jurkiewicz 1999, 
Brenner 2005, Madhavan et al. 2006, Alexander et al. 2009, Jang and Jung 2009, 
Pu and Vosselman 2009, Wang 2013, Xiao et al. 2014), road extraction (Boyko and 
Funkhouser 2011, Kumar et al. 2013, Landa and Prochazka 2014, Li et al. 2015), 
impervious surface mapping (Hodgson et al. 2003, Cui 2014), population estima-
tion (Dong et al. 2010, Qiu et al. 2010, Xie et al. 2015, Zhao et al. 2017), change 
detection (Singh et al. 2012, Teo and Shih 2012, Zavodny 2012, Hebel et al. 2013), 
post-earthquake assessment of building damage (Li et al. 2008, Hussain et al. 
2011, Dong and Guo 2012, Dong and Shan 2013), and post-earthquake assessment 
of road blockage (Liu et al. 2014). This chapter presents six major topics of LiDAR 
applications in urban environments: (1)  road extraction, (2) building extraction 
and 3D reconstruction, (3) population  estimation, (4) change detection, (5) assess-
ment of post-disaster building damage, and (6)  assessment of post-disaster road 
 blockage. At the end of the chapter, two step-by-step projects in ArcGIS are pre-
sented to showcase LiDAR-based powerline corridor analysis and small-area 
 population estimation using building count, building area, and building volume in 
Denton, TX, USA.

5.2  ROAD EXTRACTION

For updating GIS databases and other applications, road extraction from digital 
images has received considerable attention in the past decades. Increasingly, LiDAR 
data has been used for road extraction (e.g., Boyko and Funkhouser 2011, Kumar 
et al. 2013, Landa and Prochazka 2014, Li et al. 2015, Ferraz et al. 2016). Fully auto-
mated road extraction in urban areas can be difficult due to the complexity of urban 
features, while manual digitizing of roads from images can be time-consuming. 
In many cases, a semi-automated approach to road extraction can be implemented 
to improve the efficiency, accuracy, and cost-effectiveness of data development 
activities.
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Ground features such as water bodies and asphalt pavement usually have very 
low LiDAR intensity values, while some building roofs may also have very low 
intensity values. Therefore, integration of LiDAR intensity data and digital sur-
face models (DSM) or digital height models (DHM) can be used for road extrac-
tion. Figure 5.1 shows a flowchart for road extraction using airborne LiDAR point 
clouds. First, an intensity image is created from LiDAR point clouds using spatial 
interpolation; then a DSM is created from non-ground LiDAR points, and null 
values in the DSM are converted to zeros. After merging the intensity image and 
non-ground DSM, the merged image can be segmented using a threshold. The 
resulting binary image can be further processed using mathematical morphologi-
cal operators (Serra 1983, Dong 1997). After vectorization, the extracted roads can 
be corrected through interactive editing. Figure 5.2 is a LiDAR intensity image 
created from 2009 LiDAR data in the city of Denton, TX, USA; Figure 5.3 shows 
the non-ground DSM; Figure 5.4 is the merged image created by adding the inten-
sity image and the non-ground DSM; and Figure 5.5 is the binary image showing 
the roads and some other ground features.

Create intensity image

LiDAR point clouds

Non-ground LiDAR points (Pn)

Create DSM from Pn

Binary image

Convert null values to zero

Segment image using thresholding

Mathematical morphological operators

Vectorization

Interactive editing

Merge intensity image and DSM 

FIGURE 5.1 Flowchart for road extraction using LiDAR data.
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FIGURE 5.2 LiDAR intensity image for an area in Denton, TX, USA.
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FIGURE 5.3 Non-ground DSM derived from LiDAR data.
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5.3  BUILDING EXTRACTION AND 3D RECONSTRUCTION

With the increasing availability of high-resolution satellite images and LiDAR data 
in the last two decades, extracting buildings from remotely sensed data has become 
a significant research field. Many algorithms for building extraction have been pro-
posed, including mathematical morphology (Weidner and Förstner 1995, Pesaresi 
and Benediktsson 2001, Mongus et al. 2013), DSM segmentation (Baltsavias et al. 
1995, Sithole and Vosselman 2004, Tovari and Pfeifer 2005, Awrangjeb and Fraser 
2014), active contours or snakes (Nixon and Aguado 2002, Oriot 2003, Ahmadi 
et al. 2010, Kabolizade et al. 2010, Yan et al. 2015b), the Dempster–Shafer method 
(Rottensteiner et al. 2005, Trinder et al. 2010), neural networks (Barsi 2004, Bellman 
and Shortis 2004, Liu et al. 2013), knowledge-based systems (Baltsavias 2004, Mayer 
2008, Susaki 2013), and the multi-scale method (Vu et al. 2009, Zhang et al. 2012). 
A review of most of the methods can be found in the work of Ioannidis et al. (2009). 
With the increasing demand for three-dimensional (3D) city models and availability 
of LiDAR data, 3D building reconstruction has received extensive attention, and 
many methods for building reconstruction have been proposed (Gruen 1998, Haala 
and Brenner 1999, Maas and Vosselman 1999, Stilla and Jurkiewicz 1999, Stilla et al. 
2003, Suveg and Vosselman 2004, Brenner 2005, Madhavan et al. 2006, Sugihara 
and Hayashi 2008, Alexander et al. 2009, Jang and Jung 2009, Pu and Vosselman 
2009, Orthuber and Avbelj 2015).

N

300 m

FIGURE 5.4 A merged image is created by adding LiDAR intensity image and non-ground 
DSM.
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Xiao et al. (2014) described a Gaussian mixture model for building roof segmentation. 
The Gaussian distribution is widely used in the natural sciences as a simple model for 
describing complex phenomena with a variety of probability distributions. The Gaussian 
distribution defined over a d-dimensional vector x of continuous variables is shown by:

 µ
π

µ µ( ) ( )
( ) ( )Σ =
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− − Σ −
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exp
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where the d-dimensional vector μ is the mean and the d × d matrix Σ is the covari-
ance. If x denotes the 3D coordinates of a LiDAR point, then the 3D Gaussian model 

FIGURE 5.5 Binary image for extracted roads and other surface features. Further process-
ing is needed to obtain topologically correct road networks.
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can be used to describe the distribution of LiDAR points within a planar patch. Due 
to the limited accuracy of LiDAR data, LiDAR point clouds of planar roofs do not 
exactly lie on a mathematical plane but scatter within a thin plate near the roof, and 
the deviations of the points from the plane conform to a Gaussian distribution cen-
tered at zero. Therefore, a single building with a multi-plane roof is represented by 
a 3D Gaussian mixture model, which is a linear superposition of Gaussian distribu-
tions in the following form:

 ∑π µ( ) ( )= Σ
=

p x N x | ,k k k

k

K

1

 (5.2)

where x is observed data vector, K is the number of Gaussian components in the 
Gaussian mixture model, µ( )ΣN ,k k  is the kth Gaussian distribution of the Gaussian 
mixture model, µk and Σk are the mean and covariance of the kth component 
respectively, and π k is the mixture coefficients. The mixture coefficients π k satisfy 

∑π π= ≤ ≤1, 0 1.k

k
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k

Figure 5.6 shows comparisons of detected roof planes using the Gaussian mix-
ture model (Xiao et al. 2014) and the popular RANSAC (random sample  consensus) 
method proposed by Fischler and Bolles (1981). As can be seen, for building  1 
(Figure  5.6A), the Gaussian mixture model detects two roof-plane intersections 
(Figure 5.6B), whereas RANSAC only detects two roof planes, and fails to detect 
roof-plane intersections (Figure 5.6C). For building 2 (Figure 5.6D), the Gaussian 

(A) (B) (C)

(F)(E)(D)

FIGURE 5.6 Comparison of roof planes extracted from Gaussian mixture model and 
RANSAC model. (A) Raw LiDAR points for building 1; (B) roof planes extracted from (A) 
by Gaussian mixture model; (C) roof planes extract from (A) by RANSAC method; (D) raw 
LiDAR points for building 2; (E) roof planes extracted from (D) by Gaussian mixture model; 
and (F) roof planes extract from (D) by RANSAC method.



117LiDAR for Urban Applications

mixture model successfully detects three roof-plane intersections (Figure 5.6E), 
whereas the RANSAC method only detects one roof-plane intersection (Figure 5.6F).

5.4  POPULATION ESTIMATION

The traditional census method for obtaining population information is often time-
consuming, labor-intensive, and expensive. Therefore, many national census agen-
cies and international organizations use four methods to update census data and 
estimate population size (Smith and Mandell 1984): (1) Component II—using vital 
statistics such as birth and death data to measure the natural increase from the 
last census; (2) Ratio-correlation—using regression methods to relate changes in 
 population to changes in indicators of population change, such as school enrol-
ment, the number of voters, the number of passenger car registrations, and the 
number of occupied housing units; (3) Administrative record—using births, 
deaths, school enrolment, social insurance, building permits, driver licenses, voter 
registration, and tax returns to estimate population size; and (4) Cohort component 
method—tracing people born in a given year through their lives. Numerous studies 
have been carried out for population estimation using demographic characteristics 
(Verma et al. 1984, Platek et al. 1987, Bracken 1991, Wolter and Causey 1991, Cai 
2007, Jarosz 2008).

Population estimation using remote sensing and GIS belongs to the ratio- 
correlation method, and can be classified into two broad categories: areal interpola-
tion and statistical modeling (Figure 5.7). Since the 1970s, remotely sensed data from 
various platforms have been used for population estimation, including low-resolution 
images (Welch and Zupko 1980, Sutton et al. 1997, 2001), medium-resolution images 
(Harvey 2002, 2003, Lo 2003, Qiu et al. 2003, Wu and Murray 2003, Wu 2004, Li 
and Weng 2005, Lu et al. 2006), and high-resolution aerial photographs (Lo and 
Welch 1977, Lo 1986 a,b).

Areal interpolation
(use census data as input)

Population estimation
using GIS/RS

With ancillary data

Without ancillary data

Population vs. urban areas

Population vs. land uses

Population vs. dwelling units

Population vs. image spectral values

Population vs. other physical and
 socioeconomic variables

Statistical modeling
(use census data for model
  training and assessment)

FIGURE 5.7 Methods of population estimation using GIS and remote sensing. (From 
Dong, P. et al., Int. J. Remote Sens., 31, 5571–5586, 2010.)
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Dong et al. (2010) presented a method for small-area population estimation 
using LiDAR, Landsat TM, and parcel data. The basic idea is to build ordinary 
least squares (OLS) models and geographically weighted regression (GWR) models 
(Lo 2008) based on sampling census blocks using (1) population vs. building count, 
(2) population vs. building area, and (3) population vs. building volume. Figure 5.8 
shows a flowchart of population estimation using Landsat TM, LiDAR, parcels, and 
census data in an area in the city of Denton, TX, USA.

Using census population counts from 91 random census blocks as the dependent 
variable, and LiDAR-derived building count, building area, and building volume as 
independent variables, linear regression models and GWR were created for popula-
tion estimation in the study by Dong et al. (2010). The results suggest that population 
count is strongly correlated with residential building count, area, and volume derived 

Landsat TM images:
2000/03/04 (6 bands)
2000/07/10 (6 bands)
Maximum likelihood
Classification for land
use and land cover

LiDAR data:
1. Spatial interpolation to create LiDAR DSM and DEM
2. Normalized DSM: nDSM = DSM – DEM
3. Mathematical morphology for nDSM smoothing
4. Image thresholding to remove low-height objects
5. Mathematical morphology for removing small objects

Parcel
data

Residential class derived from
12-band landsat TM images

(Residential map)

LiDAR-derived buildings
and grouped trees

(nDSM map)

Remove non-residential pixels
from nDSM map

Final nDSM map for
population estimation

Conversion to points and spatial joining

Number of buildings
in each census block

Area of buildings
in each census block

Continuous samples and random samples of census blocks

10 linear regression models and geographically weighted regression models
(Count vs. population, area vs. population, volume vs. population)

Apply regression models to all
census blocks for population estimation

Accuracy assessment Processes

Data sources

Census 2000
data

Volume of buildings
in each census block

Obtain residential and commercial
buildings from nDSM map

Extract individual buildings
in sampling blocks

Pre-2000 residential
and commercial parcels

(Parcel map)

Zonal statistics in sampling blocks

FIGURE 5.8 Flowchart of population estimation using GIS and remotely sensed data. 
(From Dong, P. et al., Int. J. Remote Sens., 31, 5571–5586, 2010.)
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from the final DHM. Although other studies show that the traditional housing unit 
method offers a number of advantages over other population estimation methods 
(Smith and Lewis 1980, 1983, Smith and Cody 1994), there is no obvious pattern to 
show that building counts outperformed the other two independent variables (build-
ing area and building volume) in this study. In addition, as random samples can 
better represent data distribution in the study area than clustered samples, models 
derived from random samples seem to generate more accurate results compared with 
those derived from continuous samples. When the spatial heterogeneity is taken into 
account, the GWR models provide more accurate estimates than the linear regres-
sion models.

A limitation in the study by Dong et al. (2010) is that the original LiDAR data 
used was resampled to a point spacing of 3–5 m, which affects accurate representa-
tion of buildings. More accurate results could be obtained if LiDAR data with higher 
point density was available. To help readers practice estimating population using 
LiDAR-derived building count, building area, and building volume, Project  5.1 
demonstrates a complete process in ArcGIS for population estimation using a 2009 
LiDAR dataset with a point density of approximately 1 point/m2 acquired in the city 
of Denton, TX, USA, and a 2010 census block shapefile with census data.

5.5  CHANGE DETECTION

Change detection using pixel-based analysis of remotely sensed data has been well 
documented (e.g., Singh 1989, Mouat et al. 1993, Deer 1995, Coppin et al. 2004, Lu 
et al. 2004). The pixel-based change detection methods have been less successful 
when applied to high-resolution or very-high-resolution (VHR) images due to issues 
with georeferencing accuracy, reflectance variability, and data acquisition geometry, 
among other factors. The increasing computational capabilities and availability of 
VHR images in the last two decades have prompted the emergence of object-based 
image analysis (OBIA) from the traditional pixel-based image analysis (e.g., Longley 
2002, Aplin and Smith 2008, Blaschke 2010, Stow 2010, Addink  et  al.  2012). 
A  review  of change detection from remotely sensed images from pixel-based to 
object-based approaches can be found in the work of Hussain et al. (2013).

Various studies have demonstrated that change detection is a complex process, 
and no single approach is applicable to all application scenarios. For example, OBIA 
generally requires image segmentation based on spectral and spatial information of 
the image, and the results are affected by segmentation algorithms (Hay et al. 2005, 
Kim et al. 2008, Lein 2012). Integration of GIS and remote sensing can be an effec-
tive approach for improving change detection because spatial and attribute informa-
tion of objects are conveniently combined with spectral information (Li 2010). For 
example, Wu et al. (2014) used the energy spectrum of the windowed Fourier trans-
form of each land-use parcel for parcel-based change detection.

With the increasing use of LiDAR data in urban studies, 3D change detection 
of horizontal and vertical urban sprawl has become an important topic (Teo and 
Shih 2012, Singh et al. 2012). Dong et al. (2018) proposed a method for parcel-
based building change detection to support applications such as urban planning 
and land management. The method uses digital terrain models (DTM), DSM, 
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DHM (DHM = DSM − DTM), and differenced digital surface models (dDSM). 
After a series of processing steps in GIS, the proposed method produces an 
 output building map to show four types of buildings—Type I (new buildings that 
are built after removing medium/high vegetation), Type II (new buildings that 
are built on bare earth or low vegetation, or on top of existing buildings), Type 
III (demolished or damaged buildings), and Type IV (existing buildings that have 
little or no changes).

Figure 5.9 shows LiDAR point clouds collected in March 2009 and April 2013 in 
a 1 km × 1 km area in the city of Surrey, British Columbia, Canada. The 2009 dataset 
has a point density of about 2 points/m2, with four returns and five classes, includ-
ing 2 (ground), 7 (noise), 9 (water), 12 (overlap), and 21 (reserved). The 2013 dataset 
has a point density of 25–30 points/m2, with five returns and eight classes, including 
2 (ground), 3 (low vegetation, less than 0.7 m), 4 (medium vegetation, 0.7 to 2 m), 
5 (high vegetation, above 2 m), 6 (building), 7 (noise), 9 (water), and 11 (reserved). 
Figure 5.10 shows that trees in a point cloud profile derived from 2009 LiDAR data 
have become buildings in a point cloud profile derived from 2013 LiDAR data of the 
same area. Since LiDAR points for vegetation and building classes are readily avail-
able in the 2013 data, but not in the 2009 data, changes in vegetation and buildings 
from 2009 to 2013 cannot be obtained by direct comparison, and a change detection 
method needs to be developed.

The flowchart for parcel-based building change detection proposed by Dong et al. 
(2018) is shown in Figure 5.11, and the major steps for the flowchart are explained 
below.

 1. To determine a proper slope threshold separating rooftops and medium/
high vegetation, both zonal statistics and focal statistics (neighborhood sta-
tistics) are used. Figure 5.12A shows the histogram of zonal mean roof-
top slopes obtained from 1112 building footprint polygons from the 2013 

(B)
N

(A)
N

FIGURE 5.9 LiDAR point clouds in LAS format for 2009 (A), and 2013 (B).
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building slope raster data. Figure 5.12B is the histogram of focal mean sur-
face slope obtained from 21 × 21 (10.5 m × 10.5 m) windows in the 2009 
LiDAR DHM at 734 random locations over medium/high vegetation areas. 
From Figure 5.12, it can be concluded that a 2013 building footprint poly-
gon highly likely contained medium/high vegetation in 2009 if the mean 
slope of the 2009 DHM in the same polygon is greater than the maximum 
zonal mean slope of 2013 rooftops. This is how Type I building changes 
are identified in Figure 5.11. To accommodate possible zonal mean rooftop 
slopes in the 2009 slope raster that are greater than the maximum zonal 
mean rooftop slopes in the 2013 slope raster Smax (51.11° in this case), the 
slope threshold St is set as Smax + 2. In other words, 53.11° can be used as 
the threshold (St in Figure 5.11) for zonal mean slope to separate rooftop 
and medium/high vegetation. If Si > St (see Figure 5.11), the objects derived 
from the 2009 LiDAR data are medium/high vegetation, representing Type 
I building change—new buildings are built after removing medium/high 
vegetation.

(C)

(A) 2009

(B) 2013

FIGURE 5.10 Samples of change detection using multi-temporal LiDAR data in Surrey, 
British Columbia, Canada. (A) Point cloud profile of trees derived from 2009 LiDAR data; 
(B) Point cloud profile of buildings derived from 2013 LiDAR data; (C) Building footprints 
(red) derived from 2013 LiDAR data for each parcel (green).
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 2. Calculate the zonal mean slope Si from the slope raster created in Step 2, 
using the 2013 building footprint polygons as zones. Note Si can be for any 
object, such as buildings, trees, or bare earth in the 2009 DHM.

 3. Denote Vij as the volumetric change of ground objects (buildings, trees, 
ground surfaces, etc.) from 2009 to 2013 and then calculate Vij from dDSM 
using the zonal sum of dDSM cells in each of the 2013 building footprint 

2009 LiDAR point clouds
(LAS format)

2009 DEM 2013 DEM2009 DSM

2009 nDSM Slope threshold Ts 2013 building height raster Parcels

dDSM = 2013 DSM – 2009 DSMSlope raster

Si > slopes threshold Ts?Vi > volume threshold Ti?

Type II buildingType I building

yes yes

No No

Type III building

Check Vi and Si for each building polygon
Volume threshold Ti = 2.2 × (building area)

Zonal statistics using 2013
buildings as zones to

calculate average slope Si

2013 building polygons

Zonal statistics using 2013 building as
zones to calculate individual building

volume Vi in dDSM

2013 DSM 2013 DSM for G and B

Filtering to select ground (G)
and building (B) points 

2013 LiDAR point clouds
(LAS format)

FIGURE 5.11 Flowchart for parcel-based building change detection using 2009 and 2013 
LiDAR data. Shaded boxes represent input data for the flowchart. Si is the zonal mean slope 
for building polygon i, and Vij is the volumetric change from 2009 to 2013 for building poly-
gon i. MMO standards for mathematical morphological operations. (From Dong, P. et al. 
Surv. Land Inf. Sci., 2018.)
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FIGURE 5.12 Histograms of zonal mean rooftop slopes from 2013 data (A), and focal mean 
surface slopes for medium/high vegetation in 2009 data (B). (From Dong, P. et al. Surv. Land 
Inf. Sci., 2018.)
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polygons. Note Vij can be for any ground object (buildings, trees, ground 
surfaces, etc.), and it can be positive, zero, or negative.

 4. Check Si and Vij for each of the 2013 building footprint polygons. A vol-
ume threshold Vt is used in this process, and Vt = 2.2 * (building footprint 
area), where 2.2 is the minimum height (in meters) of a residential building 
based on a home construction and safety standard used in Texas (Dong 
et al. 2010), because a similar stand was not found for British Columbia.

 5. The decision process for identifying the four types of building change 
is illustrated in Figure 5.13. It should be noted that the threshold for 
volumetric changes, especially between Type III and Type IV, is subjec-
tively selected for simplicity’s sake. For example, the boundary between 
“damaged” and “minor changes” can be difficult to define objectively. 
Similarly, there is no clear threshold between “demolished” and “dam-
aged,” and the two terms can be used for building changes in different 
application scenarios, such as land use change detection or disaster dam-
age assessment.

Visual comparison of the 2009 and 2013 LiDAR-derived DHMs indicate that the 
results for building change types in Figure 5.14 are correct in most cases. To better 
understand the performance of the method, all 1112 buildings extracted from the 
2013 LiDAR data were visually compared with the 2009 DHM using three quantita-
tive measures: completeness, correctness, and quality (Heipke et al. 1997).

(From medium/high vegetation to building)

(Bare earth/low vegetation to building, or one-story to two-story)

(Demolished) (Damaged)

(No changes)(Minor changes)

If Vij > Vt
(Type II)

Else if Vij > –Vt
(Type III)

Else
(Type IV)

If Si > St
(Type I)

If Si ≤ St

FIGURE 5.13 Identifying four types of building change using zonal mean rooftop slope (Si), 
slope threshold (St), zonal volumetric change (Vij), and volume threshold (Vt). (From Dong, P. 
et al. Surv. Land Inf. Sci., 2018.)
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 =
+

Completeness
TP

TP FN
 (5.3)

 =
+

Correctness
TP

TP FP
 (5.4)

 =
+ +

Quality
TP

TP FN FP
 (5.5)

where TP is true positive, FN is false negative, and FP is false positive. Table 5.1 
shows that the results for the three building change types are very accurate. Further 
analyses of the results suggest that errors are mainly caused by buildings under con-
struction, buildings under tree canopy, and relatively low density of the 2009 LiDAR 
points (Dong et al. 2018).

Building change types
Type I

Type II

Type IV 100 m

N

FIGURE 5.14 Map of building change types. Type III is not detected in the study area. The 
2009 DHM is used as the backdrop. (From Dong, P. et al. Surv. Land Inf. Sci., 2018.)
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5.6  ASSESSMENT OF POST-DISASTER BUILDING DAMAGE

Rapid assessment of damages to buildings and infrastructure caused by natural 
disasters such as earthquakes is essential for disaster response and recovery opera-
tions. Although real-time support for ground search and rescue is still a challenging 
task for current remote sensing systems, data collected by remote sensing platforms 
has been widely used in disaster damage assessment. Medium- and high-resolution 
optical images such as Système Probatoire d’Observation de la Terre (SPOT) high 
resolution visible (HRV), QuickBird, and IKONOS images have been used for post-
earthquake building damage assessment with limited success (Aoki et al. 1998, 
Huyck et al. 2002, Matsuoka and Yamazaki 2002, Yusuf et al. 2002, Adams 2004, 
Saito and Spence 2004, Adams et al. 2005, 2006, Kaya et al. 2005). Major limita-
tions of optical images in damage assessment include difficulties in data collection in 
bad weather and time-consuming processes in data analysis. The all-weather capa-
bility of radar systems provides an important option for damage assessment in bad 
weather (Guo et al. 2009, Wang et al. 2009). However, radar layover and shadow 
effects can hamper image interpretation, particularly in mountain environments. 
Interferometric synthetic aperture radar (InSAR) could also be an alternative data 
source for damage assessment because of its ability to provide elevation data, but the 
data quality and the elevation accuracy derived from InSAR are lower than LiDAR 
data (Stilla and Jurkiewicz 1999, Stilla et al. 2003).

To evaluate potential applications of LiDAR point clouds for post-earthquake 
building damage assessment, Dong and Guo (2012) simulated soft-story collapse 
and other types of major damage to buildings with flat, pent, gable, and hips roofs 
(Figure 5.15). Triangulated irregular networks (TINs) of simulated LiDAR points 
were created through Delaunay triangulation. For a triangle with vertices p1, p2, and 
p3, any point p in the triangle can then be specified by a weighted sum of these three 
vertices; that is:

 = + +p p p pt t t1 2 31 2 3  (5.6)

where t1 + t2 + t3 = 1, and t1, t2, and t3 are called barycentric coordinates (Coxeter 
1969). If the 3D Cartesian coordinates of p1, p2, p3, and p are (x1, y1, z1), (x2, y2, z2), 

TABLE 5.1
Completeness, Correctness, and Quality Measures for Three Types of 
Building Change

Change Type Completeness Correctness Quality

Type I 0.96 0.93 0.90

Type II 0.97 0.91 0.89

Type IV 0.97 0.98 0.95

Source: Dong, P. et al. Surv. Land Inf. Sci., 2018.
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(x3, y3, z3), and (x, y, z) respectively, x, y, z can be calculated using the following 
equations:

 ( )= + +x t x t x t t x1– –1 1 2 2 1 2 3 (5.7)

 ( )+ +y t y t y t t y = 1 – –1 1 2 2 1 2 3 (5.8)

 ( )= + +z t z t z t t z1 – –1 1 2 2 1 2 3 (5.9)

In computer implementation, t1 and t2 are random numbers between 0 and 1. If 
t1 + t2 > 1, then t1 is replaced with 1 − t1, and t2 replaced with 1 − t2. This is to ensure 
that barycentric coordinates will be uniformly distributed in the triangle instead of 
creating clusters. By generating random points on the buildings walls and surfaces 
(Figure 5.16), 3D shape signatures of the building models can be compared to detect 
damaged buildings (Figure 5.17). The method is also applied to real LiDAR data 

(A) (B) (C)

(F)(E)(D)

(I)(H)(G)

(L)(K)(J)

FIGURE 5.15 Simulated 3D building models with flat (first row), pent (second row), gable 
(third row) and hips roofs (fourth row). First column: three-story models; second column: 
two-story models (for soft-story collapse of three-story models); third column: damaged 
models. Models for total collapse are not shown here. (From Dong, P. and Guo, H., Int. J. 
Remote Sens., 33, 81–100, 2012.)
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for several buildings in Harris County, TX, USA (Figure 5.18). In Figure 5.18A, the 
upper part shows a TIN model built from LiDAR data for six buildings with a point 
density of about 0.8 point/m2, and the lower part is an air photo of the six buildings. 
The 3D shape signatures derived from the LiDAR data for buildings 1, 2, 4 and 5 
are shown in Figure 5.18B, and the correlation coefficients between the 3D shape 
signatures are listed in Table 5.2. The results from 3D shape signature analyses are 
in accord with those from visual interpretation of the air photo: buildings 1 and 5 
are the same model, while buildings 2 and 4 belong to a different model. This exam-
ple shows that major changes in 3D building shapes can be detected by 3D shape 
signatures obtained from LiDAR data. Following the same logic, if pre-earthquake 
3D shape signatures of a building are known, it is possible to detect severe damage or 
collapse of the building by comparing its pre-earthquake 3D shape signatures with 
post-earthquake 3D shape signatures derived from LiDAR data.

Based on literature review and new results in building damage assessment using 
LiDAR data, Dong and Guo (2012) proposed a framework with four major components 
for automated assessment of post-earthquake building damage using LiDAR data and 
GIS (Figure 5.19). Compared with the tiered reconnaissance system proposed by Adams 
et al. (2004), the framework focuses on per-building (Tier 3) assessment. Assessment 
at regional (Tier 1) and neighborhood (Tier 2) levels can be incorporated later to form a 
broader framework. Figure 5.20 is a flowchart to help understand the framework.

5.7  ASSESSMENT OF POST-DISASTER ROAD BLOCKAGE

In addition to the building damage assessment previously described, infrastruc-
ture damage assessment is also an important component of post-disaster damage 
assessment. With the development of Volunteered Geographic Information (VGI) 
(Goodchild 2007, Elwood 2008, Flanagin and Metzger 2008) and NeoGeography 

(C) (D)

(A) (B)

FIGURE 5.16 New random points generated using the TIN model and barycentric coordinates. 
(A) Original flat roof model, (B) damaged flat roof model, (C) original gable roof model, and (D) 
damaged gable roof model. (From Dong, P. and Guo, H., Int. J. Remote Sens., 33, 81–100, 2012.)
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(Goodchild 2009), grassroots citizens can make contributions to the global geo-
spatial data infrastructure, as demonstrated in the OpenStreetMap data collection 
activities after the Haiti earthquake in 2010. However, road centerlines collected by 
internet users worldwide may contain positional errors and connection errors in the 
road network.

To detect road connection errors and post-disaster road blockage points, Liu et al. 
(2014) developed a web-based application that allows users to create road  centerlines 
based on high-resolution images, and detect road blockage using LiDAR data. 
Figure  5.21 is a sample application for Port-au-Prince, Haiti. Using a transparent 
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FIGURE 5.17 Comparisons of 3D shape signatures obtained from the building models in 
Figure 5.11 using the TIN model and barycentric coordinate system. First row: flat roofs; 
second row: pent roofs; third row: gable roofs; and fourth row: hip roofs. First column: three-
story models vs. two-story models; second column: two-story models vs. damaged models; 
third column: two-story models vs. collapsed models. r is the correlation coefficient between 
the 3D shape signature curves of two models. (From Dong, P. and Guo, H., Int. J. Remote 
Sens., 33, 81–100, 2012.)
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display method, Figure 5.21 shows a high-resolution satellite image and a background 
digital surface model derived from post-earthquake LiDAR data. Road blockage 
points (red points in Figure 5.21) for selected road segments can be detected. In addi-
tion, errors in the OpenStreetMap road centerlines can be detected. For example, the 
red point in the upper-left corner of Figure 5.22 is in fact a wall separating the highway 
and the residential community, and is detected as a blockage point. However, other 
detected blockage points are not validated due to the difficulty in field data collection.
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FIGURE 5.18 3D shape signature analysis using LiDAR data for selected buildings in Harris 
County, TX, USA. (A) TIN model built from LiDAR (top), and air photo (bottom); the num-
bers in brackets are the building numbers and (B) 3D shape signatures derived from LiDAR 
data of selected buildings. (From Dong, P. and Guo, H., Int. J. Remote Sens., 33, 81–100, 2012.)

TABLE 5.2
Correlation Coefficients between 3D Shape Signatures of Selected Buildings

Building 1 Building 2 Building 4 Building 5

Building 1 1 0.8702 0.9271 0.9962
Building 2 0.8702 1 0.9902 0.8726

Building 4 0.9271 0.9902 1 0.9308

Building 5 0.9962 0.8726 0.9308 1

Source: Dong, P. and Guo, H., Int. J. Remote Sens., 33, 81–100, 2012.
Note: Bold numbers show high correlation coefficients between the building models of the same type.

Post-earthquake LiDAR data
collection and pre-processing

Building damage detection
(3D shape signatures)

Automated GIS
database updating

Maps Reports
GIS

Building database
and analysis tools

FIGURE 5.19 A framework for automated assessment of post-earthquake building damage 
using LiDAR data and GIS. (From Dong, P. and Guo, H., Int. J. Remote Sens., 33, 81–100, 2012.)
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GIS

Simple rectangular building footprints
(roof type and roof heights )

Complex building footprints
(3D shape parameters or 3D models)

Retrieve or calculate
pro-earthquake 3D shape signatures

This is a severely damaged building

Generate random samples of nDSM
data using building footprint

Compare pre-earthquake and post-earthquake building 3D signatures
using correlation coefficient (r) and pre-defined threshold RT

DEM
Post-earthquake

LiDAR data collection
and pre-processing

Normalized digital surface model (nDSM)

Generate TIN and random points in triangles

Calculate post-earthquake 3D shape signatures

Add building ID to severely damaged building list

DSM

Update GIS database Is this the
last building? Move to next building

Move to next building
Yes

Yes

r < RT?

No

No

FIGURE 5.20 Flowchart for automated assessment of post-earthquake building damage. 
(From Dong, P. and Guo, H., Int. J. Remote Sens., 33, 81–100, 2012.)

FIGURE 5.21 Web-based application for post-disaster road blockage detection using high-
resolution images and LiDAR data.
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PROJECT 5.1:  LOCATING 3D LiDAR POINTS NEAR A POWERLINE 
IN THE CITY OF DENTON, TX, USA

 1. Introduction
  Esri’s 3DGISTeam created 3D Sample Tools for ArcGIS Desktop 10.2–10.5 

in February 2015. The 3D Sample Tools have over 50 geoprocessing tools 
and stand-alone utilities for data conversion, feature analysis, TIN, vegeta-
tion analysis, LiDAR analysis, LiDAR classification, and LiDAR manage-
ment (Figure 5.23).

 2. Data
  The following files are available at http://geography.unt.edu/~pdong/

LiDAR/Chapter5/Project5.1/: (1): An LAS file “Denton2011.las” for LiDAR 
point clouds covering an area of 2.97 km × 3.15 km in Denton, TX, USA; 
and (2) A 3D shapefile “PowerLine3D.shp” (and seven other files with dif-
ferent extensions) simulating a powerline in 3D. The  location of the simu-
lated powerline is along West Hickory Street and between Avenue C and 
Avenue F in Denton, TX, USA. These files should be downloaded to your 
local folder (right click each file to download the files).

 3. Project Steps
 1. Open an empty Word document so that you can copy any results from 

the following steps to the document. To copy the whole screen to your 
Word document, press the PrtSc (print screen) key on your keyboard, 
then open your Word document and click the “Paste” button or press 

FIGURE 5.22 Road blockage and connection errors (red points) detected in Port-au-Prince, 
Haiti using web-based application. The background is a LiDAR-derived digital surface model.

http://geography.unt.edu/~pdong/LiDAR/Chapter5/Project5.1/:
http://geography.unt.edu/~pdong/LiDAR/Chapter5/Project5.1/:
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Ctrl+V to paste the content into your document. To copy an active win-
dow to your Word document, press Alt+PrtSc, then paste the content 
into your document.

 2. Open ArcMap and check if the 3D Sample Tools are listed in the 
ArcToolbox. If the 3D Sample Tools are already installed in your 
ArcToolbox, go to Step (3). Otherwise, you can download the tools 
from http://www.arcgis.com/home/item.html?id=fe221371b77940749f
f96e90f2de3d10 (if this link does not exist anymore, you can down-
load “Install_3D_Samples.zip” from http://geography.unt.edu/~pdong/
LiDAR/Chapter5/Project5.1/), unzip the downloaded zip file, and run 
“Install 3D Sample” to install the 3D Sample Tools in a folder. Right 
click ArcToolbox and select “Add Toolbox…”, then select “3D Sample 
Tools.tbx” from the installation folder, and click “Open” (Figure 5.24). 
The 3D Sample Tools should appear in the ArcToolbox.

 3. Open ArcMap, select Customize → Toolbars and select “LAS Dataset,” 
then select Customize → Extensions and turn on the 3D Analyst 
Extension.

 4. Open ArcToolbox → Data Management Tools → LAS Dataset → 
Create LAS Dataset. Use Denton2011.las as input and Denton.lasd as 
output to create a LiDAR dataset. The LAS dataset is added to ArcMap 
automatically.

 5. Add PowerLine3D to ArcMap, right click “PowerLine3D” and select 
“Zoom To Layer,” and then save your ArcMap project as Project5.1.mxd 
(Figure 5.25).

FIGURE 5.23 3D Sample Tools in ArcToolbox.

http://geography.unt.edu/~pdong/LiDAR/Chapter5/Project5.1/
http://geography.unt.edu/~pdong/LiDAR/Chapter5/Project5.1/
http://www.arcgis.com/home/item.html?id=fe221371b77940749ff96e90f2de3d10
http://www.arcgis.com/home/item.html?id=fe221371b77940749ff96e90f2de3d10
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 6. Open ArcToolbox → 3D Sample Tools → Lidar Analysis → Locate 
LAS Points By Proximity. Use Denton.lasd as input LAS dataset, 
PowerLine3D as input 3D features, 5 as 3D distance, Proximity5.shp 
as output feature class, POINT as output geometry type, and then click 
OK to create the output (Figure 5.26).

 7. Open ArcScene and then add Denton.lasd, PowerLine3D, and 
Proximity5 to ArcScene. Change scene property and layer symbology 
if needed; then navigate the 3D scene (Figure 5.27).

 8. Save your ArcMap and ArcScene projects, and Word document.

FIGURE 5.24 Adding 3D Sample Tools to ArcToolbox.

FIGURE 5.25 LiDAR dataset and a simulated powerline in Denton, TX, USA.
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PROJECT 5.2:  SMALL-AREA POPULATION ESTIMATION 
USING COUNT, AREA, AND VOLUME OF 
RESIDENTIAL BUILDINGS EXTRACTED FROM 
LiDAR DATA IN DENTON, TX, USA

 1. Introduction
  A small area can be defined as a single or aggregated sub-county area 

such as census tracts, block groups, and blocks (Dong et al. 2010). In this 

FIGURE 5.26 Locate LAS points by proximity tool.

FIGURE 5.27 LiDAR dataset, 3D powerline, and proximity points in ArcScene.
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project, a 2009 LiDAR dataset acquired in the city of Denton, TX, USA and 
a 2010 census block shapefile (censusblocks.shp) with census data are used 
for small-area population estimation. Three variables (count, area, and vol-
ume of buildings) are extracted from LiDAR data and employed separately 
for population estimation. The basic idea is to create OLS regression equa-
tions using the three individual variables (x) and the 2010 census data (y) 
for selected census blocks (training samples). Once the OLS equations are 
established from the training samples, the total number, total area, and total 
volume of buildings in all census blocks are used to calculate estimated total 
population. Finally, values of estimated total population are compared with 
the 2010 census data to calculate the accuracy of population estimation.

 2. Data
  The LiDAR data was acquired by the Texas Natural Resources Information 

System (TNRIS) through the High Priority Imagery and Data Sets 
(HPIDS) contract in 2009, with a point density of about 1 point/m2. A 
tile (TNRIS_2009_1.0M_339756_3_d.las) of about 2.9 km × 3.5 km was 
selected and renamed “Denton2009.las”. The horizontal coordinate system 
for the LiDAR point clouds is NAD83_UTM_zone_14N. A 2010 census 
blocks shapefile “censusblocks.shp” (and seven other files with different 
extensions) is also available. The data for this project can be downloaded 
from http://geography.unt.edu/~pdong/LiDAR/Chapter5/Project5.2/ (right 
click each file to download the files).

 3. Project Steps
 1. Open an empty Word document so that you can copy any results from 

the following steps to the document. To copy the whole screen to your 
Word document, press the PrtSc (print screen) key on your keyboard, 
then open your Word document and click the “Paste” button or press 
Ctrl+V to paste the content into your document. To copy an active win-
dow to your Word document, press Alt+PrtSc, then paste the content 
into your document.

 2. Open ArcMap, and load the Spatial Analyst Extension.
 3. Create an LAS dataset. Open ArcToolbox → Data Management 

Tools → LAS Dataset → Create LAS Dataset, specify the input file 
“Denton2009.las” and the output LAS dataset “Denton2009.lasd,” and 
then click OK to create the LAS dataset. By default, the LAS dataset 
is automatically added to ArcMap. Users can zoom in to see the point 
elevation in different colors.

 4. Create a DTM. Neither DTM nor DSM are made from all LiDAR 
points; therefore, point filters should be defined before creating a DTM 
or DSM. Right click the LAS dataset created in Step 3 and open its 
properties. In the Filter tab of the properties, check “Ground” and 
“Water” under “Classification Codes”, then click OK. (Note: The filter 
can also be defined using the “Ground” option in the predefined set-
tings in the properties form, and the results can be slightly different).

Once a filter is defined, the LAS dataset can be converted to a DTM 
raster using ArcToolbox → Conversion Tools → To Raster → LAS 

http://geography.unt.edu/~pdong/LiDAR/Chapter5/Project5.2/
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Dataset to Raster, by setting the following parameters: Value Field: 
ELEVATION; Interpolation Type: Binning; Cell Assignment Type: 
AVERAGE; Void Fill Method: NATURAL_NEIGHBOR; Output Data 
Type: FLOAT; Sampling Type: CELLSIZE; Sampling Value: 1; and Z 
Factor: 1. The DTM is shown in Figure 5.28. Note: You should select 
the input LAS dataset from the drop-down list because the filter was 
defined through the layer properties form. If you use the browse button 
to select a LAS dataset as input, all the data points in the LAS files it 
references will be processed, and the defined filter will not be used.

 5. Create a DSM. Similar to Step 4, a filter for a DSM should be defined. In 
the Filter tab of the LAS dataset properties, check “Ground”, “Building”, 
and “Water” under “Classification Codes”, then click OK. Other classes 
are not selected when defining the filter for the DSM because the purpose 
of the project is to extract buildings for population estimation. Using the 
same parameters as in Step 4, a DSM can be  created (Figure 5.29).

 6. Create a DHM by subtracting DTM from DSM. Theoretically, a DHM 
is created as if the objects such as trees and building on the earth’s 
surface are put on a flat surface, therefore the values of a DHM change 
from 0 to the maximum height of the objects. In reality, the minimum 
value of a DHM can be less than 0 due to the errors induced in LiDAR 
data collection and processing. To create a DHM, open ArcToolbox, 
then select Spatial Analyst Tools → Map Algebra → Raster Calculator. 
An output DHM raster “dhm” can be created by subtracting the DTM 
from the DSM. The DHM is shown in Figure 5.30.

FIGURE 5.28 DTM created using LAS dataset to raster conversion.
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 7. Separate residential buildings from the DHM. Based on the 
Manufactured Home Construction and Safety Standards published 
by the Texas Department of Housing & Community Affairs (TDHCA 
2009), a threshold of 2.2 m was used to separate residential buildings 

FIGURE 5.29 DSM created using LAS dataset to raster conversion.

FIGURE 5.30 Digital height model (DHM).
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from other ground objects. Cell values (heights) greater than 2.2 m in 
the DHM are saved in the new raster “dhm_bldg”, whereas other cells 
are set to zero. This can be done using the conditional “Con()” function 
in the raster calculator. The expression is Con(“dhm” > 2.2, “dhm”, 0), 
and the output raster is “dhm_bldg”.

 8. Create a binary mask for residential buildings extracted in Step 7. For 
automated counting of the number of residential buildings in each census 
block, several steps are needed for further processing of the residential 
buildings extracted in Step 7. In this step, a binary mask “bldg_mask” 
will be created from the raster “dhm_bldg”. If the cell value of the ras-
ter “dhm_bldg” is greater than 0, the corresponding output value in 
“bldg_mask” is 1; otherwise, the output is 0. This can be done using the 
conditional “Con()” function in the raster calculator. The expression is 
Con(“dhm_bldg” > 0, 1, 0), and the output raster is “bldg_mask”.

 9. Remove noise in the binary mask for residential buildings. Open 
ArcToolbox → Spatial Analyst Tools → Neighborhood → Focal Statistics, 
use “bldg_mask” as the input raster, “bldg_mask2” as the output raster, 
“Rectangle” as the neighborhood, 3 as the height and width, “Cell” as the 
unit, MEDIAN as the statistics type, and click OK. Figure 5.31 shows 
the comparison between the two rasters “bldg_mask” (Figure 5.31A) and 
“bldg_mask2” (Figure 5.31B). It can be seen that holes and isolated cells 
in “bldg_mask” have been removed in “bldg_mask2”.

 10. Create building footprints using raster to polygon conversion. Using 
Raster to Polygon conversion (ArcToolbox → Conversion Tools → 
From Raster → Raster to Polygon), input raster “bldg_mask2” can be 
converted into a polygon shapefile “bldg_poly.shp” using VALUE as 
the conversion field. Note that the building boundaries can be simpli-
fied or even distorted if the “Simply polygon” option is checked, but 
that does not affect our results because we are interested in counting the 
number of polygons (buildings) instead of delineating actual building 
footprints. Figure 5.32 shows converted building polygons.

At this point, the following datasets have been created: (1) A build-
ing polygon shapefile (bldg_poly.shp) which can be used to obtain the 

(B)(A)

FIGURE 5.31 Comparison between the two rasters “bldg_mask” (A) and “bldg_mask2” (B).
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number of buildings in each census block, (2) A binary raster for build-
ings (bldg_mask2) which can be used to get the area of buildings in each 
census block, and (3) a building height raster “dhm_bldg” which can be 
used to obtain the building volume in each census block. Using these 
variables from selected census blocks as x, and the corresponding 2010 
population (available in the census block shapefile) as y, OLS regression 
equations can be obtained to estimate total population in the study area.

 11. Select census blocks as training samples. A total of 30 census blocks 
are randomly selected as training sample and saved as a new shapefile 
“blocksamples.shp” (Figure 5.33). In the following steps, the popula-
tion, building count, building area, and building volume of the sample 
blocks are used to build regression models.

 12. Obtain number of buildings in each census block using spatial join. Open 
ArcToolbox → Analysis Tools → Overlay → Spatial Join (Figure 5.34), 
use censusblocks as target features, bldg_poly as join features, sp-join.
shp as output feature class, and CONTAINS as match option to create 
spatial join between census blocks and building polygons. In the attri-
bute table of the output feature class, the field “Join_Count” represents 
the number of buildings in each census block. Note that the default 
match option is INTERSECT, which will produce an extra count in the 
“Join_Count” field. Using CONTAINS as match option will produce 
exact number of buildings in each census block.

 13. Obtain building area in each census block using Zonal Statistics as 
Table. Open ArcToolbox → Spatial Analyst Tools → Zonal → Zonal 
Statistics as Table, use blocksamples.shp as the feature zone data, FID 
as the zone field, and the binary raster “bldg_mask2” as the input value 

FIGURE 5.32 Converted building polygons (bldg_poly) within census blocks.
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raster, select “SUM” as the statistics type, and click OK to produce 
zonal statistics in the output table. Since the binary raster “bldg_mask2” 
has cell values of 0 for non-buildings and 1 for buildings, the statistics 
type SUM will report the total number of building cells in each census 
block in blocksamples.shp. The SUM field in the output table represents 
not only the number of building cells but also the area of building cells 
in each census block because the cell size is 1 m × 1 m. For more infor-
mation on the Zonal Statistics as Table tool, refer to Project 2.1.

 14. Obtain building volume in each census block using Zonal Statistics as 
Table. Similar to Step 13, building volume in each sample census block 
can be obtained from ArcToolbox → Spatial Analyst Tools → Zonal → 
Zonal Statistics as Table. Select blocksamples.shp as the feature zone 
data, FID as the zone field, and the binary raster “dhm_bldg” as the 
input value raster, select “SUM” as the statistics type, and click OK to 
produce zonal statistics in the output table.

 15. Create regression models. The results of Steps 9–12 are summarized in 
Table 5.3. The table can be exported as a text file, and imported to Excel 
to create regression models (Figures 5.35 through 5.37).

Table  5.3. Population, building count, building area, and building 
volume in 30 sample census blocks.

N

FIGURE 5.33 Thirty census blocks selected as training samples.
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 16. Obtaining total building count, total building area, and total building 
volume in all census blocks, and calculating estimated population.

Note: The total building count, total building area, and building vol-
ume should be obtained from the 141 census blocks, not from the entire 
rasters because some areas in the rasters are not covered by the census 
blocks in this project.

A total of 2650 buildings are selected in 141 census blocks, and 
the estimated population is 7792 based on the regression model in 
Figure  5.35. The total building area (668,775 m2) and total building 
volume (3,208,273.81 m3) can be obtained using the same methods as in 
Steps 13 and 14, but with “censusblocks.shp” as the feature zone data. 
Based on the regression models in Figures 5.36 and 5.37, the population 
estimates are 8629 and 8347. Compared with total population (8235) 
of the 141 census blocks in the study area (Census 2010 data), the rela-
tive errors of population estimation using building count, building area, 
and building volume are 5.38%, 4.78%, and 1.36%, respectively. As can 
be seen from the results, it is possible to achieve over 95% accuracy 
for small-area population estimation using LiDAR data. It appears that 
building volume provides the best population estimates in this project. 
However, the conclusion could be different if a different set of training 
blocks are selected for constructing regression equations.

FIGURE 5.34 Spatial join tool in ArcGIS.
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 17. Save your ArcMap project and Word document.
 18. Questions: (1) The relationship between a dependent variable (such as 

population) and one or more independent variables (such as building 
count, building area, and building volume) might vary geographically. 
How can you take into account geographical differences when esti-
mating population using the independent variables? (2) Identification 
of buildings using LiDAR data can be affected by tree canopy. What 
options do you have to reduce the influence of tree canopy on building 
detection?

TABLE 5.3
Population, Building Count, Building Area, and Building Volume in 
30 Sample Census Blocks

FID Population Bldg_Count Bldg_Area Bldg_Volume

0 94 24 7,595.00 43,251.12

1 57 23 4,913.00 25,288.32

2 42 2D 3,508.00 12,617.39

3 92 46 7,985.00 29,809.72

4 25 10 3,518.00 17,568.79

5 54 15 4,285.00 23,646.96

6 28 12 2,450.00 11,367.02

7 63 19 4,512.00 18,945.73

8 99 35 7,013.00 37,383.58

9 85 30 7,060.00 32,216.75

10 141 29 10,874.00 54,907.82

11 121 35 9,922.00 45,621.58

12 52 15 3,640.00 16,160.32

13 41 14 3,356.00 15,305.04

14 134 37 8,632.00 38,827.24!
15 31 9 2,092.00 9,935.32

16 19 7 1,313.00 5,993.33

17 158 41 10,007.00 51,559.16

18 42 15 2,598.00 11,890.73

19 95 35 7,696.00 33,419.58

20 70 23 4,062.00 14,449.14

21 131 50 11,002.00 44,940.65

22 44 16 3,304.00 14,602.13

23 47 14 2,548.00 11,777.06

24 35 11 2,470.00 10,485.93

25 93 30 6,859.00 32,366.75

26 36 13 2,648.00 12,661.37

27 117 40 9,545.00 47,094.28

28 47 16 3,812.00 16,441.43

29 20 7 1,604.00 7,237.89
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FIGURE 5.35 Regression model for population derived from building count in census blocks.
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FIGURE 5.36 Regression model for population derived from building area in census blocks.
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FIGURE 5.37 Regression model for population derived from building volume in census 
blocks.
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6 LiDAR for Geoscience 
Applications

6.1  INTRODUCTION

The unique capability of LiDAR in providing highly accurate x, y, and z coordinates 
of ground points makes it an ideal data source for studying features on the Earth’s 
solid surface (Dong 2012). Research literature in geoscience applications of LiDAR 
can be summarized in six major fields: (1) changes in geomorphic surfaces, includ-
ing fundamental topographic signatures (Perron et al. 2009), alluvial fan formative 
processes and debris flow deposits (Staley et al. 2006, Volker et al. 2007), volumetric 
changes of coastal dunes and beach erosion (Woolard and Colby 2002, Mitasova et al. 
2004, Saye et al. 2005, Richter et al. 2011), changes in desert sand dunes (Ewing and 
Kocurek 2010a, 2010b, Reitz et al. 2010, Baitis et al. 2014, Dong 2015, Ewing et al. 
2015), changes in glaciers/ice sheets and glacial sediment redistribution (Krabill et al. 
1995, Irvine-Fynn et al. 2011), and lava flow dynamics and rheology (Tarquini and 
Favalli 2011, Jessop et al. 2012, Tarquini et al. 2012); (2) surface hydrology and flood 
models (Cavalli et al. 2008, Jones et al. 2008, Vianello et al. 2009, Fewtrell et al. 2011, 
Sampson et al. 2012); (3) tectonic geomorphology (Cunningham et al. 2006, Kondo 
et al. 2008, Arrowsmith and Zielke 2009, Begg and Mouslopoulou 2010, Howle et al. 
2012, Dong 2014); (4) lithological mapping (Grebby et al. 2010, 2011); (5) rock mass 
structural analysis (Gigli and Casagli 2011, Lato and Vöge 2012, Lato et al. 2013); and 
(6) natural hazards, such as landslides, debris flows, and earthquake damage (Glenn 
et al. 2006, Schulz 2007, Bull et al. 2010, Lan et al. 2010, Dong and Guo 2012, Liu 
et al. 2012).

This chapter introduces LiDAR applications in the study of six major features/
phenomena in geosciences: (1) Aeolian landforms (coastal dunes and desert dunes), 
(2) fluvial landforms (alluvial fans and terraces), (3) surface hydrology (watersheds 
and snow depth), (4) volcanic and impact landforms (volcanic cones and craters, lava 
flows, and impact craters), (5) tectonic landforms (linear and planar geomorphic 
markers), and (6) rocks and geologic structures. Finally, two step-by-step projects in 
ArcGIS are included at the end of the chapter to demonstrate measurement of dune 
migration using multi-temporal LiDAR data collected in the White Sands Dune 
Field (WSDF), NM, USA, and trend surface analysis of simple folds using LiDAR 
data collected in Raplee Ridge, UT, USA.

6.2  AEOLIAN LANDFORMS

Aeolian sand dunes are a major component of Aeolian landforms, and one of the 
most dynamic landforms on Earth and some other planets such as Mars and Venus 
and the moon Titan (Fenton 2006, Hugenholtz et al. 2007, Bourke et al. 2010). 
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Understanding how sand dunes form and change has long been a research topic in 
Earth and planetary surface processes (e.g., Bagnold 1941, Wasson and Hyde 1983, 
Lancaster 1995, Rubin and Hesp 2009, Bridges et al. 2012). In the 1970s and 1980s, 
many single-dune studies were carried out to understand the basic controls on the 
form of individual dunes (Livingstone et al. 2007). The rapid development in data 
collection and processing technology in the 1980s and 1990s led to more sophisti-
cated studies of single dunes. Since 2000 there has been a shift in sand dune research 
focus from studying single dunes to studying dunes as complex systems (Livingstone 
et al. 2007). In addition to numerous field studies around the world (e.g., Rubin 1990, 
Ha et al. 1999, Dong et al. 2000, 2004, Elbelrhiti et al. 2005, Ewing and Kocurek 
2010a, Zhang et al. 2012a), many other methods have been developed for sand dune 
studies, including cellular automaton models (Narteau et al. 2009, Zhang et al. 
2010, Barrio-Parra and Rodríguez-Santalla 2014), numerical models (Alhajraf 2004, 
Hersen 2004, Zhang et al. 2012b, Araújo et al., 2013), flume experiments (Taniguchi 
et al. 2012), landscape-scale experiments (Ping et al. 2014), and remote sensing 
methods (e.g., Hunter et al. 1983, Gay 1999, Jimenez et al. 1999, Bailey and Bristow 
2004). These studies have improved general understanding of sand dunes. A review 
of research progress in geomorphology of desert sand dunes can be found in the 
work of Livingstone et al. (2007).

In comparison with traditional remote sensing techniques, LiDAR has provided 
unprecedented datasets for sand dune studies, mostly in the form of high- resolution 
and high-accuracy digital elevation models (DEMs). Early LiDAR-based sand dune 
studies focused on morphometry and evolution of coastal dunes. For example, 
Woolard and Colby (2002) used multi-temporal LiDAR data acquired in 1996 and 
1997 to obtain volumetric changes of coastal dunes at Cape Hatteras, NC, USA; 
Mitasova et al. (2004) used annual LiDAR data from 1997 to 2000, and global posi-
tioning system measurements, to study dune activity changes at Jockey’s Ridge, NC, 
USA; and Saye et al. (2005) employed LiDAR data to investigate the relationships 
between frontal dune morphology and beach/near-shore morphology at five sites 
in England and Wales. Figure 6.1 shows perspective views of LiDAR point clouds 

(B)(A)

FIGURE 6.1 Perspective views of LiDAR point clouds collected on October 18, 2010 for 
two coastal dune fields—Vila Nova (A) and Garopaba (B) in southern Brazil. (Data provided 
by FAPESP grant 2009/17675-5, Grohmann, C.H., and Sawakuchi, A.O., Geomorphology, 
180–181, 130–136, 2013.)
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collected on October 18, 2010, for two coastal dune fields (Vila Nova and Garopaba) 
in southern Brazil.

Since 2010, several studies have been conducted for desert dunes. Reitz et al. 
(2010) used LiDAR data, acquired in June 2007 and June 2008, to study barchan-
parabolic dune pattern transition from vegetation stability threshold in the WSDF, 
NM, USA. Based on manual digitizing of dune crestlines, Ewing and Kocurek 
(2010b) studied seven types of dune interactions at WSDF using digitally scanned 
aerial photographs from 1963 and 1985, digital orthophoto quarter quadrangles 
from 1996, 2003 and 2005, and a DEM with 1-m spatial resolution generated from a 
June 2007 airborne LiDAR survey. Baitis et al. (2014) used a LiDAR-derived DEM 
of a representative portion of WSDF to characterize dune-field parameters. Using 
LiDAR-derived DEMs, Ewing et al. (2015) investigated bedform patterns and pro-
cesses that coexist in dune fields and that can be used to interpret environmental and 
climatic conditions in WSDF.

Dong (2015) proposed a new approach named Pairs of Source and Target Points 
(PSTP) for automated measurement of dune migration directions and migration rates 
using multi-temporal LiDAR data collected on January 24, 2009 (with a point den-
sity of 4.19 points m−2) and June 6, 2010 (with a point density of 4.19 points m−2) in 
WSDF (Figure 6.2). The theoretical foundation of the PSTP method is that sand 
avalanching and slumping events caused by gravity occur in the inclination direc-
tion of the slip face (Bagnold 1941). The centerlines of old slip faces are referred to 
as source lines, and the centerlines of new slip faces are referred to as target lines. 

(A)

1226.59 m

1195.74 m

N

500 m

(B) 1195.80 m

1226.84 m N
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FIGURE 6.2 Digital elevation models (DEM) with 1 m × 1 m cell size created from multi-
temporal LiDAR point clouds covering the study area of 2.4 km × 9 km in White Sands, NM 
(USA). (A) DEM for January 24, 2009, and (B) DEM for June 6, 2010.
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The basic concept of the PSTP method is explained as follows: For any point t (target 
point) on a target line (Figure 6.3), there might be a nearest point s (source point) on 
a source line (or the extension of the source line) within a certain search radius, and 
the vector A is normal to the source line at point s. The length of the vector A is the 
dune migration distance, and the direction of the source point s relative to the target 
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t

FIGURE 6.3 The concept of Pairs of Source and Target Points (PSTP). Source point s is the 
nearest point for target point t, and vector A is normal to the source line at point s.

1st DEM from LiDAR data (24 January 2009)

DEM slope raster

Binary raster for slip faces
(30°≤ Slope ≤ 35°)

Buffering and
clipping

Noise removal and
vectorization

Analysis of source
directions

Search for source points, and calculate angles and
distances between pairs of source and target points

Slip face centrelines

Source lines Target lines Random target points

Convert distances to migration rates

Spatial interpolation and point statisticsComparison of raster datasets

Spatial pattern of migration rates

2nd DEM from LiDAR data (6 June 2010)

DEM slope raster

Binary raster for slip faces
(30°≤ Slope ≤ 35°)

Noise removal and
vectorization

Slip face centrelines

FIGURE 6.4 Methodology flowchart showing major steps of automated measurement of 
sand dune migration rates using multi-temporal LiDAR data.
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point t is called source direction, counting clockwise from 0° (north) to 360°. Source 
directions do not necessarily follow the prevailing wind direction, but may reflect the 
prevailing wind direction statistically. Random points can be generated on the target 
line; thereby pairs of source and target points can be identified for automated cal-
culation of migration distance and source direction. The major steps for automated 
measurement of dune migration are described in the flowchart in Figure 6.4. Some 
results are shown in Figures 6.5 through 6.8.      

DEM 01/24/2009

Slip face
centerlines

(G)

Slip faces

(E)

(A)

Slope

(C)

Slope

(D)

(B)

Slip faces

(F)

DEM 06/06/2010

(H)

Slip face
centerlines

0 50 m

N

FIGURE 6.5 Extraction of slip face centrelines for a small area. (A) and (B) Digital eleva-
tion models for January 24, 2009, and June 6, 2010; (C) and (D) slope rasters derived from 
DEMs; (E) and (F) binary rasters for slip faces extracted from DEM slopes by setting values 
between 30° and 35° to 1, and other values to 0 and (G) and (H) vectorized centrelines for 
slip faces.
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FIGURE 6.6 Sand dune migration rates of 5936 target points draped over LiDAR-derived 
DEM for June 6, 2010.

FIGURE 6.7 Sand dune migration rates (m year −1) displayed as labels for target points for 
the small area in Figure 6.5. Source lines (green), target lines (red), and pairs of source and 
target points (black) are also shown with a background of a shaded DEM for June 6, 2010.
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FIGURE 6.8 Histogram of dune migration rates (m year −1) for 3025 target points with 
source direction in the range of 225°–285°.
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6.3  FLUVIAL LANDFORMS

Alluvial fans have long been used as important records of quaternary climate and 
tectonics in arid and semiarid areas (Davis 1905, Wallace 1977, Nichols et al. 2006). 
Figure 6.9 shows 30-m resolution Landsat Thematic Mapper (TM) image, color 
composite of principal components of Landsat TM image bands, and a 1-m resolu-
tion hillshaded DEM derived from airborne LiDAR data for alluvial fans in Death 
Valley, California, USA. While optical images such as Landsat TM can provide 
spectral information of the alluvial fans, surface roughness is usually obtained from 
radar images (e.g., Sabins 1987). LiDAR provides a new data source for mapping 
surface roughness of alluvial fans using parameters such as slope, curvature, and 
aspect derived from high-resolution DEMs, as reported in Regmi et al. (2014).

Terraces can be formed in different geologic and environmental settings (Shaw 1911, 
Easterbrook 1999). High-resolution and high-accuracy DEMs derived from LiDAR data 
can be very useful in studying terrace formation and abandonment. Figure 6.11 shows 
a LiDAR-derived DEM of a section of South Fork Eel River, CA, USA. Two profiles 
across the terraces and river bed are shown in Figure 6.11, which shows that LiDAR 
data can reveal terraces, as well as micro-topographic variations on the terraces.
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FIGURE 6.9 Landsat TM images and hillshaded DEM derived from LiDAR data for allu-
vial fans in Death Valley, California (USA). (A) Landsat TM image; (B) Color composite of 
principal components of Landsat TM bands; (C) Hillshaded DEM created from LiDAR data 
and (D) and (E) Sub-windows for two alluvial fans.
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6.4  SURFACE HYDROLOGY

Surface hydrology is closely related to precipitation, evaporation, river channels, 
watersheds, and human activities, among others. This section provides examples of 
LiDAR data for mapping watersheds and snow depth distribution.

High-resolution DEMs are needed for accurate delineation of watersheds. 
Figure  6.12 shows a comparison of a 90-m resolution Shuttle Radar Topography 
Mission (SRTM) DEM (Figure 6.12A), a 30-m resolution Advanced Spaceborne 
Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation 
Map (GDEM) DEM (Figure 6.12B), and a 1-m resolution LiDAR-derived DEM 
(Figure 6.12C) for a watershed in the Sawtooth National Forest located 27 km west 
of Stanley, ID, USA. Figures 6.12C through E are shaded DEMs of Figures 6.12A 
through C. As can be seen, the LiDAR-derived DEM provides the best data qual-
ity, which allows for more accurate calculation of flow directions and delineation of 
watersheds. 
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FIGURE 6.10 LiDAR-derived DEM of a section of South Fork Eel River, CA (USA). 
(A) 1-m resolution DEM; A-A′ and B-B′ are profile locations. Profiles are shown in Figure 
6.11 and (B) hillshaded DEM.
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FIGURE 6.11 Topographic profiles derived from Figure 6.10A.



159LiDAR for Geoscience Applications

The heterogeneous distribution of snow cover in mountain watersheds can be 
caused by the variability in meteorological, topographical, and vegetative controls, 
among other factors (Dye and Tucker 2003, Tong et al. 2009, She et al. 2015). The 
spatial distribution of snow depth can be obtained from LiDAR data collected in 
snow-on and snow-off conditions. Figure 6.13 shows original and shaded DEMs cre-
ated from snow-on and snow-off LiDAR data for an area around the Redondo Peak 
near the upper Jerez River basin in New Mexico, USA. The snow-on LiDAR data 
was collected during the peak snowpack season (March–April) in 2010 with a point 
density of 9.08 points/m2, and the snow-off LiDAR data was collected during June 
and July of 2010 with a point density of 9.68 points/m2. 
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FIGURE 6.12 Comparison of DEMs derived from 90-m resolution SRTM (A and D), 30-m 
resolution ASTER GDEM (B and E), and 1-m resolution LiDAR-derived DEM (C and F) for 
a watershed in the Sawtooth National Forest, ID.
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Figure 6.14 shows the rasters for topographic slope, aspect, and snow-depth distri-
bution. From Figures 6.14B through D, it can be seen that snow depths are greater on 
the slopes facing north, northwest, and west than those on the slopes in other direc-
tions. The contrast between thin snow depth and thick snow depth in Figure 6.14F is 
of interest. To further investigate the snow depth distribution, snow-on and snow-off 
topographic profiles are extracted from profile P–P′ (Figure 6.15). It can be seen 
from Figure 6.15 that west- and northwest-facing slopes have minimal snow depths, 
whereas east- and southeast-facing slopes have increased snow depth, especially 
near the hill ridge. It is believed that wind is a major causal factor for snow redistri-
bution in this case, as also reported in Winstral and Marks (2002) and Dadic et al. 
(2010) for other study areas.

6.5  VOLCANIC AND IMPACT LANDFORMS

Topography plays an important role in the emplacement of lava flows (Favalli et al., 
2009). High-resolution LiDAR data make it possible to investigate morphometric 
characteristics of lava flow, as reported in Jessop et al. (2012), Kereszturi et al. (2012), 
and Tarquini et al. (2012). In this section, LiDAR data for several representative vol-
canic landforms are presented. Since impact craters and some volcanic craters have 
similar shapes, LiDAR for sample impact landforms is also presented.

(A) (B)

N

(C) (D)

FIGURE 6.13 Original DEM and shaded DEM obtained from snow-on (A and C) and 
snow-off (B and D) LiDAR data collected in the upper Jerez river basin, NM (USA). Note the 
vertical coordinate system is NAVD88 (GEOID03) [EPSG: 5703].
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Figure 6.16 shows LiDAR-derived DEM products in the Lunar Crater volcanic 
field in east-central Nevada, USA. The volcanic field includes cinder cones, maars 
(broad craters formed by explosive eruptions close to ground level), and basalt flows 
that resemble some features on the moon (Scott and Trask 1971). Of particular inter-
est is the Lunar Crater National Natural Landmark (Figure 6.16B), a maar that is 
approximately 130 m deep and 1050 m wide (Figure 6.16D). As shown in Figures 
6.16C and D, LiDAR data can be used to extract slope variations and cross profiles 
from volcanic landforms. Figure 6.17 shows selected volcanic landforms in Mauna 
Loa, HI, USA, and Figure 6.18 is a lava flow in Parkdale, OR, USA. Figure 6.19 is 
the Meteor Crater in northern Arizona, USA—the best preserved meteorite impact 
site on Earth. The Meteor Crater is about 1200 m in diameter and about 170 m deep, 
with a rim that rises about 45 m above the surrounding plains (Figures 6.19C and D). 
Although the profile in Figure 6.19D is similar to Figure 6.16D, the mechanisms for 
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FIGURE 6.14 Topographic slope, aspect, and snow-depth distribution. (A) slope; (B) aspect; 
(C) snow depth map; (D) classified snow-depth map; (E) snow depth (red numbers) for box E 
in (C) and (F) snow depth (red text) for box F in (C).
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the two craters are different. The Lunar Crater in Figure 6.16 was created by explo-
sive eruptions, whereas the Meteor Crater in Figure 6.19 was created by impact, with 
evidence of shock metamorphism (Kieffer 1971).   

6.6  TECTONIC LANDFORMS

Numerous conceptual models of landscape evolution under tectonic and climate 
regimes have been proposed over the past century (Burbank and Anderson 2011). 
To quantify the amount of tectonic deformation, identifiable geomorphic markers 
are needed to provide a reference frame. These geomorphic markers include linear 
markers such as streams and glacial moraines, and planar markers such as terraces 
and alluvial fans. To calculate the rates of tectonic movement, two important param-
eters for geomorphic markers are needed: age and geometry. In the past several 
decades, new geochronologic methods have been developed for determining the age 
of tectonic and geomorphic markers (Burbank and Anderson 2011, Sloss et al. 2013). 
With increasing accuracy in dating geomorphic features, improvements in quan-
tifying the geometry of geomorphic markers can produce more accurate rates of 
deformation. 

The last decade has seen wide applications of LiDAR in tectonic landform stud-
ies (e.g., Arrowsmith and Zielke 2009, Hunter et al. 2009, Zielke et al. 2010, 2012, 
Howle et al. 2012, Dong 2014). Arrowsmith and Zielke (2009) evaluated the use 
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FIGURE 6.15 Classified snow depth map (left) and snow-on and snow-off topographic pro-
files (right). (A) Snow-on topographic profile; (B) snow-off topographic profile and (C) snow-
depth profile derived from (A) and (B).
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of LiDAR data for mapping recently active breaks in the Cholame segment of the 
south-central San Andreas Fault (SAF), and concluded that a LiDAR-only approach 
compares well with a combination of aerial photographic and field-based methods. 
In the Lake Tahoe Basin, California, USA, tectonic offsets of linear glacial moraines 
have been used to calculate slip rates of active normal faults obscured by dense 
vegetation. Howle et al. (2012) used bare-earth point cloud data to mathematically 
reconstruct linear lateral moraine crests on both sides of faults. The reconstructed 
moraine crests produced statistically significant “piercing lines” that were projected 
to intersection with modeled fault planes to define “piercing points” in 3D space. The 
results of the study yielded a two to three fold increase over previous estimates of tec-
tonic slip rates in the Lake Tahoe region. Hunter et al. (2009) discovered a previously 
unmapped fault using LiDAR data near the Martis Creek Dam, Truckee, California, 
USA, and Székely et al. (2009) used LiDAR data in an extremely flat area, east of 
Neusiedlersee in Hungary, and discovered linear geomorphic features, which are 
several hundred meters to several kilometers long. In areas with dense vegetation 
cover in the U.S. Pacific Northwest and Europe, 2-m resolution DEMs derived from 
LiDAR data have been successfully used for delineating earthquake surface ruptures 
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FIGURE 6.16 LiDAR-derived DEM products from part of the Lunar Crater volcanic field 
in east-central Nevada. (A) DEM; (B) A subarea extracted from (A); (C) Slope obtained from 
(A); (D) Profile extracted from pp’ in (B). Note: The vertical coordinate system for the DEM 
products here is GEOID 12.
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(Haugerud et al. 2003, Sherrod et al. 2004, Cunningham et al. 2006). However, some 
other LiDAR studies on the northern San Andreas Fault and central Japanese moun-
tains indicated that 2-m resolution DEMs could not identify some small tectonic 
breaks (Zachariasen 2008, Lin et al. 2009). Using airborne LiDAR data collected 
from orthogonal flight lines, Lin et al. (2013) created 0.5-m resolution DEMs along 
the Neodani Fault in Japan, and revealed a number of previously unknown fault 
scarps and active fault traces hidden under dense vegetation. Although the cost of 
data collection will increase with overlapping flight lines, the greater bare-earth data 
density, collected from different angles, will likely enhance the imaging of subtle 
geomorphic markers in densely forested areas.

Offset channels associated with strike-slip faults are good examples of linear geo-
morphic markers that can be used to determine the rate and nature of tectonic move-
ment, and the south-central SAF in California has arguably some of the world’s 
best- preserved tectonic landforms at 10s and 1000s of meter scale (Wallace 1975, 
Wallace and Schulz 1983, Wallace 1991). The most famous offset feature is the offset 
channel at Wallace Creek across the SAF zone in the Carrizo Plain, CA, USA (Sieh and 
Jahns 1984). Figure 6.20 is a hillshaded 1-m resolution DEM derived from LiDAR data 
that shows the offset channels in the south-central SAF. Wallace Creek is in sub-window 
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4198.44 m

3917.67 m

FIGURE 6.17 Selected volcanic landforms in Mauna Loa, HI (USA). Hillshaded DEMs are 
shown in (A) and (B). Note: The vertical coordinate system is NAVD88 (GEOID03) [EPSG: 5703].
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A of Figure 6.20, and the field photo of Wallace Creek (Figure 6.21) was taken near 
location p1 in sub-window A facing northwest. The distance between p1 and p2 is the 
offset distance of Wallace Creek, and a1a2 and b1b2 are two lines of topographic pro-
files shown in Figure 6.22. A fault scarp is visible in profile a1a2 (Figure 6.22A), while 
 profile b1b2 (Figure 6.22B) shows a sag depression caused by lateral movement of the 
SAF. Beheaded channels are also visible in the central part of Figure 6.20.

 Another example of offset channels is reported by Klinger and Piety (2000) in 
Death Valley, CA, USA, where a vertical aerial photograph was used to measure the 
right-lateral offset of several drainages along Furnace Creek Fault. Here a shaded 
DEM derived from LiDAR data is used to show the offset drainages (Figure 6.23A). 
The offset distances a1a2, b1b2, and c1c2 measured in Figure 6.23A are 309, 330, and 
249 m, respectively, very close the measurements by Klinger and Piety (2000). Using 
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(B)
1033.75 m

494.21 m

FIGURE 6.18 LiDAR data for Parkdale lava flow in Parkdale, OR (USA). Hillshaded DEMs 
are shown in (A) and (B). LiDAR data provided by the Oregon Department of Geology and 
Mineral Industries (DOGAMI) LiDAR Program.
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the age of the geomorphic surface as the maximum age for the total right-lateral 
displacement of the drainages, Klinger and Piety (2000) calculated a slip rate of 
4–9 mm/year for Furnace Creek Fault. To better reconstruct the original drainages, 
Figure 6.23B shows the back-slipping of the two blocks separated by the fault on 
hillshaded LiDAR-derived DEM. 

Planar geomorphic features such as fluvial terraces, alluvial fans, and marine ter-
races have been widely used as geomorphic markers in tectonic deformation studies 
(e.g., Goy and Zazo 1986, Hetzel et al. 2002, Silva et al. 2003, Hetzel et al. 2004a, 
2004b, Filocamo et al. 2009, Ramos et al. 2012, Gurrola et al. 2013, Matsu’ura et al. 
2014), while erosion surfaces such as pediments (Hetzel et al. 2004a, 2004b, Hall 
et al. 2008) and glacis (Garcia-Tortosa et al. 2011) are less frequently used as geo-
morphic markers due to the difficulty in dating of such surfaces. Frankel et al. (2011) 
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FIGURE 6.19 LiDAR-derived DEM products for Meteor Crater, AZ (USA). (A) and (B) 
Hillshaded DEMs; (C) DEM with colors for different elevations and (D) Topographic profile 
derived from P-P′ in Figure 6.19C. Note: The vertical coordinate system for DEM products is 
NAVD88 (GEOID 09) [EPSG: 5703].
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determined new slip rates of the Death Valley–Fish Lake Valley fault system in 
eastern California and western Nevada by combining alluvial fan offsets measured 
from 1-m resolution LiDAR-derived DEM with 10Be TCN and OSL ages from dis-
placed alluvial fans. Crosby et al. (2006) extracted elevations of the marine terrace 
inner edges from a LiDAR-derived DEM between Fort Ross and Mendocino, CA to 
study deformation variations off the San Andreas Fault. Bowles and Cowgill (2012) 
presented a semiautomated surface classification method to identify probable marine 
terraces along a 70-km-long section of the northern California coast using slope and 
surface roughness properties obtained from LiDAR-derived DEM. In comparison 
with studies of linear geomorphic markers using LiDAR data, case studies of planar 
geomorphic markers using LiDAR data are relatively limited.

Planar geomorphic markers can help identify linear geomorphic markers in some 
cases. Kondo et al. (2008) provided a good example of identifying a continuous fault 
scarp using LiDAR data in Matsumoto, a city built on an alluvial fan in central Japan. 
They created a high-resolution (0.5 m) DEM after filtering out laser returns from 
buildings and vegetation, and identified a fault scarp of up to 2 m in height using seg-
mented least squares fitting on the topographic profiles derived from the alluvial fan. 
Borehole data and archaeological studies indicate that the fault scarp is indeed in a 
pull-apart basin, and was formed during the most recent faulting event associated 
with historical earthquakes. In the Rangitaiki Plains, the fastest extending section of 

N

(B)

(A)

FIGURE 6.20 Offset channels in the south-central San Andreas Fault, CA (USA) shown 
in hillshaded DEM (1-m resolution) derived from LiDAR data. Two subareas are shown in 
(A) and (B).
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the onshore Taupo Rift in New Zealand, Begg and Mouslopoulou (2010) used fault-
parallel and fault-normal profiles created from a LiDAR-derived DEM with 3.5 m 
resolution, and identified a vertical displacement of ~3 m across an active normal 
fault. Figure 6.24 is a slope raster created from 1-m resolution LiDAR-derived DEM 
of Willow Valley in Death Valley, CA. Fault scarps of a SW-NE trending fault (red 
line in Figure 6.24) are shown as steep slopes in Figure 6.24. Figure 6.25 is a 1-m 
resolution hillshaded DEM derived LiDAR data, along with locations of four profiles 
a1a2, b1b2, c1c2, and d1d2 shown in Figure 6.25. Uplifted terraces are revealed in pro-
files a1a2 and b1b2 (Figures 6.26A and B), and supported by the field study of Klinger 
and Piety (2000). Profile c1c2 (Figure 6.26C) shows the current alluvial fan, whereas 
profile d1d2 (Figure 6.26D) represents an uplifted old alluvial fan cut by streams. 
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FIGURE 6.22 Topographic profiles extracted from a1a2 and b1b2 in Figure 6.20 showing a 
fault scarp (A) and a sag depression (B).

FIGURE 6.21 Field photo of Wallace Creek taken near point p1 in Figure 6.20.



169LiDAR for Geoscience Applications

6.7  LITHOLOGY AND GEOLOGIC STRUCTURES

Compared with multispectral and hyperspectral image data that has been widely 
used in mapping rock units and geologic structures, the application of LiDAR data 
in lithological and structural mapping is relatively limited, mainly due to the lack 
of rich spectral information of LiDAR and relatively limited availability of LiDAR 
data. However, the capability of LiDAR in revealing topographic details, especially 
in areas of dense vegetation cover, can provide unique applications in mapping rock 
units and geologic structures.

For lithological mapping in arid environments, integration of spectral informa-
tion from optical images and texture information from radar images has proven to be 
effective in many studies (e.g., Dong and Leblon 2004). However in forested areas, 
textures from radar images usually reflect forest texture, not texture of the underly-
ing ground surface. Grebby et al. (2010) used morphometric variables (including 
slope, curvature, and surface roughness) derived from a 4-m resolution LiDAR 
DEM to quantify the topographic characteristics of four major lithologies in the 
upper section of the Troodos Ophiolite, Cyprus, and produced a detailed lithologi-
cal map that is more accurate than the best existing geological map in the area. 
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N

FIGURE 6.23 Offset channels along Furnace Creek Fault in Death Valley, CA (USA) 
shown in hillshaded DEM (1-m resolution) derived from LiDAR data. (A) Offset channels 
and (B) back-slipping of offset channels. a1, b1, and c1 are original locations; a2, b2, and c2 are 
shifted locations of a1, b1, and c1, respectively.
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FIGURE 6.24 Slope raster created from 1-m resolution LiDAR-derived DEM of Willow 
Valley in Death Valley, CA (USA).

FIGURE 6.25 Hillshaded DEM created from LiDAR-derived DEM (1-m resolution) of 
Willow Valley in Death Valley, CA (USA).
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Grebby et al. (2011) investigated the integration of airborne multispectral imagery 
and LiDAR-derived topographic data for lithological mapping in a vegetated section 
of the Troodos Ophiolite (Cyprus), and reported that LiDAR-derived topographic 
variables led to significant improvements of up to 22.5% in the overall mapping 
accuracy. Other examples of LiDAR data for rock unit mapping include Spinetti 
et al. (2009), Tarquini et al. (2012), and Chen et al. (2016). In addition to the previous 
studies on rock unit mapping, a few studies have been carried out for structural map-
ping using LiDAR data. Mynatt et al. (2007) used airborne LiDAR data to define the 
geometry of strata in Raplee Ridge in southeastern Utah, USA. Hilley et al. (2010) 
used airborne LiDAR data to define the geometry of exposed marker layers within 
the Raplee Ridge monocline in southwest Utah, USA. Le Gall et al. (2014) combined 
LiDAR data and echosounder data and produced a detailed structural picture of the 
immerged Variscan basement in the Molène archipelago, western Brittany, France. 

Figure 6.27A shows a Landsat TM 8 imagery (TM7 (R), TM3 (G), TM1 (B), 
acquired on October 4, 2014) dragged over a vertically exaggerated Advanced 
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital 
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FIGURE 6.26 Topographic profiles extracted from 1-m resolution LiDAR-derived DEM 
along (A) a1a2, (B) b1b2, (C) c1c2, and (D) d1d2 shown in Figure 6.25.
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Elevation Map (GDEM) digital elevation model in Raplee Ridge, UT, USA, and 
Figure 6.27B is a sketch profile from a1 to a2. Figure 6.28A is a display of a LiDAR-
derived DEM along with the Landsat TM 8 image, and Figure 6.28B shows a 3D view 
of LiDAR point clouds with a point density of 2.15 points/m2, extracted from box B 
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FIGURE 6.27 Raplee Ridge monocline in southwest Utah (USA). (A) Landsat TM 8 imag-
ery [TM7 (R), TM3 (G), TM1 (B)] dragged over a vertically exaggerated (3×) ASTER GDEM 
digital elevation model and (B) Sketch profile from a1 to a2.
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FIGURE 6.28 LiDAR data and Landsat TM 8 image for Raplee Ridge monocline in south-
west Utah (USA). (A) LiDAR-derived DEM along with Landsat TM 8 image and (B) 3D view 
of LiDAR point clouds with a point density of 2.15 points/m2.
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in Figure 6.28A. Figure 6.29 shows the DEM extracted from box B in Figure 6.28A, 
and a hillshaded DEM and slope raster. Hard rock layers are shown as bright lines in 
Figure 6.29C. By following the highlighted rock layers in Figure 6.29C and extract-
ing elevations from the DEM, trend surfaces of the rock layers can be created to 
reconstruct the orientation of the rock layers. Project 6.2 provides a step-by-step 
process for constructing the trend surfaces.   

PROJECT 6.1:  MEASURING SAND DUNE MIGRATION 
USING MULTI-TEMPORAL LiDAR DATA IN 
WHITE SANDS DUNE FIELD, NM, USA

 1. Introduction
Understanding how sand dunes form and change has long been a research 
topic in Earth and planetary surface processes, yet few methods have been 
developed for automated detection and measurement of dune migration 
directions and migration rates in large dune fields. In comparison with tra-
ditional remote sensing techniques, LiDAR has provided unprecedented 
datasets for sand dune studies. Using the angle of repose (AOR) as a sensi-
tive movement indicator of barchan (crescent-shaped) and transverse dunes, 
Dong (2015) proposed a PSTP (pairs of source and target points) method to 
automatically match before and after points on dune slip faces revealed by 
LiDAR data. The flowchart of the PSTP method is shown in Figure 6.4, and 

N

(A) (B) (C)

N N

FIGURE 6.29 LiDAR-derived DEM products (1-m resolution) for box B in Figure 6.28A. 
(A) DEM; (B) hillshaded DEM and (C) slope raster created from DEM. White crosses in 
Figure 6.29C are sampling points along a rock layer (see Project 6.2 for details).
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an ArcGIS add-in was created using the Python programming language 
to automate the whole process in Figure 6.4. The objective of this project 
is to use the add-in for calculating sand dune migration rates from multi-
temporal LiDAR data in a study area in the WSDF, NM, USA. Before using 
the add-in, users will work through several steps to better understand the 
processes of extracting slip faces from the DEMs, and converting the cen-
terlines of the slip faces into vector polylines. 

 2. Data
An area of 401 m × 802 m in WSDF is selected for this project. LiDAR 
data for the study area was acquired on January 24, 2009, and June 6, 2010. 
The LiDAR point density is about 4.19 points/m2 (for January 24, 2009) 
and 4.62 points/m2 (for June 6, 2010). The horizontal coordinate system is 
UTM Z13N NAD83 (CORS96) [EPSG: 26913], and the vertical coordi-
nate system NAVD88 (Geoid 03) [EPSG: 5703]. LiDAR data acquisition 
and processing was completed by the National Center for Airborne Laser 
Mapping (NCALM). NCALM funding was provided by National Science 
Foundation’s Division of Earth Sciences, Instrumentation and Facilities 
Program, EAR-1043051. Two DEM rasters in TIFF format “d20090124.
tif” and “d20100606.tif” with 1 m × 1 m cell size can be downloaded (by 
right-clicking each file and saving it to a local folder) from the project folder 
at http://geography.unt.edu/~pdong/LiDAR/Chapter6/Project6.1/.

 3. Project Steps

 1. Open an empty Word document so that you can copy any results from 
the following steps to the document. To copy the whole screen to your 
Word document, press the PrtSc (print screen) key on your keyboard, 
then open your Word document and click the “Paste” button or press 
Ctrl+V to paste the content into your document. To copy an active win-
dow to your Word document, press Alt+PrtSc, then paste the content 
into your document.

 2. Open ArcMap, load the Spatial Analyst Extension, 3D Analyst 
Extension, and ArcScan, and then add “d20090124.tif” and “d20100606.
tif” to ArcMap (Figure 6.30 and Figure 6.31). 

 3. Create DEM profile. To better understand the concepts of slip face and 
angle of repose for sand dunes, open the Customize menu of ArcMap 
and select Toolbars  3D Analyst to open the 3D Analyst toolbar. 
Select d20090124.tif as the 3D Analyst Layer on the toolbar, click the 
Interpolate Line tool, draw a straight line from left to right in the central 
part of the DEM for January 24, 2009, and click the Profile Graph icon 
on the 3D Analyst Toolbar to display the DEM profile (see Figure 6.32 
for a sample).

 4. Create empty polyline shapefile in ArcCatalog, which will be used 
for storing polylines for slip face centers later in the project. Open 
ArcCatalog and select the project folder for Project 6.1, then right click 
the ArcCatalog window and select “New”  “Shapefile…” to cre-
ate a polyline shapefile “polyline20090124.shp”. To define the spatial 

http://geography.unt.edu/~pdong/LiDAR/Chapter6/Project6.1/
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reference of polyline20090124.shp, click the “Edit” button and import 
the spatial reference properties of the DEM raster “d20090124.tif”. Add 
polyline20090124.shp to ArcMap.

 5. Create a slope raster from the 2009 DEM. Open ArcToolbox  Spatial 
Analyst Tools Surface  Slope, use “d20090124.tif” as the input raster 
to create the output slope raster “slp20090124” (Figure 6.33). The maxi-
mum slope is 35.604° in the slope raster. However, if raster cells with a 
slope value over 34.8° are selected using the Raster Calculator, it can be 
seen that only several isolated cells are selected. These isolated cells with 

FIGURE 6.30 LiDAR-derived DEM (1-m resolution) of January 24, 2009, for the 401 m × 
802 m test area.

FIGURE 6.31 LiDAR-derived DEM (1-m resolution) of June 6, 2010, for the 401 m × 802 m 
test area.
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slope values greater than 34.8° are probably caused by bushes or other 
objects in the desert, and can be easily removed in the next steps.

 6. Extract slip faces from the slope raster. In this project, slip faces are 
identified by selecting slopes greater than 30° and less than 35°. 
Open ArcToolbox  Spatial analyst Tools  Map Algebra  Raster 
Calculator, use Con(((“slp20090124” > 30) and (“slp20090124” < 35)), 
1, 0) as the expression to create binary raster “face20090124” where 1’s 
are for slip faces (black cells in Figure 6.34), and 0’s for other cells. Note: 
You should have full control over the output folder of the binary raster, 
otherwise you may not be able to edit the binary raster in Step 7 below.

 7. Edit binary raster for slip faces. Open the “Customize” menu of 
ArcMap and select Toolbars  Editor. Right-click the binary raster 
layer “face20090124” in the ArcMap table of contents, then select 
Editing Features  Start Editing. Then open the Customize menu in 
ArcMap and select Toolbars  ArcScan. Select “face20090124” as the 
ArcScan Raster Layer for the ArcScan Toolbar (Figure 6.35).
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FIGURE 6.32 Sample profile for a single dune in the 2009 DEM. Note the vertical 
exaggeration.
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FIGURE 6.33 Slope raster derived from the DEM for January 24, 2009.
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Open the Raster Cleanup menu on the ArcScan Toolbar (Figure 6.35) 
and select “Start Cleanup” to enable the tools under the Raster Cleanup 
menu. Select the mathematical morphological operation “Closing…” 
under the Raster Cleanup menu, put 1 as the number of pixels, and click 
OK remove noises in the binary raster. 

 8. Create polylines from slip face centerlines through vectorization. Open 
the Vectorization menu on the ArcScan Toolbar (Figure 6.35) and use 
the default settings and options, then click “Show Preview” under the 
Vectorization menu to see the preview. In this project, the default set-
tings work fine, so you do not need to make any changes. Right-click the 
empty polyline shapefile “polyline20090124.shp” on the ArcMap table 
of contents, and select Editing Features  Start Editing. You will be 
asked if you want to save the edits to the raster “face20090124”. Click 
“Yes” to save the edits. Now select “Generate Features…” under the 
Vectorization menu of the ArcScan Toolbar, use “polyline20090124” 
as the template, and click OK to generate polyline features for slip 
face centerlines derived from the 2009 DEM. On the Editor toolbar, 
select Edit  Stopping Editing to save the edits to slip face centerlines. 
Figure 6.36 shows the slip face centerlines (polyline20090124.shp) over 
the 2009 DEM (d20090124.tif). 

N

50 m

FIGURE 6.34 Binary raster “face20090124” for slip faces.

FIGURE 6.35 ArcScan Toolbar in ArcMap.
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As can be seen from Steps 4–8, it would be time-consuming to repeat 
the process using the DEM for June 6, 2010 (d20100606.tif) and fol-
low the flowchart in Figure 6.4 to obtain the final results. Therefore, an 
ArcGIS add-in has been created by the author using the Python pro-
gramming language to automate the whole process. The ArcGIS add-in 
“DuneMigration.esriaddin” can be downloaded from the project folder 
at http://geography.unt.edu/~pdong/LiDAR/Chapter6/Project6.1/. In 
the following steps, the add-in will be installed, and source directions 
and dune migration rates will be calculated using the add-in toolbar.

 9. Install the “Dune Migration” add-in. Double click the file 
“DuneMigration.esriaddin” in the project folder to open the add-in 
Installation Utility window (Figure 6.37). Click the “Install add-in” 
button, and you should see a pop-up message: “Installation Succeeded.”

 10. Load the Dune Migration add-in toolbar. Open the “Customize…” 
menu in ArcMap and select “Add-in Manager…”. Then select the 
“DuneMigration” add-in and click “Customize…” (Figure 6.38). In the 
Customize window, check the Dune Migration toolbar, and then click 
“Close”. The Dune Migration toolbar should appear (Figure 6.39). 

 11. The parameters for the Dune Migration Toolbar in Figure 6.39 are 
explained below, and the results are shown in Figures 6.40 through 
6.42.

 a. DEM1: The first DEM raster which can be created from LiDAR 
data or other data sources. The data acquisition date is contained 
in the DEM layer name in the format of YYYYMMDD, and the 
YYYYMMDD string can be any where in the DEM name as long 
as it is the first eight numbers; for example, A20090124DEM1. The 
DEM layer name can be changed by the user in ArcMap, and can 
be different from the actual file name.

N

50 m

FIGURE 6.36 Extracted slip face centerlines (white) over 2009 DEM.

http://geography.unt.edu/~pdong/LiDAR/Chapter6/Project6.1/
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 b. DEM2: The second DEM raster (similar to DEM1). The dates for 
DEM1 and DEM2 are used for calculating the time interval (num-
ber of days) between DEM1 and DEM2, which will be used to con-
vert dune migration distance into migration rate at each sampling 
point.

 c. AOR: Angle of repose for sand dune slip faces. AOR is usually 
around 34°, depending on the sand grain size, shape, and mois-
ture content. Users can select/input a range, such as 30–35, as AOR 
values.

 d. Min-Dist: The minimum distance between two random points. The 
unit of distance is the same as the linear unit of the DEM layers.

 e. Radius: The search radius used to identify the nearest source point 
around a random target point. The unit of radius is the same as the 
linear unit of the DEM layers.

FIGURE 6.37 ArcGIS add-in installation utility.
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FIGURE 6.38 Add-in Manager for ArcMap.

FIGURE 6.39 Dune Migration Toolbar for ArcMap.

FIGURE 6.40 The test datasets were processed in less than 42 seconds.
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 f. Workspace: The folder for output rasters and shapefile. To ensure 
the geoprocessing steps are not affected by any existing files, there 
should be no existing files or folders in the workspace before a users 
clicks the OK button; otherwise, a warning message will pop up.

FIGURE 6.41 Target points on target lines (red, for June 6, 2010), and source points for 
source lines (Green, for January 24, 2009).

FIGURE 6.42 Attributes of target points. NEAR_DIST—migration distance, Azimuth0—
source direction, and m_Rate—migration rate (m/year).
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 g. OK: Click OK to run the program. If there are any errors in the 
parameters on the toolbar, error messages will pop up. Results from 
the test data are shown in the following figures.   

 12. Save your ArcMap project.
 13. Questions: (a) How can you show histograms of source directions and 

migration rates? (b) How can you create a continuous raster in ArcGIS 
to show dune migration rates in the study area? 

PROJECT 6.2:  DERIVING TREND SURFACES OF SIMPLE FOLDS 
USING LiDAR DATA IN RAPLEE RIDGE, UT, USA

 1. Introduction
Geologists use two different compass bearings, strike and dip, to define the 
orientation of rock strata in 3D space. The intersection between a dipping 
rock layer and an imaginary horizontal place is a line. Strike is the compass 
bearing (relative to north) of the intersection line, while dip is the direction 
of maximum inclination down from strike, and is always perpendicular to 
strike. An angular measurement, dip magnitude, is the smaller of two angles 
formed by the intersection of an imaginary horizontal plane and a dipping 
rock layer. The 3D orientation of rock layers and simple folds can be rep-
resented by trend surfaces.A trend surface is a smooth surface defined by a 
mathematical function (a polynomial) that fits the input sample points using 
the least-squares fitting. The first-order, second-order, and third-order trend 
surfaces are defined by the following equations:

First-order:
 f(x,y) = c0 + c1x + c2 y (6.1)

Second-order:

 f(x,y) = c0 + c1 x + c2 y + c3 x2 + c4 xy + c5 y2 (6.2)

Third-order:

f(x,y) = c0 + c1 x + c2 y + c3 x2 + c4 xy + c5 y2 + c6 x3 + c7 x2y + c8 xy2 + c9 y3 (6.3)

where x and y are the (x, y) coordinates of input points, c0 ~ c9 are coefficients 
obtained by solving a set of simultaneous linear equations, and f(x, y) is the 
output z value at (x, y). A first-order trend surface is a flat or tilted plane without 
any bending; a second-order trend surface is a concave or convex surface, and 
a third-order trend surface has two bends. For simple rock layers and folds, the 
above equations should be enough to capture general trends of the surfaces.

The basic idea of this project is to create a point shapefile and add points to 
the shapefile along the outcrops of a rock layer, then use the points to extract 
elevations (z values) from the DEM. Finally, a trend surface  representing 
the orientation of the rock layer can be created from the (x, y, z) points.
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 2. Data
In this project, LiDAR data collected from Raplee Ridge, UT, USA on 
February 24, 2005 is used to derive trend surfaces of rock layers and sim-
ple folds. LiDAR data acquisition and processing was completed by the 
NCALM. NCALM funding was provided by National Science Foundation’s 
Division of Earth Sciences, Instrumentation and Facilities Program. EAR-
1043051. The LiDAR point density is about 2.15 points/m2. The horizontal 
coordinate system is UTM z12 N NAD83 (CORS96) [EPSG: 26912], verti-
cal coordinate system NAVD88 (Geoid 03) [EPSG: 5703]. A DEM raster 
in TIFF format “dem.tif” with 1 m × 1 m cell size can be downloaded (by 
right-clicking each file and saving it to a local folder) from the project folder 
at http://geography.unt.edu/~pdong/LiDAR/Chapter6/Project6.2/.

 3. Project Steps
 1. Open an empty Word document so that you can copy any results from 

the following steps to the document. To copy the whole screen to your 
Word document, press the PrtSc (print screen) key on your keyboard, 
then open your Word document and click the “Paste” button or press 
Ctrl+V to paste the content into your document. To copy an active win-
dow to your Word document, press Alt+PrtSc, then paste the content 
into your document.

 2. Add DEM data. Open ArcMap, turn on the Spatial Analyst extension, 
and then add raster “dem.tif” from the project folder (Figure 6.43).

FIGURE 6.43 LiDAR-derived DEM (1 m × 1 m cell size) of a study area in Raplee Ridge, 
UT, USA.

http://geography.unt.edu/~pdong/LiDAR/Chapter6/Project6.2/
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 3. Create hillshaded DEM. Open ArcToolbox  Spatial Analyst Tools  
Surface  Hillshade. Use the hillshade tool (Figure 6.44) to create a 
hillshaded DEM (Figure 6.45) to help interpret topographic features of 
the study area. 

 4. Create slope raster. Open ArcToolbox  Spatial Analyst Tools  
Surface  Slope, and use dem.tif as the input raster to a slope “slope” 

FIGURE 6.44 Hillshade tool in ArcGIS.

FIGURE 6.45 Hillshade raster created from the DEM in Figure 6.20.
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(Figure 6.46). Due to the differences in the resistance of the rock layers 
to the weathering processes, outcrops of some rock layers may show 
relatively steep slopes (bright tones in Figure 6.46).

 5. Create new shapefile for sample points. Open ArcCatalog and select the 
project folder for Project 6.2, then right click the ArcCatalog window 
and select “New”  “Shapefile…” to create a point shapefile “samples.
shp”. To define the spatial reference of samples.shp, click the “Edit” 
button and import the spatial reference properties of the DEM raster 
“dem.tif”.

 6. Add sample points to shapefile. Add the empty point shapefile “sam-
ples.shp” to ArcMap and change the symbol of the shapefile to red 
cross or any other point symbol. Load the Editor toolbar, and select 
“Start Editing” in the dropdown menu “Editor”, then select “Editing 
Windows”  “Create Features”. In the “Create Features” window on 
the right side of ArcMap, click “samples”, and then click “Point” in 
the “Construction Tools” window on the lower-right corner of ArcMap 
(Figure 6.47). Now you can zoom in to a rock layer (a bright feature in 
the slope raster), and start adding sample points along the feature. If a 
high-resolution remotely sensed image such as IKONOS or GeoEye is 
available and co-registered to the LiDAR-derived DEM, the image can 
be added to ArcMap and used as reference when adding the sample 
points. To complete the editing process, select “Stop Editing” in the 
dropdown menu “Editor”, and save the edits.

FIGURE 6.46 Slope raster created from the DEM in Figure 6.43.
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 7. Extract elevations using sample points. The point shapefile “samples.shp” 
created in Step 6 can be used to extract elevations at individual sample 
locations from the DEM. Open ArcToolbox  Spatial Analyst Tools 
 Extraction  Extract Values to Points, and extract z values to a new 
point shapefile “pnt-elevations.shp” where z values are saved in the 
RASTERVALU field (Figure 6.48).

 8. Create trend surfaces. Open ArcToolbox  Spatial Analyst Tools  
Interpolation  Trend, and set the parameters as in Figure 6.49 to create 
a second-order trend surface from sample points in “pnt-elevation.shp”. 
Similarly, first-order and third-order trend surfaces can also be created 

FIGURE 6.47 Adding sample points along a rock layer based on the slope raster.

FIGURE 6.48 Extracting elevation values to points.
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using the Trend tool. Table 6.1 lists the coefficients, RMS errors, and 
Chi-square values for the first-order, second-order, and third-order 
trend surfaces created from the 35 points in Figure 6.29C. Since the 
rock layer used in this project is part of an anticline, the first-order trend 
surface may not be the best option for representing the orientation of 
the rock layer, as indicated in the RMS error and Chi-square values in 
Table 6.1.

FIGURE 6.49 Generating a second-order trend surface from sample points.

TABLE 6.1
Coefficients, RMS Errors, and Chi-Square Values of Three Trend Surfaces
Order of Polynomial First-Order Second-Order Third-Order

Coefficients c0 = −559588.0989 c0 = −330290248.7063 c0 = −141724654.4038

c1 = 0.5203 c1 = 871.4967 c1 = 170.9755

c2 = 0.0599 c2 = 32.4302 c2 = −2.1991

c3 = −0.0009 c3 = 0.0003

c4 = 4.7504e−005 c4 = 4.4767e−005

c5 = −7.4263e−006 c5 = 1.1979e−006

c6 = −6.2593e−010

c7 = −8.2176e−012

c8 = 1.5412e−012

c9 = −7.7478e−013

RMS error 5.1103 3.1367 3.1367

Chi-square 914.04785 344.3583 344.3589
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 9. 3D visualization. To create 3D visualization of the DEM, sample 
points, and trend surfaces, open ArcScene and add the DEM ras-
ter “dem.tif”, the second-order trend surface raster “trend2”, and the 
sample points “pnt-elevation.shp” as scene layers. You can change the 
background color of the scene, and the symbology or transparency of 
each scene layer as desired. It is important to set the base height prop-
erty for each layer to obtain a 3D view. For raster scene layers, open the 
Layer Properties form and select the Base Heights tab, select “Floating 
on a custom surface”, then select the corresponding raster for the ras-
ter scene layer and click “Apply” (Figure 6.50). You can also change 
raster resolution (Figure 6.50). For vector scene layers, select “Use a 
constant value or expression” in the Base Heights tab (Figure 6.51), and 
click the expression builder button to select a field for z values (field 
[RASTERVALU] in this case). The DEM, sample points, and second-
order trend surface are shown in ArcScene in Figure 6.52.

 10. Save your ArcMap and ArcScene projects and Word document.
 11. Question: (a) Suppose the second-order trend surface created in Step 8 

can be used for representing the orientation of the rock layer, how can 
you calculate the dip direction, dip magnitude, and strike at any location 

FIGURE 6.50 Setting base heights for a raster scene layer.
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of the rock layer using ArcGIS? (b) If two parallel rock layers are repre-
sented by two first-order trend surfaces L1 and L2 (Figure 6.53), how can 
you calculate the distance T between the two layers in ArcGIS? Note: If 
L1 is the top and L2 is the bottom of a rock layer, T is the true thickness 
of the rock layer. (Hint: Extract z values (elevations) z1 and z2 from the 
two surfaces using a single point, and get ∆z as the first step.)

FIGURE 6.51 Setting base heights for a point scene layer.

N

N

Trend surface

FIGURE 6.52 A mosaic of ArcScene visualization of DEM, sample points, and second-
order trend surface.
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