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Application Area: Scheduling in Processor and Operating Systems 
 
In operating systems there are often hundreds of processes waiting to get access to 
the processor  
Following some implemented strategy, the scheduler decides which process gets the 
next access  

Depending on the particular implementation the strategy takes various 
parameters into account, such as  
 priority of the process 
 its parent priority 
 already consumed CPU time 
 assigned resources 

The scheduler (process dispatcher) is designed to optimize some system 
performance: 
 optimizing throughput: maximize the number of completed processes per time 

unit 
 minimizing the makespan of specified processes 
 maximizing profit for the owner of the machine 
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Application Area: Scheduling in Processor and Operating Systems 
 
Questions regarding the scheduling of activities in computers occur at different 
levels: 

 Inside processors: sequencing of micro-operations; pipelining 

 scheduling strategies in single processor operating systems: 
 round robin 
 priority based dispatcher algorithms 
 multilevel strategies  

 multiprocessor systems, consisting of a CPU, co-processors, and I/O processors: 
process handling, 
assignment of activities to the special purpose processors 

 parallel processing on a large number of identical processors as in massive 
parallelism: 

Work distribution, while taking into account the network connectivity and 
communication delays 
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Application Area: Scheduling in Processor and Operating Systems 
 

 distributed processing (several computers (workstations, PC's, etc.) are connected 
in a local area network (LAN), or Grids: 

Applications like computer integrated manufacturing: 
- accesses to scarce network resources 
- sequencing the activities  

need sophisticated scheduling strategies 

 real-time operating systems in parallel or distributed systems need careful 
handling of activities with deadlines 

  



© 2022 A. Tchernykh.  Scheduling on Parallel Processors. Due Date Criteria 9 

Application Area: Production Scheduling 
 
Another example of practical interest concerns production systems  
Typical in this area is the demand for optimal working plans for assembly lines and 
for flexible manufacturing machines, e.g. in production cells  

General requirements:  
- production due dates 
- resource balancing 
- maximal production throughput 
- minimum storage cost  
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Application Area: Production Scheduling 
 

Examples: 
 Control of robot movement has to deal with optical and other data, and concerns 

the real time coordination of moving the arm(s) 
 Assembly lines are of pipeline structure; their optimal design leads to flow shop 

problems 
 Organizing flexible manufacturing machines leads to problems of optimizing lot 

sizes under the requirement of optimal throughput while minimizing overhead due 
to tool change delays and other setup costs  

 Optimal routing of automated guided vehicles (AGV's) leads to questions that 
again require careful planning and sequencing 

In a manufacturing environment deterministic scheduling is also known as predictive  

Its complement is reactive scheduling, which can also be regarded as deterministic 
scheduling with a shorter planning horizon 
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Application Area: Technical and Industrial Processes 
 
Computer-integrated manufacturing (CIM) is a method of manufacturing in which the entire 
production process is controlled by computer.  
Typically, it relies on closed-loop control processes, based on real-time input from sensors. It is 
also known as flexible design and manufacturing 
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Application Area: Technical and Industrial Processes 
 
Activities from  

- production planning 
- computer aided design 
- work planning 
- manufacturing 
- quality control 

have to be coordinated  

The objectives are similar: better capacity planning, maximal throughput, minimum 
storage cost, etc. 
  Jobs 

m-Stages n 
 

Total number of possible solutions 

𝑛! ൭ෑ 𝑚
ୀଵ ൱
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Application Area: Control Systems 
 
In real-time systems the particular situation dictates conditions different from those 
before:  

some processes must be activated periodically with a fixed rate, and others 
have to meet given deadlines  

In such systems, meeting the deadlines can be a crucial condition for the correct 
operation of the environment  

Examples of application areas are  
o aircraft control,  
o power plants, heat control, turbine speed control, 
o frequency and voltage stabilization etc.,  
o security systems in transportation systems such as air bags and ABS  
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Basic Notions. Introduction 
 

The notion of task is used to express some well-defined activity or piece of work  
 
Planning in practical applications requires some knowledge about the tasks  
This knowledge does not regard their nature, but rather general properties such as  
 processing times, 
 relations between the tasks concerning the order in which the tasks can be 

processed, 
 release times which inform about the earliest times the tasks can be started, 
 deadlines that define the times by which the tasks must be completed, 
 due dates by which the tasks should be completed together with cost functions 

that define penalties in case of due date violations, 
 additional resources (for example, tools, storage space, data) 

Based on these data one could try to develop a work plan or time schedule that 
specifies for each task when it should be processed, on which machine or processor, 
including preemption points, etc.  
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Basic Notions. Introduction 
 

Depending on how much is known about the tasks to be processed, we distinguish 
between three main directions in scheduling theory: 

Deterministic or static or off-line scheduling assumes that all information 

required to develop a schedule is known in advance, before the actual processing 
takes place 
Especially in production scheduling and in real-time applications the deterministic 
scheduling discipline plays an important role  
  

Non-deterministic scheduling is less restrictive: only partial information is 
known 

for example computer applications where tasks are pieces of software with unknown 
run-time 
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Basic Notions. Introduction 
 

On-line scheduling: In many situations detailed knowledge of the nature of the 

tasks is available, but the time at which tasks occur is open  
If the demand of executing a task arises a decision upon acceptance or rejection is 
required, and, in case of acceptance, the task start time has to be fixed  

In this situation schedules cannot be determined off-line, and we then talk about on-
line scheduling or dynamic scheduling  

 Non-clairvoyant scheduling: consider problems of scheduling jobs with 

unspecied execution time requirements 

 Stochastic scheduling: only probabilistic information about parameters is 

available  
In this situation probability analysis is typical means to receive information about the 
system behavior  

 For each type of scheduling one can find justifying applications 

Here, off-line scheduling (occasionally also on-line scheduling) is considered 
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Deterministic Scheduling Problems 
 
The deterministic scheduling or planning problems arising in different applications 
have often strong similarities 

hence essentially the same basic model can be used  
 
Common aspects in these applications:  
 processes consist of complex activities to be scheduled 
 they can be modeled by means of tasks or jobs 
 Tasks usually need one of the available machines, maybe even a special 

machine, and additional resources of limited availability  
 Between tasks there are relations describing the relative order in which the tasks 

are to be performed 
order of task execution can be restricted by conditions like precedence constraints 

 Preemption of task execution can be allowed or forbidden  
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Deterministic Scheduling Problems 
 
 Timing conditions such as task release times, deadlines or due dates may be 

given  
In case of due dates cost functions may define penalties depending on the amount of 
lateness  

 There may be conditions for time lags between pairs of tasks, such as setup 
delays  

 In so-called shop problems sequences of tasks, each to be performed on some 
specified machine, are defined  

An example is the well-known flow shop or assembly line processing 

Scheduling problems are characterized not only by the tasks and their specific 
properties, but also by information about the processing devices  
Processors or machines for processing the tasks can be identical, can have different 
speeds (uniform), or their processing capabilities can be unrelated  
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Deterministic Scheduling Problems 
 
The problem is to determine an appropriate schedule, i.e. one that satisfies all 
conditions imposed on the tasks and processors  

A schedule essentially defines the start times of the tasks on a specified processor  
Generally there may exist several possible schedules for a given set of tasks 
An important condition describes the intended properties of a schedule, as defined by 
an optimization criterion 
Common criteria are:  

- minimization of the makespan of the total task set,  
- minimization of the mean waiting time of the tasks 

The optimization criterion allows to choose an appropriate schedule  

Such schedules are then used as a planning basis for carrying out the various activities 

Unfortunately, finding optimal schedules is in general a very difficult process  
Except for simplest cases, these problems turn out to be NP-hard, and hence the time 
required computing an exact solution is beyond all practical means  

In this situation, algorithmic approaches for sub-optimal schedules seem to be the 
only possibility   
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Deterministic Scheduling Problems 
 

Because of the complexity nature the theory deals with simplified models, and, when 
dealing with practical problems, rather improper simplifications are made in the 
corresponding models 

as a consequence, there is a big gap between practice and theory  

The question arises whether or not the theory of scheduling is of any use for the 
practice  

Hence we are faced with principal questions like  
 what can we gain from theory?  
 what can theoretical solutions tell us for the application? 
 is the still huge effort for solving theoretical problems justified? 
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The Scheduling Model 
 
 
 
 
 

 Deterministic Model 
 Optimization Criteria 
 Scheduling Problem and  |  |   - Notation 
 Scheduling Algorithms 
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The Scheduling Model. Deterministic Model 
 
Tasks, Processors, etc. 
Set of tasks T  = ሼ𝑇ଵ, 𝑇ଶ, … , 𝑇ሽ 

Set of resource types  R  = ሼ𝑅ଵ, 𝑅ଶ, … , 𝑅௦ሽ 

Set of processors  P  = ሼ𝑃ଵ, 𝑃ଶ, … , 𝑃ሽ 
Examples of processors:  

CPUs in e.g. a multiprocessor system  
Computers in a distributed processing environment  
Production machines in a production environment  

Processors may be  
 parallel: they are able to perform the same functions  
 dedicated: they are specialized for the execution of certain tasks  
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The Scheduling Model. Deterministic Model 
 
 
Parallel processors have the same execution capabilities 

Three types of parallel processors are distinguished 

o identical: if all processors from set P  have equal task processing speeds  

o uniform : if the processors differ in their speeds, but the speed 𝑏 of each 
processor is constant and does not depend on the tasks in T   

o unrelated: if the speeds of the processors depend on the particular task 
unrelated processors are more specialized: on certain tasks, a processor may 
be faster than on others  
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The Scheduling Model. Deterministic Model 
 
Characterization of a task 𝑻𝒋 
 Vector of processing times 𝑝 ൌ  ൣ𝑝, … , 𝑝൧, where 𝑝 is the time needed by 

processor 𝑃 to process 𝑇 

Identical processors: 𝑝ଵ ൌ ⋯ ൌ 𝑝 ൌ 𝑝 

Uniform processors: 𝑝 ൌ 𝑝 𝑏ൗ , 𝑖 ൌ 1, … , 𝑚 𝑝 = standard processing time (usually measured on the slowest processor),  𝑏 is the processing speed factor of processor 𝑃 
 

Processing times are usually not known a priori in computer systems  
Instead of exact values of processing times one can take their estimate  
However, in case of deadlines exact processing times or at least upper bounds are 

required 
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The Scheduling Model. Deterministic Model 
 

 Arrival time (or release or ready time) 𝑟  …  is the time at which task 𝑇 is ready for 
processing  

if the arrival times are the same for all tasks from T , then 𝑟 ൌ 0 is assumed for 
all tasks  

 Due date 𝑑  … specifies a time limit by which 𝑇 should be completed 
problems where tasks have due dates are often called "soft" real-time problems. 
Usually, penalty functions are defined in accordance with due dates  

 Penalty functions 𝐺 define penalties in case of due date violations 

 Deadline 𝑑ఫ෩   …  "hard" real time limit, by which 𝑇 must be completed 

 Weight (priority) 𝑤  ... expresses the relative urgency of 𝑇 
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The Scheduling Model. Deterministic Model 
 

 Preemption / non-preemption:  

A scheduling problem is called preemptive if each task may be preempted at 
any time and its processing is resumed later, perhaps on another processor  

 If preemption of tasks is not allowed the problem is called non-preemptive 

 Resource requests:  

besides processors, tasks may require certain additional resources during their 
execution  

 
Resources are usually scarce, which means that they are available only in 
limited amounts  
In computer systems, exclusively accessible devices or data may be considered 
as resources  
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The Scheduling Model. Deterministic Model 
 
In manufacturing environments tools, material, transport facilities, etc. can be treated 
as additional resources 
The resources considered here are assumed to be discrete and renewable  
Assumption: s types of additional resources 𝑅ଵ, 𝑅ଶ, … , 𝑅௦ are available in 
respectively 𝑚ଵ, 𝑚ଶ, … , 𝑚௦ units  
Each task 𝑇 requires for its processing one processor and certain fixed amounts of 
these additional resources:  
 resource requirement vector 𝑅൫𝑇൯ ൌ ൣ𝑅ଵ൫𝑇൯, 𝑅ଶሺ𝑇ሻ, … , 𝑅௦ሺ𝑇ሻ൧ 𝑅൫𝑇൯ denotes the number of units of resource 𝑅 required  

for the processing 𝑇  ሺ0  𝑅ሺ𝑇ሻ  𝑚, 𝑙 ൌ 1,2, … , 𝑠ሻ 

Obviously the situation may occur that, due to resource limitations, subsets of tasks 
cannot be processed at the same time. All required resources are granted to a task 
before its processing begins or resumes (in the case of preemptive scheduling), and 
they are returned by the task after its completion or in the case of its preemption  
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The Scheduling Model. Deterministic Model 
 
We assume without loss of generality that all these parameters,  𝑝, 𝑟, 𝑑, 𝑑ఫ෩ , 𝑤 and 𝑅ሺ𝑇ሻ are integers. This assumption is equivalent to permitting arbitrary rational 
values 

Conditions among the set of tasks T : precedence constraints  𝑇  𝑇 means that the processing of 𝑇  must be completed before 𝑇 can be started  

We say that a precedence relation  is defined on set T   
mathematically, a precedence relation is a partial order  

The tasks in T are called dependent  
if the relation  is non-empty 
otherwise, the tasks are called independent  
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The Scheduling Model. Deterministic Model 
 𝑇 is called a predecessor of 𝑇 if there is a sequence of asks 𝑇ఈభ, . . . , 𝑇ఈ ሺ𝑙  0ሻ with 𝑇  
 𝑇ఈభ  ...  𝑇ఈ   𝑇.  Likewise, 𝑇 is called a successor of 𝑇.  
If 𝑇   𝑇.  , but there is no task  𝑇ఈ  with  𝑇   𝑇ఈ  𝑇.   then  𝑇   is called an 
immediate predecessor of 𝑇, and 𝑇  an immediate predecessor of 𝑇   
 
A task that has no predecessor is called start task  
A task without successor is referred to as final task 
 
Special types of precedence graphs are  
o chain dependencies:  the partial order is the union of linearly ordered disjoint 

subsets of tasks 
o tree dependencies:  the precedence relation is tree-like;  

out-tree: if all task dependencies are oriented away from the root  
in-tree: if all dependencies are oriented towards the root  
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The Scheduling Model. Deterministic Model 
 
Representation of tasks with precedence constraints:  
 task-on-node graph (Hasse diagram)  

 
For each 𝑇 ≺  𝑇 , an edge is drawn 
between the corresponding nodes 
The situation 𝑇 ≺  𝑇 and 𝑇 ≺  𝑇 is 
called transitive dependency between 𝑇 
and 𝑇. 
Transitive dependencies are not 
explicitly represented 
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The Scheduling Model. Deterministic Model 
 
 task-on-arc graph, activity network. Arcs represent tasks and nodes time events  
Example 1: T  = {𝑇ଵ, ..., 𝑇ଵ} with precedences as shown by the above Hasse 
diagram. A corresponding activity network: 
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The Scheduling Model. Deterministic Model 
 
Task 𝑇 is called available at time t if 𝑟  t and all its predecessors (with respect to 
the precedence constraints) have been completed by time t  
Schedules 

Schedules or work plans generally … 
 inform about the times and on which processors the tasks are executed 
 
To demonstrate the principles, the schedules are described for the special case of: 

- parallel processors 
- tasks have no deadlines 
- tasks require no additional resources 

Release times and precedence constraints may occur 
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The Scheduling Model. Deterministic Model 
 

A schedule S is an assignment of processors to the tasks from T  (or an assignment 
of the tasks to the processors) such that: 

 task 𝑇 is processed in the time interval [𝑟, ) for 𝑝 time units, 

 all tasks are completed, 

 at each instant of time, each processor works on at most one task, 

 at each instant of time, each task is processed by at most one processor, 

 if tasks  𝑇, 𝑇  are in relation  𝑇 ≺  𝑇  then the processing of   𝑇  is not started 
before  𝑇  has been completed, 

 if  𝑇 is non-preemptive then processing of  𝑇 is not interrupted;  
if  𝑇 is preemptive then  𝑇 may be interrupted only a finite number of times 

If all tasks are non-preemptive then the schedule is called non-preemptive 
If all tasks are preemptive, then the schedule is called preemptive 
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The Scheduling Model. Schedule representation 1 
 

(1) One possibility to describe schedules is by means of a  
function Ϛℝ: ℝஹ  ሺT   ሼሽሻ 
the non negative real number values of ℝஹ are interpreted as time  

 denotes an idle task, which describes the possibility that one or more 
processors are not active  

Function Ϛℝ specifies for each point of time a vector of tasks of length m 

The  ith component of this vector specifies the task processor 𝑃 is currently working 
on  

This way Ϛℝ defines for each point of time the activities of each processor  
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The Scheduling Model. Schedule representation 1 
 
For practical reasons we assume that the image set of Ϛℝ is of finite cardinality  

In other words, we allow only finitely many changes of activity patterns for the processors  

If tasks are processed preemptively this assumption implies only finitely many 
preemptions for each task  
 
This allows a more practical description of Ϛℝ where tuples of Ϛℝ (t) are specified 
only for those points of time at which the value of Ϛℝ changes  

Between succeeding points of time the task assignment is then considered to be 
constant  

In this connection it makes sense to speak about intervals of task assignments during 
which the task assignment is constant 
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The Scheduling Model. Schedule representation 1 
 
Let s(𝑇) be the start time of 𝑇 , i.e. the earliest point of time at which 𝑇 occurs in 
one of the tuples 𝑆ℝሺ𝑡ሻ 

Let 𝑐ሺ𝑇𝑗ሻbe the completion time of 𝑇 , i.e. the end point of the last interval that 
contains 𝑇 

Then Ϛℝ must fulfill the following conditions: 
 the sum of lengths of intervals in which 𝑇 is processed is 𝑝 (j = 1, ..., n), 

 s(𝑇)  𝑟 , 

 the task in each tuple are pairwise different or , 

 if 𝑇  𝑇 then c(𝑇)  s(𝑇) 
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The Scheduling Model. Schedule representation 2 
 

(2) An alternative definition specifies only the start times of the tasks  
This is, however, improper for preemptive schedules:  

A non-preemptive schedule can be defined as a mapping Ϛ𝑇: T   ℝஹ  P ;  Ϛ்(𝑇) = (t, 𝑃) means that 𝑇 is started at time t on processor 𝑃 
Let s(𝑇) be the start time of 𝑇, and c(𝑇) (= s(𝑇) +𝑝) be its completion time 

Then the above conditions translate into: 

 s(𝑇)  𝑟, 

 Ϛ் is total (i.e. Ϛ் specifies one tuple for each task) 
 if Ϛ்(𝑇) = (t, 𝑃) then  no other task T '  can have an image (t', 𝑃)  

with  t'  [t, t +𝑝), 
 if 𝑇  𝑇 then c(𝑇)  s(𝑇) 
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The Scheduling Model. Schedule representation 3 
 
(3) Graphic representation: Gantt chart - this is a two-dimensional diagram 

The abscissa represents the time axis that usually starts with time 0 at the origin 

Each processor is represented by a line 
For a task 𝑇 to be processed by 𝑃 a bar of length p(𝑇) and that begins at the time 
marked by s(𝑇), is entered in the line corresponding to 𝑃 
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The Scheduling Model. Schedule representation 
 
Example 1: T  = {𝑇ଵ, ..., 𝑇ଵଶ} with precedences as shown by the Hasse diagram: 
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The Scheduling Model. Schedule representation 
 

Example 2:  non-preemptive schedule 
In the above example, let (2, 2, 8, 2, 3, 2, 4, 4, 2, 1, 3, 1) be the vector of 
processing times, and assume all release times = 0 
Assume furthermore that there are 3 identical processors (P  = {𝑃ଵ, … , 𝑃ଷ}) 
available for processing the tasks  
Gantt chart of a non-preemptive schedule: 
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The Scheduling Model. Schedule representation 
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The Scheduling Model. Schedule representation 
 

The corresponding formal description by a function Ϛℝ: ℝஹ ሺ    ሼሽሻ is: 
  Ϛℝ (0) =….. 

The corresponding formal description by a function Ϛ்: T   ℝஹ  P  is: 

  Ϛ் (𝑇ଵ) = ….. 
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The corresponding formal description by a function Ϛℝ: ℝஹ  ሺ    ሼሽሻ is: 
  Ϛℝ (0) = (𝑇ଵ, 𝑇ଶ ,𝑇ହ),  Ϛℝ (2) = (𝑇ଷ, 𝑇ସ, 𝑇ହ),  Ϛℝ (3) = (𝑇ଷ, 𝑇ଷ, 𝑇 ), etc. 

The corresponding formal description by a function Ϛ்: T   ℝஹ  P  is: 

  Ϛ் (𝑇ଵ) = (0, 𝑃ଵ),  Ϛ் (𝑇ଶ) = (0, 𝑃ଶ),   Ϛ் (𝑇ଷ) = (2, 𝑃ଵ), etc. 
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The Scheduling Model. Deterministic Model 
 
Given a schedule Ϛ, the following can be determined for each task 𝑻𝒋 : 

flow time, turnarround, response  𝐹:= 𝑐 𝑟 

lateness 𝐿= 𝑐  𝑑 

tardiness 𝐷= max{𝑐 𝑑, 0} 

tardy task 𝑈 = 


 
  

0 if 𝐷 = 0 
1 else 
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The Scheduling Model. Deterministic Model. Optimization Criteria 
 
Evaluation of schedules 

Maximum makespan 𝐶௫ = max{𝑐 | 𝑇  T } 

Mean flow time  𝐹ത := (1/n)  𝐹 

Mean weighted flow time  𝐹௪തതത:= (𝑤𝐹) / ( 𝑤ሻ 

Maximum lateness  𝐿௫= max{𝐿 | 𝑇  T } 

Mean tardiness  𝐷ഥ:= (1/n)  𝐷 

Mean weighted tardiness  𝐷௪തതതത:= ( 𝑤𝐷) / ( 𝑤) 

Mean sum of tardy tasks  𝑈ഥ:= (1/n)  𝑈 

Mean weighted sum of tardy tasks  𝑈௪തതതത:= ( 𝑤𝑈) / ( 𝑤ሻ 
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The Scheduling Model. Deterministic Model. Optimization Criteria 
 
Given a set of tasks and a processor environment there are generally many possible 
schedules  
Evaluating schedules: distinguish between good and bad schedules  
This leads to different optimization criteria  

Minimizing the maximum makespan 𝑪𝒎𝒂𝒙  𝐶௫ criterion: 𝐶௫-optimal schedules have minimum makespan  
 the total time to execute all tasks is minimal  
 
Minimizing schedule length is important from the viewpoint of the owner of a set of 
processors (machines):  
This leads to both, the maximization of the processor utilization factor (within 
schedule length 𝐶௫), and the minimization of the maximum in-process time of the 
scheduled set of tasks  
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The Scheduling Model. Deterministic Model. Optimization Criteria 
 

Minimizing the mean weighted flow time 𝑭𝒘തതതത 
A schedule is 𝐹௪തതത-optimal if the mean flow time of tasks is minimized:  
 the average duration of residence of the tasks is as short as possible 

Different weights for the tasks allow to express the urgency of tasks 

 

The mean flow time criterion is important from the user's viewpoint since it yields a 
minimal mean response time and the mean in-process time of the scheduled task set 
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The Scheduling Model. Deterministic Model. Optimization Criteria 
 

Deadline related criteria 
If deadlines are specified for (some of) the tasks we are interested in a schedule in 
which all tasks complete before their deadlines expire  
Question: does there exist a schedule that fulfills all the given conditions?  
Such a schedule is called valid (feasible)  

Here we are faced in principle with a decision problem  

If, however, a valid schedule exits, we would of course like to get it explicitly  

If a valid schedule exists we may wish to find a schedule that has certain additional 
properties, such as minimum makespan or minimum mean flow  

Hence in deadline related problems we often additionally impose one of the other 
criteria  
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The Scheduling Model. Deterministic Model. Optimization Criteria 
 

Minimizing the maximum lateness 𝑳𝒎𝒂𝒙 
This concerns tasks with due dates  
Minimizing 𝐿௫  expresses the attempt to keep the maximum lateness small, no 
matter how many tasks are late 

Due date involving criteria are of great importance in manufacturing systems, especially 
for specific customer orders 

Minimizing the mean weighted tardiness 𝑫𝒘തതതത 
This criterion considers a weighted sum of tardinesses  
Minimizing mean weighted tardiness means that a task with large weight should have 
a small tardiness 

Minimizing the weighted sum of tardy tasks 𝑼𝒘തതതത 
This criterion considers only the number of tardy tasks  
Individual weights for the tasks are again possible 
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The Scheduling Model. Deterministic Model. Optimization Criteria 
 
Example 3 
 

Gantt chart of a preemptive schedule: 
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The Scheduling Model. Deterministic Model. Optimization Criteria 
 

(1) In the schedule of example the flow time of tasks  

F(𝑇ଵ)=2,F(𝑇ଶ) = 2,F(𝑇ଷ)=???, etc.  

 
  



© 2022 A. Tchernykh.  Scheduling on Parallel Processors. Due Date Criteria 57 

The Scheduling Model. Deterministic Model. Optimization Criteria 
 
Example 4: non-preemptive schedule with due dates 

For the task set as specified before, let in addition due dates be given by the 
vector (8, 2, 16, 4, 4, 8, 8, 8, 10, 8, 10, 11).  

In the schedule below, task 𝑇ଵ with due date 8 violates its due date by two 
time units.  
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The Scheduling Model. Deterministic Model. Optimization Criteria 
 

(2) In the schedule of example task 𝑇ଵ has lateness ???; for all other tasks 𝐿 
is less equal ???.  

The tardiness of 𝑇ଵ = ????, and it is ??? for all other tasks;  

hence 𝑈ଵ = ???, and 𝑈 = ??? for all other tasks 

(3) In the same schedule task 𝑇ଵ has earliness ??, 𝑇ଶhas earliness ??, etc.  
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Examples 

(1) In the schedule of example 3 the flow time of tasks 𝑇ଵ and 𝑇ଶ is 2, that of 𝑇ଷ is 11.3, etc.  

(2) In the schedule of example 4 task 𝑇ଵ has lateness 2; for all other tasks 𝐿 
is less than or equal 0. The tardiness of 𝑇ଵ , and it is 0 for all other tasks; 
hence 𝑈ଵ = 1, and 𝑈 = 0 for all other tasks 

(3) In the same schedule task 𝑇ଵ has earliness 6, 𝑇ଶhas earliness 0, etc.  
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Example   
Consider the task set as in Example 1, with processing times and due dates as 
specified in the respective Examples 2 and 3. 
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processing times  (2, 2, 8,  2,  3, 2, 4, 4, 2,  1,  3,  1), 

due dates    (8, 2, 16, 4, 4, 8, 8, 8, 10, 8, 10, 11). 
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Compute the following values 

Criterion Example 2 Example 3 Example 4 𝐶௫    𝐹ത    𝐿௫    𝐷ഥ    𝐸ത    𝑈ഥ    
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we compute the following values 𝑟=0(the smallest values are shaded): 

Criterion Example 2 Example 3 Example 4 𝐶௫ 13.000 11.333 14.000 𝐹ത 7.250 7.392 7.250 𝐿௫ 3.000 2.333 2.000 𝐷ഥ 0.580 0.360 0.167 𝐸ത 1.417 1.058 1.083 𝑈ഥ 0.250 0.333 0.167 
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we compute the following values 𝑟>=0(the smallest values are shaded): 

Criterion Example 2 Example 3 Example 4 

    𝐹ത 3.33 3.27 3.5 
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 |  |  - Notation 
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The Scheduling Model. Scheduling Problems and  |  |  - Notation 
 

Scheduling problem    is defined by a set of parameters for processors, tasks, and 
an optimality criterion  

An instance I of problem   is specified by particular values for the problem 
parameters  

The parameters are grouped in three fields  |  |  :  
 specifies the processor environment, 

 describes properties of the tasks, and 

 the definition of an optimization criterion 

The terminology introduced below aims to classify scheduling problems 
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The Scheduling Model. Scheduling Problems and  |  |  - Notation 
 

Component    specifies the processors 
 =𝛼ଵ, 𝛼ଶ describes the processor environment  

Parameter 𝛼ଵ ∈{, P, Q, R} characterizes the type of processor  
parameter 𝛼ଶ ∈{, k} denotes the number of available processors: 𝛼ଵ 𝛼ଶ 

 single processor   
 

the number of processors is 
assumed to be variable 

P identical processors k 
 

the number of processors is equal to 
k (k is a positive integer) 

Q uniform processors  the number of processors is 
unlimited 

R unrelated processors   
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The Scheduling Model. Scheduling Problems and  |  |  - Notation 
 

Component    specifies the tasks 

 =𝛽ଵ, 𝛽ଶ, 𝛽ଷ, 𝛽ସ, 𝛽ହ, 𝛽 describes task and resource characteristics 

Parameter 𝛽ଶ ∈{, pmtn} indicates the possibility of task preemption 𝛽ଵ 

 no preemption is allowed 

pmtn preemptions are allowed 
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The Scheduling Model. Scheduling Problems and  |  |  - Notation 
 

Parameter 𝛽ଶ  {, res } characterizes additional resources 𝛽ଶ 

 

res  

there are specified resource constraints 

, ,   {, k} denote respectively the number of resource 
types, resource limits and resource requirements 

  
, ,  =  

 
 

, ,  = k 

the respective numbers of resource types, 
resource limits and resource requirements 
are arbitrary 

respectively, each resource is available in the 
system in the amount of k units and the 
resource requirement of each task is at most 
equal to k units 
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The Scheduling Model. Scheduling Problems and  |  |  - Notation 
 

Parameter 𝛽ଷ  {, prec, uan, tree, chains} reflects the precedence constraints 
uniconnected activity network (uan), which is defined as a graph in which any two nodes are connected by a directed path in one direction only. 
Thus, all nodes are uniquely ordered. 𝛽ଷ= , prec, tree, chains : denotes respectively independent tasks, general 
precedence constraints, tree or a set of chains precedence constraints 

Parameter 𝛽ସ  {, 𝑟} describes ready times 𝛽ସ 

 𝑟 

all ready times are zero 
ready times differ per task 
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The Scheduling Model. Scheduling Problems and  |  |  - Notation 
 

Parameter 𝛽ହ  {, 𝑝 ൌ p, 𝑝  𝑝  𝑝} describes task processing times 

5 

 𝑝 ൌ p 𝑝  𝑝  𝑝 

tasks have arbitrary processing times 

all tasks have processing times equal to p units 

no  𝑝 is less than 𝑝 or greater than 𝑝 

Parameter 𝛽  {, 𝑑ఫ෩ } describes deadlines 𝛽 

 
 𝑑ఫ෩  

no deadlines or due dates are assumed in the 
system 
deadlines are imposed on the performance of a task 
set 
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The Scheduling Model. Scheduling Problems and  |  |  - Notation 
 
Component  : Specifying the objective criterion 

 description 𝐶௫   schedule length or makespan 𝛴𝐶 mean flow time 𝛴𝑤𝐶 mean weighted flow time 𝐿௫ maximum lateness 𝛴𝐷 mean tardiness 𝛴𝑤𝐷 mean weighted tardiness 𝛴𝑈 number of tardy tasks 𝛴𝑤𝑈 weighted number of tardy tasks 

 means testing for feasibility  

A schedule for which the value of a particular performance measure   is at its minimum will be 
called optimal : The corresponding value of   is denoted by  *  
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The Scheduling Model. Scheduling Algorithms 
 

A scheduling algorithm for a scheduling problem  |  |    
 constructs a schedule for each instance of  |  |    

In general, we are interested in algorithms that find optimal schedules with respect to 
   

the above objective criteria are minimization criteria 

Final remark about the presented model:  
Though the model considers already quite a number of parameters, it is still very 
restricted  
Modeling practical situations, however, mostly require the inclusion of many more 
parameters and conditions, in particular for the tasks  

Examples are communication times, periodic tasks, coupled tasks, setup times for 
tasks and resources, renewable resources, multiprocessor tasks, and many more  
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The Scheduling Model. Summary 
 

The purpose of this chapter was to introduce the basic notions in scheduling theory: 

 deterministic scheduling 

 scheduling model 

 schedule representation and evaluation 

 three-field notation 
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Topic 2 
Scheduling on Parallel Processors 

 
 2.1 Minimizing Schedule Length 

 Identical Processors 
 Uniform Processors 

2.2 Minimizing Mean Flow Time 
 Identical Processors 
 Uniform Processors 

 2.3 Minimizing Due Date Involving Criteria 
 Identical Processors 
 Uniform Processors 
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Independent tasks 
  

© 2022 A. Tchernykh.  Scheduling on Parallel Processors. Due Date Criteria 78 

Identical Processors P | | Cmax 
 
The first problem considered is P | | Cmax where  
 a set of 𝑛 independent tasks 𝑝 
 on 𝑚 identical processors   
 minimize schedule length.  
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Identical Processors P | | Cmax 
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Identical Processors. List Scheduling 
 𝑊௦ ൌ ∑ 𝑝ୀଵ  be the total work of all jobs 𝑝௫ is the maximum processing time of a job. 𝑊ௗ be the total idle intervals, 𝑊ௗ  𝑝௫ሺ𝑚 െ 1ሻ  𝐶௫  ௐೞାௐ  is the completion time of the set of tasks. 
 𝐶௫  ௐೞାೌೣሺିଵሻ , 𝐶௫  ௐೞ  ሺିଵሻ 𝑝௫ ௐೞ  and 𝑝௫ are lower bounds of 𝐶௧௦, it follows that the worst-case 

performance bound is 𝜌௦  2 െ ଵ.  
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Identical Processors. LPT Algorithm for P | | Cmax 

Approximation algorithm for P | | Cmax:   
One of the simplest algorithms is the LPT algorithm in which the tasks are arranged 
in order of non-increasing pj . 

Algorithm  LPT for P | | Cmax . 
begin 
Order tasks such that p1  ...  pn ; 
for i = 1 to m do si := 0; 
 -- processors Pi are assumed to be idle from time si = 0 on 
j := 1;  
repeat 
 sk := min{ si }; 
 Assign task Tj to processor Pk at time sk; 
   -- the first non-assigned task from the list is scheduled on the first processor that becomes 
free 
 sk := sk + pj;  j := j + 1; 
until j = n; -- all tasks have been scheduled 
end; 
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Identical Processors. LPT Algorithm for P | | Cmax 
 

Theorem   If the LPT algorithm is used to solve problem P | | Cmax, then RLPT = 43  1
3m . 

  
 
an example showing that this bound can be achieved.  
 
Let n = 2m + 1, p = [2m  1, 2m  1, 2m  2, 2m  2,...,m + 1, m + 1, m, m, m].  
 
For m = 3, Next figure shows two schedules, an optimal one and an LPT schedule.  
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Identical Processors. LPT Algorithm for P | | Cmax 
 

Example: m = 3 identical processors; n = 2m + 1, 

p = [2m  1, 2m  1, 2m  2, 2m  2, ..., m + 1, m + 1, m, m, m].  

Time complexity of this algorithm is O(nlogn)  
 the most complex activity is to sort the set of tasks.  

For m = 3, p = [5, 5, 4, 4, 3, 3, 3].  
 

 

  

 

 
 (a) an optimal schedule,                      (b) LPT schedule. 
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Identical Processors. LPT Algorithm for P | | Cmax 
 

Example: n = (m  1)m + 1, p = [1, 1,...,1, 1, m],  is empty,  

L = (Tn , T1 , T2 ,...,Tn1), L' = (T1 , T1 ,...,Tn).  

The corresponding schedules for m = 4  

 

 

 

 

 

             (a) 
an optimal schedule,               (b) an approximate schedule 
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Preemptions 
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Identical Processors, P | pmtn | Cmax 
 
Problem P | pmtn | Cmax 

 relax some constraints imposed on problem P | | Cmax and allow 
preemptions of tasks.  

 It appears that problem P | pmtn | Cmax can be solved very efficiently.  
 
It is easy to see that the length of a preemptive schedule cannot be smaller than the 
maximum of two values:  
 the maximum processing time of a task and  
 the mean processing requirement on a processor:  

The following algorithm given by McNaughton (1959) constructs a schedule whose 
length is equal to C *  max . 
 

C *  max = max{maxj {pj}, 1
m

 j=1
n

 pj} . 
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Identical Processors, P | pmtn | Cmaxю McNaughton's rule  
 
Algorithm McNaughton's rule for P | pmtn | Cmax   
begin 
C * max := max{j=1

n 
 pj/m, max{pj| j = 1,...,n}}; -- min schedule length 

t := 0; i := 1; j := 1; 
repeat 
  if t + pj  C * max 
  then begin 
    Assign task Tj to processor Pi , starting at time t; 
    t := t + pj; j := j + 1; 
   -- assignment of the next task continues at time t + pj 
    end 
  else begin 
    Starting at time t, assign task Tj for C * max - t units to Pi ; 
 -- task Tj is preempted at time C * max, 
 -- assignment of Tj continues on the next processor at time 0 

    pj := pj - (C * max - t); t := 0; i := i + 1; 
    end; 
until j = n ;    -- all tasks have been scheduled 
end; 
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Identical Processors, P | pmtn | Cmax 
 
Remarks:  The algorithm is optimal.  Its time complexity is O(n)  

Question of practical applicability:  
Generally preemptions are not free of cost (delays)  
Generally, two kinds of preemption costs have to be considered: time and finance. 
Time delays are not crucial if the delay caused by a single preemption is small 
compared to the time the task continuously spends on the processor 
Financial costs connected with preemptions, on the other hand, reduce the total 
benefit gained by preemptive task execution; but again, if the profit gained is large 
compared to the losses caused by the preemptions the schedule will be more 
useful and acceptable. 
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Identical Processors, P | pmtn | Cmax 
 
k-preemptions:  Given k  IN ; (The value for k (preemption granularity) should be 
chosen large enough so that the time delay and cost overheads connected with 
preemptions are negligible). 
 Tasks with processing times less than or equal to k are not preempted  
 Task preemptions are only allowed after the tasks have been processed 

continuously for k time units 
For the remaining part of a preempted task the same condition is applied 

 
If k = 0: the problem reduces to the "classical" preemptive scheduling problem.  
If for a given instance k is larger than the longest processing time among the given 
tasks: no preemption is allowed and we end up with non-preemptive scheduling 
Another variant is the exact-k-preemptive scheduling problem where task 
preemptions are only allowed at those moments when the task has been processed 
exactly an integer multiple of k time units 
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Precedence constraints  
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Identical Processors, P | prec | Cmax 
 
Given: task set T  with  

 vector of processing times p  
 precedence constraints   
 priority list L 
 m identical processors 

Let Cmax be the length of the list schedule  
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Identical Processors, P | prec | Cmax, Graham anomalies 
 

The above parameters can be changed:  
 vector of processing times p'  p (component-wise),  
 relaxed precedence constraints '  ,  
 priority list L'  
 and another number of processors m'  

Let the new value of schedule length be C '   max . 
List scheduling algorithms have unexpected behavior:  
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Identical Processors, P | prec | Cmax, Graham anomalies 
 
 
 the schedule length for problem P | prec | Cmax  
  

may increase 
 

if: 
 
 the number of processors increases, 
 task processing times decrease, 
 precedence constraints are weakened, or 
 the priority list changes 
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Identical Processors, P | prec | Cmax, Graham anomalies 
 

(a) 

 

(b) 

 

 (a) A task set, m = 2, L = (T1, T2, T3, T4, T5, T6, T7, T8),  
(b) an optimal schedule  
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Identical Processors, P | prec | Cmax, Graham anomalies 

 

 
 A new list  L' = (T1, T2, T3, T4, T5, T6, T8, T7). 
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Identical Processors, P | prec | Cmax, Graham anomalies 
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 (T1, T2, T3, T4, T5, T6, T7,T8). 

Processing times decreased;  p'j = pj  1,  j = 1, 2, ..., n. 
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Identical Processors, P | prec | Cmax, Graham anomalies 

 

 

 Number of processors increased, m = 3 
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Identical Processors, P | prec | Cmax, Graham anomalies 
 
(a) 

 

(b) 

 

Figure 4-6 (a) Precedence constraints weakened, (b) resulting list schedule. 
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Identical Processors, P | prec | Cmax, Graham anomalies 
 
 
These list scheduling anomalies have been discovered by Graham [Gra66], who has 
also evaluated the maximum change in schedule length that may be induced by 
varying one or more problem parameters. 
 

o Let the processing times of the tasks be given by vector p,  
o let T  be scheduled on m processors using list L, and 
o let the obtained value of schedule length be equal to Cmax.  

 
On the other hand, let the above parameters be changed:  

o a vector of processing times p' p (for all the components), 
o relaxed precedence constraints '  ,  
o priority list L' and the number of processors m'. 
o Let the new value of schedule length be C '   max .  

 
Then the following theorem is valid. 
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Identical Processors, P | prec | Cmax, Graham anomalies 

4.1.3.1 Theorem . Under the above assumptions,  

C '   max
Cmax

  1 + m1
m'   

 
Proof. Let us consider schedule S' obtained by processing task set   with primed 
parameters. 
 Let the interval [0, C '   max) be divided into two subsets, A  and B , defined in the 
following way:  

A  = {t  [0, C '   max) | all processors are busy at time t},  
B  = [0, C '   max) - A . 

 
Notice that both A and B are unions of disjoint half-open intervals. 
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Identical Processors, P | prec | Cmax, Graham anomalies 
 
Let Tj1 denote a task completed in S' at time C '   max , i.e. Cj1 = C '   max .  
Two cases may occur: 
 
1. The starting time sj1 of Tj1 is an interior point of B . Then by the definition of 
B  there is some processor Pi which for some  > 0 is idle during interval [sj1 - , sj1) . 
Such a situation may only occur if we have Tj2 ' Tj1 and Cj2 = sj1 for some task Tj2 . 
 
2. The starting time of Tj1 is not an interior point of B. Let us also suppose that sj1 ¹
 0. Define x1 = sup{x | x < sj1 , and x  B } or x1 = 0 if set B  is empty.  
By the construction of A  and B , we see that x1  A , and processor Pi is idle in time 
interval [x1 - , x1) for some  > 0 . But again, such a situation may only occur if 
some task Tj2 ' Tj1 is processed during this time interval. 
 
It follows that either there exists a task Tj2 ' Tj1 such that y  [Cj2 , sj1) implies y  
A  or we have: x < sj1 implies either x  A  or x < 0 . 
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Identical Processors, P | prec | Cmax, Graham anomalies 
 
The above procedure can be inductively repeated, forming a chain Tj3 , Tj4 ,..., until 
we reach task Tjr for which x < sjr implies either x  A  or x < 0. Hence there must 
exist a chain of tasks  

Tjr ' Tjr-1 '... ' Tj2 ' Tj1  

such that at each moment t  B , some task Tjk is being processed in S'. This implies 
that  


'S' p'  '  (m'  1) 

k=1

r
 p'  jk  

where the sum on the left-hand side is made over all idle-time tasks ' in S'. But by 
(5.1.8) and the hypothesis '   we have 

Tjr  Tjr-1 ...  Tj2  Tj1 . 
Hence, 

Cmax  
k=1

r
 pjk  

k=1

r
 p'  jk . 
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Identical Processors, P | prec | Cmax, Graham anomalies 
 
we have  

C '   max = 1
m' ( k=1

n
 p' k  

'S'
 p'  '  1

m' (m Cmax + (m'  1) Cmax ) .  

It follows that 
C '   max
Cmax

  1 + m-1
m'  

and the theorem is proved.  

From the above theorem, the absolute performance ratio for an arbitrary list 
scheduling algorithm solving problem P | | Cmax can be derived. 
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Identical Processors, P | prec | Cmax, Graham anomalies 
 
Corollary  (Graham 1966)  For an arbitrary list scheduling algorithm LS for P | | Cmax we 

have RLS    2  1
m

  if m' = m.  

(a)     (b) 

 
Schedules for Corollary 
 (a) an optimal schedule, 
 (b) an approximate schedule.  
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Unit Execution Time Tasks 
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Identical Processors, P | prec, pj = 1 | Cmax 
 

Problem P | prec, pj = 1 | Cmax 
This problem is known to be NP-hard  

Arbitrary list scheduling algorithms:  RLS    2  1
m

  still holds in this case 

However, under special assumptions polynomial time algorithms exist 
  



© 2022 A. Tchernykh.  Scheduling on Parallel Processors. Due Date Criteria 109 

Out-tree 
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Level 
 

 
  

 

Co-Level 

Level 
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Identical Processors, P | prec, pj = 1 | Cmax 
 
Hu's algorithm (Hu (1969) for the problem  P | in-tree, pj = 1 | Cmax  

 
o level algorithm" or "critical path algorithm" 

Task level in an in-tree: is defined as the number of tasks in the path to the root of the 
graph 
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Identical Processors, P | prec, pj = 1 | Cmax 
 

Algorithm Hu for  P | in-tree, pj = 1 | Cmax  . 
begin 
Calculate levels of the tasks; 
t := 0; 
repeat 
  Construct list Lt of all the tasks without predecessors; 
  -- all these tasks either have no predecessors  
  -- or their predecessors have been assigned in interval [0,t-1] 
 Order Lt in non-increasing order of task levels; 
 Assign the first m tasks (if any) of Lt to processors; 
 Remove the assigned tasks from the graph and from the list; 
 t := t + 1; 
until all tasks have been scheduled; 
end; 

The algorithm can be implemented to run in O(n) time 
  



© 2022 A. Tchernykh.  Scheduling on Parallel Processors. Due Date Criteria 113 

Identical Processors, P | prec, pj = 1 | Cmax 
 

 

 
 

An example of the application of Algorithm for three processors. 
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Identical Processors, P | prec, pj = 1 | Cmax 
 
Scheduling forests: A forest consisting of in-trees can be scheduled by adding a 
dummy task that is an immediate successor of only the roots of in-trees, and then by 
applying Algorithm.  

Scheduling out-forests: A schedule for an out-tree can be constructed by changing 
the orientation of arcs, applying Algorithm to the obtained in-tree and then reading 
the schedule backwards, i.e. from right to left 

Remark: The problem of scheduling opposing forests (that is, combinations of in-
trees and out-trees) on an arbitrary number of processors is NP-hard (Garey, et al 
1983) 

Another restriction is to limit the number of processors to 2: this problem is easily 
solvable even for arbitrary precedence graphs (Coffman and Graham 1972, and 
others): 
Problem P2 | prec, pj = 1 | Cmax can be solved in polynomial time (quadratic in 
the number of tasks) [Coffman and Graham 1972] 
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Identical Processors, P | prec, pj = 1 | Cmax 
 
Agorithm given by Coffman and Graham 

 to find the shortest schedule for problem P2 | prec, pj = 1 | Cmax . 

 

 The algorithm uses labels assigned to tasks, which take into account the levels of 
the tasks and the numbers of their immediate successors.  

 

 can be implemented to run in time which is almost linear in n and in the number of 
arcs in the precedence graph; thus its time complexity is practically O(n2).  
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Identical Processors, P | prec, pj = 1 | Cmax 

 

 
  

  

2T 

1T 

3 T

4 T 

5 T

6T 

T9 

T10 

7 T

8 T 

T11 

T 12 

T13 



© 2022 A. Tchernykh.  Scheduling on Parallel Processors. Due Date Criteria 117 

Identical Processors, P | prec, pj = 1 | Cmax 

 

 

 
 
An example of the application of Algorithm (tasks are denoted by Tj /label). 
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Identical Processors, P | prec, pj = 1 | Cmax 
 
Algorithm of Coffman and for P2 | prec, pj = 1 | Cmax. 
begin 
Assign label 1 to any task T0 for which isucc(T0) = ; 
 -- recall that isucc(T) denotes the set of all immediate successors of T 
j := 1; 
repeat 
 Construct set S  consisting of all unlabeled tasks whose successors are labeled; 
 for all T  S  do 
  begin 
  Construct list L(T) consisting of labels of tasks belonging to isucc(T); 
  Order L(T) in decreasing order of the labels; 
  end; 
 Order these lists in increasing lexicographic order L(T[1]) <. ...<. L(T[|S |]); 
 -- see Section 2.1 for definition of <.  
 Assign label j + 1 to task T[1]; 
 j := j + 1; 

until j = n; -- all tasks have been assigned labels 
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Identical Processors, P | prec, pj = 1 | Cmax 
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Identical Processors, P | prec, pj = 1 | Cmax 

 

 

 
 
An example of the application of Algorithm (tasks are denoted by Tj /label). 
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Identical Processors, P | prec, pj = 1 | Cmax. Known Results 
 
 1961: P| in-tree, out-tree, pj=1 |Cmax - Hu’s Level algorithm is optimal and of 

linear time complexity 
 1966: P| prec |Cmax - Graham showed that for List Scheduling algorithms the 

performance bound  r= 2-1/m 

 1969: P| |Cmax Graham used the LPT algorithm with r= 4/3 – 1/3m 

 1972: P2| prec, pj=1 |Cmax Coffman proved that problem can be solved in 
quadratic time 
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Identical Processors, P | prec, pj = 1 | Cmax. Known Results 
 
 1975: P2| prec, pj=1 |Cmax       Chen & Liu found    R_level=4/3 

 1976:  P| prec, pj=1 |Cmax      RLevel   2  1
m1 for m  3 

 1976: P| prec, pj=1 |Cmax Coffman & Sethi proved the bound 
1+ 1/n - 1/nm for P| |Cmax  taking into account the number of tasks 

 1977: P2| prec, pj=1 |Cmax Garey&Johnson - Latest Possible Start Time 
algorithm, optimal 

 1981: P| opposing forest, pj=1 |Cmax Kunde, Critical Path algorithm 
r=2-2/(m+1) 

 1994: P| prec, pj=1|Cmax  Braschi and Trystram found 
r = 2 - 2/m - (m-3) /(mCmax) for m>=31996: Pm| prec, pj=1|Cmax 

 is with unknown time complexity 
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Identical Processors, P | prec, pj = 1 | Cmax. Known Results 

lc  is the length of  a longest chain of tasks 
Theorem [Tchernykh et al 2000]. Given a 
set T of n unit execution time tasks, the 
performance of the general list strategy 
can be estimated by 

 R = min{R', R"},  

with  R'  1  lcn (m – 1)  

and  R"  1  1
m ( nlc – 1 ).  (1) 

Furthermore,  
R' is tight in the case of lc  n/m,  
and R" is tight in the case of  lc > n/m 

Graham's bound

m=n/lc

rw' rw"

pe
rfo

rm
an

ce
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Preemptions   
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Identical Processors.  P | pmtn, prec | Cmax 

 
What can be gained by allowing preemptions?  

Coffman and Garey (1991) compared problems P2 | prec | Cmax and P2 | pmtn, 
prec | Cmax :   (3/4)Cmax                   

non-preemptive   Cmax            
preemptive   Cmax                   

non-preemptive  

Example showing the (3/4)-bound (with three even independent tasks):  

(a) non-preemptive schedule: (b) preemptive schedule: 
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Identical Processors.  P | pmtn, prec | Cmax 
 
In the general case of dependent tasks of arbitrary length, one can construct optimal 
preemptive schedules. 
 the level of task Tj in a precedence graph is now the sum of processing times 

(including pj) of tasks along the longest path between Tj and a terminal task (a 
task with no successors).  

 
The algorithm uses a notion of a processor shared schedule, in which a task receives 
some fraction  of the processing capacity of a processor. 
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Identical Processors.  P | pmtn, prec | Cmax 
 
Algorithm by Muntz and Coffman for P2 | pmtn, prec | Cmax and P | pmtn, 
forest | Cmax . 
 
begin 
for all T do Compute the level of task T; 
t := 0; h := m; 
repeat 
 Construct set Z  of tasks without predecessors at time t; 
 while h > 0 and |Z | > 0 do 
  begin 
  Construct subset S  of Z  consisting of tasks at the highest level; 
  if | S | > h 
  then 
   begin 
   Assign := h/|S | of a processing capacity to each of the tasks from S ; 
   h := 0; -- a processor shared partial schedule is constructed 
   end 
  else 
   begin 
   Assign one processor to each of the tasks from S ; 
   h := h-|S |; -- a "normal" partial schedule is constructed 
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   end; 
  Z  := Z - S ; 
  end; -- the most "urgent" tasks have been assigned at time t 

Calculate time  at which either one of the assigned tasks is finished or a point is 
reached at which continuing with the present partial assignment means that a 
task at a lower level will be executed at a faster rate  than a task at a higher 
level; 

 Decrease levels of the assigned tasks by (t); 
 t := ; h := m; 
  -- a portion of each assigned task equal to (t) has been processed 
until all tasks are finished; 
 
call Algorithm (McNaughton’s rule) to re-schedule portions of the processor shared 

schedule to get a normal one; 
end; 
 

 

The above algorithm can be implemented to run in O(n2) time.  
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Identical Processors.  P | pmtn, prec | Cmax 
 
(a) a task set (nodes are denoted by Tj /pj), 
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Identical Processors.  P | pmtn, prec | Cmax 
 
(b) I: a processor-shared schedule, II: an optimal schedule 
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Topic 2 
Scheduling on Parallel Processors 

 
 2.1 Minimizing Schedule Length 

Identical Processors 
Uniform Processors 

3.2 Minimizing Mean Flow Time 
Identical Processors 
Uniform and Unrelated Processors 

 3.3 Minimizing Due Date Involving Criteria 
Identical Processors 
Uniform and Unrelated Processors 
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Uniform Processors Problem Q | pj = 1 | Cmax 
 
 
Processors or machines for processing the tasks can be  
 
 parallel  -  performing the same functions 
 dedicated  - specialized for the execution of certain tasks.  

 
Parallel: Three types of parallel processors are distinguished depending on their 
speeds 
 identical  processors have equal task processing speeds 
 uniform  processors differ in their speeds, but the speed bi of each  

processor is constant and does not depend on the task 
 unrelated  speeds of the processors depend on the particular task 

processed  
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Uniform Processors. Problem Q | pj = 1 | Cmax 
 
Problem Q | pj = 1 | Cmax 

 independent tasks 
 non-preemptive scheduling 
 UET 

 
 problem with arbitrary processing times is already NP-hard for identical 

processors 
 all we can hope to find is a polynomial time optimization algorithm for tasks with 

unit standard processing times only.  
 
 a transportation network formulation has been presented by Graham et al. for 

problem Q | pj = 1 | Cmax . 
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Uniform Processors. Problem Q | pj = 1 | Cmax 
 
Let there be n sources j, j = 1, 2,...,n,  
and mn sinks (i, k), i = 1, 2,...,m and k = 1, 2,...,n.  
Sources correspond to tasks and sinks to processors and positions of tasks on them 
(number of tasks processed on the processor) .  
Let cijk = k/bi be the cost of arc (j, (i, k)); this value corresponds to the completion 
time of task Tj processed on Pi in the kth position. The arc flow xijk has the following 
interpretation: 
 

xijk = 


 
 
 
 

1 if Tj is processed in the kth position on Pi 
0 otherwise. 
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Uniform Processors. Problem Q | pj = 1 | Cmax 
 
The min-max transportation problem can be now formulated as follows: 
 

Minimize max
i j k

 {cijk xijk} 

subject to 
i=1

m
 
k=1

n
 x

ijk
 = 1 for all j  

 
j=1

n
 x

ijk
  1 for all i, k , 

 xijk  0 for all i, j, k .  
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Uniform Processors. Problem Q | pj = 1 | Cmax 
 

minimum schedule length is given as C *  max = sup {t | 
i=1

m
 tbi < n 

lower bound on the schedule length for the above problem is 

C' = n / 
i=1

m
 bi  C *  max  

Bound C' can be achieved e.g. by a preemptive schedule. 
If we assign  ki = C'bi tasks to processor Pi ,  
 these tasks may be processed in time interval [0, C' ].  

 However, l = n  
i=1

m
 ki tasks remain unassigned.  

 l  m  1, since C'bi  C'bi < 1 for each i.  
 The remaining l tasks are assigned to those Pi for which min

i
{(ki + 1) / bi} is reached 

 ki is increased by one after the assignment of a task to a particular processor Pi .  
This procedure is repeated until all tasks are assigned. We see that this approach results in an 
O(m2)-algorithm for solving problem Q | pj = 1 | Cmax . 
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Uniform Processors. Problem Q | pj = 1 | Cmax 
 
Example  n = 9 tasks, m = 3 uniform processors, processing speeds b = [3, 2, 1].  
 
C' = 9/6 = 1.5.  
 
The numbers of tasks assigned to processors at the first stage are, respectively, 4, 3, 
and 1. 
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Uniform Processors. Problem Q | pj = 1 | Cmax 
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Uniform Processors. Problem Q | pj = 1 | Cmax 
 
One heuristic algorithm is a list scheduling algorithm. 

Tasks are ordered on the list in non-increasing order of their processing times and 
processors are ordered in non-increasing order of their processing speeds.  

Now, whenever a machine becomes free it gets the first non-assigned task of the list; 
if there are two or more free processors, the fastest is chosen. 

The worst-case behavior of the algorithm has been evaluated for the case of an m + 1 
processor system, m of which have processing speed factor equal to 1 and the 
remaining processor has processing speed factor b. The bound is as follows. 

R = 





 

 
 
 
 

 

2(m+b)
b+2  for b  2 

m+b
2  for b > 2 . 

It is clear that the algorithm does better if, in the first case (b  2), m decreases faster 
than b, and if b and m decrease in case of b > 2.   
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Model 
 

 Arrival time (or release or ready time)  𝑟  …  is the time at which task 𝑇 is ready for 
processing  

if the arrival times are the same for all tasks from T , then   𝑟 ൌ 0 is assumed for 
all tasks  

 Due date  𝑑  … specifies a time limit by which 𝑇 should be completed 
problems where tasks have due dates are often called "soft" real-time problems. 
Usually, penalty functions are defined in accordance with due dates  

 Penalty functions 𝐺 define penalties in case of due date violations 

 Deadline 𝑑ఫ෩   …  "hard" real time limit, by which 𝑇 must be completed 

 Weight (priority) 𝑤𝑗  ... expresses the relative urgency of 𝑇 
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Identical Processors. Deadline Criteria P | 𝒓𝒋, 𝑑𝑗෪|  
 
If deadlines are given: 

 check if a feasible schedule exists (decision problem) 

Single processor problem  P1 | 𝒑𝒋 = 1, 𝒅𝒋|   can be solved in polynomial time 

EDF algorithm is optimal  

More than one processor: most problems are known to be NP-complete  

The problems   
P | 𝒑𝒋 = 1, 𝒅𝒋|      and    P | prec, 𝒑𝒋 {1, 2}, 𝒅𝒋 |     

are NP-complete 

Algorithmic approaches:  
 exhaustive search 
 heuristic algorithms 
 approximation algorithms 
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Identical Processors. Deadline Criteria P | 𝒓𝒋, 𝑑𝑗෪|  
 
Scheduling strategies: 

A strategy is called "feasible", if the algorithm generates schedules where all tasks 
observe their deadlines (assuming this is actually possible) 
 
three interesting deadline scheduling strategies: 
 
      EDF        Earliest Deadline First scheduling 
       LL          Least Laxity scheduling 

       MUF       Maximum Urgency First scheduling. 
-  
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Identical Processors. Deadline Criteria P | 𝒓𝒋, 𝑑𝑗෪|  
 

Earliest Deadline First Scheduling Policy  

 means that the task that has the earliest deadline (task that has to be processed 
first) is to be scheduled next. 

 EDF scheduler views task deadlines as more important than task priorities. 
 Experiments have shown that the earliest deadline first policy is the most fair 

scheduling algorithm.  
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Identical Processors. Deadline Criteria P | 𝒓𝒋, 𝑑𝑗෪|  
 
More complex deadline scheduler is the “Least Laxity” (or “LL”) scheduler. 

 takes into account both a task’s deadline and its processing load, 

 
EDF deadline scheduler would allow Task X to run before Task Y, even if Task Y 
normally has higher priority. 

 However, it could cause Task Y to miss its deadline. 
 So perhaps an “LL” scheduler would be better 
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Identical Processors. Deadline Criteria P | 𝒓𝒋, 𝑑𝑗෪|  
 
Laxity is the value that describes how much computation there is still left before the 
deadline of the task if it ran to completion immediately. Laxity of a task is a measure 
for it's urgency.  

 
Laxity = (Task Deadline – (Current schedule time + Rest of Task Exec. Time). 

LL=D-t-Prest 
 

It is the amount of time that the scheduler can “play with” before causing the task to 
fail to meet its deadline.  

Least Laxity Scheduling Policy: the task that has the smallest laxity (meaning the 
least computation left before it's deadline) is scheduled next.  

Thus, a Least Laxity deadline scheduler takes into account both deadline and 
processing load. 
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Identical Processors. Deadline Criteria P | 𝒓𝒋, 𝑑𝑗෪|  
 
LL scheduling, while excellent for highly time-critical tasks, might be overkilled for 
less time-sensitive tasks.  
 
And so there is a third interesting variant of deadline scheduling, called “Maximum 
Urgency First” (or “MUF”) scheduling.  
 
It is really a mixture of some “LL” deadline scheduling, with some traditional priority-
based preemptive scheduling. 
 
In “MUF” scheduling, high-priority time-critical tasks are scheduled with “LL” deadline 
scheduling, while within the same scheduler other (lower-priority) tasks are 
scheduled by good old-fashioned priority-based preemption.  
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Identical Processors. Deadline Criteria P | 𝒓𝒋, 𝑑𝑗෪|  
 
Example: Comparison of strategies 

Set of independent tasks:   T  = {𝑇ଵ, 𝑇ଶ, ..., 𝑇} 
Tasks: (deadline, total execution time, arrival time):  𝑇ଵ= (5, 4, 0), 𝑇ଶ= (6, 3, 0), 𝑇ଷ= (7, 4, 0),  𝑇ସ = (12, 9, 2), 𝑇ହ= (13, 8, 4), 𝑇= (15, 12, 2) 

Execution on three identical processors:  
 EDF-schedule (no preemptions): total execution time is 16 

least laxity schedule (with preemptions):  8 preemptions,  
total execution time is 15 

 optimal schedule with 3 preemptions, total execution time = 15 

Execution on a single, three times faster processor:  
 possible with no preemptions; total execution time is 40/3 

Hence: a larger number of processors is not necessarily advantageous 
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Identical Processors. Deadline Criteria P | pmtn, 𝒓𝒋, 𝑑𝑗෪|  
 
Feasibility testing of problem P | pmtn, 𝑟, 𝑑ఫ෩ |   is done by applying a network flow 
approach (Horn 1974) 

Given an instance of P | pmtn, 𝑟, 𝑑ఫ෩ |,  
let 𝑒 ൏ 𝑒ଵ ൏. . . ൏ 𝑒, 𝑘   2𝑛1 be the ordered sequence of release times and 
deadlines together (𝑒 stands for 𝑟 or 𝑑ఫ෩ )  (time intervals) 

Construct a network with source, sink and two sets of nodes (Figure):  
the first set (nodes 𝑤) corresponds to time intervals in a schedule;  

node 𝑤 corresponds to interval [𝑒ିଵ, 𝑒ሿ, 𝑖 ൌ  1, 2, . . . , 𝑘  
the second set corresponds to the tasks  
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Identical Processors. Deadline Criteria P | pmtn, 𝒓𝒋, 𝑑𝑗෪|  
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Identical Processors. Deadline Criteria P | pmtn, 𝒓𝒋, 𝑑𝑗෪|  
 
Flow conditions: 
 The capacity of an arc joining the source to node 𝑤 is m(𝑒 െ 𝑒ିଵሻ 

o this corresponds to the total processing capacity of m processors in this interval 

 If task 𝑇 is allowed to be processed in interval ሾ𝑒ିଵ, 𝑒ሿ 
then 𝑤  is joined to 𝑇 by an arc of capacity 𝑒 െ 𝑒ିଵ 

 Node 𝑇 is joined to the sink of the network by an arc with lower and upper capacity 
equal to 𝑝 

Finding a feasible flow pattern corresponds to constructing a feasible schedule; this 
test can be made in 𝑂ሺ𝑛ଷሻ time 

the schedule is constructed on the basis of the flow values on arcs between interval and 
task nodes. 
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Example.  n = 5, m = 2, p = [5, 2, 3, 3, 1], r = [2, 0, 1, 0, 2], and d = [8, 2, 4, 5, 8]. 

 
 
 
(a) corresponding network 
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(b) feasible flow pattern 
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(c) optimal schedule 
 

 
 
  

t0 1 2 4 5 8

T2 T2 T3 T1 T1

T4 T3 T4 T1 T4 T5

P1

P2
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Minimizing Maximum Lateness 𝐿௫ = max{𝐿 | 𝑇  T } 

lateness 𝐿= 𝑐  𝑑 
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Identical Processors. P | | 𝐿௫ 

 
 m = 1 processor: earliest due date algorithm (EDD rule) of Jackson [Jac55] : 
tasks are scheduled in order of non-decreasing due dates  
The EDD rule also minimizes maximum lateness and maximum tardiness  
 𝒎  𝟏 identical processors:  NP-hard 𝐶௫–problems are also NP-hard under 

the 𝐿௫ criterion  
for example:   P | | 𝐿௫  is NP-hard  

 
 unit processing times of tasks make the problem easy, and P | 𝑝 ൌ 1, 𝑟𝑗 |  𝐿௫ 

can be solved by an obvious application of the EDD rule. 
 
 Moreover, problem P | 𝑝 ൌ 𝑝, 𝑟𝑗 |  𝐿௫  can be solved in polynomial time by an 

extension of the single processor algorithm. 
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Identical Processors. P | 𝑟| 𝐿௫ 

 

Problem  1 | 𝑟| 𝐿௫ is strongly NP-hard (Lenstra et al., 1977)  

solution methods based on branch and bound are known 
 

Assumption of unit execution times  

( 1 | 𝑟,  𝑝 ൌ 1 | 𝐿௫ , 𝑟 an integer): a modification of Jackson's EDD rule is optimal 
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Identical Processors. P | pmtn | 𝐿௫ 

 
The preemptive mode of processing makes the problem much easier.  

Single processor problem 1 | pmtn, 𝒓𝒋| 𝑳𝒎𝒂𝒙:  
A modification of Jackson's rule due to Horn (1974) solves the problem optimally 
in polynomial time  
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Algorithm for problem 1 | pmtn, 𝑟| 𝐿௫  (Horn, 1974) 
begin 
repeat 
 𝜌ଵ := 𝑚𝑖𝑛ሼ𝑟|𝑟 ∈ 𝑇ሽ; 
 if all tasks are available at time 𝜌ଵ 
 then 𝜌ଶ  :=   
 else 𝜌ଶ  := min{𝑟|𝑟  𝜌ଵ};  
 E := {𝑇 | 𝑟 ൌ 𝜌ଵ}; 
 Choose 𝑇  E such that 𝑑 = 𝑚𝑖𝑛ሼ𝑑𝑗|𝑇𝑗 ∈ Eሽ 
 l := min{ 𝑝𝑘, 𝜌ଶ  𝜌ଵ }; 
 Assign 𝑇 to the interval [𝜌ଵ, 𝜌ଵ + l); 
 if  𝑝𝑘  l  
 then T := T  {𝑇}  
 else  𝑝𝑘 := 𝑝𝑘  l; 
 for all 𝑇  E do 𝑟:= 𝜌ଵ + l; 
 until T = ; 
end; 
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Identical Processors. P | pmtn, 𝑟| 𝐿௫ 

 
polynomial time algorithm by Labetoulle et al, 1984  

The idea is to determine the smallest possible value of 𝐿௫ such that there 
exists a feasible solution for the deadline problem P | pmtn, 𝑟, 𝑑ఫ෩ |    
where deadlines are defined by 𝑑ఫ෩  := 𝑑 + 𝐿௫   

Feasibility testing of problem P | pmtn, 𝑟, 𝑑ఫ෩ |    is done by applying the network flow 
approach  

i.e. for deciding whether or not for a given set of ready times and deadlines a 
schedule with no late task exists 

If there is no feasible flow pattern: a corresponding schedule can still be constructed, 
but 𝐿௫ will turn out to be > 0 

In other words, if the instance is changed such that all the deadlines are 
increased by 𝐿௫ , a feasible network flow would exist 
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Identical Processors. P | pmtn, 𝑟| 𝐿௫ 

 
To find a schedule with minimum 𝐿௫ , a binary search can be performed:  

the deadlines are increased by 𝐿௫/2 (instead of 𝐿௫) and this new instance 
is checked for feasibility by means of the network flow computation.  

This procedure can be implemented to solve problem P | pmtn, 𝑟| 𝐿௫ in time 𝑂ሺ𝑛ଷ𝑚𝑖𝑛ሼ𝑛ଶ, 𝑙𝑜𝑔𝑛  log  𝑚𝑎𝑥ሼ𝑝ሽሽ 
 

The fundamental approach in that area is testing feasibility of problem P | pmtn, 𝑟,𝑑𝑗෪|   via the network flow approach [Hor74].  
 
Using this approach repetitively, one can then solve the original problem 
P | pmtn | 𝐿௫ by changing due dates (deadlines) according to a binary search 
procedure.  
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Identical Processors. 𝐿௫- problems with precedences 

We just mention some results 
 Problem P | prec | 𝐿௫ : A general approach is to modify the due dates, 

depending on the number and due dates of their successors.  
 Scheduling unit processing time tasks can result in polynomial time scheduling 

algorithms:  
Problem P | in-tree,  𝑝𝑗 = 1 | 𝐿௫ can be solved in O(𝑛𝑙𝑜𝑔𝑛) time (Brucker 
1976), 
but surprisingly P | out-tree, 𝑝𝑗 = 1 | 𝐿௫ is NP-hard (Brucker et al., 1977).  

 Problem P2 | prec, 𝑝 = 1 | 𝐿௫ with arbitrary precedences: using a different 
way of computing modified due dates allows to solve the problem in 𝑂ሺ𝑛ଶሻ time 
(Garey et al, 1976).  
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Identical Processors. 𝐿௫- problems with precedence 

 

 Problem P | prec, 𝑟 | 𝐿௫  

 with m = 1 processor:  

 
Example: Consider five tasks with release times r = [0, 2, 3, 0, 7], processing 
times p = [2, 1, 2, 2, 2], and tails d = [7, 10, 6, 9, 10],  
a)  the precedence constraint 𝑇ସ  𝑇ଶ;  
b) No precedence constraint 
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Identical Processors. 𝐿௫- problems with precedence 

 

 Problem P | prec, 𝑟 | 𝐿௫ with m = 1 processor:  

 
Example: Consider five tasks with release times r = [0, 2, 3, 0, 7], processing 
times p = [2, 1, 2, 2, 2], and tails d = [7, 10, 6, 9, 10], and the precedence 
constraint 𝑇ସ  𝑇ଶ; note that 𝑟ସ  𝑝ସ  𝑟ଶ and 𝑑ସ   𝑑ଶ െ 𝑝ଶ.  
If the constraint 𝑇ସ  𝑇ଶ is ignored, the unique optimal schedule is given by ሺ𝑇ଵ,  𝑇ଶ, 𝑇ଷ,  𝑇ସ,  𝑇ହሻ with value 𝐿௫∗  1. Explicit inclusion of this constraint leads to 𝐿௫∗ ൌ 
0. 
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Identical Processors. 𝐿௫- problems with precedences 

 

 Allowing preemptions:  

The following problems are solvable in polynomial time: 

P | pmtn, in-tree | 𝐿௫ ,   

P2 | pmtn, prec | 𝐿௫ ,  

P2 | pmtn, prec, 𝑟 | 𝐿௫ 
 
Algorithms for these problems employ essentially the same techniques for dealing with 
precedence constraints as the corresponding algorithms for tasks with unit execution 
time  
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Summary 
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Four different types of problems are considered:  

 a deadline problem  

 three due date problems  

 minimizing maximum lateness,  

 weighted number of tardy tasks,  

 and maximum weighted tardiness 

All these problems could be solved in polynomial time only under very special 
restrictions 
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Scheduling on Parallel Processors 
Communication Delays and Multiprocessor Tasks 

 Introductory Remarks 
 Scheduling Multiprocessor Tasks 

o Parallel Processors 
o Refinement Scheduling 

 Scheduling Uniprocessor Tasks with Communication Delays 
o Scheduling without Task Duplication 
o Scheduling with Task Duplication 
o Considering Processor Network Structure 

 Scheduling Divisible Tasks 
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Scheduling Uniprocessor Tasks with Communication Delays 
 
The following simple example serves as an introduction to the problems. 
Let there be given three tasks with precedences as shown in Figure (a). 
 

T1

T2 T3 
(a) Precedence graph 

 
The computational results of task 𝑇ଵ are needed by both successor tasks, 𝑇ଶ and 𝑇ଷ 
We assume unit processing times. 
For task execution there are two identical processors, connected by a communication 

link. 
To transmit the results of computation 𝑇ଵ along the link takes 1.5 units of time. 
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Scheduling Uniprocessor Tasks with Communication Delays 
 

T1 T2

T3

P1

P2

 
(b) Schedule without consideration of communication delays 

 
The schedule in Figure (b) shows a schedule where communication delays are not 

considered. 
 

T1

T3

T2P1

P2

 
(c) Schedule considering communication from 𝑇ଵ to 𝑇ଷ 

 
The schedule (c) is obtained from (b) by introducing a communication delay between 𝑇ଵ and 𝑇ଷ 
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Scheduling Uniprocessor Tasks with Communication Delays 
 
Schedule (d) demonstrates that there are situations where a second processor does 

not help to gain a shorter schedule. 
 

T1 T3T2P1

P2

 
(d) Optimal schedule without task duplication 

 
The fourth schedule, (e), demonstrates another possibility: if task 𝑇ଵ is processed on 

both processors, an even shorter schedule is obtained. The latter case is usually 
referred to as task duplication.  

 

T1

T3

T2P1

P2 T1

 
(e) Optimal schedule with task duplication 
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Scheduling Uniprocessor Tasks with Communication Delays 
 
Communication delays are the same for all tasks 
 So-called uniform delay scheduling.  

 
Other approaches distinguish between coarse grain and fine grain parallelism: 
 high computation-communication ratio can be expected in coarse grain 

parallelism. 
 
As pointed out before, task duplication often leads to shorter schedules; this is in 

particular the case if the communication times are large compared to the 
processing times. 
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Bin Packing Problem 
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Outline  
 

1. Introduction 

 

Metaphorically, there never seem to be enough bins for all one needs to store. 
Mathematics comes to the rescue with the bin packing problem and its relatives. 

The bin packing problem raises the following question: 

 given a finite collection of n weights 𝑤ଵ, 𝑤ଶ, 𝑤ଷ, . . . , 𝑤, and 
 a collection of identical bins with capacity C (which exceeds the largest of the 

weights), 
 what is the minimum number k of bins into which the weights can be placed without 

exceeding the bin capacity C? 
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Outline  
 

We want to know how few bins are needed to store a collection of items.  

This problem, known as the 1-dimensional bin packing problem, is one of many 
mathematical packing problems which are of both theoretical and applied interest. 

It is important to keep in mind that "weights" are to be thought of as indivisible objects 
rather than something like oil or water.  

For oil one can imagine part of a weight being put into one container and any left over 
being put into another container.  

However, in the problem being considered here we are not allowed to have part of a 
weight in one container and part in another. 

One way to visualize the situation is as a collection of rectangles which have height 
equal to the capacity C and a fixed width, whose exact size does not matter. 

When an item is put into the bin it either falls to the bottom or is stopped at a height 
determined by the weights that are already in the bins.  
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Outline  
 

The diagram below shows a bin of capacity 10 where three identical weights of size 2 
have been placed in the bin, leaving 4 units of empty space, which are shown in 
blue.  
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Outline  
 

By contrast with the situation above, the bin below has been packed with weights of 
size 2, 2, 2 and 4 in a way that no room is left over. 
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Basic ideas 
 

The bin packing problem asks for the minimum number k of identical bins of capacity 
C needed to store a finite collection of weights 𝑤ଵ, 𝑤ଶ, 𝑤ଷ, . . . , 𝑤 so that no bin has 
weights stored in it whose sum exceeds the bin's capacity.  

Traditionally 

 capacity C is chosen to be 1 and 
 weights are real numbers which lie between 0 and 1, 
 for convenience of exposition, C is a positive integer and the weights are positive 

integers which are less than the capacity. 

Example 1: 

 Suppose we have bins of size 10. How few of them are required to store weights 
of size 3, 6, 2, 1, 5, 7, 2, 4, 1, 9? 
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Basic ideas 
 

The weights to be packed above have been presented in the form of a list L ordered 
from left to right. 

For the moment we will seek procedures (algorithms) for packing the bins that are 
"driven" by a given list L and a capacity size C for the bins. 

The goal of the procedures is to minimize the number of bins needed to store the 
weights. 

A variety of simple ideas as to how to pack the bins suggest themselves.  

One of the simplest approaches is called Next Fit (NF). 

The idea behind this procedure is to open a bin and place the items into it in the 
order they appear in the list. 

If an item on the list will not fit into the open bin, we close this bin permanently and 
open a new one and continue packing the remaining items in the list. 
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Basic ideas Next Fit (NF) 
 

If some of the consecutive weights on the list exactly fill a bin, the bin is then closed 
and a new bin opened.  

When this procedure is applied to the list above we get the packing shown below.  
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Basic ideas Next Fit (NF) 

Next Fit is 

 very simple,  

 allows for bins to be shipped off quickly, because even if there is some extra 
room in a bin, we do not wait around in the hope that an item will come along 
later in the list which will fill this empty space.  

One can imagine having a fleet of trucks with a weight restriction (the capacity C) and 
one packs weights into the trucks. 

If the next weight cannot be packed into the truck at the loading dock, this truck leaves 
and a new truck pulls into the dock. 

We keep track of how much room remains in the bin open at that moment.  
In terms of how much time is required to find the number of bins for n weights, one can 

answer the question using a procedure that takes a linear amount of time in the 
number of weights (n). 

Clearly, NF does not always produce an optimal packing for a given set of weights. 
You can verify this by finding a way to pack the weights in Example 1 into 4 bins. 
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Basic ideas Next Fit (NF) 

Procedures such as NF are sometimes referred to as heuristics or heuristic 
algorithms because although they were conceived as ways to solve a problem 
optimally, they do not always deliver an optimal solution. 

Can we find a way to improve on NF so as to design an algorithm which will always 
produce an optimal packing? 

A natural thought would be that if we are willing to keep bins open in the hope that 
we will be able to fill empty space with items later in list L, we will typically use 
fewer bins. 
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Basic ideas First Fit (FF) 
 

The simplest way to carry out this idea is known as First Fit.  

We place the next item in the list into the first bin which has not been completely filled 
(thought of as numbered from left to right) into which it will fit.  

 When bins are filled completely they are closed, 

 If an item will not fit into any currently open bin, a new bin is opened. 
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Basic ideas First Fit (FF) 
 

The result of carrying out First Fit for the list in Example 1 and with bins of capacity 
10 is shown below: 
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Basic ideas First Fit (FF) 
 

Both methods we have tried have yielded 5 bins. 

We know that this is not the best we can hope for. 

One simple insight is obtained by computing the total sum of the weights and dividing 
this number by the capacity of the bins. 

Since we are dealing with integers, the number of bins we need must be at least ⌈𝛺/𝐶⌉ where 𝛺 ൌ ∑ 𝑤ୀଵ . 

(Note that ⌈𝑥⌉ denotes the smallest integer that is greater than or equal to x). 

Clearly, the number of bins must always be an integer. In Example 1, since 𝛺 is 40 and 
C is 10, we can conclude that there is hope of using only 4 bins. 

However, neither Next Fit nor First Fit achieves this value with the list given in Example 
1. Perhaps we need a better procedure. 
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Basic ideas Best Fit (BF) and Worst Fit (WF) 
 

Two other simple methods in the spirit of Next Fit and First Fit have also been looked 
at. 

These are known as Best Fit (BF) and Worst Fit (WF). 

For Best Fit, one again keeps bins open even when the next item in the list will not fit 
in previously opened bins, in the hope that a later smaller item will fit. 

The criterion for placement is that we put the next item into the currently open bin (e.g. 
not yet full) which leaves the least room left over. (In the case of a tie we put the item 
in the lowest numbered bin as labeled from left to right.) 

For Worst Fit, one places the item into that currently open bin into which it will fit with 
the most room left over. 
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Basic ideas Best Fit (BF) and Worst Fit (WF) 
 

The amount of time necessary to find the minimum number of bins using either FF, WF 
or BF is higher than for NF. What is involved here is n log n implementation time in 
terms of the number n of weights. 

The distinction between First Fit, Best Fit and Worst Fit: 

o suppose that we currently have only 3 bins open with capacity 10 

o remaining space as follows: 

 Bin 4, 4 units, 
 Bin 6, 7 units, and 
 Bin 9 with 3 units. 

Suppose the next item in the list has size 2. 

First Fit puts this item in Bin 4, Best Fit puts it in Bin 9, and Worst Fit puts it in Bin 6! 

One difficulty is that we are applying "good procedures" but on a "lousy" list. If we know 
all the weights to be packed in advance, is there a way of constructing a good list? 

 
 


