
© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 1

Algoritmos y métodos de
calendarización

Optimization in Cluster, Grid y Cloud
computing

2022

Topic 1: Preliminaries
Topic 2: Scheduling on Parallel Processors
Topic 3: Scheduling Multiprocessor Tasks

Dr. Andrei Tchernykh
https://usuario.cicese.mx/~chernykh/

CICESE Research Center
Ensenada, Baja California, México

UDELAR, Montevideo

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 2

Outline

Topic 1
Preliminaries

1.1. Objective
1.2. Application areas
1.3. Basic Notions
1.4. The Scheduling Model

Topic 2
Scheduling on Parallel Processors

2.1 Minimizing Schedule Length

 Identical Processors
 Uniform Processors

2.2 Minimizing Mean Flow Time
 Identical Processors
 Uniform Processors

2.3 Minimizing Due Date Involving Criteria
 Identical Processors
 Uniform Processors

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 3

Outline

Topic 3
Scheduling Multiprocessor Tasks

3.2 Scheduling Multiprocessor Tasks

3.2.1 Parallel Processors
3.2.2 Dedicated Processors
3.2.3 Refinement Scheduling

3.3 Scheduling Uniprocessor Tasks with Communication Delays

4.3.1 Scheduling without Task Duplication
4.3.2 Scheduling with Task Duplication
4.3.3 Considering Processor Network Structure

3.4. BinPacking and StripPacking
3.5. Backfill

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 4

References

1. J. Blazewicz, K. Ecker, G. Schmidt, J. Weglarz, Scheduling in Computer and
Manufacturing Systems, Springer, pp. 495, 2001 ISBN:3540419314

2. Handbook of Scheduling: Algorithms, Models, and Performance Analysis. Edited

by Joseph Y-T. Leung. Published by CRC Press, Boca Raton, FL, USA, 2004

3. J. Blazewicz, K. Ecker, E. Pesch, G. Schmidt, J. Weglarz, Handbook on
Scheduling. From Theory to Applications, Springer, pp. 647, 2007 ISBN:978-3-
540-28046-0

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 5

Topic 1: Preliminaries

1.1 Application Area:

 Scheduling in Processor and Operating Systems
 Production Scheduling
 Technical and Industrial Processes
 Control Systems

1.2 Basic Notions

1.3 Scheduling Models
 Deterministic Model
 Optimization Criteria
 Scheduling Problem and  |  |  - Notation
 Scheduling Algorithms

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 6

Application Area: Scheduling in Processor and Operating Systems

In operating systems there are often hundreds of processes waiting to get access to
the processor
Following some implemented strategy, the scheduler decides which process gets the
next access

Depending on the particular implementation the strategy takes various
parameters into account, such as
 priority of the process
 its parent priority
 already consumed CPU time
 assigned resources

The scheduler (process dispatcher) is designed to optimize some system
performance:
 optimizing throughput: maximize the number of completed processes per time

unit
 minimizing the makespan of specified processes
 maximizing profit for the owner of the machine

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 7

Application Area: Scheduling in Processor and Operating Systems

Questions regarding the scheduling of activities in computers occur at different
levels:

 Inside processors: sequencing of micro-operations; pipelining

 scheduling strategies in single processor operating systems:
 round robin
 priority based dispatcher algorithms
 multilevel strategies

 multiprocessor systems, consisting of a CPU, co-processors, and I/O processors:
process handling,
assignment of activities to the special purpose processors

 parallel processing on a large number of identical processors as in massive
parallelism:

Work distribution, while taking into account the network connectivity and
communication delays

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 8

Application Area: Scheduling in Processor and Operating Systems

 distributed processing (several computers (workstations, PC's, etc.) are connected
in a local area network (LAN), or Grids:

Applications like computer integrated manufacturing:
- accesses to scarce network resources
- sequencing the activities

need sophisticated scheduling strategies

 real-time operating systems in parallel or distributed systems need careful
handling of activities with deadlines

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 9

Application Area: Production Scheduling

Another example of practical interest concerns production systems
Typical in this area is the demand for optimal working plans for assembly lines and
for flexible manufacturing machines, e.g. in production cells

General requirements:
- production due dates
- resource balancing
- maximal production throughput
- minimum storage cost

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 10

Application Area: Production Scheduling

Examples:
 Control of robot movement has to deal with optical and other data, and concerns

the real time coordination of moving the arm(s)
 Assembly lines are of pipeline structure; their optimal design leads to flow shop

problems
 Organizing flexible manufacturing machines leads to problems of optimizing lot

sizes under the requirement of optimal throughput while minimizing overhead due
to tool change delays and other setup costs

 Optimal routing of automated guided vehicles (AGV's) leads to questions that
again require careful planning and sequencing

In a manufacturing environment deterministic scheduling is also known as predictive

Its complement is reactive scheduling, which can also be regarded as deterministic
scheduling with a shorter planning horizon

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 11

Application Area: Technical and Industrial Processes

Computer-integrated manufacturing (CIM) is a method of manufacturing in which the entire
production process is controlled by computer.
Typically, it relies on closed-loop control processes, based on real-time input from sensors. It is
also known as flexible design and manufacturing

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 12

Application Area: Technical and Industrial Processes

Activities from

- production planning
- computer aided design
- work planning
- manufacturing
- quality control

have to be coordinated

The objectives are similar: better capacity planning, maximal throughput, minimum
storage cost, etc.
 Jobs

m-Stages n

Total number of possible solutions

𝑛! ൭ෑ 𝑚௜௠
௜ୀଵ ൱௡

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 13

Application Area: Control Systems

In real-time systems the particular situation dictates conditions different from those
before:

some processes must be activated periodically with a fixed rate, and others
have to meet given deadlines

In such systems, meeting the deadlines can be a crucial condition for the correct
operation of the environment

Examples of application areas are
o aircraft control,
o power plants, heat control, turbine speed control,
o frequency and voltage stabilization etc.,
o security systems in transportation systems such as air bags and ABS

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 14

Basic Notions

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 15

Basic Notions. Introduction

The notion of task is used to express some well-defined activity or piece of work

Planning in practical applications requires some knowledge about the tasks
This knowledge does not regard their nature, but rather general properties such as
 processing times,
 relations between the tasks concerning the order in which the tasks can be

processed,
 release times which inform about the earliest times the tasks can be started,
 deadlines that define the times by which the tasks must be completed,
 due dates by which the tasks should be completed together with cost functions

that define penalties in case of due date violations,
 additional resources (for example, tools, storage space, data)

Based on these data one could try to develop a work plan or time schedule that
specifies for each task when it should be processed, on which machine or processor,
including preemption points, etc.

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 16

Basic Notions. Introduction

Depending on how much is known about the tasks to be processed, we distinguish
between three main directions in scheduling theory:

Deterministic or static or off-line scheduling assumes that all information

required to develop a schedule is known in advance, before the actual processing
takes place
Especially in production scheduling and in real-time applications the deterministic
scheduling discipline plays an important role

Non-deterministic scheduling is less restrictive: only partial information is
known

for example computer applications where tasks are pieces of software with unknown
run-time

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 17

Basic Notions. Introduction

On-line scheduling: In many situations detailed knowledge of the nature of the

tasks is available, but the time at which tasks occur is open
If the demand of executing a task arises a decision upon acceptance or rejection is
required, and, in case of acceptance, the task start time has to be fixed

In this situation schedules cannot be determined off-line, and we then talk about on-
line scheduling or dynamic scheduling

 Non-clairvoyant scheduling: consider problems of scheduling jobs with

unspecied execution time requirements

 Stochastic scheduling: only probabilistic information about parameters is

available
In this situation probability analysis is typical means to receive information about the
system behavior

 For each type of scheduling one can find justifying applications

Here, off-line scheduling (occasionally also on-line scheduling) is considered

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 18

Deterministic Scheduling Problems

The deterministic scheduling or planning problems arising in different applications
have often strong similarities

hence essentially the same basic model can be used

Common aspects in these applications:
 processes consist of complex activities to be scheduled
 they can be modeled by means of tasks or jobs
 Tasks usually need one of the available machines, maybe even a special

machine, and additional resources of limited availability
 Between tasks there are relations describing the relative order in which the tasks

are to be performed
order of task execution can be restricted by conditions like precedence constraints

 Preemption of task execution can be allowed or forbidden

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 19

Deterministic Scheduling Problems

 Timing conditions such as task release times, deadlines or due dates may be

given
In case of due dates cost functions may define penalties depending on the amount of
lateness

 There may be conditions for time lags between pairs of tasks, such as setup
delays

 In so-called shop problems sequences of tasks, each to be performed on some
specified machine, are defined

An example is the well-known flow shop or assembly line processing

Scheduling problems are characterized not only by the tasks and their specific
properties, but also by information about the processing devices
Processors or machines for processing the tasks can be identical, can have different
speeds (uniform), or their processing capabilities can be unrelated

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 20

Deterministic Scheduling Problems

The problem is to determine an appropriate schedule, i.e. one that satisfies all
conditions imposed on the tasks and processors

A schedule essentially defines the start times of the tasks on a specified processor
Generally there may exist several possible schedules for a given set of tasks
An important condition describes the intended properties of a schedule, as defined by
an optimization criterion
Common criteria are:

- minimization of the makespan of the total task set,
- minimization of the mean waiting time of the tasks

The optimization criterion allows to choose an appropriate schedule

Such schedules are then used as a planning basis for carrying out the various activities

Unfortunately, finding optimal schedules is in general a very difficult process
Except for simplest cases, these problems turn out to be NP-hard, and hence the time
required computing an exact solution is beyond all practical means

In this situation, algorithmic approaches for sub-optimal schedules seem to be the
only possibility

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 21

Deterministic Scheduling Problems

Because of the complexity nature the theory deals with simplified models, and, when
dealing with practical problems, rather improper simplifications are made in the
corresponding models

as a consequence, there is a big gap between practice and theory

The question arises whether or not the theory of scheduling is of any use for the
practice

Hence we are faced with principal questions like
 what can we gain from theory?
 what can theoretical solutions tell us for the application?
 is the still huge effort for solving theoretical problems justified?

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 22

The Scheduling Model

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 23

The Scheduling Model

 Deterministic Model
 Optimization Criteria
 Scheduling Problem and  |  |  - Notation
 Scheduling Algorithms

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 24

The Scheduling Model. Deterministic Model

Tasks, Processors, etc.
Set of tasks T = ሼ𝑇ଵ, 𝑇ଶ, … , 𝑇௡ሽ

Set of resource types R = ሼ𝑅ଵ, 𝑅ଶ, … , 𝑅௦ሽ

Set of processors P = ሼ𝑃ଵ, 𝑃ଶ, … , 𝑃௠ሽ
Examples of processors:

CPUs in e.g. a multiprocessor system
Computers in a distributed processing environment
Production machines in a production environment

Processors may be
 parallel: they are able to perform the same functions
 dedicated: they are specialized for the execution of certain tasks

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 25

The Scheduling Model. Deterministic Model

Parallel processors have the same execution capabilities

Three types of parallel processors are distinguished

o identical: if all processors from set P have equal task processing speeds

o uniform : if the processors differ in their speeds, but the speed 𝑏௜ of each
processor is constant and does not depend on the tasks in T

o unrelated: if the speeds of the processors depend on the particular task
unrelated processors are more specialized: on certain tasks, a processor may
be faster than on others

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 26

The Scheduling Model. Deterministic Model

Characterization of a task 𝑻𝒋
 Vector of processing times 𝑝௝ ൌ ൣ𝑝௜௝, … , 𝑝௠௝൧, where 𝑝௜௝ is the time needed by

processor 𝑃௜ to process 𝑇௝

Identical processors: 𝑝ଵ௝ ൌ ⋯ ൌ 𝑝௠௝ ൌ 𝑝௝

Uniform processors: 𝑝௜௝ ൌ 𝑝௝ 𝑏௜ൗ , 𝑖 ൌ 1, … , 𝑚 𝑝௝ = standard processing time (usually measured on the slowest processor), 𝑏௜ is the processing speed factor of processor 𝑃௜

Processing times are usually not known a priori in computer systems
Instead of exact values of processing times one can take their estimate
However, in case of deadlines exact processing times or at least upper bounds are

required

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 27

The Scheduling Model. Deterministic Model

 Arrival time (or release or ready time) 𝑟௝ … is the time at which task 𝑇௝ is ready for
processing

if the arrival times are the same for all tasks from T , then 𝑟௝ ൌ 0 is assumed for
all tasks

 Due date 𝑑௝ … specifies a time limit by which 𝑇௝ should be completed
problems where tasks have due dates are often called "soft" real-time problems.
Usually, penalty functions are defined in accordance with due dates

 Penalty functions 𝐺௝ define penalties in case of due date violations

 Deadline 𝑑ఫ෩ … "hard" real time limit, by which 𝑇௝ must be completed

 Weight (priority) 𝑤௝ ... expresses the relative urgency of 𝑇௝

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 28

The Scheduling Model. Deterministic Model

 Preemption / non-preemption:

A scheduling problem is called preemptive if each task may be preempted at
any time and its processing is resumed later, perhaps on another processor

 If preemption of tasks is not allowed the problem is called non-preemptive

 Resource requests:

besides processors, tasks may require certain additional resources during their
execution

Resources are usually scarce, which means that they are available only in
limited amounts
In computer systems, exclusively accessible devices or data may be considered
as resources

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 29

The Scheduling Model. Deterministic Model

In manufacturing environments tools, material, transport facilities, etc. can be treated
as additional resources
The resources considered here are assumed to be discrete and renewable
Assumption: s types of additional resources 𝑅ଵ, 𝑅ଶ, … , 𝑅௦ are available in
respectively 𝑚ଵ, 𝑚ଶ, … , 𝑚௦ units
Each task 𝑇௝ requires for its processing one processor and certain fixed amounts of
these additional resources:
 resource requirement vector 𝑅൫𝑇௝൯ ൌ ൣ𝑅ଵ൫𝑇௝൯, 𝑅ଶሺ𝑇௝ሻ, … , 𝑅௦ሺ𝑇௝ሻ൧ 𝑅௟൫𝑇௝൯ denotes the number of units of resource 𝑅௟ required

for the processing 𝑇௝ ሺ0 ൑ 𝑅௟ሺ𝑇௝ሻ ൑ 𝑚௟, 𝑙 ൌ 1,2, … , 𝑠ሻ

Obviously the situation may occur that, due to resource limitations, subsets of tasks
cannot be processed at the same time. All required resources are granted to a task
before its processing begins or resumes (in the case of preemptive scheduling), and
they are returned by the task after its completion or in the case of its preemption

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 30

The Scheduling Model. Deterministic Model

We assume without loss of generality that all these parameters, 𝑝௝, 𝑟௝, 𝑑௝, 𝑑ఫ෩ , 𝑤௝ and 𝑅௟ሺ𝑇௝ሻ are integers. This assumption is equivalent to permitting arbitrary rational
values

Conditions among the set of tasks T : precedence constraints 𝑇௜  𝑇௝ means that the processing of 𝑇௜ must be completed before 𝑇௝ can be started

We say that a precedence relation  is defined on set T
mathematically, a precedence relation is a partial order

The tasks in T are called dependent
if the relation  is non-empty
otherwise, the tasks are called independent

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 31

The Scheduling Model. Deterministic Model
 𝑇௜ is called a predecessor of 𝑇௝ if there is a sequence of asks 𝑇ఈభ, . . . , 𝑇ఈ೗ ሺ𝑙  0ሻ with 𝑇௜
 𝑇ఈభ  ...  𝑇ఈ೗  𝑇௝. Likewise, 𝑇௝ is called a successor of 𝑇௜.
If 𝑇௜  𝑇௝. , but there is no task 𝑇ఈ with 𝑇௜  𝑇ఈ  𝑇௝. then 𝑇௜ is called an
immediate predecessor of 𝑇௝, and 𝑇௝ an immediate predecessor of 𝑇௜

A task that has no predecessor is called start task
A task without successor is referred to as final task

Special types of precedence graphs are
o chain dependencies: the partial order is the union of linearly ordered disjoint

subsets of tasks
o tree dependencies: the precedence relation is tree-like;

out-tree: if all task dependencies are oriented away from the root
in-tree: if all dependencies are oriented towards the root

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 32

The Scheduling Model. Deterministic Model

Representation of tasks with precedence constraints:
 task-on-node graph (Hasse diagram)

For each 𝑇௜ ≺ 𝑇௝ , an edge is drawn
between the corresponding nodes
The situation 𝑇௜ ≺ 𝑇௝ and 𝑇௝ ≺ 𝑇௞ is
called transitive dependency between 𝑇௜
and 𝑇௞.
Transitive dependencies are not
explicitly represented

T1

T3

T2

T4

T6

T5

T8T7

T9 T10 T11

T12

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 33

The Scheduling Model. Deterministic Model

 task-on-arc graph, activity network. Arcs represent tasks and nodes time events
Example 1: T = {𝑇ଵ, ..., 𝑇ଵ଴} with precedences as shown by the above Hasse
diagram. A corresponding activity network:

T1

T2

T3

T4

T5

T6

T8

T7

T9

T10

T11

T12

T10

T6

T8

T5'

'

'

'

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 34

task-on-arc graph ?????

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 35

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 36

Error????

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 37

The Scheduling Model. Deterministic Model

Task 𝑇௝ is called available at time t if 𝑟௝ ൑ t and all its predecessors (with respect to
the precedence constraints) have been completed by time t
Schedules

Schedules or work plans generally …
 inform about the times and on which processors the tasks are executed

To demonstrate the principles, the schedules are described for the special case of:

- parallel processors
- tasks have no deadlines
- tasks require no additional resources

Release times and precedence constraints may occur

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 38

The Scheduling Model. Deterministic Model

A schedule S is an assignment of processors to the tasks from T (or an assignment
of the tasks to the processors) such that:

 task 𝑇௝ is processed in the time interval [𝑟௝, ) for 𝑝௝ time units,

 all tasks are completed,

 at each instant of time, each processor works on at most one task,

 at each instant of time, each task is processed by at most one processor,

 if tasks 𝑇௜, 𝑇௝ are in relation 𝑇௜ ≺ 𝑇௝ then the processing of 𝑇௝ is not started
before 𝑇௜ has been completed,

 if 𝑇௝ is non-preemptive then processing of 𝑇௝ is not interrupted;
if 𝑇௝ is preemptive then 𝑇௝ may be interrupted only a finite number of times

If all tasks are non-preemptive then the schedule is called non-preemptive
If all tasks are preemptive, then the schedule is called preemptive

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 39

The Scheduling Model. Schedule representation 1

(1) One possibility to describe schedules is by means of a
function Ϛℝ: ℝஹ଴  ሺT  ሼሽሻ௠
the non negative real number values of ℝஹ଴ are interpreted as time

 denotes an idle task, which describes the possibility that one or more
processors are not active

Function Ϛℝ specifies for each point of time a vector of tasks of length m

The ith component of this vector specifies the task processor 𝑃௜ is currently working
on

This way Ϛℝ defines for each point of time the activities of each processor

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 40

The Scheduling Model. Schedule representation 1

For practical reasons we assume that the image set of Ϛℝ is of finite cardinality

In other words, we allow only finitely many changes of activity patterns for the processors

If tasks are processed preemptively this assumption implies only finitely many
preemptions for each task

This allows a more practical description of Ϛℝ where tuples of Ϛℝ (t) are specified
only for those points of time at which the value of Ϛℝ changes

Between succeeding points of time the task assignment is then considered to be
constant

In this connection it makes sense to speak about intervals of task assignments during
which the task assignment is constant

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 41

The Scheduling Model. Schedule representation 1

Let s(𝑇௝) be the start time of 𝑇௝ , i.e. the earliest point of time at which 𝑇௝ occurs in
one of the tuples 𝑆ℝሺ𝑡ሻ

Let 𝑐ሺ𝑇𝑗ሻbe the completion time of 𝑇௝ , i.e. the end point of the last interval that
contains 𝑇௝

Then Ϛℝ must fulfill the following conditions:
 the sum of lengths of intervals in which 𝑇௝ is processed is 𝑝௝ (j = 1, ..., n),

 s(𝑇௝)  𝑟௝ ,

 the task in each tuple are pairwise different or ,

 if 𝑇௜  𝑇௝ then c(𝑇௜)  s(𝑇௝)

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 42

The Scheduling Model. Schedule representation 2

(2) An alternative definition specifies only the start times of the tasks
This is, however, improper for preemptive schedules:

A non-preemptive schedule can be defined as a mapping Ϛ𝑇: T  ℝஹ଴  P ; Ϛ்(𝑇௝) = (t, 𝑃௜) means that 𝑇௝ is started at time t on processor 𝑃௜
Let s(𝑇௝) be the start time of 𝑇௝, and c(𝑇௝) (= s(𝑇௝) +𝑝௝) be its completion time

Then the above conditions translate into:

 s(𝑇௝)  𝑟௝,

 Ϛ் is total (i.e. Ϛ் specifies one tuple for each task)
 if Ϛ்(𝑇௝) = (t, 𝑃௜) then no other task T ' can have an image (t', 𝑃௜)

with t'  [t, t +𝑝௝),
 if 𝑇௜  𝑇௝ then c(𝑇௜)  s(𝑇௝)

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 43

The Scheduling Model. Schedule representation 3

(3) Graphic representation: Gantt chart - this is a two-dimensional diagram

The abscissa represents the time axis that usually starts with time 0 at the origin

Each processor is represented by a line
For a task 𝑇௝ to be processed by 𝑃௜ a bar of length p(𝑇௝) and that begins at the time
marked by s(𝑇௝), is entered in the line corresponding to 𝑃௜

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 44

The Scheduling Model. Schedule representation

Example 1: T = {𝑇ଵ, ..., 𝑇ଵଶ} with precedences as shown by the Hasse diagram:

T1

T3

T2

T4

T6

T5

T8T7

T9 T10 T11

T12

2 2

8 2 3

2 4 4

2 1 3

1

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 45

The Scheduling Model. Schedule representation

Example 2: non-preemptive schedule
In the above example, let (2, 2, 8, 2, 3, 2, 4, 4, 2, 1, 3, 1) be the vector of
processing times, and assume all release times = 0
Assume furthermore that there are 3 identical processors (P = {𝑃ଵ, … , 𝑃ଷ})
available for processing the tasks
Gantt chart of a non-preemptive schedule:

T3T1

T2

T5

T4 T6 T7

T8 T9 T10

T11

T12

0 1 3 4 5 10 132

P1

P2

P3

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 46

The Scheduling Model. Schedule representation

T3T1

T2

T5

T4 T6 T7

T8 T9 T10

T11

T12

0 1 3 4 5 10 132

P1

P2

P3

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 47

The Scheduling Model. Schedule representation

The corresponding formal description by a function Ϛℝ: ℝஹ଴ ሺ  ሼሽሻ௠ is:
 Ϛℝ (0) =…..

The corresponding formal description by a function Ϛ்: T  ℝஹ଴  P is:

 Ϛ் (𝑇ଵ) = …..

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 48

The corresponding formal description by a function Ϛℝ: ℝஹ଴  ሺ  ሼሽሻ௠ is:
 Ϛℝ (0) = (𝑇ଵ, 𝑇ଶ ,𝑇ହ), Ϛℝ (2) = (𝑇ଷ, 𝑇ସ, 𝑇ହ), Ϛℝ (3) = (𝑇ଷ, 𝑇ଷ, 𝑇), etc.

The corresponding formal description by a function Ϛ்: T  ℝஹ଴  P is:

 Ϛ் (𝑇ଵ) = (0, 𝑃ଵ), Ϛ் (𝑇ଶ) = (0, 𝑃ଶ), Ϛ் (𝑇ଷ) = (2, 𝑃ଵ), etc.

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 49

The Scheduling Model. Deterministic Model

Given a schedule Ϛ, the following can be determined for each task 𝑻𝒋 :

flow time, turnarround, response 𝐹௝:= 𝑐௝ 𝑟௝

lateness 𝐿௝= 𝑐௝  𝑑௝

tardiness 𝐷௝= max{𝑐௝ 𝑑௝, 0}

tardy task 𝑈௝ =




0 if 𝐷௝ = 0
1 else

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 50

The Scheduling Model. Deterministic Model. Optimization Criteria

Evaluation of schedules

Maximum makespan 𝐶௠௔௫ = max{𝑐௝ | 𝑇௝  T }

Mean flow time 𝐹ത := (1/n)  𝐹௝

Mean weighted flow time 𝐹௪തതത:= (𝑤௝𝐹௝) / ( 𝑤௝ሻ

Maximum lateness 𝐿௠௔௫= max{𝐿௝ | 𝑇௝  T }

Mean tardiness 𝐷ഥ:= (1/n)  𝐷௝

Mean weighted tardiness 𝐷௪തതതത:= ( 𝑤௝𝐷௝) / ( 𝑤௝)

Mean sum of tardy tasks 𝑈ഥ:= (1/n)  𝑈௝

Mean weighted sum of tardy tasks 𝑈௪തതതത:= ( 𝑤௝𝑈௝) / ( 𝑤௝ሻ

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 51

The Scheduling Model. Deterministic Model. Optimization Criteria

Given a set of tasks and a processor environment there are generally many possible
schedules
Evaluating schedules: distinguish between good and bad schedules
This leads to different optimization criteria

Minimizing the maximum makespan 𝑪𝒎𝒂𝒙 𝐶௠௔௫ criterion: 𝐶௠௔௫-optimal schedules have minimum makespan
 the total time to execute all tasks is minimal

Minimizing schedule length is important from the viewpoint of the owner of a set of
processors (machines):
This leads to both, the maximization of the processor utilization factor (within
schedule length 𝐶௠௔௫), and the minimization of the maximum in-process time of the
scheduled set of tasks

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 52

The Scheduling Model. Deterministic Model. Optimization Criteria

Minimizing the mean weighted flow time 𝑭𝒘തതതത
A schedule is 𝐹௪തതത-optimal if the mean flow time of tasks is minimized:
 the average duration of residence of the tasks is as short as possible

Different weights for the tasks allow to express the urgency of tasks

The mean flow time criterion is important from the user's viewpoint since it yields a
minimal mean response time and the mean in-process time of the scheduled task set

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 53

The Scheduling Model. Deterministic Model. Optimization Criteria

Deadline related criteria
If deadlines are specified for (some of) the tasks we are interested in a schedule in
which all tasks complete before their deadlines expire
Question: does there exist a schedule that fulfills all the given conditions?
Such a schedule is called valid (feasible)

Here we are faced in principle with a decision problem

If, however, a valid schedule exits, we would of course like to get it explicitly

If a valid schedule exists we may wish to find a schedule that has certain additional
properties, such as minimum makespan or minimum mean flow

Hence in deadline related problems we often additionally impose one of the other
criteria

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 54

The Scheduling Model. Deterministic Model. Optimization Criteria

Minimizing the maximum lateness 𝑳𝒎𝒂𝒙
This concerns tasks with due dates
Minimizing 𝐿௠௔௫ expresses the attempt to keep the maximum lateness small, no
matter how many tasks are late

Due date involving criteria are of great importance in manufacturing systems, especially
for specific customer orders

Minimizing the mean weighted tardiness 𝑫𝒘തതതത
This criterion considers a weighted sum of tardinesses
Minimizing mean weighted tardiness means that a task with large weight should have
a small tardiness

Minimizing the weighted sum of tardy tasks 𝑼𝒘തതതത
This criterion considers only the number of tardy tasks
Individual weights for the tasks are again possible

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 55

The Scheduling Model. Deterministic Model. Optimization Criteria

Example 3

Gantt chart of a preemptive schedule:

T1 T3

T2 T4

T6T5 T8

T7

T9

T10

T11

T12

T6 T11

T9

T3

0 1 3 4 5 10 Cmax = 11.3

T3

2

P1

P2

P3

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 56

The Scheduling Model. Deterministic Model. Optimization Criteria

(1) In the schedule of example the flow time of tasks

F(𝑇ଵ)=2,F(𝑇ଶ) = 2,F(𝑇ଷ)=???, etc.

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 57

The Scheduling Model. Deterministic Model. Optimization Criteria

Example 4: non-preemptive schedule with due dates

For the task set as specified before, let in addition due dates be given by the
vector (8, 2, 16, 4, 4, 8, 8, 8, 10, 8, 10, 11).

In the schedule below, task 𝑇ଵ଴ with due date 8 violates its due date by two
time units.

T3

T1

T2

T5

T4 T6

T7

T8 T9 T10

T11

T12

0 1 3 4 5 10 142

P1

P2

P3

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 58

The Scheduling Model. Deterministic Model. Optimization Criteria

(2) In the schedule of example task 𝑇ଵ଴ has lateness ???; for all other tasks 𝐿௝
is less equal ???.

The tardiness of 𝑇ଵ଴ = ????, and it is ??? for all other tasks;

hence 𝑈ଵ଴ = ???, and 𝑈௝ = ??? for all other tasks

(3) In the same schedule task 𝑇ଵ has earliness ??, 𝑇ଶhas earliness ??, etc.

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 59

Examples

(1) In the schedule of example 3 the flow time of tasks 𝑇ଵ and 𝑇ଶ is 2, that of 𝑇ଷ is 11.3, etc.

(2) In the schedule of example 4 task 𝑇ଵ଴ has lateness 2; for all other tasks 𝐿௝
is less than or equal 0. The tardiness of 𝑇ଵ଴ , and it is 0 for all other tasks;
hence 𝑈ଵ଴ = 1, and 𝑈௝ = 0 for all other tasks

(3) In the same schedule task 𝑇ଵ has earliness 6, 𝑇ଶhas earliness 0, etc.

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 60

Example
Consider the task set as in Example 1, with processing times and due dates as
specified in the respective Examples 2 and 3.

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 61

processing times (2, 2, 8, 2, 3, 2, 4, 4, 2, 1, 3, 1),

due dates (8, 2, 16, 4, 4, 8, 8, 8, 10, 8, 10, 11).

T1

T3

T2

T4

T6

T5

T8T7

T9 T10 T11

T12

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 62

T3T1

T2

T5

T4 T6 T7

T8 T9 T10

T11

T12

0 1 3 4 5 10 132

P1

P2

P3

T1 T3

T2 T4

T6T5 T8

T7

T9

T10

T11

T12

T6 T11

T9

T3

0 1 3 4 5 10 Cmax = 11.3

T3

2

P1

P2

P3

T3

T1

T2

T5

T4 T6

T7

T8 T9 T10

T11

T12

0 1 3 4 5 10 142

P1

P2

P3

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 63

Compute the following values

Criterion Example 2 Example 3 Example 4 𝐶௠௔௫ 𝐹ത 𝐿௠௔௫ 𝐷ഥ 𝐸ത 𝑈ഥ

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 64

we compute the following values 𝑟௝=0(the smallest values are shaded):

Criterion Example 2 Example 3 Example 4 𝐶௠௔௫ 13.000 11.333 14.000 𝐹ത 7.250 7.392 7.250 𝐿௠௔௫ 3.000 2.333 2.000 𝐷ഥ 0.580 0.360 0.167 𝐸ത 1.417 1.058 1.083 𝑈ഥ 0.250 0.333 0.167

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 65

we compute the following values 𝑟௝>=0(the smallest values are shaded):

Criterion Example 2 Example 3 Example 4

 𝐹ത 3.33 3.27 3.5

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 66

 |  |  - Notation

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 67

The Scheduling Model. Scheduling Problems and  |  |  - Notation

Scheduling problem  is defined by a set of parameters for processors, tasks, and
an optimality criterion

An instance I of problem  is specified by particular values for the problem
parameters

The parameters are grouped in three fields  |  |  :
 specifies the processor environment,

 describes properties of the tasks, and

 the definition of an optimization criterion

The terminology introduced below aims to classify scheduling problems

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 68

The Scheduling Model. Scheduling Problems and  |  |  - Notation

Component  specifies the processors
 =𝛼ଵ, 𝛼ଶ describes the processor environment

Parameter 𝛼ଵ ∈{, P, Q, R} characterizes the type of processor
parameter 𝛼ଶ ∈{, k} denotes the number of available processors: 𝛼ଵ 𝛼ଶ

 single processor 

the number of processors is
assumed to be variable

P identical processors k

the number of processors is equal to
k (k is a positive integer)

Q uniform processors  the number of processors is
unlimited

R unrelated processors

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 69

The Scheduling Model. Scheduling Problems and  |  |  - Notation

Component  specifies the tasks

 =𝛽ଵ, 𝛽ଶ, 𝛽ଷ, 𝛽ସ, 𝛽ହ, 𝛽଺ describes task and resource characteristics

Parameter 𝛽ଶ ∈{, pmtn} indicates the possibility of task preemption 𝛽ଵ

 no preemption is allowed

pmtn preemptions are allowed

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 70

The Scheduling Model. Scheduling Problems and  |  |  - Notation

Parameter 𝛽ଶ  {, res } characterizes additional resources 𝛽ଶ



res 

there are specified resource constraints

, ,   {, k} denote respectively the number of resource
types, resource limits and resource requirements

, ,  = 

, ,  = k

the respective numbers of resource types,
resource limits and resource requirements
are arbitrary

respectively, each resource is available in the
system in the amount of k units and the
resource requirement of each task is at most
equal to k units

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 71

The Scheduling Model. Scheduling Problems and  |  |  - Notation

Parameter 𝛽ଷ  {, prec, uan, tree, chains} reflects the precedence constraints
uniconnected activity network (uan), which is defined as a graph in which any two nodes are connected by a directed path in one direction only.
Thus, all nodes are uniquely ordered. 𝛽ଷ= , prec, tree, chains : denotes respectively independent tasks, general
precedence constraints, tree or a set of chains precedence constraints

Parameter 𝛽ସ  {, 𝑟௝} describes ready times 𝛽ସ

 𝑟௝

all ready times are zero
ready times differ per task

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 72

The Scheduling Model. Scheduling Problems and  |  |  - Notation

Parameter 𝛽ହ  {, 𝑝௝ ൌ p, 𝑝 𝑝௝  𝑝} describes task processing times

5

 𝑝௝ ൌ p 𝑝 𝑝௝  𝑝

tasks have arbitrary processing times

all tasks have processing times equal to p units

no 𝑝௝ is less than 𝑝 or greater than 𝑝

Parameter 𝛽଺  {, 𝑑ఫ෩ } describes deadlines 𝛽଺


 𝑑ఫ෩

no deadlines or due dates are assumed in the
system
deadlines are imposed on the performance of a task
set

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 73

The Scheduling Model. Scheduling Problems and  |  |  - Notation

Component  : Specifying the objective criterion

 description 𝐶௠௔௫ schedule length or makespan 𝛴𝐶௝ mean flow time 𝛴𝑤௝𝐶௝ mean weighted flow time 𝐿௠௔௫ maximum lateness 𝛴𝐷௝ mean tardiness 𝛴𝑤௝𝐷௝ mean weighted tardiness 𝛴𝑈௝ number of tardy tasks 𝛴𝑤௝𝑈௝ weighted number of tardy tasks

 means testing for feasibility

A schedule for which the value of a particular performance measure  is at its minimum will be
called optimal : The corresponding value of  is denoted by  *

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 74

The Scheduling Model. Scheduling Algorithms

A scheduling algorithm for a scheduling problem  |  | 
 constructs a schedule for each instance of  |  | 

In general, we are interested in algorithms that find optimal schedules with respect to


the above objective criteria are minimization criteria

Final remark about the presented model:
Though the model considers already quite a number of parameters, it is still very
restricted
Modeling practical situations, however, mostly require the inclusion of many more
parameters and conditions, in particular for the tasks

Examples are communication times, periodic tasks, coupled tasks, setup times for
tasks and resources, renewable resources, multiprocessor tasks, and many more

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 75

The Scheduling Model. Summary

The purpose of this chapter was to introduce the basic notions in scheduling theory:

 deterministic scheduling

 scheduling model

 schedule representation and evaluation

 three-field notation

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 76

Topic 2
Scheduling on Parallel Processors

 2.1 Minimizing Schedule Length

 Identical Processors
 Uniform Processors

2.2 Minimizing Mean Flow Time
 Identical Processors
 Uniform Processors

 2.3 Minimizing Due Date Involving Criteria
 Identical Processors
 Uniform Processors

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 77

Independent tasks

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 78

Identical Processors P | | Cmax

The first problem considered is P | | Cmax where
 a set of 𝑛 independent tasks 𝑝௜
 on 𝑚 identical processors
 minimize schedule length.

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 79

Identical Processors P | | Cmax

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 80

Identical Processors. List Scheduling
 𝑊௦௘௤ ൌ ∑ 𝑝௜௡௜ୀଵ be the total work of all jobs 𝑝௠௔௫ is the maximum processing time of a job. 𝑊௜ௗ௟௘ be the total idle intervals, 𝑊௜ௗ௟௘ ൑ 𝑝௠௔௫ሺ𝑚 െ 1ሻ 𝐶௠௔௫ ൑ ௐೞ೐೜ାௐ೔೏೗೐௠ is the completion time of the set of tasks.
 𝐶௠௔௫ ൑ ௐೞ೐೜ା௣೘ೌೣሺ௠ିଵሻ௠ , 𝐶௠௔௫ ൑ ௐೞ೐೜௠ ൅ ሺ௠ିଵሻ௠ 𝑝௠௔௫ ௐೞ೐೜௠ and 𝑝௠௔௫ are lower bounds of 𝐶௢௣௧௦௘௤, it follows that the worst-case

performance bound is 𝜌௦௘௤ ൑ 2 െ ଵ௠.

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 81

Identical Processors. LPT Algorithm for P | | Cmax

Approximation algorithm for P | | Cmax:
One of the simplest algorithms is the LPT algorithm in which the tasks are arranged
in order of non-increasing pj .

Algorithm LPT for P | | Cmax .
begin
Order tasks such that p1  ...  pn ;
for i = 1 to m do si := 0;
 -- processors Pi are assumed to be idle from time si = 0 on
j := 1;
repeat
 sk := min{ si };
 Assign task Tj to processor Pk at time sk;
 -- the first non-assigned task from the list is scheduled on the first processor that becomes
free
 sk := sk + pj; j := j + 1;
until j = n; -- all tasks have been scheduled
end;

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 82

Identical Processors. LPT Algorithm for P | | Cmax

Theorem If the LPT algorithm is used to solve problem P | | Cmax, then RLPT = 43  1
3m .

an example showing that this bound can be achieved.

Let n = 2m + 1, p = [2m  1, 2m  1, 2m  2, 2m  2,...,m + 1, m + 1, m, m, m].

For m = 3, Next figure shows two schedules, an optimal one and an LPT schedule.

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 83

Identical Processors. LPT Algorithm for P | | Cmax

Example: m = 3 identical processors; n = 2m + 1,

p = [2m  1, 2m  1, 2m  2, 2m  2, ..., m + 1, m + 1, m, m, m].

Time complexity of this algorithm is O(nlogn)
 the most complex activity is to sort the set of tasks.

For m = 3, p = [5, 5, 4, 4, 3, 3, 3].

 (a) an optimal schedule, (b) LPT schedule.

30 5 6 9 t

P1

P2

P3

1T

2T

5T 6T

3T

4T

7T

0 4 5 8 11 t

P1

P2

P3

1T

2T

3T

5T

6T

4T

7T

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 84

Identical Processors. LPT Algorithm for P | | Cmax

Example: n = (m  1)m + 1, p = [1, 1,...,1, 1, m],  is empty,

L = (Tn , T1 , T2 ,...,Tn1), L' = (T1 , T1 ,...,Tn).

The corresponding schedules for m = 4

 (a)
an optimal schedule, (b) an approximate schedule

 t0 1 2 3 4

P1

P2

P3

P4

T13

1T 4T 7T T10

2T 5T 8T T11

3T 6T T9 T12

0 31 2 7 t
4T

P1

P2

P3

P4

1T

2T

3T

5T T9 T13

6T T10

7T T11

8T T12

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 85

Preemptions

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 86

Identical Processors, P | pmtn | Cmax

Problem P | pmtn | Cmax

 relax some constraints imposed on problem P | | Cmax and allow
preemptions of tasks.

 It appears that problem P | pmtn | Cmax can be solved very efficiently.

It is easy to see that the length of a preemptive schedule cannot be smaller than the
maximum of two values:
 the maximum processing time of a task and
 the mean processing requirement on a processor:

The following algorithm given by McNaughton (1959) constructs a schedule whose
length is equal to C * max .

C * max = max{maxj {pj}, 1
m

 j=1
n

 pj} .

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 87

Identical Processors, P | pmtn | Cmaxю McNaughton's rule

Algorithm McNaughton's rule for P | pmtn | Cmax
begin
C * max := max{j=1

n
 pj/m, max{pj| j = 1,...,n}}; -- min schedule length

t := 0; i := 1; j := 1;
repeat
 if t + pj  C * max
 then begin
 Assign task Tj to processor Pi , starting at time t;
 t := t + pj; j := j + 1;
 -- assignment of the next task continues at time t + pj
 end
 else begin
 Starting at time t, assign task Tj for C * max - t units to Pi ;
 -- task Tj is preempted at time C * max,
 -- assignment of Tj continues on the next processor at time 0

 pj := pj - (C * max - t); t := 0; i := i + 1;
 end;
until j = n ; -- all tasks have been scheduled
end;

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 88

Identical Processors, P | pmtn | Cmax

Remarks: The algorithm is optimal. Its time complexity is O(n)

Question of practical applicability:
Generally preemptions are not free of cost (delays)
Generally, two kinds of preemption costs have to be considered: time and finance.
Time delays are not crucial if the delay caused by a single preemption is small
compared to the time the task continuously spends on the processor
Financial costs connected with preemptions, on the other hand, reduce the total
benefit gained by preemptive task execution; but again, if the profit gained is large
compared to the losses caused by the preemptions the schedule will be more
useful and acceptable.

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 89

Identical Processors, P | pmtn | Cmax

k-preemptions: Given k  IN ; (The value for k (preemption granularity) should be
chosen large enough so that the time delay and cost overheads connected with
preemptions are negligible).
 Tasks with processing times less than or equal to k are not preempted
 Task preemptions are only allowed after the tasks have been processed

continuously for k time units
For the remaining part of a preempted task the same condition is applied

If k = 0: the problem reduces to the "classical" preemptive scheduling problem.
If for a given instance k is larger than the longest processing time among the given
tasks: no preemption is allowed and we end up with non-preemptive scheduling
Another variant is the exact-k-preemptive scheduling problem where task
preemptions are only allowed at those moments when the task has been processed
exactly an integer multiple of k time units

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 90

Precedence constraints

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 91

Identical Processors, P | prec | Cmax

Given: task set T with

 vector of processing times p
 precedence constraints 
 priority list L
 m identical processors

Let Cmax be the length of the list schedule

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 92

Identical Processors, P | prec | Cmax, Graham anomalies

The above parameters can be changed:
 vector of processing times p'  p (component-wise),
 relaxed precedence constraints '  ,
 priority list L'
 and another number of processors m'

Let the new value of schedule length be C ' max .
List scheduling algorithms have unexpected behavior:

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 93

Identical Processors, P | prec | Cmax, Graham anomalies

 the schedule length for problem P | prec | Cmax


may increase

if:

 the number of processors increases,
 task processing times decrease,
 precedence constraints are weakened, or
 the priority list changes

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 94

Identical Processors, P | prec | Cmax, Graham anomalies

(a)

(b)

 (a) A task set, m = 2, L = (T1, T2, T3, T4, T5, T6, T7, T8),
(b) an optimal schedule

T /42 T /23

T /44 T /45 T /26

T /31

T /28T /137

P

P

0 3 4 5 9 13 15 17

1T 3T 4T 5T 6T 8T

2T 7T

1

2

t

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 95

Identical Processors, P | prec | Cmax, Graham anomalies

 A new list L' = (T1, T2, T3, T4, T5, T6, T8, T7).

T /42 T /23

T /44 T /45 T /26

T /31

T /28T /137

1T 3T 4T 6T

2T 8T 5T 7T

t

1P

2P

0 3 4 5 6 9 10 11 23

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 96

Identical Processors, P | prec | Cmax, Graham anomalies

1T 3T 4T 6T

2T 8T 5T 7T

t

1P

2P

0 3 4 5 6 9 10 11 23

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 97

 (T1, T2, T3, T4, T5, T6, T7,T8).

Processing times decreased; p'j = pj  1, j = 1, 2, ..., n.

T /42 T /23

T /44 T /45 T /26

T /31

T /28T /137

t

1T 4T 6T 8T

7T5T2T

1P

2P

0 2 3 6 7 8 18

3T

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 98

t

1T 4T 6T 8T

7T5T2T

1P

2P

0 2 3 6 7 8 18

3T

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 99

Identical Processors, P | prec | Cmax, Graham anomalies

 Number of processors increased, m = 3

T /42 T /23

T /44 T /45 T /26

T /31

T /28T /137

0 2 3 4 6 7 8 19

3P

t

1T 5T

2T 6T 7T

8T4T3T

2P

1P

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 100

Identical Processors, P | prec | Cmax, Graham anomalies

(a)

(b)

Figure 4-6 (a) Precedence constraints weakened, (b) resulting list schedule.

T /23

T /26T /45T /44

T /42T /31

T /137 T /28

0 3 4 5 8 9 10 12 22 t

P2

P1 T1

T2

T3

T4

T5

T6 T8

T7

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 101

Identical Processors, P | prec | Cmax, Graham anomalies

These list scheduling anomalies have been discovered by Graham [Gra66], who has
also evaluated the maximum change in schedule length that may be induced by
varying one or more problem parameters.

o Let the processing times of the tasks be given by vector p,
o let T be scheduled on m processors using list L, and
o let the obtained value of schedule length be equal to Cmax.

On the other hand, let the above parameters be changed:

o a vector of processing times p' p (for all the components),
o relaxed precedence constraints '  ,
o priority list L' and the number of processors m'.
o Let the new value of schedule length be C ' max .

Then the following theorem is valid.

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 102

Identical Processors, P | prec | Cmax, Graham anomalies

4.1.3.1 Theorem . Under the above assumptions,

C ' max
Cmax

  1 + m1
m'

Proof. Let us consider schedule S' obtained by processing task set  with primed
parameters.
 Let the interval [0, C ' max) be divided into two subsets, A and B , defined in the
following way:

A = {t  [0, C ' max) | all processors are busy at time t},
B = [0, C ' max) - A .

Notice that both A and B are unions of disjoint half-open intervals.

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 103

Identical Processors, P | prec | Cmax, Graham anomalies

Let Tj1 denote a task completed in S' at time C ' max , i.e. Cj1 = C ' max .
Two cases may occur:

1. The starting time sj1 of Tj1 is an interior point of B . Then by the definition of
B there is some processor Pi which for some  > 0 is idle during interval [sj1 - , sj1) .
Such a situation may only occur if we have Tj2 ' Tj1 and Cj2 = sj1 for some task Tj2 .

2. The starting time of Tj1 is not an interior point of B. Let us also suppose that sj1 ¹
 0. Define x1 = sup{x | x < sj1 , and x  B } or x1 = 0 if set B is empty.
By the construction of A and B , we see that x1  A , and processor Pi is idle in time
interval [x1 - , x1) for some  > 0 . But again, such a situation may only occur if
some task Tj2 ' Tj1 is processed during this time interval.

It follows that either there exists a task Tj2 ' Tj1 such that y  [Cj2 , sj1) implies y 
A or we have: x < sj1 implies either x  A or x < 0 .

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 104

Identical Processors, P | prec | Cmax, Graham anomalies

The above procedure can be inductively repeated, forming a chain Tj3 , Tj4 ,..., until
we reach task Tjr for which x < sjr implies either x  A or x < 0. Hence there must
exist a chain of tasks

Tjr ' Tjr-1 '... ' Tj2 ' Tj1

such that at each moment t  B , some task Tjk is being processed in S'. This implies
that


'S' p' '  (m'  1) 

k=1

r
 p' jk

where the sum on the left-hand side is made over all idle-time tasks ' in S'. But by
(5.1.8) and the hypothesis '  we have

Tjr Tjr-1 ... Tj2 Tj1 .
Hence,

Cmax  
k=1

r
 pjk  

k=1

r
 p' jk .

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 105

Identical Processors, P | prec | Cmax, Graham anomalies

we have

C ' max = 1
m' (k=1

n
 p' k  

'S'
 p' '  1

m' (m Cmax + (m'  1) Cmax) .

It follows that
C ' max
Cmax

  1 + m-1
m'

and the theorem is proved.

From the above theorem, the absolute performance ratio for an arbitrary list
scheduling algorithm solving problem P | | Cmax can be derived.

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 106

Identical Processors, P | prec | Cmax, Graham anomalies

Corollary (Graham 1966) For an arbitrary list scheduling algorithm LS for P | | Cmax we

have RLS  2  1
m

 if m' = m.

(a) (b)

Schedules for Corollary
 (a) an optimal schedule,
 (b) an approximate schedule.

t0 1 2 3 4 0 31 2 7

4T

P1

P2

P3

P4

T13

1T 4T 7T T10

2T 5T 8T T11

3T 6T T9 T12

P1

P2

P3

P4

1T

2T

3T

5T T9 T13

6T T10

7T T11

8T T12

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 107

Unit Execution Time Tasks

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 108

Identical Processors, P | prec, pj = 1 | Cmax

Problem P | prec, pj = 1 | Cmax
This problem is known to be NP-hard

Arbitrary list scheduling algorithms: RLS  2  1
m

 still holds in this case

However, under special assumptions polynomial time algorithms exist

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 109

Out-tree

T1

T2T2 T3T3

T5

T4

T6T5

T4

T6

T10T9T8T7 T10T9T8T7

T11T11

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 110

Level

Co-Level

Level

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 111

Identical Processors, P | prec, pj = 1 | Cmax

Hu's algorithm (Hu (1969) for the problem P | in-tree, pj = 1 | Cmax

o level algorithm" or "critical path algorithm"

Task level in an in-tree: is defined as the number of tasks in the path to the root of the
graph

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 112

Identical Processors, P | prec, pj = 1 | Cmax

Algorithm Hu for P | in-tree, pj = 1 | Cmax .
begin
Calculate levels of the tasks;
t := 0;
repeat
 Construct list Lt of all the tasks without predecessors;
 -- all these tasks either have no predecessors
 -- or their predecessors have been assigned in interval [0,t-1]
 Order Lt in non-increasing order of task levels;
 Assign the first m tasks (if any) of Lt to processors;
 Remove the assigned tasks from the graph and from the list;
 t := t + 1;
until all tasks have been scheduled;
end;

The algorithm can be implemented to run in O(n) time

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 113

Identical Processors, P | prec, pj = 1 | Cmax

An example of the application of Algorithm for three processors.

4

3

2

1

1T 2T 3T 4T 5T

6T 7T 8T T9

T10 T11

T12

0 2 3 41 5 t

P1

P2

P3

1T

2T

3T

4T

5T

6T

7T

8T

T9

T10

T11

T12

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 114

Identical Processors, P | prec, pj = 1 | Cmax

Scheduling forests: A forest consisting of in-trees can be scheduled by adding a
dummy task that is an immediate successor of only the roots of in-trees, and then by
applying Algorithm.

Scheduling out-forests: A schedule for an out-tree can be constructed by changing
the orientation of arcs, applying Algorithm to the obtained in-tree and then reading
the schedule backwards, i.e. from right to left

Remark: The problem of scheduling opposing forests (that is, combinations of in-
trees and out-trees) on an arbitrary number of processors is NP-hard (Garey, et al
1983)

Another restriction is to limit the number of processors to 2: this problem is easily
solvable even for arbitrary precedence graphs (Coffman and Graham 1972, and
others):
Problem P2 | prec, pj = 1 | Cmax can be solved in polynomial time (quadratic in
the number of tasks) [Coffman and Graham 1972]

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 115

Identical Processors, P | prec, pj = 1 | Cmax

Agorithm given by Coffman and Graham

 to find the shortest schedule for problem P2 | prec, pj = 1 | Cmax .

 The algorithm uses labels assigned to tasks, which take into account the levels of
the tasks and the numbers of their immediate successors.

 can be implemented to run in time which is almost linear in n and in the number of
arcs in the precedence graph; thus its time complexity is practically O(n2).

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 116

Identical Processors, P | prec, pj = 1 | Cmax

2T

1T

3 T

4 T

5 T

6T

T9

T10

7 T

8 T

T11

T 12

T13

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 117

Identical Processors, P | prec, pj = 1 | Cmax

An example of the application of Algorithm (tasks are denoted by Tj /label).

0 2 3 4 1 5 7 6

*

t

P 1

P 2

3 T

2 T

1 T

6T

5 T

4T

T 9

7T

8T

T10

T 11

T12

T 13

Cmax = 7

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 118

Identical Processors, P | prec, pj = 1 | Cmax

Algorithm of Coffman and for P2 | prec, pj = 1 | Cmax.
begin
Assign label 1 to any task T0 for which isucc(T0) = ;
 -- recall that isucc(T) denotes the set of all immediate successors of T
j := 1;
repeat
 Construct set S consisting of all unlabeled tasks whose successors are labeled;
 for all T  S do
 begin
 Construct list L(T) consisting of labels of tasks belonging to isucc(T);
 Order L(T) in decreasing order of the labels;
 end;
 Order these lists in increasing lexicographic order L(T[1]) <. ...<. L(T[|S |]);
 -- see Section 2.1 for definition of <.
 Assign label j + 1 to task T[1];
 j := j + 1;

until j = n; -- all tasks have been assigned labels

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 119

Identical Processors, P | prec, pj = 1 | Cmax

/ 11

/ 12

/ 13

/ 8

/ 9

/ 10

/ 5

/ 6

/ 3

/ 2

/ 1/ 7

/ 4

2T

1T

3T

4T

5T

6T

T9

T10

7T

8T

T11

T12

T13

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 120

Identical Processors, P | prec, pj = 1 | Cmax

An example of the application of Algorithm (tasks are denoted by Tj /label).

0 2 3 41 5 76

*

t

P1

P2

3T

2T

1T

6T

5T

4T

T9

7T

8T

T10

T11

T12

T13
Cmax = 7

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 121

Identical Processors, P | prec, pj = 1 | Cmax. Known Results

 1961: P| in-tree, out-tree, pj=1 |Cmax - Hu’s Level algorithm is optimal and of

linear time complexity
 1966: P| prec |Cmax - Graham showed that for List Scheduling algorithms the

performance bound r= 2-1/m

 1969: P| |Cmax Graham used the LPT algorithm with r= 4/3 – 1/3m

 1972: P2| prec, pj=1 |Cmax Coffman proved that problem can be solved in
quadratic time

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 122

Identical Processors, P | prec, pj = 1 | Cmax. Known Results

 1975: P2| prec, pj=1 |Cmax Chen & Liu found R_level=4/3

 1976: P| prec, pj=1 |Cmax RLevel 2  1
m1 for m  3

 1976: P| prec, pj=1 |Cmax Coffman & Sethi proved the bound
1+ 1/n - 1/nm for P| |Cmax taking into account the number of tasks

 1977: P2| prec, pj=1 |Cmax Garey&Johnson - Latest Possible Start Time
algorithm, optimal

 1981: P| opposing forest, pj=1 |Cmax Kunde, Critical Path algorithm
r=2-2/(m+1)

 1994: P| prec, pj=1|Cmax Braschi and Trystram found
r = 2 - 2/m - (m-3) /(mCmax) for m>=31996: Pm| prec, pj=1|Cmax

 is with unknown time complexity

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 123

Identical Processors, P | prec, pj = 1 | Cmax. Known Results

lc is the length of a longest chain of tasks
Theorem [Tchernykh et al 2000]. Given a
set T of n unit execution time tasks, the
performance of the general list strategy
can be estimated by

 R = min{R', R"},

with R'  1  lcn (m – 1)

and R"  1  1
m (nlc – 1). (1)

Furthermore,
R' is tight in the case of lc  n/m,
and R" is tight in the case of lc > n/m

Graham's bound

m=n/lc

rw' rw"

pe
rfo

rm
an

ce

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 124

Preemptions

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 125

Identical Processors. P | pmtn, prec | Cmax

What can be gained by allowing preemptions?

Coffman and Garey (1991) compared problems P2 | prec | Cmax and P2 | pmtn,
prec | Cmax : (3/4)Cmax

non-preemptive  Cmax
preemptive  Cmax

non-preemptive

Example showing the (3/4)-bound (with three even independent tasks):

(a) non-preemptive schedule: (b) preemptive schedule:

0 1 2 tnpCmax =

P1

P2

T1

T2

T3

0 1 t1/2 3/2pCmax

4/3=
np

p

=

P1

P2

T1 T3

T3 T2

Cmax

Cmax

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 126

Identical Processors. P | pmtn, prec | Cmax

In the general case of dependent tasks of arbitrary length, one can construct optimal
preemptive schedules.
 the level of task Tj in a precedence graph is now the sum of processing times

(including pj) of tasks along the longest path between Tj and a terminal task (a
task with no successors).

The algorithm uses a notion of a processor shared schedule, in which a task receives
some fraction  of the processing capacity of a processor.

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 127

Identical Processors. P | pmtn, prec | Cmax

Algorithm by Muntz and Coffman for P2 | pmtn, prec | Cmax and P | pmtn,
forest | Cmax .

begin
for all T do Compute the level of task T;
t := 0; h := m;
repeat
 Construct set Z of tasks without predecessors at time t;
 while h > 0 and |Z | > 0 do
 begin
 Construct subset S of Z consisting of tasks at the highest level;
 if | S | > h
 then
 begin
 Assign := h/|S | of a processing capacity to each of the tasks from S ;
 h := 0; -- a processor shared partial schedule is constructed
 end
 else
 begin
 Assign one processor to each of the tasks from S ;
 h := h-|S |; -- a "normal" partial schedule is constructed

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 128

 end;
 Z := Z - S ;
 end; -- the most "urgent" tasks have been assigned at time t

Calculate time  at which either one of the assigned tasks is finished or a point is
reached at which continuing with the present partial assignment means that a
task at a lower level will be executed at a faster rate  than a task at a higher
level;

 Decrease levels of the assigned tasks by (t);
 t := ; h := m;
 -- a portion of each assigned task equal to (t) has been processed
until all tasks are finished;

call Algorithm (McNaughton’s rule) to re-schedule portions of the processor shared

schedule to get a normal one;
end;

The above algorithm can be implemented to run in O(n2) time.

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 129

Identical Processors. P | pmtn, prec | Cmax

(a) a task set (nodes are denoted by Tj /pj),

T /27

11T /4

12T /3

13T /3

10T /5

T /39

T /48

T /66

T /55

T /43

T /22

T /31

T /14

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 130

Identical Processors. P | pmtn, prec | Cmax

(b) I: a processor-shared schedule, II: an optimal schedule

0 2 4 9 10 11 13 17 18 22.5

11T 11T

10T
10T

12T

13T

T8

T7
10T

T9T9T6

T4T1

T6

T5

T3 T3

T2 T1

 2/3

 2/3

 2/3
 1/2
 1/2

P2

P1

I.

t

t0 2 4 9 10 11 13 15 17 18 19.5 21 22.5

T3

T2 T1

T6

T5

T9 T8

T1 T4 T710T

11T 12T

10T 12T 13TP2

P1

II.

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 131

Topic 2
Scheduling on Parallel Processors

 2.1 Minimizing Schedule Length

Identical Processors
Uniform Processors

3.2 Minimizing Mean Flow Time
Identical Processors
Uniform and Unrelated Processors

 3.3 Minimizing Due Date Involving Criteria
Identical Processors
Uniform and Unrelated Processors

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 132

Uniform Processors Problem Q | pj = 1 | Cmax

Processors or machines for processing the tasks can be

 parallel - performing the same functions
 dedicated - specialized for the execution of certain tasks.

Parallel: Three types of parallel processors are distinguished depending on their
speeds
 identical processors have equal task processing speeds
 uniform processors differ in their speeds, but the speed bi of each

processor is constant and does not depend on the task
 unrelated speeds of the processors depend on the particular task

processed

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 133

Uniform Processors. Problem Q | pj = 1 | Cmax

Problem Q | pj = 1 | Cmax

 independent tasks
 non-preemptive scheduling
 UET

 problem with arbitrary processing times is already NP-hard for identical

processors
 all we can hope to find is a polynomial time optimization algorithm for tasks with

unit standard processing times only.

 a transportation network formulation has been presented by Graham et al. for

problem Q | pj = 1 | Cmax .

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 134

Uniform Processors. Problem Q | pj = 1 | Cmax

Let there be n sources j, j = 1, 2,...,n,
and mn sinks (i, k), i = 1, 2,...,m and k = 1, 2,...,n.
Sources correspond to tasks and sinks to processors and positions of tasks on them
(number of tasks processed on the processor) .
Let cijk = k/bi be the cost of arc (j, (i, k)); this value corresponds to the completion
time of task Tj processed on Pi in the kth position. The arc flow xijk has the following
interpretation:

xijk =




1 if Tj is processed in the kth position on Pi
0 otherwise.

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 135

Uniform Processors. Problem Q | pj = 1 | Cmax

The min-max transportation problem can be now formulated as follows:

Minimize max
i j k

 {cijk xijk}

subject to 
i=1

m
 
k=1

n
 x

ijk
 = 1 for all j

 
j=1

n
 x

ijk
  1 for all i, k ,

 xijk  0 for all i, j, k .

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 136

Uniform Processors. Problem Q | pj = 1 | Cmax

minimum schedule length is given as C * max = sup {t | 
i=1

m
 tbi < n

lower bound on the schedule length for the above problem is

C' = n / 
i=1

m
 bi  C * max

Bound C' can be achieved e.g. by a preemptive schedule.
If we assign ki = C'bi tasks to processor Pi ,
 these tasks may be processed in time interval [0, C'].

 However, l = n  
i=1

m
 ki tasks remain unassigned.

 l  m  1, since C'bi  C'bi < 1 for each i.
 The remaining l tasks are assigned to those Pi for which min

i
{(ki + 1) / bi} is reached

 ki is increased by one after the assignment of a task to a particular processor Pi .
This procedure is repeated until all tasks are assigned. We see that this approach results in an
O(m2)-algorithm for solving problem Q | pj = 1 | Cmax .

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 137

Uniform Processors. Problem Q | pj = 1 | Cmax

Example n = 9 tasks, m = 3 uniform processors, processing speeds b = [3, 2, 1].

C' = 9/6 = 1.5.

The numbers of tasks assigned to processors at the first stage are, respectively, 4, 3,
and 1.

P1

0 1.0 1.50.5 t

P2

P3

T2 T3T1

T5 T6

T8

T4

T7

1 3 2 3 4 3/ / /

T9 has not yet been assigned.

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 138

Uniform Processors. Problem Q | pj = 1 | Cmax

0 0.5 1.0 1.5 t

P1

P2

P3

T1 T2 T3 T4 T9

T5 T6 T7

T8

1 3 2 3 4 3 5 3////

Cmax
* = 5 3/

optimal schedule

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 139

Uniform Processors. Problem Q | pj = 1 | Cmax

One heuristic algorithm is a list scheduling algorithm.

Tasks are ordered on the list in non-increasing order of their processing times and
processors are ordered in non-increasing order of their processing speeds.

Now, whenever a machine becomes free it gets the first non-assigned task of the list;
if there are two or more free processors, the fastest is chosen.

The worst-case behavior of the algorithm has been evaluated for the case of an m + 1
processor system, m of which have processing speed factor equal to 1 and the
remaining processor has processing speed factor b. The bound is as follows.

R =







2(m+b)
b+2 for b  2

m+b
2 for b > 2 .

It is clear that the algorithm does better if, in the first case (b  2), m decreases faster
than b, and if b and m decrease in case of b > 2.

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 140

Topic 3
Scheduling on Parallel Processors

 3.1 Minimizing Schedule Length

Identical Processors
Uniform and Unrelated Processors

3.2 Minimizing Mean Flow Time
Identical Processors
Uniform and Unrelated Processors

 3.3 Minimizing Due Date Involving Criteria
Identical Processors
Uniform and Unrelated Processors

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 141

Model

 Arrival time (or release or ready time) 𝑟௝ … is the time at which task 𝑇௝ is ready for
processing

if the arrival times are the same for all tasks from T , then 𝑟௝ ൌ 0 is assumed for
all tasks

 Due date 𝑑௝ … specifies a time limit by which 𝑇௝ should be completed
problems where tasks have due dates are often called "soft" real-time problems.
Usually, penalty functions are defined in accordance with due dates

 Penalty functions 𝐺௝ define penalties in case of due date violations

 Deadline 𝑑ఫ෩ … "hard" real time limit, by which 𝑇௝ must be completed

 Weight (priority) 𝑤𝑗 ... expresses the relative urgency of 𝑇௝

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 142

Identical Processors. Deadline Criteria P | 𝒓𝒋, 𝑑𝑗෪| 

If deadlines are given:

 check if a feasible schedule exists (decision problem)

Single processor problem P1 | 𝒑𝒋 = 1, 𝒅𝒋|  can be solved in polynomial time

EDF algorithm is optimal

More than one processor: most problems are known to be NP-complete

The problems
P | 𝒑𝒋 = 1, 𝒅𝒋|  and P | prec, 𝒑𝒋 {1, 2}, 𝒅𝒋 | 

are NP-complete

Algorithmic approaches:
 exhaustive search
 heuristic algorithms
 approximation algorithms

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 143

Identical Processors. Deadline Criteria P | 𝒓𝒋, 𝑑𝑗෪| 

Scheduling strategies:

A strategy is called "feasible", if the algorithm generates schedules where all tasks
observe their deadlines (assuming this is actually possible)

three interesting deadline scheduling strategies:

 EDF Earliest Deadline First scheduling
 LL Least Laxity scheduling

 MUF Maximum Urgency First scheduling.
-

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 144

Identical Processors. Deadline Criteria P | 𝒓𝒋, 𝑑𝑗෪| 

Earliest Deadline First Scheduling Policy

 means that the task that has the earliest deadline (task that has to be processed
first) is to be scheduled next.

 EDF scheduler views task deadlines as more important than task priorities.
 Experiments have shown that the earliest deadline first policy is the most fair

scheduling algorithm.

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 145

Identical Processors. Deadline Criteria P | 𝒓𝒋, 𝑑𝑗෪| 

More complex deadline scheduler is the “Least Laxity” (or “LL”) scheduler.

 takes into account both a task’s deadline and its processing load,

EDF deadline scheduler would allow Task X to run before Task Y, even if Task Y
normally has higher priority.

 However, it could cause Task Y to miss its deadline.
 So perhaps an “LL” scheduler would be better

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 146

Identical Processors. Deadline Criteria P | 𝒓𝒋, 𝑑𝑗෪| 

Laxity is the value that describes how much computation there is still left before the
deadline of the task if it ran to completion immediately. Laxity of a task is a measure
for it's urgency.

Laxity = (Task Deadline – (Current schedule time + Rest of Task Exec. Time).

LL=D-t-Prest

It is the amount of time that the scheduler can “play with” before causing the task to
fail to meet its deadline.

Least Laxity Scheduling Policy: the task that has the smallest laxity (meaning the
least computation left before it's deadline) is scheduled next.

Thus, a Least Laxity deadline scheduler takes into account both deadline and
processing load.

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 147

Identical Processors. Deadline Criteria P | 𝒓𝒋, 𝑑𝑗෪| 

LL scheduling, while excellent for highly time-critical tasks, might be overkilled for
less time-sensitive tasks.

And so there is a third interesting variant of deadline scheduling, called “Maximum
Urgency First” (or “MUF”) scheduling.

It is really a mixture of some “LL” deadline scheduling, with some traditional priority-
based preemptive scheduling.

In “MUF” scheduling, high-priority time-critical tasks are scheduled with “LL” deadline
scheduling, while within the same scheduler other (lower-priority) tasks are
scheduled by good old-fashioned priority-based preemption.

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 148

Identical Processors. Deadline Criteria P | 𝒓𝒋, 𝑑𝑗෪| 

Example: Comparison of strategies

Set of independent tasks: T = {𝑇ଵ, 𝑇ଶ, ..., 𝑇଺}
Tasks: (deadline, total execution time, arrival time): 𝑇ଵ= (5, 4, 0), 𝑇ଶ= (6, 3, 0), 𝑇ଷ= (7, 4, 0), 𝑇ସ = (12, 9, 2), 𝑇ହ= (13, 8, 4), 𝑇଺= (15, 12, 2)

Execution on three identical processors:
 EDF-schedule (no preemptions): total execution time is 16

least laxity schedule (with preemptions):  8 preemptions,
total execution time is 15

 optimal schedule with 3 preemptions, total execution time = 15

Execution on a single, three times faster processor:
 possible with no preemptions; total execution time is 40/3

Hence: a larger number of processors is not necessarily advantageous

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 149

Identical Processors. Deadline Criteria P | pmtn, 𝒓𝒋, 𝑑𝑗෪| 

Feasibility testing of problem P | pmtn, 𝑟௝, 𝑑ఫ෩ |  is done by applying a network flow
approach (Horn 1974)

Given an instance of P | pmtn, 𝑟௝, 𝑑ఫ෩ |,
let 𝑒଴ ൏ 𝑒ଵ ൏. . . ൏ 𝑒௞, 𝑘  2𝑛1 be the ordered sequence of release times and
deadlines together (𝑒௜ stands for 𝑟௝ or 𝑑ఫ෩) (time intervals)

Construct a network with source, sink and two sets of nodes (Figure):
the first set (nodes 𝑤௜) corresponds to time intervals in a schedule;

node 𝑤௜ corresponds to interval [𝑒௜ିଵ, 𝑒௜ሿ, 𝑖 ൌ 1, 2, . . . , 𝑘
the second set corresponds to the tasks

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 150

Identical Processors. Deadline Criteria P | pmtn, 𝒓𝒋, 𝑑𝑗෪| 

c =m(e e) c=e ek1k

w1

w2

wk

T1

T2

Tn

k-1kk

b=p
c=p2

2

c =m(e e)1 1 0

c =m(e e)12 2

c = e e1 0
b=p
c=p

1
1

b=p
c=p

n
n

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 151

Identical Processors. Deadline Criteria P | pmtn, 𝒓𝒋, 𝑑𝑗෪| 

Flow conditions:
 The capacity of an arc joining the source to node 𝑤௜ is m(𝑒௜ െ 𝑒௜ିଵሻ

o this corresponds to the total processing capacity of m processors in this interval

 If task 𝑇௝ is allowed to be processed in interval ሾ𝑒௜ିଵ, 𝑒௝ሿ
then 𝑤௜ is joined to 𝑇௝ by an arc of capacity 𝑒௜ െ 𝑒௜ିଵ

 Node 𝑇௝ is joined to the sink of the network by an arc with lower and upper capacity
equal to 𝑝௝

Finding a feasible flow pattern corresponds to constructing a feasible schedule; this
test can be made in 𝑂ሺ𝑛ଷሻ time

the schedule is constructed on the basis of the flow values on arcs between interval and
task nodes.

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 152

Example. n = 5, m = 2, p = [5, 2, 3, 3, 1], r = [2, 0, 1, 0, 2], and d = [8, 2, 4, 5, 8].

(a) corresponding network

c=6

c=2

c=4

c=2

c=2

c=1

c=1
c=1

c=1
c=1

c=2

c=1

c=1

c=1

c=3

c=2

c=2

c=3

c=2
b=5
c=5

b=2
c=2

b=3
c=3

b=3
c=3

b=1
c=1

S S1 2

1T

2T

3T

4T

5T

[0,1]

[1,2]

[2,4]

[4,5]

[5,8]

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 153

(b) feasible flow pattern

S1 S2

[0,1]

[1,2]

[2,4]

[4,5]

[5,8] 5T

4T

3T

2T

1T

2

2

4

2

4

1

1
1

1

1

2

11

1
3

1

5

2

3

3

1

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 154

(c) optimal schedule

t0 1 2 4 5 8

T2 T2 T3 T1 T1

T4 T3 T4 T1 T4 T5

P1

P2

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 155

Minimizing Maximum Lateness 𝐿௠௔௫ = max{𝐿௝ | 𝑇௝  T }

lateness 𝐿௝= 𝑐௝  𝑑௝

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 156

Identical Processors. P | | 𝐿௠௔௫

 m = 1 processor: earliest due date algorithm (EDD rule) of Jackson [Jac55] :
tasks are scheduled in order of non-decreasing due dates
The EDD rule also minimizes maximum lateness and maximum tardiness
 𝒎  𝟏 identical processors: NP-hard 𝐶௠௔௫–problems are also NP-hard under

the 𝐿௠௔௫ criterion
for example: P | | 𝐿௠௔௫ is NP-hard

 unit processing times of tasks make the problem easy, and P | 𝑝௝ ൌ 1, 𝑟𝑗 | 𝐿௠௔௫

can be solved by an obvious application of the EDD rule.

 Moreover, problem P | 𝑝௝ ൌ 𝑝, 𝑟𝑗 | 𝐿௠௔௫ can be solved in polynomial time by an

extension of the single processor algorithm.

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 157

Identical Processors. P | 𝑟௝| 𝐿௠௔௫

Problem 1 | 𝑟௝| 𝐿௠௔௫ is strongly NP-hard (Lenstra et al., 1977)

solution methods based on branch and bound are known

Assumption of unit execution times

(1 | 𝑟௝, 𝑝௝ ൌ 1 | 𝐿௠௔௫ , 𝑟௝ an integer): a modification of Jackson's EDD rule is optimal

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 158

Identical Processors. P | pmtn | 𝐿௠௔௫

The preemptive mode of processing makes the problem much easier.

Single processor problem 1 | pmtn, 𝒓𝒋| 𝑳𝒎𝒂𝒙:
A modification of Jackson's rule due to Horn (1974) solves the problem optimally
in polynomial time

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 159

Algorithm for problem 1 | pmtn, 𝑟௝| 𝐿௠௔௫ (Horn, 1974)
begin
repeat
 𝜌ଵ := 𝑚𝑖𝑛ሼ𝑟௝|𝑟௝ ∈ 𝑇ሽ;
 if all tasks are available at time 𝜌ଵ
 then 𝜌ଶ := 
 else 𝜌ଶ := min{𝑟௝|𝑟௝  𝜌ଵ};
 E := {𝑇௝ | 𝑟௝ ൌ 𝜌ଵ};
 Choose 𝑇௞  E such that 𝑑௞ = 𝑚𝑖𝑛ሼ𝑑𝑗|𝑇𝑗 ∈ Eሽ
 l := min{ 𝑝𝑘, 𝜌ଶ  𝜌ଵ };
 Assign 𝑇௞ to the interval [𝜌ଵ, 𝜌ଵ + l);
 if 𝑝𝑘  l
 then T := T  {𝑇௞}
 else 𝑝𝑘 := 𝑝𝑘  l;
 for all 𝑇௝  E do 𝑟௝:= 𝜌ଵ + l;
 until T = ;
end;

© 2022 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 160

Identical Processors. P | pmtn, 𝑟௝| 𝐿௠௔௫

polynomial time algorithm by Labetoulle et al, 1984

The idea is to determine the smallest possible value of 𝐿௠௔௫ such that there
exists a feasible solution for the deadline problem P | pmtn, 𝑟௝, 𝑑ఫ෩ | 
where deadlines are defined by 𝑑ఫ෩ := 𝑑௝ + 𝐿௠௔௫

Feasibility testing of problem P | pmtn, 𝑟௝, 𝑑ఫ෩ |  is done by applying the network flow
approach

i.e. for deciding whether or not for a given set of ready times and deadlines a
schedule with no late task exists

If there is no feasible flow pattern: a corresponding schedule can still be constructed,
but 𝐿௠௔௫ will turn out to be > 0

In other words, if the instance is changed such that all the deadlines are
increased by 𝐿௠௔௫ , a feasible network flow would exist

© 2020 A. Tchernykh. Scheduling on Parallel Processors. Due Date Criteria 161

Identical Processors. P | pmtn, 𝑟௝| 𝐿௠௔௫

To find a schedule with minimum 𝐿௠௔௫ , a binary search can be performed:

the deadlines are increased by 𝐿௠௔௫/2 (instead of 𝐿௠௔௫) and this new instance
is checked for feasibility by means of the network flow computation.

This procedure can be implemented to solve problem P | pmtn, 𝑟௝| 𝐿௠௔௫ in time 𝑂ሺ𝑛ଷ𝑚𝑖𝑛ሼ𝑛ଶ, 𝑙𝑜𝑔𝑛 ൅ log 𝑚𝑎𝑥ሼ𝑝௝ሽሽ

The fundamental approach in that area is testing feasibility of problem P | pmtn, 𝑟௝,𝑑𝑗෪|  via the network flow approach [Hor74].

Using this approach repetitively, one can then solve the original problem
P | pmtn | 𝐿௠௔௫ by changing due dates (deadlines) according to a binary search
procedure.

© 2008 A. Tchernykh. Scheduling Scheduling on Parallel Processors. Due Date Criteria 162

Identical Processors. 𝐿௠௔௫- problems with precedences

We just mention some results
 Problem P | prec | 𝐿௠௔௫ : A general approach is to modify the due dates,

depending on the number and due dates of their successors.
 Scheduling unit processing time tasks can result in polynomial time scheduling

algorithms:
Problem P | in-tree, 𝑝𝑗 = 1 | 𝐿௠௔௫ can be solved in O(𝑛𝑙𝑜𝑔𝑛) time (Brucker
1976),
but surprisingly P | out-tree, 𝑝𝑗 = 1 | 𝐿௠௔௫ is NP-hard (Brucker et al., 1977).

 Problem P2 | prec, 𝑝௝ = 1 | 𝐿௠௔௫ with arbitrary precedences: using a different
way of computing modified due dates allows to solve the problem in 𝑂ሺ𝑛ଶሻ time
(Garey et al, 1976).

© 2020 A. Tchernykh. Scheduling Scheduling on Parallel Processors. Due Date Criteria 163

Identical Processors. 𝐿௠௔௫- problems with precedence

 Problem P | prec, 𝑟௝ | 𝐿௠௔௫

 with m = 1 processor:

Example: Consider five tasks with release times r = [0, 2, 3, 0, 7], processing
times p = [2, 1, 2, 2, 2], and tails d = [7, 10, 6, 9, 10],
a) the precedence constraint 𝑇ସ  𝑇ଶ;
b) No precedence constraint

© 2020 A. Tchernykh. Scheduling Scheduling on Parallel Processors. Due Date Criteria 164

Identical Processors. 𝐿௠௔௫- problems with precedence

 Problem P | prec, 𝑟௝ | 𝐿௠௔௫ with m = 1 processor:

Example: Consider five tasks with release times r = [0, 2, 3, 0, 7], processing
times p = [2, 1, 2, 2, 2], and tails d = [7, 10, 6, 9, 10], and the precedence
constraint 𝑇ସ  𝑇ଶ; note that 𝑟ସ ൅ 𝑝ସ ൑ 𝑟ଶ and 𝑑ସ ൒ 𝑑ଶ െ 𝑝ଶ.
If the constraint 𝑇ସ  𝑇ଶ is ignored, the unique optimal schedule is given by ሺ𝑇ଵ, 𝑇ଶ, 𝑇ଷ, 𝑇ସ, 𝑇ହሻ with value 𝐿௠௔௫∗ 1. Explicit inclusion of this constraint leads to 𝐿௠௔௫∗ ൌ
0.

© 2020 A. Tchernykh. Scheduling Scheduling on Parallel Processors. Due Date Criteria 165

Identical Processors. 𝐿௠௔௫- problems with precedences

 Allowing preemptions:

The following problems are solvable in polynomial time:

P | pmtn, in-tree | 𝐿௠௔௫ ,

P2 | pmtn, prec | 𝐿௠௔௫ ,

P2 | pmtn, prec, 𝑟௝ | 𝐿௠௔௫

Algorithms for these problems employ essentially the same techniques for dealing with
precedence constraints as the corresponding algorithms for tasks with unit execution
time

© 2020 A. Tchernykh. Scheduling Scheduling on Parallel Processors. Due Date Criteria 166

Summary

© 2022 A. Tchernykh. Scheduling Outline
 167

Four different types of problems are considered:

 a deadline problem

 three due date problems

 minimizing maximum lateness,

 weighted number of tardy tasks,

 and maximum weighted tardiness

All these problems could be solved in polynomial time only under very special
restrictions

© 2022 A. Tchernykh. Scheduling Outline
 168

Scheduling on Parallel Processors
Communication Delays and Multiprocessor Tasks

 Introductory Remarks
 Scheduling Multiprocessor Tasks

o Parallel Processors
o Refinement Scheduling

 Scheduling Uniprocessor Tasks with Communication Delays
o Scheduling without Task Duplication
o Scheduling with Task Duplication
o Considering Processor Network Structure

 Scheduling Divisible Tasks

© 2022 A. Tchernykh. Scheduling Outline
 169

Scheduling Uniprocessor Tasks with Communication Delays

The following simple example serves as an introduction to the problems.
Let there be given three tasks with precedences as shown in Figure (a).

T1

T2 T3
(a) Precedence graph

The computational results of task 𝑇ଵ are needed by both successor tasks, 𝑇ଶ and 𝑇ଷ
We assume unit processing times.
For task execution there are two identical processors, connected by a communication

link.
To transmit the results of computation 𝑇ଵ along the link takes 1.5 units of time.

© 2022 A. Tchernykh. Scheduling Outline
 170

Scheduling Uniprocessor Tasks with Communication Delays

T1 T2

T3

P1

P2

(b) Schedule without consideration of communication delays

The schedule in Figure (b) shows a schedule where communication delays are not

considered.

T1

T3

T2P1

P2

(c) Schedule considering communication from 𝑇ଵ to 𝑇ଷ

The schedule (c) is obtained from (b) by introducing a communication delay between 𝑇ଵ and 𝑇ଷ

© 2022 A. Tchernykh. Scheduling Outline
 171

Scheduling Uniprocessor Tasks with Communication Delays

Schedule (d) demonstrates that there are situations where a second processor does

not help to gain a shorter schedule.

T1 T3T2P1

P2

(d) Optimal schedule without task duplication

The fourth schedule, (e), demonstrates another possibility: if task 𝑇ଵ is processed on

both processors, an even shorter schedule is obtained. The latter case is usually
referred to as task duplication.

T1

T3

T2P1

P2 T1

(e) Optimal schedule with task duplication

© 2022 A. Tchernykh. Scheduling Outline
 172

Scheduling Uniprocessor Tasks with Communication Delays

Communication delays are the same for all tasks
 So-called uniform delay scheduling.

Other approaches distinguish between coarse grain and fine grain parallelism:
 high computation-communication ratio can be expected in coarse grain

parallelism.

As pointed out before, task duplication often leads to shorter schedules; this is in

particular the case if the communication times are large compared to the
processing times.

© 2022 A. Tchernykh. Scheduling Outline
 173

Bin Packing Problem

© 2022 A. Tchernykh. Scheduling Outline
 174

Outline

1. Introduction

Metaphorically, there never seem to be enough bins for all one needs to store.
Mathematics comes to the rescue with the bin packing problem and its relatives.

The bin packing problem raises the following question:

 given a finite collection of n weights 𝑤ଵ, 𝑤ଶ, 𝑤ଷ, . . . , 𝑤௡, and
 a collection of identical bins with capacity C (which exceeds the largest of the

weights),
 what is the minimum number k of bins into which the weights can be placed without

exceeding the bin capacity C?

© 2022 A. Tchernykh. Scheduling Outline
 175

Outline

We want to know how few bins are needed to store a collection of items.

This problem, known as the 1-dimensional bin packing problem, is one of many
mathematical packing problems which are of both theoretical and applied interest.

It is important to keep in mind that "weights" are to be thought of as indivisible objects
rather than something like oil or water.

For oil one can imagine part of a weight being put into one container and any left over
being put into another container.

However, in the problem being considered here we are not allowed to have part of a
weight in one container and part in another.

One way to visualize the situation is as a collection of rectangles which have height
equal to the capacity C and a fixed width, whose exact size does not matter.

When an item is put into the bin it either falls to the bottom or is stopped at a height
determined by the weights that are already in the bins.

© 2022 A. Tchernykh. Scheduling Outline
 176

Outline

The diagram below shows a bin of capacity 10 where three identical weights of size 2
have been placed in the bin, leaving 4 units of empty space, which are shown in
blue.

© 2022 A. Tchernykh. Scheduling Outline
 177

Outline

By contrast with the situation above, the bin below has been packed with weights of
size 2, 2, 2 and 4 in a way that no room is left over.

© 2022 A. Tchernykh. Scheduling Outline
 178

Basic ideas

The bin packing problem asks for the minimum number k of identical bins of capacity
C needed to store a finite collection of weights 𝑤ଵ, 𝑤ଶ, 𝑤ଷ, . . . , 𝑤௡ so that no bin has
weights stored in it whose sum exceeds the bin's capacity.

Traditionally

 capacity C is chosen to be 1 and
 weights are real numbers which lie between 0 and 1,
 for convenience of exposition, C is a positive integer and the weights are positive

integers which are less than the capacity.

Example 1:

 Suppose we have bins of size 10. How few of them are required to store weights
of size 3, 6, 2, 1, 5, 7, 2, 4, 1, 9?

© 2022 A. Tchernykh. Scheduling Outline
 179

Basic ideas

The weights to be packed above have been presented in the form of a list L ordered
from left to right.

For the moment we will seek procedures (algorithms) for packing the bins that are
"driven" by a given list L and a capacity size C for the bins.

The goal of the procedures is to minimize the number of bins needed to store the
weights.

A variety of simple ideas as to how to pack the bins suggest themselves.

One of the simplest approaches is called Next Fit (NF).

The idea behind this procedure is to open a bin and place the items into it in the
order they appear in the list.

If an item on the list will not fit into the open bin, we close this bin permanently and
open a new one and continue packing the remaining items in the list.

© 2022 A. Tchernykh. Scheduling Outline
 180

Basic ideas Next Fit (NF)

If some of the consecutive weights on the list exactly fill a bin, the bin is then closed
and a new bin opened.

When this procedure is applied to the list above we get the packing shown below.

© 2022 A. Tchernykh. Scheduling Outline
 181

Basic ideas Next Fit (NF)

Next Fit is

 very simple,

 allows for bins to be shipped off quickly, because even if there is some extra
room in a bin, we do not wait around in the hope that an item will come along
later in the list which will fill this empty space.

One can imagine having a fleet of trucks with a weight restriction (the capacity C) and
one packs weights into the trucks.

If the next weight cannot be packed into the truck at the loading dock, this truck leaves
and a new truck pulls into the dock.

We keep track of how much room remains in the bin open at that moment.
In terms of how much time is required to find the number of bins for n weights, one can

answer the question using a procedure that takes a linear amount of time in the
number of weights (n).

Clearly, NF does not always produce an optimal packing for a given set of weights.
You can verify this by finding a way to pack the weights in Example 1 into 4 bins.

© 2022 A. Tchernykh. Scheduling Outline
 182

Basic ideas Next Fit (NF)

Procedures such as NF are sometimes referred to as heuristics or heuristic
algorithms because although they were conceived as ways to solve a problem
optimally, they do not always deliver an optimal solution.

Can we find a way to improve on NF so as to design an algorithm which will always
produce an optimal packing?

A natural thought would be that if we are willing to keep bins open in the hope that
we will be able to fill empty space with items later in list L, we will typically use
fewer bins.

© 2022 A. Tchernykh. Scheduling Outline
 183

Basic ideas First Fit (FF)

The simplest way to carry out this idea is known as First Fit.

We place the next item in the list into the first bin which has not been completely filled
(thought of as numbered from left to right) into which it will fit.

 When bins are filled completely they are closed,

 If an item will not fit into any currently open bin, a new bin is opened.

© 2022 A. Tchernykh. Scheduling Outline
 184

Basic ideas First Fit (FF)

The result of carrying out First Fit for the list in Example 1 and with bins of capacity
10 is shown below:

© 2022 A. Tchernykh. Scheduling Outline
 185

Basic ideas First Fit (FF)

Both methods we have tried have yielded 5 bins.

We know that this is not the best we can hope for.

One simple insight is obtained by computing the total sum of the weights and dividing
this number by the capacity of the bins.

Since we are dealing with integers, the number of bins we need must be at least ⌈𝛺/𝐶⌉ where 𝛺 ൌ ∑ 𝑤௜௡௜ୀଵ .

(Note that ⌈𝑥⌉ denotes the smallest integer that is greater than or equal to x).

Clearly, the number of bins must always be an integer. In Example 1, since 𝛺 is 40 and
C is 10, we can conclude that there is hope of using only 4 bins.

However, neither Next Fit nor First Fit achieves this value with the list given in Example
1. Perhaps we need a better procedure.

© 2022 A. Tchernykh. Scheduling Outline
 186

Basic ideas Best Fit (BF) and Worst Fit (WF)

Two other simple methods in the spirit of Next Fit and First Fit have also been looked
at.

These are known as Best Fit (BF) and Worst Fit (WF).

For Best Fit, one again keeps bins open even when the next item in the list will not fit
in previously opened bins, in the hope that a later smaller item will fit.

The criterion for placement is that we put the next item into the currently open bin (e.g.
not yet full) which leaves the least room left over. (In the case of a tie we put the item
in the lowest numbered bin as labeled from left to right.)

For Worst Fit, one places the item into that currently open bin into which it will fit with
the most room left over.

© 2022 A. Tchernykh. Scheduling Outline
 187

Basic ideas Best Fit (BF) and Worst Fit (WF)

The amount of time necessary to find the minimum number of bins using either FF, WF
or BF is higher than for NF. What is involved here is n log n implementation time in
terms of the number n of weights.

The distinction between First Fit, Best Fit and Worst Fit:

o suppose that we currently have only 3 bins open with capacity 10

o remaining space as follows:

 Bin 4, 4 units,
 Bin 6, 7 units, and
 Bin 9 with 3 units.

Suppose the next item in the list has size 2.

First Fit puts this item in Bin 4, Best Fit puts it in Bin 9, and Worst Fit puts it in Bin 6!

One difficulty is that we are applying "good procedures" but on a "lousy" list. If we know
all the weights to be packed in advance, is there a way of constructing a good list?

