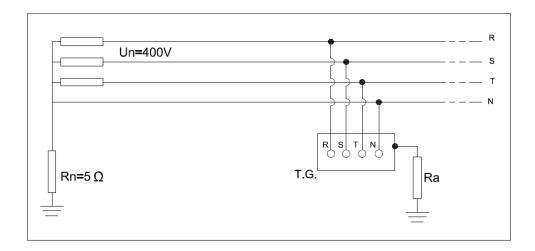
Instalaciones Eléctricas - Segundo Parcial 2020

Indicaciones:

Escribir nombre y CI en todas las hojas.

Numerar todas las hojas con el formato x/y, siendo "x" el nº de hoja e "y" el nº total de hojas.


Comenzar a responder cada pregunta y ejercicio en una hoja nueva. Escribir solamente de un lado de cada hoja.

Entregar las hojas dobladas por pregunta/ejercicio y con el nombre visible.

El uso de teléfono durante la prueba conllevará el inmediato retiro de la misma.

Ejercicio (32 puntos):

Una pequeña industria dedicada al empaquetamiento y distribución de mercadería, demanda una potencia de 45kW con $\cos(\varphi) = 0.83$ y es alimentada por medio de un sistema TT como se muestra en la siguiente figura:

a) ¿Cuántas jabalinas alineadas y espaciadas 3m entre sí se precisarían para lograr que la resistencia de la planta (Ra) sea menor a 4 Ω utilizando el mínimo número de jabalinas?

Datos:

- El terreno es homogéneo, y su resistividad es de 80Ω .m.
- $R_t = (\rho/2.\pi.L)$. Ln(4.L/d), es la fórmula de cálculo para una jabalina.
- Las jabalinas son de 2m de largo y 1" de diámetro (1" = 25,4 mm).
- Se da a continuación una tabla de coeficientes medios de reducción, en función del número de jabalinas alineadas:

L=2m $d=1$ "					
ESPACIAMIENTOS	2 m	3 m	4 m	5 m	
Número de jabalinas	K	K	K	K	
2	0,577	0,554	0,542	0,534	
3	0,420	0,394	0,380	0,371	
4	0,335	0,309	0,296	0,287	
5	0,281	0,257	0,243	0,235	
6	0,243	0,220	0,207	0,200	
7	0,215	0,193	0,181	0,174	
8	0,194	0,173	0,161	0,154	
9	0,176	0,156	0,145	0,139	
10	0,162	0,143	0,133	0,126	
11	0,150	0,132	0,122	0,116	
12	0,140	0,122	0,113	0,107	
13	0,131	0,114	0,105	0,100	
14	0,124	0,107	0,099	0,093	
15	0,117	0,101	0,093	0,088	

b) Determine todas las características del dispositivo a instalar en el TG para proteger a las personas contra contactos indirectos.

Datos:

- Se sabe que el tablero general alimenta 6 luminarias LED de 38W y 5 máquinas de empaquetado y envasado, donde cada equipo electrónico, tanto en las luminarias como en las máquinas, presenta una fuga de 2,5mA, y siendo estas fugas las únicas en toda la instalación.
- La instalación se debe considerar como de estado seco.
- Característica normalizada IEC de disparo del interruptor diferencial instalado:

Corriente falla	ΔIn	2ΔIn	5ΔIn
Tiempo máximo de apertura (s):	0,3	0,15	0,04

• Tiempos de seguridad:

Tabla 5: Tiempos máximos de seguridad en función de la tensión de contacto y de las condiciones de humedad					
Tensión de contacto (V)	Tiempos máximos (s)				
	Estado seco	Estado mojado			
25	∞	00			
50	00	0,48			
75	0,60	0,30			
90	0,45	0,25			
120	0,34	0,18			
150	0,27	0,12			
220	0,17	0,05			
280	0,12	0,02			
350	0,08	-			
500	0,04	-			

- c) ¿Qué valor de energía reactiva Qc precisaría para compensar la planta y lograr un $cos(\phi) = 0.98$?
- d) Suponga que la planta fue compensada por un banco trifásico formado por 3 condensadores de valor C configurados en triángulo, es decir, que todo el banco aporta Qc. Determinar el valor de la capacitancia C.
- e) Suponga que, por error, el instalador conectó los capacitores en estrella (en vez de conectarlos en triángulo):
 - i) Calcule el nuevo factor de potencia de la instalación
 - ii) En estas condiciones, ¿el cliente será penalizado por consumo de energía reactiva? Justifique.
- f) Si existen armónicos de tensión en la red con la siguiente distribución individual: U₅= 15% U₁, U₇= 10% U₁ ¿Se presenta algún problema al utilizar condensadores estándar fabricados bajo norma IEC 60831?

Pregunta 1 (9 puntos):

Indicar para cada afirmación, si es Verdadero o Falso. En caso de que sea Falso realizar una breve justificación.

- a) Toda salida a motor debe cumplir con seccionamiento, comando y protección, salvo que el motor sea de baja potencia.
- b) En un arranque directo (DOL) el motor asíncrono consume una corriente de la red superior a la nominal dependiendo de los elementos utilizados para el arranque.
- c) La corriente de empleo de un contactor depende de la categoría de utilización y de la tensión de empleo.
- d) El contactor tiene aptitud comando y seccionamiento.
- e) El relé térmico es un dispositivo para proteger contra sobrecargas al motor y lo hace por su capacidad de abrir por sí mismo el circuito de potencia.
- f) En algunos casos es necesario utilizar un guardamotor magnetotérmico y un relé térmico para protegen el motor contra sobrecargas, dependiendo del tipo de coordinación.
- g) Una salida a motor se podría hacer con un interruptor termomagnético y un contactor.

- h) El arrancador suave puede arrancar y parar el motor de forma controlada y es quien tiene la función de comando en una salida a motor.
- i) El variador de frecuencia es un dispositivo capaz de controlar el voltaje y la frecuencia con que se alimenta un motor para que gire a la velocidad deseada, generando un ahorro en el consumo de energía, aunque vuelca a la red una gran cantidad de armónicos durante su funcionamiento.

Pregunta 2 (9 puntos):

- a) Explique cómo se definen los sistemas de distribución, TT, TNS y IT. Dibujar los esquemas marcando claramente las puestas a tierra.
- b) Para cada uno de estos sistemas indique el orden de los valores de corriente de defecto y con qué dispositivos proteger contra contacto indirecto.
- c) En caso de un sistema IT, indique cómo será la corriente de defecto en caso de una segunda falla de aislación.

Con respecto a las sobretensiones transitorias. El descargador es el dispositivo de protección utilizado para este fenómeno.

- d) Indique el orden de tiempo involucrado cuando ocurre una sobretensión transitoria.
- e) Las descargas atmosféricas (caída de rayos) generan sobretensiones transitorias. Nombre otro origen o tipo de sobretensión transitoria.
- f) En una industria que cuenta con un sistema de pararrayos, por lo que tiene riesgo de una descarga directa (impacto directo de un rayo). ¿qué tipo de descargador se debería utilizar?