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Intended Learning Outcomes
Attendees will, at the end of the course, be able to:

• describe the main principles of Artificial Neural Networks and Generative

Adversarial Networks and their design

• identify problems that can be addressed by using Artificial Neural

Networks

• use Python code to create and use Artificial Neural Networks to address

classification and prediction problems

• identify problems that can be solved using Generative Machine Learning

• use Python code to create and use Generative Adversarial Networks to

generate synthetic data
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Generative Adversarial Networks for fun
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https://youtu.be/oxXpB9pSETo?si=c1cE2ocExaJjzK4q

https://youtu.be/oxXpB9pSETo?si=c1cE2ocExaJjzK4q


Generative Adversarial Networks for fun
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Main Concepts
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Artificial Intelligence

• Artificial Intelligence: intelligence exhibited by machines and software
• Goal: automate “intellectual tasks” performed by humans
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• AI models can be simple or complex
◦ Simple: search, pathfinding, simple game

playing, etc.
◦ Complex: computer vision, control tasks,

speech recognition, etc.



Artificial intelligence
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• The main idea is that AI imitates the human cognition process
(perception, learning, pattern recognition, etc.)

• Key aspects: reasoning, problem solving, learning, knowledge
representation

• Many types of algorithms: search, optimization, logic programming,
or machine learning algorithms.



Machine Learning, Deep Learning, AI ….
• Artificial Intelligence is human-like “intelligence” exhibited by computers

• Machine Learning is the field of study that gives the computers the ability
to learn without being explicitly programmed

• Deep Learning uses deep neural networks to implement machine learning
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Machine Learning

• Instead of being explicitly programmed (i.e. with a set of rules), machine
learning algorithms try to infer the rules using a model.

Probabilistic (i.e., not deterministic) outputs.
Characterized by an accuracy rate.
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Programmer Data Scientist



Neural networks

• A type of machine learning algorithms specialized on handling layered
representations of data.

• Multi stage information extraction process: allows modeling complex
(non-linear) functions.
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Artificial Intelligence Applications

• Facial recognition

• Game playing

• Speech recognition

• Language translation

• Self-driving cars

• Image translation: edges to photo

• Fake images

• Fake videos
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Artificial Neural 
Networks
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Simple Biological Neuron
The neuron is the fundamental cell responsible for processing and transmitting
information throughout the nervous system.

A simple biological network has three major parts:
• Dendrites: They branch out into a tree around the cell body. They get incoming
signals to cell body with their strength as weights.
• Cell : Collects input through dendrites and processes to produce output.
• Axon: Responsible for transmitting signals to other neurons.
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Collective Intelligence

Shared or group intelligence that emerges from collaboration, collective 
efforts, and/or competition of many agents.

• A single neuron has limited processing capabilities: response speed is 
about several milliseconds.

• However, the human brain is very powerful for problem solving: it uses 
the aggregated power of millions of neurons.
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Artificial Neuron

• An Artificial Neuron is a computational model of a biological neuron. 

• The idea is that the artificial neuron receives input signals from other 
connected artificial neurons and via a non-linear transmission function 
emits a signal itself.

• Main operation:

• Receives n inputs

• Computes the weighted sum

• Passes through an activation function

• Sends the signal to succeeding neurons
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Artificial Neuron. Basic example

Two-inputs neuron operation:
1. Each input is multiplied by a weight

1. All weighted sums are added with a bias b
(feedforward)

1. The sum is passed through an activation 
function

The output of the network depends on the weights, the bias, and the activation 
function
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b

https://colab.research.google.com/drive/1wQW

IUvqPBDaYBQJuB5b_ss0GPVc-
pglU?usp=sharing
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Artificial Neuron. What can we do?

• Try to implement a logic function with the two-input neuron.
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x1 x2 x1 OR x2

0 0 0

0 1 1

1 0 1

1 1 1

x1 x2 x1 AND x2

0 0 0

0 1 0

1 0 0

1 1 1
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Activation Function

● Activation function decides whether a neuron should be activated or not 
by calculating the weighted sum and further adding bias to it. The motive 
is to introduce non-linearity into the output of a neuron.

● If we do not apply activation function then the output signal would be 
simply linear function (one-degree polynomial). 

● Linear functions are limited in their complexity, have less power. Without 
activation function, our model cannot learn and model complicated data 
such as images, videos, audio, speech, etc.
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Activation Function. Types

Redes neuronales generativas

https://colab.research.google.com/drive/1_HBmqEihSNQirw

OX7Gy6455ySYDneZc2?usp=sharing

https://colab.research.google.com/drive/1_HBmqEihSNQirwOX7Gy6455ySYDneZc2?usp=sharing
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Artificial Neural Networks
●A neural network is a bunch of neurons connected together.

●Neural networks are typically organized in layers. 

●Layers are made up of a number of interconnected neurons.

●Inputs are presented to the network via the input layer, which 
communicates to one or more hidden layers through weighted connections. 

●The hidden layers then link to an output layer.
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Artificial Neural Networks. Code

• Example 1: Two inputs, two neurons in a hidden layer, and one output

• Example 2: X inputs, H neurons in the hidden layer, and one output
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Code: basic-two-layer-neural-network.py

Code: two-layer-neural-network.py



Artificial Neural Networks. Code

• Example 1: Two inputs, two neurons in a hidden layer, and one output

https://colab.research.google.com/drive/1SlgAgzjxcKD-J8OzkXRr--e0ljtNldrT?usp=sharing
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How do ANNs Learn?

● The output of the ANN depends on the weights

● Learning consist in updating the weights to get a desired output, i.e., minimize 
the error
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w1=2
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Compute error Update weights



How do ANNs Learn?

Redes neuronales generativas

ANNs learn by solving the optimization
problem of reducing the error in terms of
error, loss or cost function.

Back Propagation Algorithm:

It learns by example. If you submit to the
algorithm the example of what you want the
network to do, it changes the network’s
weights so that it can produce desired output
for a particular input on finishing the training.



How do ANNs Learn? A simple example
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● Objective: Learn the following data

● Neural network model: output = W x input (W represents the weight)

Input Desired output

0 0

1 2

2 4

3 6

4 8

output = 2 x input

input output
W

● Error function: mean squared error (MSE)



How do ANNs Learn? A simple example
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First step: Random weights initialization → W = 3 → output = 3 x input

Second step: Get actual output → Forward propagate input

Input Actual output

0 0

1 3

2 6

3 9

4 12



How do ANNs Learn? A simple example
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Third step: Get loss values → loss = f(actual output, desired output)
In our example f is mean squared error (MSE)

Total loss is 30

Input Actual output Desired output Loss = Square error

0 0 0 0

1 3 2 1

2 6 4 4

3 9 6 9

4 12 8 16



How do ANNs Learn? A simple example
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Fourth step: Differentiation
In our numerical example: -1000.0 < W < 1000.0
We can move with steps of 0.0001
Optimization problem → finding W that minimizes loss

Differentiation allows us to address the problem
Remember → the derivative of a function at a certain point, gives the rate or the
speed of which this function is changing its values at this point

In order to see the effect of the derivative, we can ask ourselves the following
question: how much the total error will change if we change the internal weight
of the neural network with a certain small value δW=0.0001

Loss with W=3.0001 → 30.006
Loss with W=2.9999 → 29.994



How do ANNs Learn? A simple example
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Fourth step: Differentiation
We could guess this rate by calculating directly the derivative of the loss

function
Here is what our loss function looks like:

If W=2, we have a loss of 0, since the neural
network actual output fits perfectly the training set

If W<2, we have a positive loss function, but the
derivative is negative, meaning that an increase of
weight will decrease the loss function

If W>2, we have a positive loss, but the derivative is
positive, meaning that any more increase in the
weight, will increase the losses even more

Arrows represent the derivative at the 

corresponding points



How do ANNs Learn? A simple example

Redes neuronales generativas

Fifth step: Backpropagation
In this example, we used only one layer neural network
→ No backpropagation is needed!!!

In the case there are more layers, the process is the same but each layer (as the
output layer with the loss function) requires to provide the function of its
derivative.

Thus, we only need to keep a stack of the function calls during the forward pass
and their parameters, in order to know the way back to back-propagate the errors
using the derivatives of these functions. This can be done by de-stacking through
the function calls. This technique is called auto-differentiation.



How do ANNs Learn? A simple example
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Sixth step: Weight update
Thus as a general rule of weight updates is the delta rule:

New weight = old weight - derivative x learning rate

If the derivative rate is positive, it means that an increase in weight will increase
the error, thus the new weight should be smaller.

If the derivative rate is negative, it means that an increase in weight will
decrease the error, thus we need to increase the weights.

If the derivative is 0, it means that we are in a stable minimum. Thus, no update
on the weights is needed -> we reached a stable state.



How do ANNs Learn? A simple example
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The importance of the optimization method applied

https://towardsdatascience.com/overview-of-various-optimizers-in-neural-networks-17c1be2df6d5



Deep Learning 

ANN results get better with 

● more/better data
● bigger models
● more computation
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Deep Learning 

ANN results get better with 

● more/better data
● bigger models
● more computation
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Example: 
Deep Learning for regression

https://colab.research.google.com/drive/1HlU_2w

2ELvC8tzPkJXjtwqdoVJWIQghO

https://colab.research.google.com/drive/1HlU_2w2ELvC8tzPkJXjtwqdoVJWIQghO
https://colab.research.google.com/drive/1HlU_2w2ELvC8tzPkJXjtwqdoVJWIQghO


● Deep neural networks employ deep architectures in neural networks. 

● “Deep” refers to functions with higher complexity in the number of layers and units in a 
single layer.

● Three following types of deep neural networks are popularly used today: 

● Multi-Layer Perceptrons (MLP) 

● Convolutional Neural Networks (CNN) 

● Recurrent Neural Networks (RNN)

Artificial Neural Networks
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Artificial Neural Networks. Types
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● They are comprised of one or more layers of neurons. Data is fed to the input layer,
there may be one or more hidden layers providing levels of abstraction, and final
predictions are made on the output layer, also called the visible layer.

● Each new layer is a set of nonlinear functions of a weighted sum of all outputs (fully
connected) from the prior one.

Artificial Neural Networks. MLPs
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● They are very flexible and can be used to learn a mapping from inputs to outputs.

● This flexibility allows them to be applied to many different types of data.

● MLP are suitable for:

● Tabular datasets

● Classification prediction problems

● Regression prediction problems

● They can be used aslo for:

● Image data

● Text Data

● Time series data

● Other types of data

Artificial Neural Networks. MLPs
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Deep learning. Sample applications (1)
• Breast cancer prediction
◦ Assess whether a lump in a breast is malignant 

(cancerous) or benign (non-cancerous) from  digitized 
images of a fine-needle aspiration biopsy.

◦ The dataset contains 30 features from the images.

• Training dataset, to train the ANN 
◦ malignant or benign cases.

• Testing dataset, never seen by the ANN during the 
training phase:
◦ guarantee not over-fitting the ANN to training dataset
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https://colab.research.google.com/drive/18Pwt986XRAwd

HIJdLjQu27Fw1X8r0eVT?usp=sharing
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Deep learning. Sample applications (1)

• Breast cancer prediction: results
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●CNN:  A specialized neural network for processing data with a grid-like topology (e.g., 
images).

● Convolution layers that apply filters to local regions of the input.

●In 1989, LeCun proposed CNN that was trained by backpropagation

Artificial Neural Networks. CNNs
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●CNN got popular when outperformed other models at ImageNet Challenge
○ Competition in object classification/detection
○ On hundreds of object categories and millions of images
○ Run annually from 2010 to present

● Notable CNN architectures that won ImageNet challenge
● AlexNet (2012), ZFNet (2013), GoogLeNet & VGG (2014), ResNet (2015)

Artificial Neural Networks. CNNs
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•A typical CNN has 4 layers:
◦ Input layer
◦ Convolution layer: Applies convolution operations with filters (kernels) to 

extract features.
◦ Pooling layer: Reduces dimensionality
◦ Fully connected layer: Similar to MLP, for classification or regression tasks.

Artificial Neural Networks. CNNs
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●The benefit of using CNNs is their ability to develop an internal representation of a two-
dimensional image. This allows the model to learn position and scale in variant structures
in the data, which is important when working with images.

●CNN are suitable for:

●Image data

●Classification prediction problems

●Regression prediction problems

●They can be used aslo for:

●Text data

●Time series data

●Sequence input data

Artificial Neural Networks. CNNs
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Deep learning. Sample applications (2)
• Handwritten digits classification (MNIST repository).

• MLP to assign each image a label in the set {0,1,...,9}.
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• Training dataset, to train the ANN 
◦ ‘what numbers 0 through 9 look like’.

• Testing dataset, never seen by the ANN during the 
training phase: 
◦ guarantee the ANN is not over-fitted to the training 

dataset, 
◦ assure the ANN can label independent items properly.

https://colab.research.google.com/drive/1rYdsv3mHhyoqejbT0R8T
BTCa8wcUQH8B?usp=sharing

https://colab.research.google.com/drive/1rYdsv3mHhyoqejbT0R8TBTCa8wcUQH8B?usp=sharing
https://colab.research.google.com/drive/1rYdsv3mHhyoqejbT0R8TBTCa8wcUQH8B?usp=sharing


Deep learning. Sample applications (2)

• MLP for handwritten digits classification: results
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Deep learning. Sample applications (3)

• Handwritten digits classification (MNIST repository) with a Convolutional 
Neural Network

https://colab.research.google.com/drive/1SRW5OzrbzS0DB17W0VG-
FG_ykg2Q2nfk?usp=sharing
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●RNNs were designed to work with sequence prediction problems.

●Sequence prediction problems come in many forms and are best described by the types
of inputs and outputs supported. Some examples of sequence prediction problems
include:

Artificial Neural Networks. RNNs
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●One-to-Many: An observation as input mapped to a sequence with multiple steps as an output.

●Many-to-One: A sequence of multiple steps as input mapped to class or quantity prediction.

●Many-to-Many: A sequence of multiple steps as input mapped to a sequence with multiple steps
as output. They are also known as sequence-to-sequence or seq2seq.



●RNNs have received the most success when working with sequences of words and
paragraphs, generally called natural language processing.

●This includes both sequences of text and sequences of spoken language represented as a time
series. They are also used as generative models.

● RNN are suitable for:

●Text data

●Speech data

●Classification prediction problems

●Regression prediction problems

●Generative models

Artificial Neural Networks. RNNs
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Deep learning. Example: Basic use of RNN
● RNN based on  LSTM cells →Many-to-One example
● Training dataset is a sequence of passengers of an Airline (80% of data)
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● Testing dataset never seen by the ANN during the training phase (i.e, the 
next 20% of the sequence)

https://colab.research.google.com/drive/1OhfxhkPWJRflFO312l5yQ

-3CjxhK2QLd?usp=sharing

https://colab.research.google.com/drive/1OhfxhkPWJRflFO312l5yQ-3CjxhK2QLd?usp=sharing
https://colab.research.google.com/drive/1OhfxhkPWJRflFO312l5yQ-3CjxhK2QLd?usp=sharing


Deep learning. Example: Basic use of RNN
● RNN for sequence prediction
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JAMAL TOUTOUH

Thanks!
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