
JAMAL TOUTOUH

Deep generative neural networks

Fundamentals & problem solving

Redes neuronales generativas JAMAL TOUTOUH

JAMAL TOUTOUH

jamal@uma.es

jamal.es

@jamtou

Sergio Nesmachnow

sergion@fing.edu.uy

mailto:jamal@lcc.uma.es
mailto:sergion@fing.edu.uy

Jamal Toutouh, Ph.D.
Researcher Assistant Professor at the University of Málaga (Spain)

Affiliate Researcher at Massachusetts Institute of Technology (MIT)
• MIT Computer Science & Artificial Intelligence Lab

•PhD in Computer Science, University of Malaga

•M.Sc. in Software Engineering and Artificial Intelligence, University of Malaga

•M.Sc. in Information and Computer Sciences University of Luxembourg

Redes neuronales generativas

jamal@uma.es

www.jamal.es

@jamtou

http://www.jamal.es/

Intended Learning Outcomes
Attendees will, at the end of the course, be able to:

• describe the main principles of Artificial Neural Networks and Generative

Adversarial Networks and their design

• identify problems that can be addressed by using Artificial Neural

Networks

• use Python code to create and use Artificial Neural Networks to address

classification and prediction problems

• identify problems that can be solved using Generative Machine Learning

• use Python code to create and use Generative Adversarial Networks to

generate synthetic data

Redes neuronales generativas

Generative Adversarial Networks for fun

Redes neuronales generativas

https://youtu.be/oxXpB9pSETo?si=c1cE2ocExaJjzK4q

https://youtu.be/oxXpB9pSETo?si=c1cE2ocExaJjzK4q

Generative Adversarial Networks for fun

Redes neuronales generativas

https://thispersondoesnotexist.com/

https://thispersondoesnotexist.com/

Main Concepts

Redes neuronales generativas

Artificial Intelligence

• Artificial Intelligence: intelligence exhibited by machines and software
• Goal: automate “intellectual tasks” performed by humans

Redes neuronales generativas

• AI models can be simple or complex
◦ Simple: search, pathfinding, simple game

playing, etc.
◦ Complex: computer vision, control tasks,

speech recognition, etc.

Artificial intelligence

Redes neuronales generativas

• The main idea is that AI imitates the human cognition process
(perception, learning, pattern recognition, etc.)

• Key aspects: reasoning, problem solving, learning, knowledge
representation

• Many types of algorithms: search, optimization, logic programming,
or machine learning algorithms.

Machine Learning, Deep Learning, AI ….
• Artificial Intelligence is human-like “intelligence” exhibited by computers

• Machine Learning is the field of study that gives the computers the ability
to learn without being explicitly programmed

• Deep Learning uses deep neural networks to implement machine learning

Redes neuronales generativas

Machine Learning

• Instead of being explicitly programmed (i.e. with a set of rules), machine
learning algorithms try to infer the rules using a model.

Probabilistic (i.e., not deterministic) outputs.
Characterized by an accuracy rate.

Redes neuronales generativas

Programmer Data Scientist

Neural networks

• A type of machine learning algorithms specialized on handling layered
representations of data.

• Multi stage information extraction process: allows modeling complex
(non-linear) functions.

Redes neuronales generativas

Artificial Intelligence Applications

• Facial recognition

• Game playing

• Speech recognition

• Language translation

• Self-driving cars

• Image translation: edges to photo

• Fake images

• Fake videos

Redes neuronales generativas

Artificial Neural
Networks

Redes neuronales generativas

Simple Biological Neuron
The neuron is the fundamental cell responsible for processing and transmitting
information throughout the nervous system.

A simple biological network has three major parts:
• Dendrites: They branch out into a tree around the cell body. They get incoming
signals to cell body with their strength as weights.
• Cell : Collects input through dendrites and processes to produce output.
• Axon: Responsible for transmitting signals to other neurons.

Redes neuronales generativas

Collective Intelligence

Shared or group intelligence that emerges from collaboration, collective
efforts, and/or competition of many agents.

• A single neuron has limited processing capabilities: response speed is
about several milliseconds.

• However, the human brain is very powerful for problem solving: it uses
the aggregated power of millions of neurons.

Redes neuronales generativas

Artificial Neuron

• An Artificial Neuron is a computational model of a biological neuron.

• The idea is that the artificial neuron receives input signals from other
connected artificial neurons and via a non-linear transmission function
emits a signal itself.

• Main operation:

• Receives n inputs

• Computes the weighted sum

• Passes through an activation function

• Sends the signal to succeeding neurons

Redes neuronales generativas

Artificial Neuron. Basic example

Two-inputs neuron operation:
1. Each input is multiplied by a weight

1. All weighted sums are added with a bias b
(feedforward)

1. The sum is passed through an activation
function

The output of the network depends on the weights, the bias, and the activation
function

Redes neuronales generativas

b

https://colab.research.google.com/drive/1wQW

IUvqPBDaYBQJuB5b_ss0GPVc-
pglU?usp=sharing

https://colab.research.google.com/drive/1wQWIUvqPBDaYBQJuB5b_ss0GPVc-pglU?usp=sharing
https://colab.research.google.com/drive/1wQWIUvqPBDaYBQJuB5b_ss0GPVc-pglU?usp=sharing
https://colab.research.google.com/drive/1wQWIUvqPBDaYBQJuB5b_ss0GPVc-pglU?usp=sharing

Artificial Neuron. Basic example

Two-inputs neuron operation:
1. Each input is multiplied by a weight

1. All weighted sums are added with a bias b
(feedforward)

1. The sum is passed through an activation
function

The output of the network depends on the weights, the bias, and the activation
function

Redes neuronales generativas

b

https://colab.research.google.com/drive/1wQWIUvq

PBDaYBQJuB5b_ss0GPVc-pglU?usp=sharing

https://colab.research.google.com/drive/1wQWIUvqPBDaYBQJuB5b_ss0GPVc-pglU?usp=sharing
https://colab.research.google.com/drive/1wQWIUvqPBDaYBQJuB5b_ss0GPVc-pglU?usp=sharing

Artificial Neuron. What can we do?

• Try to implement a logic function with the two-input neuron.

Redes neuronales generativas

x1 x2 x1 OR x2

0 0 0

0 1 1

1 0 1

1 1 1

x1 x2 x1 AND x2

0 0 0

0 1 0

1 0 0

1 1 1

https://colab.research.google.com/drive/1wQWIUvq

PBDaYBQJuB5b_ss0GPVc-pglU?usp=sharing

https://colab.research.google.com/drive/1wQWIUvqPBDaYBQJuB5b_ss0GPVc-pglU?usp=sharing
https://colab.research.google.com/drive/1wQWIUvqPBDaYBQJuB5b_ss0GPVc-pglU?usp=sharing

Activation Function

● Activation function decides whether a neuron should be activated or not
by calculating the weighted sum and further adding bias to it. The motive
is to introduce non-linearity into the output of a neuron.

● If we do not apply activation function then the output signal would be
simply linear function (one-degree polynomial).

● Linear functions are limited in their complexity, have less power. Without
activation function, our model cannot learn and model complicated data
such as images, videos, audio, speech, etc.

Redes neuronales generativas

Activation Function. Types

Redes neuronales generativas

https://colab.research.google.com/drive/1_HBmqEihSNQirw

OX7Gy6455ySYDneZc2?usp=sharing

https://colab.research.google.com/drive/1_HBmqEihSNQirwOX7Gy6455ySYDneZc2?usp=sharing
https://colab.research.google.com/drive/1_HBmqEihSNQirwOX7Gy6455ySYDneZc2?usp=sharing

Artificial Neural Networks
●A neural network is a bunch of neurons connected together.

●Neural networks are typically organized in layers.

●Layers are made up of a number of interconnected neurons.

●Inputs are presented to the network via the input layer, which
communicates to one or more hidden layers through weighted connections.

●The hidden layers then link to an output layer.

Redes neuronales generativas

Artificial Neural Networks. Code

• Example 1: Two inputs, two neurons in a hidden layer, and one output

• Example 2: X inputs, H neurons in the hidden layer, and one output

Redes neuronales generativas

Code: basic-two-layer-neural-network.py

Code: two-layer-neural-network.py

Artificial Neural Networks. Code

• Example 1: Two inputs, two neurons in a hidden layer, and one output

https://colab.research.google.com/drive/1SlgAgzjxcKD-J8OzkXRr--e0ljtNldrT?usp=sharing

Redes neuronales generativas

https://colab.research.google.com/drive/1SlgAgzjxcKD-J8OzkXRr--e0ljtNldrT?usp=sharing

How do ANNs Learn?

● The output of the ANN depends on the weights

● Learning consist in updating the weights to get a desired output, i.e., minimize
the error

Redes neuronales generativas

w1=2

w2=1

1

0

y = step(1 x 2 + 0 x 1, 2)

y = step(2, 2) = 1

1

0
0

1 Error = MSE = 1

w1=1

w2=1

1

0

y = step(1 x 1 + 0 x 1, 2)

y = step(1, 2) = 0

0

Compute error Update weights

How do ANNs Learn?

Redes neuronales generativas

ANNs learn by solving the optimization
problem of reducing the error in terms of
error, loss or cost function.

Back Propagation Algorithm:

It learns by example. If you submit to the
algorithm the example of what you want the
network to do, it changes the network’s
weights so that it can produce desired output
for a particular input on finishing the training.

How do ANNs Learn? A simple example

Redes neuronales generativas

● Objective: Learn the following data

● Neural network model: output = W x input (W represents the weight)

Input Desired output

0 0

1 2

2 4

3 6

4 8

output = 2 x input

input output
W

● Error function: mean squared error (MSE)

How do ANNs Learn? A simple example

Redes neuronales generativas

First step: Random weights initialization → W = 3 → output = 3 x input

Second step: Get actual output → Forward propagate input

Input Actual output

0 0

1 3

2 6

3 9

4 12

How do ANNs Learn? A simple example

Redes neuronales generativas

Third step: Get loss values → loss = f(actual output, desired output)
In our example f is mean squared error (MSE)

Total loss is 30

Input Actual output Desired output Loss = Square error

0 0 0 0

1 3 2 1

2 6 4 4

3 9 6 9

4 12 8 16

How do ANNs Learn? A simple example

Redes neuronales generativas

Fourth step: Differentiation
In our numerical example: -1000.0 < W < 1000.0
We can move with steps of 0.0001
Optimization problem → finding W that minimizes loss

Differentiation allows us to address the problem
Remember → the derivative of a function at a certain point, gives the rate or the
speed of which this function is changing its values at this point

In order to see the effect of the derivative, we can ask ourselves the following
question: how much the total error will change if we change the internal weight
of the neural network with a certain small value δW=0.0001

Loss with W=3.0001 → 30.006
Loss with W=2.9999 → 29.994

How do ANNs Learn? A simple example

Redes neuronales generativas

Fourth step: Differentiation
We could guess this rate by calculating directly the derivative of the loss

function
Here is what our loss function looks like:

If W=2, we have a loss of 0, since the neural
network actual output fits perfectly the training set

If W<2, we have a positive loss function, but the
derivative is negative, meaning that an increase of
weight will decrease the loss function

If W>2, we have a positive loss, but the derivative is
positive, meaning that any more increase in the
weight, will increase the losses even more

Arrows represent the derivative at the

corresponding points

How do ANNs Learn? A simple example

Redes neuronales generativas

Fifth step: Backpropagation
In this example, we used only one layer neural network
→ No backpropagation is needed!!!

In the case there are more layers, the process is the same but each layer (as the
output layer with the loss function) requires to provide the function of its
derivative.

Thus, we only need to keep a stack of the function calls during the forward pass
and their parameters, in order to know the way back to back-propagate the errors
using the derivatives of these functions. This can be done by de-stacking through
the function calls. This technique is called auto-differentiation.

How do ANNs Learn? A simple example

Redes neuronales generativas

Sixth step: Weight update
Thus as a general rule of weight updates is the delta rule:

New weight = old weight - derivative x learning rate

If the derivative rate is positive, it means that an increase in weight will increase
the error, thus the new weight should be smaller.

If the derivative rate is negative, it means that an increase in weight will
decrease the error, thus we need to increase the weights.

If the derivative is 0, it means that we are in a stable minimum. Thus, no update
on the weights is needed -> we reached a stable state.

How do ANNs Learn? A simple example

Redes neuronales generativas

The importance of the optimization method applied

https://towardsdatascience.com/overview-of-various-optimizers-in-neural-networks-17c1be2df6d5

Deep Learning

ANN results get better with

● more/better data
● bigger models
● more computation

Redes neuronales generativas

Deep Learning

ANN results get better with

● more/better data
● bigger models
● more computation

Redes neuronales generativas

Example:
Deep Learning for regression

https://colab.research.google.com/drive/1HlU_2w

2ELvC8tzPkJXjtwqdoVJWIQghO

https://colab.research.google.com/drive/1HlU_2w2ELvC8tzPkJXjtwqdoVJWIQghO
https://colab.research.google.com/drive/1HlU_2w2ELvC8tzPkJXjtwqdoVJWIQghO

● Deep neural networks employ deep architectures in neural networks.

● “Deep” refers to functions with higher complexity in the number of layers and units in a
single layer.

● Three following types of deep neural networks are popularly used today:

● Multi-Layer Perceptrons (MLP)

● Convolutional Neural Networks (CNN)

● Recurrent Neural Networks (RNN)

Artificial Neural Networks

Redes neuronales generativas

Artificial Neural Networks. Types

Redes neuronales generativas

● They are comprised of one or more layers of neurons. Data is fed to the input layer,
there may be one or more hidden layers providing levels of abstraction, and final
predictions are made on the output layer, also called the visible layer.

● Each new layer is a set of nonlinear functions of a weighted sum of all outputs (fully
connected) from the prior one.

Artificial Neural Networks. MLPs

Redes neuronales generativas

● They are very flexible and can be used to learn a mapping from inputs to outputs.

● This flexibility allows them to be applied to many different types of data.

● MLP are suitable for:

● Tabular datasets

● Classification prediction problems

● Regression prediction problems

● They can be used aslo for:

● Image data

● Text Data

● Time series data

● Other types of data

Artificial Neural Networks. MLPs

Redes neuronales generativas

Deep learning. Sample applications (1)
• Breast cancer prediction
◦ Assess whether a lump in a breast is malignant

(cancerous) or benign (non-cancerous) from digitized
images of a fine-needle aspiration biopsy.

◦ The dataset contains 30 features from the images.

• Training dataset, to train the ANN
◦ malignant or benign cases.

• Testing dataset, never seen by the ANN during the
training phase:
◦ guarantee not over-fitting the ANN to training dataset

Redes neuronales generativas

https://colab.research.google.com/drive/18Pwt986XRAwd

HIJdLjQu27Fw1X8r0eVT?usp=sharing

https://colab.research.google.com/drive/18Pwt986XRAwdHIJdLjQu27Fw1X8r0eVT?usp=sharing
https://colab.research.google.com/drive/18Pwt986XRAwdHIJdLjQu27Fw1X8r0eVT?usp=sharing

Deep learning. Sample applications (1)

• Breast cancer prediction: results

Redes neuronales generativas

●CNN: A specialized neural network for processing data with a grid-like topology (e.g.,
images).

● Convolution layers that apply filters to local regions of the input.

●In 1989, LeCun proposed CNN that was trained by backpropagation

Artificial Neural Networks. CNNs

Redes neuronales generativas

●CNN got popular when outperformed other models at ImageNet Challenge
○ Competition in object classification/detection
○ On hundreds of object categories and millions of images
○ Run annually from 2010 to present

● Notable CNN architectures that won ImageNet challenge
● AlexNet (2012), ZFNet (2013), GoogLeNet & VGG (2014), ResNet (2015)

Artificial Neural Networks. CNNs

Redes neuronales generativas

•A typical CNN has 4 layers:
◦ Input layer
◦ Convolution layer: Applies convolution operations with filters (kernels) to

extract features.
◦ Pooling layer: Reduces dimensionality
◦ Fully connected layer: Similar to MLP, for classification or regression tasks.

Artificial Neural Networks. CNNs

Redes neuronales generativas

●The benefit of using CNNs is their ability to develop an internal representation of a two-
dimensional image. This allows the model to learn position and scale in variant structures
in the data, which is important when working with images.

●CNN are suitable for:

●Image data

●Classification prediction problems

●Regression prediction problems

●They can be used aslo for:

●Text data

●Time series data

●Sequence input data

Artificial Neural Networks. CNNs

Redes neuronales generativas

Deep learning. Sample applications (2)
• Handwritten digits classification (MNIST repository).

• MLP to assign each image a label in the set {0,1,...,9}.

Redes neuronales generativas

• Training dataset, to train the ANN
◦ ‘what numbers 0 through 9 look like’.

• Testing dataset, never seen by the ANN during the
training phase:
◦ guarantee the ANN is not over-fitted to the training

dataset,
◦ assure the ANN can label independent items properly.

https://colab.research.google.com/drive/1rYdsv3mHhyoqejbT0R8T
BTCa8wcUQH8B?usp=sharing

https://colab.research.google.com/drive/1rYdsv3mHhyoqejbT0R8TBTCa8wcUQH8B?usp=sharing
https://colab.research.google.com/drive/1rYdsv3mHhyoqejbT0R8TBTCa8wcUQH8B?usp=sharing

Deep learning. Sample applications (2)

• MLP for handwritten digits classification: results

Redes neuronales generativas

Deep learning. Sample applications (3)

• Handwritten digits classification (MNIST repository) with a Convolutional
Neural Network

https://colab.research.google.com/drive/1SRW5OzrbzS0DB17W0VG-
FG_ykg2Q2nfk?usp=sharing

Redes neuronales generativas

https://colab.research.google.com/drive/1SRW5OzrbzS0DB17W0VG-FG_ykg2Q2nfk?usp=sharing
https://colab.research.google.com/drive/1SRW5OzrbzS0DB17W0VG-FG_ykg2Q2nfk?usp=sharing

●RNNs were designed to work with sequence prediction problems.

●Sequence prediction problems come in many forms and are best described by the types
of inputs and outputs supported. Some examples of sequence prediction problems
include:

Artificial Neural Networks. RNNs

Redes neuronales generativas

●One-to-Many: An observation as input mapped to a sequence with multiple steps as an output.

●Many-to-One: A sequence of multiple steps as input mapped to class or quantity prediction.

●Many-to-Many: A sequence of multiple steps as input mapped to a sequence with multiple steps
as output. They are also known as sequence-to-sequence or seq2seq.

●RNNs have received the most success when working with sequences of words and
paragraphs, generally called natural language processing.

●This includes both sequences of text and sequences of spoken language represented as a time
series. They are also used as generative models.

● RNN are suitable for:

●Text data

●Speech data

●Classification prediction problems

●Regression prediction problems

●Generative models

Artificial Neural Networks. RNNs

Redes neuronales generativas

Deep learning. Example: Basic use of RNN
● RNN based on LSTM cells →Many-to-One example
● Training dataset is a sequence of passengers of an Airline (80% of data)

Redes neuronales generativas

● Testing dataset never seen by the ANN during the training phase (i.e, the
next 20% of the sequence)

https://colab.research.google.com/drive/1OhfxhkPWJRflFO312l5yQ

-3CjxhK2QLd?usp=sharing

https://colab.research.google.com/drive/1OhfxhkPWJRflFO312l5yQ-3CjxhK2QLd?usp=sharing
https://colab.research.google.com/drive/1OhfxhkPWJRflFO312l5yQ-3CjxhK2QLd?usp=sharing

Deep learning. Example: Basic use of RNN
● RNN for sequence prediction

Redes neuronales generativas

https://colab.research.google.com/drive/1sNDE114j7x

AIIxaYbs3G2A8TtpC_DyNc?usp=sharing

https://colab.research.google.com/drive/1sNDE114j7xAIIxaYbs3G2A8TtpC_DyNc?usp=sharing
https://colab.research.google.com/drive/1sNDE114j7xAIIxaYbs3G2A8TtpC_DyNc?usp=sharing

JAMAL TOUTOUH

Thanks!

Redes neuronales generativas 56JAMAL TOUTOUH

Comments?
JAMAL TOUTOUH
toutouh@mit.edu

jamal.es

necol.net

@jamtou

mailto:toutouh@mit.edu

	Slide 1: Deep generative neural networks Fundamentals & problem solving
	Slide 2: Jamal Toutouh, Ph.D.
	Slide 3: Intended Learning Outcomes
	Slide 4: Generative Adversarial Networks for fun
	Slide 5: Generative Adversarial Networks for fun
	Slide 6
	Slide 7: Artificial Intelligence
	Slide 8: Artificial intelligence
	Slide 9: Machine Learning, Deep Learning, AI ….
	Slide 10: Machine Learning
	Slide 11: Neural networks
	Slide 12: Artificial Intelligence Applications
	Slide 13
	Slide 14: Simple Biological Neuron
	Slide 15: Collective Intelligence
	Slide 16: Artificial Neuron
	Slide 17: Artificial Neuron. Basic example
	Slide 18: Artificial Neuron. Basic example
	Slide 19: Artificial Neuron. What can we do?
	Slide 20: Activation Function
	Slide 22: Activation Function. Types
	Slide 23: Artificial Neural Networks
	Slide 24: Artificial Neural Networks. Code
	Slide 25: Artificial Neural Networks. Code
	Slide 26: How do ANNs Learn?
	Slide 27: How do ANNs Learn?
	Slide 28: How do ANNs Learn? A simple example
	Slide 29: How do ANNs Learn? A simple example
	Slide 30: How do ANNs Learn? A simple example
	Slide 31: How do ANNs Learn? A simple example
	Slide 32: How do ANNs Learn? A simple example
	Slide 33: How do ANNs Learn? A simple example
	Slide 34: How do ANNs Learn? A simple example
	Slide 35: How do ANNs Learn? A simple example
	Slide 36: Deep Learning
	Slide 37: Deep Learning
	Slide 38: Artificial Neural Networks
	Slide 39: Artificial Neural Networks. Types
	Slide 40: Artificial Neural Networks. MLPs
	Slide 41: Artificial Neural Networks. MLPs
	Slide 43: Deep learning. Sample applications (1)
	Slide 44: Deep learning. Sample applications (1)
	Slide 45: Artificial Neural Networks. CNNs
	Slide 46: Artificial Neural Networks. CNNs
	Slide 47: Artificial Neural Networks. CNNs
	Slide 48: Artificial Neural Networks. CNNs
	Slide 49: Deep learning. Sample applications (2)
	Slide 50: Deep learning. Sample applications (2)
	Slide 51: Deep learning. Sample applications (3)
	Slide 52: Artificial Neural Networks. RNNs
	Slide 53: Artificial Neural Networks. RNNs
	Slide 54: Deep learning. Example: Basic use of RNN
	Slide 55: Deep learning. Example: Basic use of RNN
	Slide 56: Thanks!

