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Intended Learning Outcomes
Attendees will, at the end of the course, be able to:

• describe the main principles of Artificial Neural Networks and Generative 

Adversarial Networks and their design

• identify problems that can be addressed by using Artificial Neural 

Networks

• use Python code to create and use Artificial Neural Networks to address 

classification and prediction problems

• identify problems that can be solved using Generative Machine Learning

• use Python code to create and use Generative Adversarial Networks to 

generate synthetic data  
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Generative Adversarial Networks for fun
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https://thispersondoesnotexist.com/

https://thispersondoesnotexist.com/


 Main Concepts
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Artificial Intelligence
• Artificial Intelligence:  intelligence exhibited by machines and software
• Goal: automate “intellectual tasks” performed by humans
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• AI models can be simple or complex
◦ Simple: search, pathfinding, simple game 

playing, etc.
◦ Complex: computer vision, control tasks, 

speech recognition, etc.



Artificial intelligence
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• The main idea is that AI imitates the human cognition process 
(perception, learning, pattern recognition, etc.) 

• Key aspects: reasoning, problem solving, learning, knowledge 
representation

• Many types of algorithms: search, optimization, logic programming, 
or machine learning algorithms.



Machine Learning, Deep Learning, AI ….
• Artificial Intelligence is human-like “intelligence” exhibited by computers

• Machine Learning is the field of study that gives the computers the ability 
to learn without being explicitly programmed

• Deep Learning uses deep neural networks to implement machine learning
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Machine Learning
• Instead of being explicitly programmed (i.e. with a set of rules), machine 

learning algorithms try to infer the rules using a model.

 Probabilistic (i.e., not deterministic) outputs. 
 Characterized by an accuracy rate.
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Neural networks
• A type of machine learning algorithms specialized on handling layered 

representations of data.

• Multi stage information extraction process: allows modeling complex 
(non-linear) functions.
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Artificial Intelligence Applications
• Facial recognition
• Game playing
• Speech recognition
• Language translation
• Self-driving cars
• Image translation: edges to photo
• Fake images
• Fake videos
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 Artificial Neural 
Networks
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Simple Biological Neuron
The neuron is the fundamental cell responsible for processing and transmitting 
information throughout the nervous system.

A simple biological network has three major parts:
• Dendrites: They branch out into a tree around the cell body. They get incoming 
signals to cell body with their strength as weights.

• Cell: Collects input through dendrites and processes to produce output.
• Axon: Responsible for transmitting signals to other neurons.

Redes neuronales generativas



Collective Intelligence

Shared or group intelligence that emerges from collaboration, collective 
efforts, and/or competition of many agents.

• A single neuron has limited processing capabilities: response speed is 
about several milliseconds.

• However, the human brain is very powerful for problem solving: it uses 
the aggregated power of millions of neurons.
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Artificial Neuron

• An Artificial Neuron is a computational model of a biological neuron. 
• The idea is that the artificial neuron receives input signals from other 

connected artificial neurons and via a non-linear transmission function 
emits a signal itself.

• Main operation:
• Receives n inputs

• Computes the weighted sum

• Passes through an activation function

• Sends the signal to succeeding neurons
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Artificial Neuron. Basic example

Two-inputs neuron operation:
1. Each input is multiplied by a weight

2. All weighted sums are added with a bias b
(feedforward)

3. The sum is passed through an activation 
function

The output of the network depends on the weights, the bias,  and the activation 
function
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Code: basic-neuron.py

b

https://drive.google.com/file/d/1RsznOUh0s2fZM_pHiQ751u9nO4zc3_7_/view?usp=sharing


Artificial Neuron. Basic example

Two-inputs neuron operation:
1. Each input is multiplied by a weight

2. All weighted sums are added with a bias b
(feedforward)

3. The sum is passed through an activation 
function

The output of the network depends on the weights, the bias,  and the activation 
function
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Code: basic-neuron.py

b



Artificial Neuron. What can we do?

•  Try to implement a logic function with the two-input neuron.
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Artificial Neuron. What can we do?

•  Try to implement a logic function with the two-input neuron.
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Artificial Neuron. Basic example (2)

Two-inputs neuron operation:
1. Each input is multiplied by a weight

2. All weighted sums are added with a bias b
(feedforward)

3. The sum is passed through an activation 
function

The output of the network depends on the weights, the bias,  and the activation 
function

Redes neuronales generativas

Code: basic-neuron.py

b



Activation Function

● Activation function decides whether a neuron should be activated or not 
by calculating the weighted sum and further adding bias to it. The motive 
is to introduce non-linearity into the output of a neuron.

● If we do not apply activation function then the output signal would be 
simply linear function (one-degree polynomial). 

● Linear functions are limited in their complexity, have less power. Without 
activation function, our model cannot learn and model complicated data 
such as images, videos, audio, speech, etc.
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Activation Function. Types
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Step Sigmoid

Tanh ReLu Leaky ReLu
Code: neuron.py



Artificial Neural Networks
●A neural network is a bunch of neurons connected together.

●Neural networks are typically organized in layers. 

●Layers are made up of a number of interconnected neurons.

●Inputs are presented to the network via the input layer, which 
communicates to one or more hidden layers through weighted connections. 

●The hidden layers then link to an output layer.
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Artificial Neural Networks. Code
• Example 1: Two inputs, two neurons in a hidden layer, and one output

• Example 2: X inputs, H neurons in the hidden layer, and one output
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Code: basic-two-layer-neural-network.py

Code: two-layer-neural-network.py

https://drive.google.com/file/d/15zBRGg_qSS7SJyrUOLLS6vWt696kmmvP/view?usp=sharing
https://drive.google.com/file/d/1FsCoTHksE6cJ-unrwgFGuZh6O2FP_X0d/view?usp=sharing


Artificial Neural Networks. Code
• Example 1: Two inputs, two neurons in a hidden layer, and one output

• Example 2: X inputs, H neurons in the hidden layer, and one output
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Code: basic-two-layer-neural-network.py

Code: two-layer-neural-network.py

https://drive.google.com/file/d/15zBRGg_qSS7SJyrUOLLS6vWt696kmmvP/view?usp=sharing
https://drive.google.com/file/d/1FsCoTHksE6cJ-unrwgFGuZh6O2FP_X0d/view?usp=sharing


How do ANNs Learn?

● The output of the ANN depends on the weights

● Learning consist on updating the weights to get a desired output, i.e., minimize 
the error
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How do ANNs Learn?
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ANNs learn by solving the optimization 
problem of reducing the error in terms of 
error, loss or cost function.

Back Propagation Algorithm:
It learns by example. If you submit to the 
algorithm the example of what you want the 
network to do, it changes the network’s 
weights so that it can produce desired output 
for a particular input on finishing the training.



How do ANNs Learn? A simple example
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● Objective: Learn the following data

● Neural network model: output = W x input (W represents the weight)

Input Desired output

0 0

1 2

2 4

3 6

4 8

 output = 2 x input

 input  output
W

● Error function: mean squared error (MSE) 



How do ANNs Learn? A simple example
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First step: Random weights initialization → W = 3 → output = 3 x input

Second step: Get actual output → Forward propagate input
 

Input Actual output

0 0

1 3

2 6

3 9

4 12



How do ANNs Learn? A simple example
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Third step: Get loss values → loss = f(actual output, desired output)
In our example  f is mean squared error (MSE) 

Total loss is 30

Input Actual output Desired output Loss = Square error

0 0 0 0

1 3 2 1

2 6 4 4

3 9 6 9

4 12 8 16



How do ANNs Learn? A simple example
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Fourth step: Differentiation 
In our numerical example: -1000.0 < W < 1000.0
We can move with steps of 0.0001 
Optimization problem → finding W that minimizes loss 

Differentiation allows us to address the problem
Remember →  the derivative of a function at a certain point, gives the rate or the 
speed of which this function is changing its values at this point

In order to see the effect of the derivative, we can ask ourselves the following 
question: how much the total error will change if we change the internal weight 
of the neural network with a certain small value δW=0.0001

Loss with W=3.0001 → 30.006
Loss with W=2.9999 → 29.994



How do ANNs Learn? A simple example
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Fourth step: Differentiation 
We could guess this rate by calculating directly the derivative of the loss function
Here is what our loss function looks like:

If W=2, we have a loss of 0, since the neural 
network actual output fits perfectly the training set

If W<2, we have a positive loss function, but the 
derivative is negative, meaning that an increase of 
weight will decrease the loss function

If W>2, we have a positive loss, but the derivative is 
positive, meaning that any more increase in the 
weight, will increase the losses even more Arrows represent the derivative at the 

corresponding points



How do ANNs Learn? A simple example
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Fifth step: Backpropagation 
In this example, we used only one layer neural network 
→ No backpropagation is needed!!!

In the case there are more layers, the process is the same but each layer (as the 
output layer with the loss function) requires to provide the function of its derivative. 

Thus, we only need to keep a stack of the function calls during the forward pass 
and their parameters, in order to know the way back to back-propagate the errors 
using the derivatives of these functions. This can be done by de-stacking through 
the function calls. This technique is called auto-differentiation.



How do ANNs Learn? A simple example
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Sixth step: Weight update
Thus as a general rule of weight updates is the delta rule:

New weight = old weight - derivative x learning rate
 
 If the derivative rate is positive, it means that an increase in weight will increase 

the error, thus the new weight should be smaller.

 If the derivative rate is negative, it means that an increase in weight will 
decrease the error, thus we need to increase the weights.

 If the derivative is 0, it means that we are in a stable minimum. Thus, no update 
on the weights is needed -> we reached a stable state.



How do ANNs Learn? A simple example
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The importance of the optimization method applied

https://towardsdatascience.com/overview-of-various-optimizers-in-neural-networks-17c1be2df6d5



Deep Learning 

ANN results get better with 

● more/better data
● bigger models
● more computation
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Deep Learning 

ANN results get better with 

● more/better data
● bigger models
● more computation
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 Example: 
 Deep Learning for regression

https://drive.google.com/file/d/115dbtD8Zxs2I98t
0wSzvauEkie4IPI5P/view?usp=sharing

https://drive.google.com/file/d/115dbtD8Zxs2I98t0wSzvauEkie4IPI5P/view?usp=sharing
https://drive.google.com/file/d/115dbtD8Zxs2I98t0wSzvauEkie4IPI5P/view?usp=sharing


Artificial Neural Networks. Types
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Thanks!
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