
JAMAL TOUTOUH

Deep generative neural networks
Fundamentals & problem solving

Redes neuronales generativas JAMAL TOUTOUH

JAMAL TOUTOUH
jamal@uma.es
jamal.es
@jamtou

Sergio Nesmachnow
sergion@fing.edu.uy

mailto:jamal@lcc.uma.es
mailto:sergion@fing.edu.uy

Jamal Toutouh, Ph.D.
Researcher Assistant Professor at the University of Málaga (Spain)

Affiliate Researcher at Massachusetts Institute of Technology (MIT)
• MIT Computer Science & Artificial Intelligence Lab

•PhD in Computer Science, University of Malaga

•M.Sc. in Software Engineering and Artificial Intelligence, University of Malaga

•M.Sc. in Information and Computer Sciences University of Luxembourg

Redes neuronales generativas

jamal@uma.es

www.jamal.es

@jamtou

http://www.jamal.es/

Intended Learning Outcomes
Attendees will, at the end of the course, be able to:

• describe the main principles of Artificial Neural Networks and Generative

Adversarial Networks and their design

• identify problems that can be addressed by using Artificial Neural

Networks

• use Python code to create and use Artificial Neural Networks to address

classification and prediction problems

• identify problems that can be solved using Generative Machine Learning

• use Python code to create and use Generative Adversarial Networks to

generate synthetic data

Redes neuronales generativas

Generative Adversarial Networks for fun

Redes neuronales generativas

https://thispersondoesnotexist.com/

https://thispersondoesnotexist.com/

 Main Concepts

Redes neuronales generativas

Artificial Intelligence
• Artificial Intelligence: intelligence exhibited by machines and software
• Goal: automate “intellectual tasks” performed by humans

Redes neuronales generativas

• AI models can be simple or complex
◦ Simple: search, pathfinding, simple game

playing, etc.
◦ Complex: computer vision, control tasks,

speech recognition, etc.

Artificial intelligence

Redes neuronales generativas

• The main idea is that AI imitates the human cognition process
(perception, learning, pattern recognition, etc.)

• Key aspects: reasoning, problem solving, learning, knowledge
representation

• Many types of algorithms: search, optimization, logic programming,
or machine learning algorithms.

Machine Learning, Deep Learning, AI ….
• Artificial Intelligence is human-like “intelligence” exhibited by computers

• Machine Learning is the field of study that gives the computers the ability
to learn without being explicitly programmed

• Deep Learning uses deep neural networks to implement machine learning

Redes neuronales generativas

Machine Learning
• Instead of being explicitly programmed (i.e. with a set of rules), machine

learning algorithms try to infer the rules using a model.

 Probabilistic (i.e., not deterministic) outputs.
 Characterized by an accuracy rate.

Redes neuronales generativas

Neural networks
• A type of machine learning algorithms specialized on handling layered

representations of data.

• Multi stage information extraction process: allows modeling complex
(non-linear) functions.

Redes neuronales generativas

Artificial Intelligence Applications
• Facial recognition
• Game playing
• Speech recognition
• Language translation
• Self-driving cars
• Image translation: edges to photo
• Fake images
• Fake videos

Redes neuronales generativas

 Artificial Neural
Networks

Redes neuronales generativas

Simple Biological Neuron
The neuron is the fundamental cell responsible for processing and transmitting
information throughout the nervous system.

A simple biological network has three major parts:
• Dendrites: They branch out into a tree around the cell body. They get incoming
signals to cell body with their strength as weights.

• Cell: Collects input through dendrites and processes to produce output.
• Axon: Responsible for transmitting signals to other neurons.

Redes neuronales generativas

Collective Intelligence

Shared or group intelligence that emerges from collaboration, collective
efforts, and/or competition of many agents.

• A single neuron has limited processing capabilities: response speed is
about several milliseconds.

• However, the human brain is very powerful for problem solving: it uses
the aggregated power of millions of neurons.

Redes neuronales generativas

Artificial Neuron

• An Artificial Neuron is a computational model of a biological neuron.
• The idea is that the artificial neuron receives input signals from other

connected artificial neurons and via a non-linear transmission function
emits a signal itself.

• Main operation:
• Receives n inputs

• Computes the weighted sum

• Passes through an activation function

• Sends the signal to succeeding neurons

Redes neuronales generativas

Artificial Neuron. Basic example

Two-inputs neuron operation:
1. Each input is multiplied by a weight

2. All weighted sums are added with a bias b
(feedforward)

3. The sum is passed through an activation
function

The output of the network depends on the weights, the bias, and the activation
function

Redes neuronales generativas

Code: basic-neuron.py

b

https://drive.google.com/file/d/1RsznOUh0s2fZM_pHiQ751u9nO4zc3_7_/view?usp=sharing

Artificial Neuron. Basic example

Two-inputs neuron operation:
1. Each input is multiplied by a weight

2. All weighted sums are added with a bias b
(feedforward)

3. The sum is passed through an activation
function

The output of the network depends on the weights, the bias, and the activation
function

Redes neuronales generativas

Code: basic-neuron.py

b

Artificial Neuron. What can we do?

• Try to implement a logic function with the two-input neuron.

Redes neuronales generativas

x
1

x
2

x
1
 OR x

2

0 0 0

0 1 1

1 0 1

1 1 1

x
1

x
2

x
1
 AND x

2

0 0 0

0 1 0

1 0 0

1 1 1

Artificial Neuron. What can we do?

• Try to implement a logic function with the two-input neuron.

Redes neuronales generativas

x
1

x
2

x
1
 OR x

2

0 0 0

0 1 1

1 0 1

1 1 1

x
1

x
2

x
1
 AND x

2

0 0 0

0 1 0

1 0 0

1 1 1

Artificial Neuron. Basic example (2)

Two-inputs neuron operation:
1. Each input is multiplied by a weight

2. All weighted sums are added with a bias b
(feedforward)

3. The sum is passed through an activation
function

The output of the network depends on the weights, the bias, and the activation
function

Redes neuronales generativas

Code: basic-neuron.py

b

Activation Function

● Activation function decides whether a neuron should be activated or not
by calculating the weighted sum and further adding bias to it. The motive
is to introduce non-linearity into the output of a neuron.

● If we do not apply activation function then the output signal would be
simply linear function (one-degree polynomial).

● Linear functions are limited in their complexity, have less power. Without
activation function, our model cannot learn and model complicated data
such as images, videos, audio, speech, etc.

Redes neuronales generativas

Activation Function. Types

Redes neuronales generativas

Step Sigmoid

Tanh ReLu Leaky ReLu
Code: neuron.py

Artificial Neural Networks
●A neural network is a bunch of neurons connected together.

●Neural networks are typically organized in layers.

●Layers are made up of a number of interconnected neurons.

●Inputs are presented to the network via the input layer, which
communicates to one or more hidden layers through weighted connections.

●The hidden layers then link to an output layer.

Redes neuronales generativas

Artificial Neural Networks. Code
• Example 1: Two inputs, two neurons in a hidden layer, and one output

• Example 2: X inputs, H neurons in the hidden layer, and one output

Redes neuronales generativas

Code: basic-two-layer-neural-network.py

Code: two-layer-neural-network.py

https://drive.google.com/file/d/15zBRGg_qSS7SJyrUOLLS6vWt696kmmvP/view?usp=sharing
https://drive.google.com/file/d/1FsCoTHksE6cJ-unrwgFGuZh6O2FP_X0d/view?usp=sharing

Artificial Neural Networks. Code
• Example 1: Two inputs, two neurons in a hidden layer, and one output

• Example 2: X inputs, H neurons in the hidden layer, and one output

Redes neuronales generativas

Code: basic-two-layer-neural-network.py

Code: two-layer-neural-network.py

https://drive.google.com/file/d/15zBRGg_qSS7SJyrUOLLS6vWt696kmmvP/view?usp=sharing
https://drive.google.com/file/d/1FsCoTHksE6cJ-unrwgFGuZh6O2FP_X0d/view?usp=sharing

How do ANNs Learn?

● The output of the ANN depends on the weights

● Learning consist on updating the weights to get a desired output, i.e., minimize
the error

Redes neuronales generativas

w
1
=2

w
2
=1

1

0

y = step(1 x 2 + 0 x 1, 2)
y = step(2, 2) = 1

1

0
0

1 Error = MSE = 1

w
1
=1

w
2
=1

1

0

y = step(1 x 1 + 0 x 1, 2)
y = step(1, 2) = 0

0

Compute error Update weights

How do ANNs Learn?

Redes neuronales generativas

ANNs learn by solving the optimization
problem of reducing the error in terms of
error, loss or cost function.

Back Propagation Algorithm:
It learns by example. If you submit to the
algorithm the example of what you want the
network to do, it changes the network’s
weights so that it can produce desired output
for a particular input on finishing the training.

How do ANNs Learn? A simple example

Redes neuronales generativas

● Objective: Learn the following data

● Neural network model: output = W x input (W represents the weight)

Input Desired output

0 0

1 2

2 4

3 6

4 8

 output = 2 x input

 input output
W

● Error function: mean squared error (MSE)

How do ANNs Learn? A simple example

Redes neuronales generativas

First step: Random weights initialization → W = 3 → output = 3 x input

Second step: Get actual output → Forward propagate input

Input Actual output

0 0

1 3

2 6

3 9

4 12

How do ANNs Learn? A simple example

Redes neuronales generativas

Third step: Get loss values → loss = f(actual output, desired output)
In our example f is mean squared error (MSE)

Total loss is 30

Input Actual output Desired output Loss = Square error

0 0 0 0

1 3 2 1

2 6 4 4

3 9 6 9

4 12 8 16

How do ANNs Learn? A simple example

Redes neuronales generativas

Fourth step: Differentiation
In our numerical example: -1000.0 < W < 1000.0
We can move with steps of 0.0001
Optimization problem → finding W that minimizes loss

Differentiation allows us to address the problem
Remember → the derivative of a function at a certain point, gives the rate or the
speed of which this function is changing its values at this point

In order to see the effect of the derivative, we can ask ourselves the following
question: how much the total error will change if we change the internal weight
of the neural network with a certain small value δW=0.0001

Loss with W=3.0001 → 30.006
Loss with W=2.9999 → 29.994

How do ANNs Learn? A simple example

Redes neuronales generativas

Fourth step: Differentiation
We could guess this rate by calculating directly the derivative of the loss function
Here is what our loss function looks like:

If W=2, we have a loss of 0, since the neural
network actual output fits perfectly the training set

If W<2, we have a positive loss function, but the
derivative is negative, meaning that an increase of
weight will decrease the loss function

If W>2, we have a positive loss, but the derivative is
positive, meaning that any more increase in the
weight, will increase the losses even more Arrows represent the derivative at the

corresponding points

How do ANNs Learn? A simple example

Redes neuronales generativas

Fifth step: Backpropagation
In this example, we used only one layer neural network
→ No backpropagation is needed!!!

In the case there are more layers, the process is the same but each layer (as the
output layer with the loss function) requires to provide the function of its derivative.

Thus, we only need to keep a stack of the function calls during the forward pass
and their parameters, in order to know the way back to back-propagate the errors
using the derivatives of these functions. This can be done by de-stacking through
the function calls. This technique is called auto-differentiation.

How do ANNs Learn? A simple example

Redes neuronales generativas

Sixth step: Weight update
Thus as a general rule of weight updates is the delta rule:

New weight = old weight - derivative x learning rate

 If the derivative rate is positive, it means that an increase in weight will increase

the error, thus the new weight should be smaller.

 If the derivative rate is negative, it means that an increase in weight will
decrease the error, thus we need to increase the weights.

 If the derivative is 0, it means that we are in a stable minimum. Thus, no update
on the weights is needed -> we reached a stable state.

How do ANNs Learn? A simple example

Redes neuronales generativas

The importance of the optimization method applied

https://towardsdatascience.com/overview-of-various-optimizers-in-neural-networks-17c1be2df6d5

Deep Learning

ANN results get better with

● more/better data
● bigger models
● more computation

Redes neuronales generativas

Deep Learning

ANN results get better with

● more/better data
● bigger models
● more computation

Redes neuronales generativas

 Example:
 Deep Learning for regression

https://drive.google.com/file/d/115dbtD8Zxs2I98t
0wSzvauEkie4IPI5P/view?usp=sharing

https://drive.google.com/file/d/115dbtD8Zxs2I98t0wSzvauEkie4IPI5P/view?usp=sharing
https://drive.google.com/file/d/115dbtD8Zxs2I98t0wSzvauEkie4IPI5P/view?usp=sharing

Artificial Neural Networks. Types

Redes neuronales generativas

JAMAL TOUTOUH

Thanks!

Redes neuronales generativas 39JAMAL TOUTOUH

Comments?
JAMAL TOUTOUH
jamal@uma.es
jamal.es
@jamtou

Sergio Nesmachnow
sergion@fing.edu.uy

mailto:jamal@lcc.uma.es
mailto:sergion@fing.edu.uy

