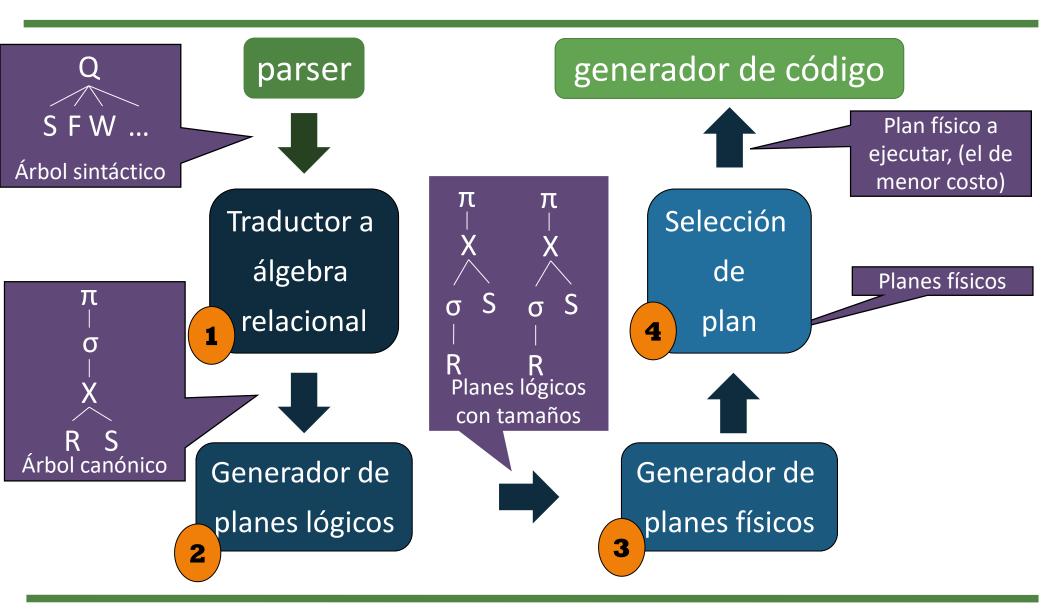
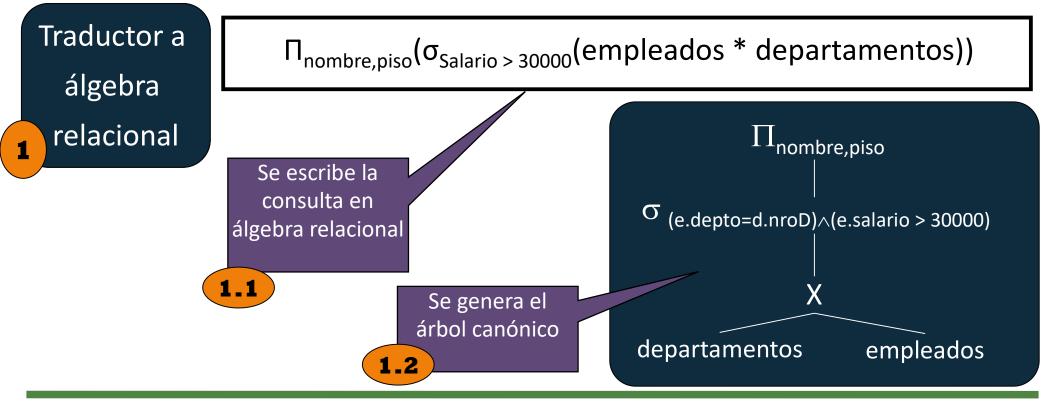
Procesamiento y Optimización de Consultas

[Elmasri-Navathe] [Ramakrishnan - Gehrke 12]


¿Cómo se resuelven las consultas?

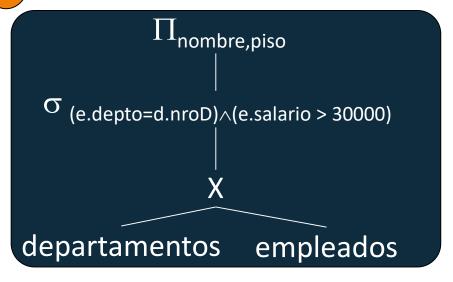
Estrategias usuales de los optimizadores

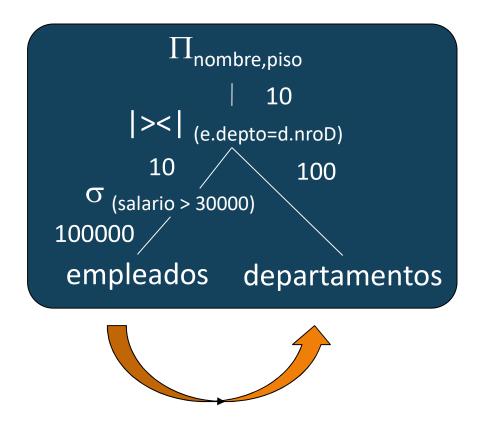
- Proceso detallado de Optimización
- Optimización Heurística
 - Basada en equivalencia de las expresiones del álgebra y ciertas estrategias básicas para limitar el tamaño de los resultados
- Optimización por Costos
 - Basada en estimaciones y datos del catálogo que permiten selecciónar un mejor plan de acceso


Proceso de Optimización

Ejemplo de Optimización (1)

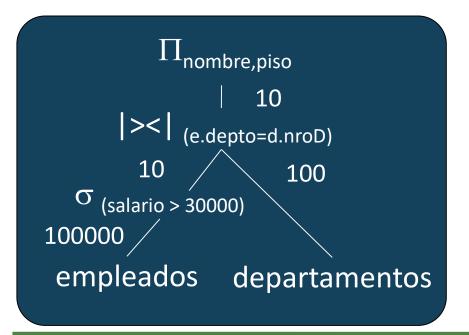
empleados (<u>nombre</u>, edad, salario, depto)
departamentos (<u>nroD</u>, nombreD, piso, gerente)


select e.nombre, d.piso from departamentos d, empleados e where e.depto = d.nroD and e.salario > 30000


Ejemplo de Optimización (2)

Generador de planes lógicos

- A partir del árbol canónico se generan planes lógicos.
- Se usan heurísticas y se agregan datos de tamaño.


Parámetro	Valor
Tamaño de EMPLEADOS (tuplas)	100.000
Tamaño de DEPARTAMENTOS (tuplas)	100
Selectividad de ♂ _(salario>3000)	1/10.000

Ejemplo de Optimización (3)

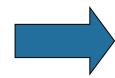
Generador de planes físicos

- Para cada plan lógico
- Se consideran diferentes implementaciones

Parámetro	Valor
Tamaño de EMPLEADOS (tuplas)	100.000
Tamaño de DEPARTAMENTOS (tuplas)	100
Selectividad de $\sigma_{ ext{(salario>3000)}}$	1/10.000
Cantidad de bloques para EMPLEADOS	2000
Cantidad de bloques para DEPTOS.	10
Índices sobre EMPLEADOS	B+ en salario
Índices sobre DEPARTAMENTOS	Hash en nroD

Operación	implementaciones		
σ	Busqueda lineal	Busqueda Binaria	Usar Indice
X	Loop anidado	Loop único	SortMerge

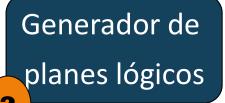
Ejemplo de Optimización (4)


Selección de plan Calculo los costos (cant. de accesos a disco)

Operador	Implementación	Costo
$\sigma_{\rm c}({\sf R})$	Busqueda Lineal	b_R
	Busqueda Binaria	Log ₂ b _R + S _c
	Uso de Indice	Log _k R + S _c
R >< _c T	Loop Anidado	$b_R + (b_R * b_T) + (js * R * T) / bfr_{RS}$

Costo del plan A = 58600

Costo del plan B = 700


Costo del plan C = 10

Plan C al Generador de Código

Resumen del Proceso de Optimización

- Generación del Algebra (Árbol Canónico)
- Generación de planes lógicos (Optimización Heurística)
 - Implica la aplicación de determinadas estrategias (heurísticas) y consultas al catálogo para tamaños de las relaciones para transformar el árbol original.
- Generación de planes físicos (Optimización por Costos)
 - Implica asociar a cada operación de los planes lógicos generados una o más implementaciones.
 - La implementación depende de las estructuras de datos disponibles.
- Selección del Plan final (Optimización por Costos)
 - Implica la evaluación de los planes físicos generados en base a las cantidades de operaciones de I/O que realiza cada algoritmo

Optimización por Heurísticas

- Cambiar la consulta original por otra equivalente de forma de *minimizar* los resultados intermedios.
- Pueden existir varias alternativas.
- Se basa en aplicar equivalencias de los operadores del álgebra de forma que las selecciones y las proyecciones se apliquen lo antes posible.

Reglas de equivalencia de expresiones

•
$$\sigma_{p1 \land p2}(R) = \sigma_{p1}(\sigma_{p2}(R))$$

Cascada de selecciones

•
$$\sigma_{p1}(\sigma_{p2}(R)) = \sigma_{p2}(\sigma_{p1}(R))$$

Conmutativa de la selección

•
$$\pi_{an}(\pi_{ak...an}(R))) = \pi_{an}(R)$$

•
$$\pi_{a1..an}(\sigma_p(R))) = \sigma_p(\pi_{a1..an}(R))$$
 [si p sólo contiene $a_1..a_n$]

•
$$\sigma_p(RXE) = R|X|_pE$$

Equivalencia join – producto y selección

•
$$R |X|_p E = E |X|_p R$$

Conmutativa del join

•
$$(R |X|_p E) |X|_p S = R |X|_p (E |X|_p S)$$

Asociativa del join

•
$$\sigma_p(R \times E) = (\sigma_p(R)) \times E$$
 [si p sólo contiene atributos de R]

•
$$\pi_{an \cup ak}$$
 (R X E) = π_{an} (R)X π_{ak} (E) [si a_n es de R y a_k es de E]

Reglas de equivalencia de expresiones (2)

•
$$R \cup E = E \cup R$$

•
$$R \cap E = E \cap R$$

•
$$R \cup (E \cup D) = (R \cup E) \cup D$$

•
$$R \cap (E \cap D) = (R \cap E) \cap D$$

•
$$\sigma_{c}(R \cup E) = \sigma_{c}(R) \cup \sigma_{c}(E)$$

•
$$\sigma_{c}(R \cap E) = \sigma_{c}(R) \cap \sigma_{c}(E)$$

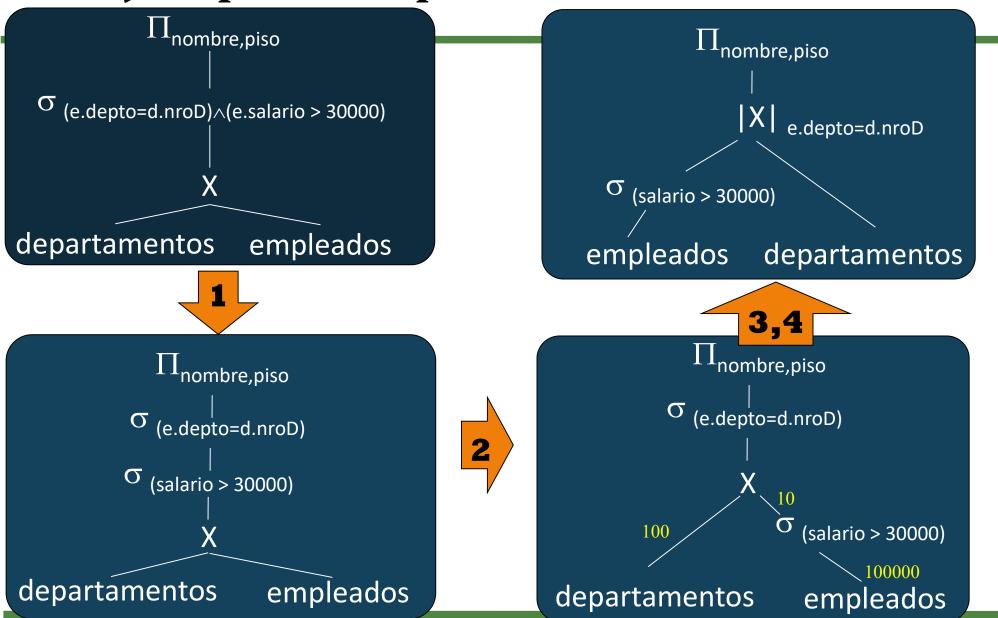
•
$$\sigma_c(R - E) = \sigma_c(R) - \sigma_c(E)$$

•
$$\pi_{an}(R \cup E) = \pi_{an}(R) \cup \pi_{an}(E)$$

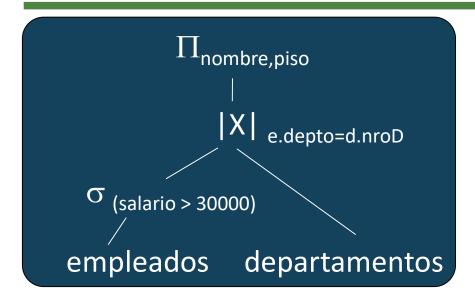
Conmutativa de la unión

Conmutativa de la intersección

Asociativa de la unión

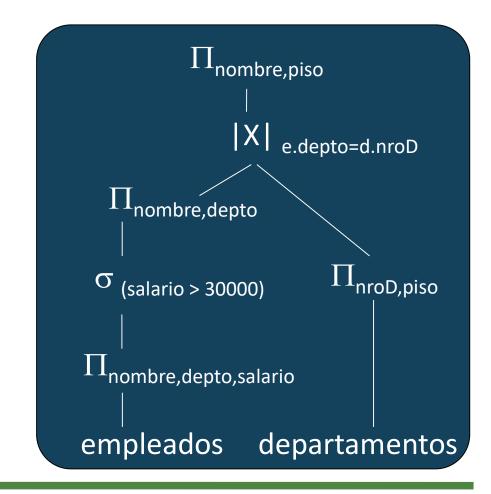

Asociativa de la intersección

Distributivas


Heurísticas

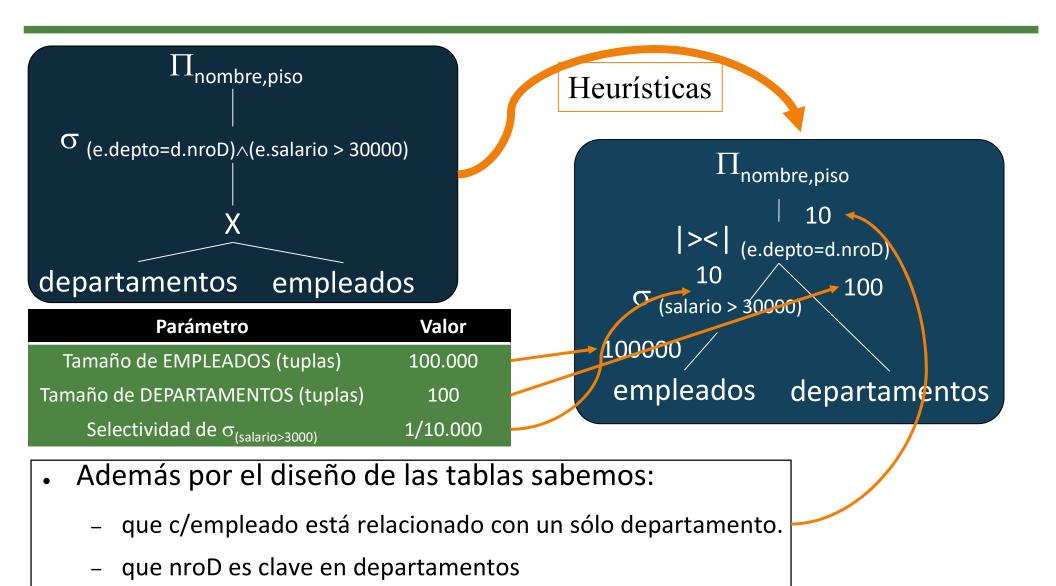
- Reglas para reducir los tamaños intermedios.
 - Cambiar las selecciones conjuntivas por una "cascada" de selecciones simples.
 - 2. Mover las **selecciones lo más abajo** que se pueda en el árbol.
 - 3. Poner a la **izquierda** de los productos las **hojas** que generen menos tuplas, asegurando que el orden de las hojas no cause operaciones de producto cartesiano (que no pueden convertirse en join).
 - 4. Cambiar secuencias de selecciones y productos por join's.
 - 5. Mover las **proyecciones lo más abajo** posible en el árbol, agregando las proyecciones que sean necesarias.

Ejemplo de optimización heurística

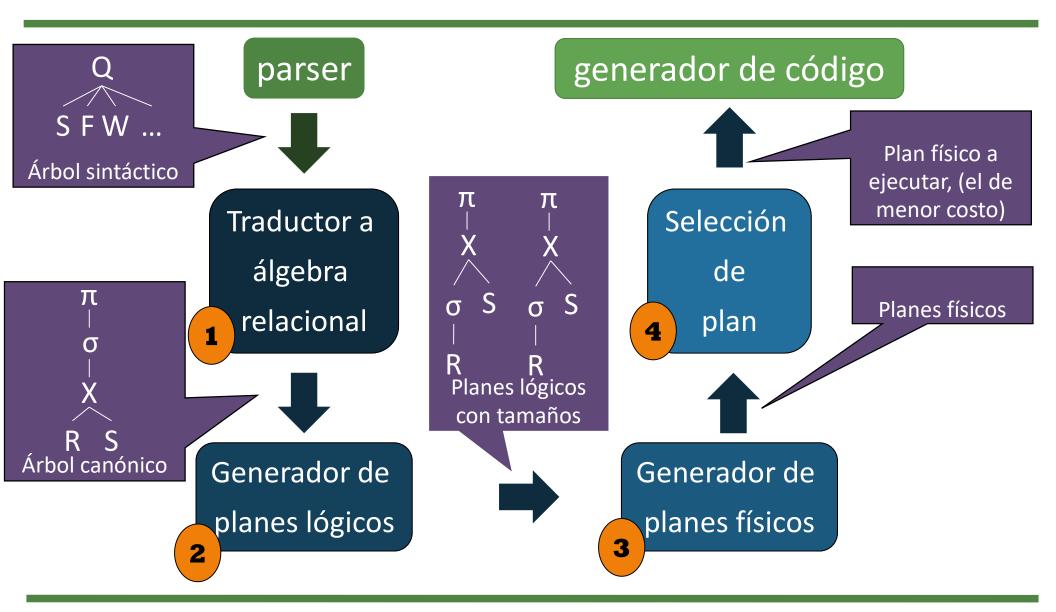


Ejemplo de optimización heurística

empleados (<u>nombre</u>, edad, salario, depto)
departamentos (<u>nroD</u>, nombreD, piso, gerente)


Parámetros para la Estimación de Costos y Tamaños

Nombre	Definición	Notación	Fórmula
Tamaño o Cardinalidad de una Relación T	Cantidad de Registros	r,n _T	-
Tamaño del Registro de una Relación T	Cantidad de Bytes de un registro	R, R _T	-
Cantidad de Bloques para una Relación T	Cantidad de bloques necesarios para almacenar los registros de una relación	b,b _T	_
Factor de Bloqueo para una Relación o índice T	Cantidad de registros que entran en un bloque	bfr, bfr _T	_bytes del bloque/bytes del registro_
Cantidad de Niveles de un índice	Cantidad de niveles de un índice (la fórmula depende del tipo)	x, x _T	log _k (n _T) +1 (para un B+ con k punteros por nodo sobre clave)
Cantidad de valores distintos del atributo A en la tabla T	Cantidad de valores distintos que tiene un atributo en una tabla	d, V(A,T)	n _T (para un atributo clave)


Parámetros para la Estimación de Costos y Tamaños (2)

Nombre	Definición	Notación	Fórmula
Selectividad de una selección	Fracción que indica cuántos registros se deben seleccionar con respecto a la tabla original.	sl , sl(σ _c (T))	1/V(A,T) (si la condición es una igualdad por el atributo A y se asume distribución uniforme)
Selectividad de un join	Fracción que indica cuántos registros se deben seleccionar con respecto al producto cartesiano original.	js, js(R X _c S)	1/Min(V(A,R),V(A,S)) (si es el join natural de R y S por el atributo A)
Cardinalidad de una selección	Cantidad de registros en el resultado de una selección	s, T(σ _c (R))	$n_R^* sl(\sigma_c(R))$
Cardinalidad de un join	Cantidad de registros en el resultado de un join	j, T(R X _c S)	$n_R * n_S * js(R X _c S)$
-	Información del tipo de cada índice (si es primario, o arbol B+, etc.)	-	-

Ejemplo de estimación de tamaños

Proceso de Optimización

Optimización por Costos

Plan Físico

- Le asocia a cada operador del álgebra que aparece en un plan lógico, una implementación.
- Como se pueden considerar diferentes implementaciones para cada operador, entonces un mismo plan lógico puede originar diferentes planes físicos.
- Es necesario estimar el costo (cantidad de operaciones de I/O) de los diferentes planes que se generen y elegir el de costo mínimo.
- Para evaluar el costo se utilizan los parámetros (vistos anteriormente), ya que tienen influencia en el cálculo de la cantidad de operaciones de I/O.

Implementaciones de los operadores

- · A cada operador del plan lógico se le da una implementación.
- Luego hay que estimar el costo de todo el plan basándose en los costos de cada algoritmo.
- Es importante la estrategia de implementación:
 - Pipelined: Algunos operadores se ejecutan simultáneamente y pueden pasarse los resultados a medida que se generan. No graban los resultados intermedios.
 - No Pipelined: Los operadores se ejecutan secuencialmente y es necesario grabar resultados intermedios.

Asumimos:

- Selección y Join (No Pipelined): Se debe considerar el costo de grabar el resultado intermedio.
- Proyección (Pipelined): no hay costo intermedio

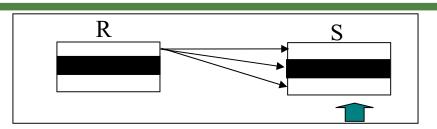
Implementación de los operadores: Estimaciones de Costos

- En el costo consideramos sólo los accesos a disco:
 - de lectura
 - de grabación
- Siempre se realizan las operaciones de a bloque que pueden contener varios registros de índice o datos.
- Los costos de lectura dependen de la organización de los datos
- El costo de grabación siempre es el costo de grabar todo el resultado (R):
 - $\lceil n_R/bf_R \rceil$ donde $bf_R = (cant. bytes bloque) / (cant. bytes tupla)$
- Al ver los algoritmos consideramos las lecturas, pero en el costo debemos agregar la grabación.

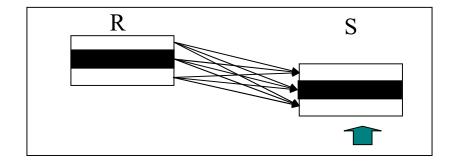
Parámetros para la Estimación de Costos y Tamaños

Nombre	Definición	Notación	Fórmula
Tamaño o Cardinalidad de una Relación T	Cantidad de Registros	r,n _⊤	-
Tamaño del Registro de una Relación T	Cantidad de Bytes de un registro	R, R _T	_
Cantidad de Bloques para una Relación T	Cantidad de bloques necesarios para almacenar los registros de una relación	b,b _T	_
Factor de Bloqueo para una Relación o índice T	Cantidad de registros que entran en un bloque	bfr, bfr _T	_bytes del bloque/bytes del registro_
Cantidad de Niveles de un índice	Cantidad de niveles de un índice (la fórmula depende del tipo)	x, x _T	log _k (n _T) +1 (para un B+ con k punteros por nodo sobre clave)
Cantidad de valores distintos del atributo A en la tabla T	Cantidad de valores distintos que tiene un atributo en una tabla	d, V(A,T)	n _⊤ (para un atributo clave)

Implementación de la selección ($\sigma_c(R)$)


- Búsqueda lineal.
 - Restricciones de uso: ninguna.
 - Descripción: leer cada registro y si cumple la condición se pone en el resultado.
 - Costos de lectura:
 - Peor caso: b_R (cantidad de bloques de la relación R)
 - Promedio: $b_R/2$
- Búsqueda Binaria.
 - Restricciones de uso: registros ordenados.
 - Descripción: leer el bloque del medio y en función de la condición leer el del medio de la primera o segunda mitad y así hasta encontrarlo o no tener más bloques para leer.
 - Costos de lectura: $log_2b_R + \lceil s/bf_R \rceil 1$

Implementación de la selección ($\sigma_c(R)$) con Índices


- Primario o Cluster:
 - Restricciones de uso: registros ordenados.
 - Costos de lectura:
 - $x + \lceil s/bf_R \rceil$ (x es la cantidad de niveles del índice)
 - Si el índice es primario x+1 (sólo 1 bloque tiene el valor buscado)
- Hash:
 - Restricciones de uso: sólo para condiciones por igualdad.
 - Costos de lectura: 1 o 2 dependiendo del tipo de hash
- Secundario con B+:
 - Restricciones de uso: ninguna
 - Costos de lectura: x + s (peor caso, asumiendo que cada registro está en un bloque distinto)

Implementación del Join (R|X|_{A=B}S)

- Loop anidado por registros
 - Restricciones de uso: ninguna

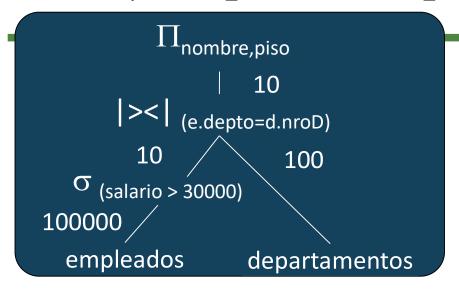
- Descripción: para cada registro de R acceder a todos los bloques de S y combinar ese registro de R con todos los de S.
- Costo de lectura: $b_R + n_R^* b_S$
- Loop anidado por bloques
 - Restricciones de uso: ninguna

- Descripción: para cada bloque de R combinar todos los registros de ese bloque con todos los bloques de S.
- Costos de lectura: $b_R + \lceil b_R / (M-2) \rceil * b_S$

Donde M la cantidad de buffers

Implementación del Join ($R|X|_{A=B}S$) (2)

- Sort-Merge Join
 - Restricciones de uso: las dos tablas deben tener los registros ordenados. Si no es así hay que agregar los costos de ordenación.
 - Descripción: recorrer R y S en paralelo combinando los registros.
 - Costo de lectura: b_R + b_S
 - Costo de ordenación: 2*b*(1+log₂b)
- Index Join (Single Loop)
 - Restricciones de uso: existencia de un índice para S
 - **Descripción:** recorrer R y acceder por el índice a S.
 - Costo de lectura: $b_R+(n_R*Z)$ donde Z depende del tipo de índice.
 - secundario: $Z=x + s_S$
 - cluster: $Z=x + \lceil s_S/bf_S \rceil$
 - primario: Z=x+1
 - hash=h


Implementaciones de los Operadores.

	Algoritmo	Costo	Condición	Organización
	Búsqueda Lineal	b _R (peor caso)	Todas	
		b _R /2 (prom)		
	Búsqueda Binaria	$\log_2 b_R + \lceil s/bf_R \rceil$	Todas	Ordenado
	Indice Primario	x + 1	Igualdad	Ordenado
$\sigma_{\rm c}({\rm R})$	Hash	1 o 2	Igualdad	
	Índice Primario	x + (b/2) (prom)	de orden	Ordenado
	Índice Cluster	$x + \lceil s/bf_R \rceil$	Todas	Ordenado
	Índice secundario B+	x + s (peor caso)	Todas	
	Grabación Intermedia	s/bf _R	Todas	

Implementaciones de los Operadores (2)

	Algoritmo	Costo	Condición	Organización
	Loop Anidado (registros)	$b_R + (n_R * b_s)$	Todas	
R >< _c S	Loop Anidado (bloque)	$b_R + b_R/(M-2)$ * b_s	Todas	
Trip Tigo	Sort Merge	b _R + b _s + costo ordenación	Todas	Índice
	Index join	$b_R + n_R *Z$	Todas	Índice

Ejemplo de optimización por costos

Parámetro	Valor		
Tamaño de EMPLEADOS (tuplas)	100.000		
Tamaño de DEPARTAMENTOS (tuplas)	100		
Selectividad de σ _(salario>3000)	1/10.000		
$Bf_{empleados}, bf_{departamentos}$	10		
bf _{empleados X deparmentos}	5		
Índices sobre EMPLEADOS	B+ en salario, x=5		
Todas las tablas tienen índice primario con x=1			
Asumimos que hay 3 buffers (M=3)			

	implementación	Costo leer	Costo grabar
$\sigma_{\text{(salario>3000)}}$ Empleados	Búsqueda lineal	10.000	1
	Búsqueda binaria	No es posible	
	Índice secundario	15	1
><	Loop anidado reg.	101	2
	Loop anidado bloq.	11	2
	Index Join	21	2
Costo total mínimo		15+11 = 26	2+1=3