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Discrete binary-input channels

-
X

-
Y

W

• Input alphabet: X = {0, 1}.
• Output alphabet: Y.

• Transition probabilities: W (y|x), y ∈ Y, x ∈ X .

• Capacity: C(W ) = supPX
I(X;Y ).

• Throughout this unit, we assume all raw channels are memoryless.
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Symmetric binary-input channels

A binary-input discrete memoryless channel W : {0, 1} → Y is symmetric
if there exists a permutation π : Y → Y such thatt π = π−1 and
W (y|x) = W (π(y)|x̄) for all y ∈ Y.

Binary symmetric channel
BSC(ϵ)

1 1r -r
1− ϵ

ϵ

0 0r -r1− ϵ

ϵ

�
�
�
�
�
��3Q

Q
Q
Q
Q
QQs

Capacity C(W ) = 1−H(ϵ)

Binary erasure channel
BEC(ϵ)

1 1r -r
1− ϵ

ϵ

0 0r -r1− ϵ

ϵ r?
�������1

PPPPPPPq

Capacity C(W ) = 1− ϵ

For symmetric channels, capacity is achieved with a uniform input distribution:

C(W ) = I(X;Y ) with X ∼ Bernoulli(1/2) ;

all logs are base-2 =⇒ 0 ≤ C(W ) ≤ 1.
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A guessing game

Say we want to guess (decode) the value of a binary vector UN after
observing a related random vector Y N .

• For example, UN may be a random codeword from a
code, and Y N a channel’s output when the input is UN .

• To minimize the probability of decoding error, upon
observing yN ,we choose the value un that maximizes

p(uN |yN ) =

N∏
i=1

p(ui|yn, ui−1).

• Channel interpretation: define bit channels

Wi : Ui → (Y N , U i−1) .

Then,

C(W) = I(UN ;Y N ) =
N∑
i=1

I(Ui;Y
N , U i−1) =

N∑
i=1

C(Wi) .

W

-UN
- YN

-U1
- Y1

-U2
- Y2

-Ui
- Yi...
...

...
...
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Extremal channels

p(uN |yN ) =

N∏

i=1

p(ui|yn, ui−1).

Two extreme cases for p(ui|yn, ui−1):

1 p(ui|yn, ui−1) = 1ui
: ui is a function F (yn, ui−1);

perfect channel, capacity C(Wi) = 1.

2 p(ui|yn, ui−1) = 1
2 : y

n, ui−1 provide no information on ui;
useless channel, capacity C(Wi) = 0.
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A thought experiment

Assume p(·|·, ·) is such that all channels Wi are either perfect or useless.
Let [N ] = {1, 2, . . . , N}, and

A = {i ∈ [N ] | Wi is perfect}; Ac = [N ] \ A .

Assume also that if i ∈ Ac, a genie provides us with the values ui.
Then, we can decode un perfectly from yn with the following sequential
algorithm.

For i = 1, 2, . . . , N :

• If i ∈ Ac, get ui from the genie.

• If i ∈ A, compute ui = F (yn, ui−1).

Of course, this situation is unrealistic in practice (both the nature of the
channels, and the genie).
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Just a thought experiment?

Of course, the thought experiment is unrealistic in practice. However,
taking advantage of a channel polarization phenomenon, with polar codes
one can

• start with N independent, identical, imperfect (but not useless)
binary-input symmetric channels,

• apply a transformation into N inter-dependent channels that are,
asymptotically (as N →∞), partitioned as A ∪Ac above, with channels
in A being arbitrarily close to perfect, and |A|/N → C(W ),

• find an appropriate “genie” for free,

• encode with a code rate attaining, asymptotically, the capacity of the

original channels, and with probability of decoding error O(2−
√
N ),

• provide efficient encoding and decoding algorithms (complexity
O(N logN)),

• use deterministic constructions throughout, with their properties
mathematically proven.

This set of features was unprecedented when the work was first published.
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A basic transform

Begin with two independent copies (or uses) of W

- -W
X2 Y2

- -W
X1 Y1
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A basic transform

Begin with two independent copies (or uses) of W

- -W
X2 Y2

- -W
X1 Y1

W 2 : (X1, X2)→ (Y1, Y2)

C(W 2) = 2C(W )
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A basic transform

Combine the channels

- -W
X2 Y2

- -W
X1 Y1e

qU2

U1
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We have[
X1

X2
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= G2

[
U1

U2

]
, with G2 =

[
1 1
0 1

]
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(arithmetic mod 2).
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A basic transform

Combine the channels

- -W
X2 Y2

- -W
X1 Y1e

qU2

U1

Wvec : (U1, U2)→ (Y1, Y2)

We have[
X1

X2

]
= G2

[
U1

U2

]
, with G2 =

[
1 1
0 1

]
(G2 = G−1

2 )

(arithmetic mod 2).

• Because of the created dependencies, the vector channel
Wvec : (U1, U2)→ (Y1, Y2) cannot be interpreted as two independent uses
of a single channel, as W 2 : (X1, X2)→ (Y1, Y2) can.

• Since G2 is invertible, we have

C(Wvec) = C(W 2) = 2C(W ) .
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Decomposition into bit channels

Combined channels

- -W
X2 Y2

- -W
X1 Y1e

qU2

U1

We have
[

X1

X2

]
= G2

[
U1

U2

]
, with G2 =

[
1 1
0 1

]
(G2 = G−1

2 )

(arithmetic mod 2).
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Decomposition into bit channels

Combined channels

- -W
X2 Y2

- -W
X1 Y1e

qU2

U1

We have
[

X1

X2

]
= G2

[
U1

U2

]
, with G2 =

[
1 1
0 1

]
(G2 = G−1

2 )

(arithmetic mod 2).
Define the bit channels

W1 : U1 → (Y1, Y2)

W2 : U2 → (Y1, Y2, U1)
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First bit channel

W1 : U1 → (Y1, Y2)

- -W
X2 Y2

- -W
X1 Y1e

qrandom U2

U1

C(W1) = I(U1;Y1, Y2) = H(U1)−H(U1|Y1, Y2)
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Second bit channel

W2 : U2 → (Y1, Y2, U1)

- -W
X2 Y2

- -W
X1 Y1e

qU2

U1

C(W2) = I(U2;Y1, Y2, U1) = H(U2)−H(U2|Y1, Y2, U1)

= 1−H(U2|Y1, Y2, U1) ≥ 1−H(U2|Y2) = 1−H(X2|Y2) = C(W ).

Recall
C(W1) + C(W2) = C(Wvec) = 2C(W ) .

Therefore,
C(W1) ≤ C(W ) ≤ C(W2).

In fact, inequalities are
strict if 0 < C(W ) < 1.

The transformation took two identical channels, and transformed them
into a pair where one is better than the original, and one is worse.

Rename: W− ≜ W1, W+ ≜ W2.
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Double down on the construction

First, duplicate the basic transform

- -W

- -We
q

- -W

- -We
q

U4

U2

U3

U1

Y4

Y2

Y3

Y1
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Double down on the construction

Reinterpret

- -

- -

- -

- -

W+

W−

W+

W−

U4

U2

U3

U1

Y4

Y2

Y3

Y1

A pair of W− and a pair of W+.
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Double down on the construction

Apply the basic transform to each pair

- -W−U2 Y2

Get W−−,W−+

- -W−U1 Y1e

q
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Double down on the construction

Apply the basic transform to each pair

- -W+
U4 Y4

Get W+−,W++

- -W+
U3 Y3e

q
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Double down on the construction

Apply the basic transform to each pair

- -W+
U4 Y4

- -W−U2 Y2

- -W+
U3 Y3e

q

- -W−U1 Y1e

q
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Double down on the construction

- -W++
U4 Y4

- -W+−
U2 Y2

- -W−+
U3 Y3

- -W−−
U1 Y1

As for capacities, we know that in nontrivial cases, we have (abusing
notation):

W−− < W− < W < W+ < W++

and also
W−− < W− < W−+, W+− < W+ < W++

134 / 216



Recursive application of the transform

sC(W )

s
C(W−)

sC(W+)

s
C(W−−)

sC(W−+)

s
C(W+−)

sC(W++)

s · · ·
C(W−−−)

s · · ·s

s

· · ·

· · ·

s

s

· · ·

· · ·
s
s
· · ·

· · ·C(W+++)

n=0 n=1 n=2 n=3

0

0.5

1

Recursive application of the
transform continues to pull
channels apart: bad channels
become worse, good
channels become better.

This process is called
polarization.
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Back to the N = 4 case

- -W++
U4 Y4

- -W+−
U2 Y2

- -W−+
U3 Y3

- -W−−
U1 Y1
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Back to the N = 4 case

Opening the boxes, detailed N = 4 structure

- -W

- -We
q

- -W

- -We
q

e

q
e

qU4

U2

U3

U1

X4 Y4

X2 Y2

X3 Y3

X1 Y1
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Back to the N = 4 case

Put variables in standard order

- -W

- -W

- -W

- -We

q
e

q
e
q

e
q

U4

U3

U2

U1

X4 Y4

X3 Y3

X2 Y2

X1 Y1

We continue this construction recursively:
take two structures of length N = 2n, construct one of length 2N = 2n+1.

For each bit channel W s in the length–N construction, where s ∈ {−,+}n, we
create channels W s− and W s+ in the length–2N construction.
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Case N = 8

- -

- -

- -

- -

W

W

W

We

q
e

q
e
q

e
q

U8

U7

U6

U5

X8 Y8

X7 Y7

X6 Y6

X5 Y5

- -

- -

- -

- -

W

W

W

We

q
e

q
e
q

e
q

U4

U3

U2

U1

X4 Y4

X3 Y3

X2 Y2

X1 Y1e
e

e
e

q
q

q
q
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Case N = 8 from 0

- -

- -

- -

- -

W

W

W

We

q
e

q
e
q

e
q

U7

U6

U5

U4

X7 Y7

X6 Y6

X5 Y5

X4 Y4

- -

- -

- -

- -

W

W

W

We

q
e

q
e
q

e
q

U3

U2

U1

U0

X3 Y3

X2 Y2

X1 Y1

X0 Y0e
e

e
e

q
q

q
q
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Binary erasure channels

1 1q -q
1− ϵ

ϵ

0 0q -q1− ϵ

ϵ q?
�����1

PPPPPq Capacity C(W ) = 1− ϵ.

Generalization: A binary-input symmetric channel W ∗ = {0, 1} → Y is
a binary erasure channel iff for each y ∈ Y, either W ∗(y|0)W ∗(y|1) = 0
or W ∗(y|0) = W ∗(y|1). In the latter case, y is called an erasure symbol.

Clearly, the usual BEC satisfies the definition. And so do the bit channels
W− and W+!
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Binary erasure channels

- -W
X2 Y2

- -W
X1 Y1e

qU2

U1

W− : U1 → (Y1, Y2)

W− :

y0 y1 û0

u0 ⊕ u1 u1 u0

? u1 ?
u0 ⊕ u1 ? ?

? ? ?

ϵ− = 1− (1− ϵ)2

= 2ϵ− ϵ2 > ϵ

W+ : U2 → (Y1, Y2, U1)

W+ :

y0 y1 u0 û1

u0 ⊕ u1 u1 u0 u1

? u1 u0 u1

u0 ⊕ u1 ? u0 u1

? ? u0 ?

ϵ+ = ϵ2 < ϵ
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Binary erasure channels

Channel W−

1 1r -r
1− ϵ−

ϵ−

0 0r -r1− ϵ−

ϵ− r?
�������1

PPPPPPPq � all
erasure
events

-

ϵ− = 2ϵ− ϵ2 > ϵ

Channel W+

1 1r -r
1− ϵ+

ϵ+

0 0r -r1− ϵ+

ϵ+ r?
�������1

PPPPPPPq

ϵ+ = ϵ2 < ϵ

Therefore,

ϵ+ < ϵ < ϵ− =⇒ C(W+) > C(W ) > C(W−)

This gives an obvious recursion to compute ϵs for s ∈ {−,+}n, the
erasure probability of W s, from which C(W s) follows.
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Binary erasure channels

Example. ϵ = 0.5, C(W ) = 0.5.

n = 1 : C(W−) = 0.25, C(W+) = 0.75,

n = 2 : C(W−−) = 0.0625, C(W−+) = 0.4375, C(W+−) = 0.5625, C(W++) = 0.9375,

n = 3 : 0.00390625, 0.12109375, 0.19140625, 0.68359375,

0.31640625, 0.80859375, 0.87890625, 0.99609375

C(Wi)

channel no.

Capacity of bit channels for n = 3, ϵ = 0.5
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Another relabeling

Let s ∈ {+,−}n. Interpret ’+’ as a ’1’, ’–’ as a ’0’, and let i be the
integer represented in binary by s. We will index the channels with i, and
denote

Wi = W s, 0 ≤ i < 2n .

Example, for n = 3:

W0 = W−−−,

W1 = W−−+,

...
...

W6 = W++−

W7 = W+++
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Binary erasure channels

C(Wi)

channel no.

Capacity of bit channels for n = 8, ϵ = 0.5
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Binary erasure channels

C(Wi)

channel no.

Capacity of bit channels for n = 8, ϵ = 0.5 (sorted)
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Binary erasure channels

C(Wi)

×220 channel no.

Capacity of bit channels for n = 20, ϵ = 0.5
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Binary erasure channels

C(Wi)

×220 channel no.

Capacity of bit channels for n = 20, ϵ = 0.5 (sorted)
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Binary erasure channels

��	 @@R
0.025 ≤ C(Wi) ≤ 0.975: 3.1% of channels

C(Wi) < 0.025, C(Wi) > 0.975: 96.9% of channels

Histogram of bit channel capacities for n = 20, ϵ = 0.5 (bin size = 0.025)
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Polarizing transformation

What we have done:

Gn

-UN
-XN

W - YN

-U1
-X1

W - Y1
-U2

-X2
W - Y2

-Ui
-Xi

W - Yi...
...

...

...
...

...

GN is an invertible N ×N linear transformation, N = 2n. GN polarizes
the bit channels Wi : Ui → (Y N , U i−1).

Let A⊗A denote the Kronecker product of a matrix A with itself. E.g.,

G2 ⊗G2 =

[
1 1
0 1

]
⊗G2 =

[
G2 G2

0 G2

]
=




1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1




Then,
GN = G⊗n

2 = G2 ⊗G2 ⊗ · · · ⊗G2︸ ︷︷ ︸
n times

.

151 / 216



Polarizing transformation

What we have done:

Gn

-UN
-XN

W - YN

-U1
-X1

W - Y1
-U2

-X2
W - Y2

-Ui
-Xi

W - Yi...
...

...

...
...

...

GN is an invertible N ×N linear transformation, N = 2n. GN polarizes
the bit channels Wi : Ui → (Y N , U i−1).
Let A⊗A denote the Kronecker product of a matrix A with itself. E.g.,

G2 ⊗G2 =

[
1 1
0 1

]
⊗G2 =

[
G2 G2

0 G2

]
=




1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1




Then,
GN = G⊗n

2 = G2 ⊗G2 ⊗ · · · ⊗G2︸ ︷︷ ︸
n times

.

151 / 216



Polarization–input permutation

A more general description:

GnBn

-UN
- -XN

W - YN

-U1
- -X1

W - Y1
- -U2

-X2
W - Y2

- -Ui
-Xi

W - Yi...
...

...

...
...

...
...

...

where Bn is an N ×N permutation matrix (a reordering of the input
variables), and

GN = G⊗n
2 = G2 ⊗G2 ⊗ · · · ⊗G2︸ ︷︷ ︸

n times

.

Popular permutation useful in decoding: bit-reversal permutation, e.g.,

R8 : (0, 1, 2, 3, 4, 5, 6, 7) → (0, 4, 2, 6, 1, 5, 3, 7)
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Limit polarization for the BEC

Define
T−(x) = 2x− x2, T+(x) = x2,

and a random process ϵn, with ϵ0 = ϵ, and

ϵn =

{
T−(ϵn−1) w.p. 1

2 ,

T+(ϵn−1) w.p. 1
2 ,

The random process ϵn converges almost surely to a limiting random
variable ϵ∞ ∈ {0, 1}, and

P (ϵ∞ = 0) = 1− ϵ .
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General polarization

• We saw polarization at work for the BEC.

• In fact, GN polarizes a broad class of memoryless discrete channels.

• Moreover, a random N ×N transformation will, with high
probability, achieve polarization. The advantage of GN is in its
recursive structure, enabling efficient construction and
encoding/decoding algorithms.

• The following applies to GN and binary-input symmetric channels:
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Polarization theorems

Theorem (Polarization, Arikan 2007)

The bit-channel capacities C(Wi) polarize: For any δ ∈ (0, 1),

no. channels with C(Wi) > 1− δ

N

N→∞−−−−→ C(W )

no. channels with C(Wi) < δ

N

N→∞−−−−→ 1− C(W )

Theorem (Rate of polarization, Arikan-Telatar 2008)

Above theorem holds with δ ≈ 2−
√
N .
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Polarization: more examples

C(Wi)

×220 channel no.

Capacity of bit channels for n = 20, ϵ = 0.7
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Polarization: more examples

C(Wi)

×220 channel no.

Capacity of bit channels for n = 20, ϵ = 0.7 (sorted)
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Polarization: more examples

��	 @@R
0.025 ≤ C(Wi) ≤ 0.975: 2.8% of channels

C(Wi)> 0.975: 68.6%, C(Wi)< 0.025: 28.6% of channels

Histogram of bit channel capacities for n = 20, ϵ = 0.7 (bin size = 0.025)
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So, where are the codes?

We define a linear [N,K] polar code, K ≤ N , for a given raw channel W .

Polar Codes

Polarization

What we have done:

Gn

-UN
-XN

W - YN

-U1
-X1

W - Y1
-U2

-X2
W - Y2

-Ui
-Xi

W - Yi...
...

...

...
...

...

GN is an invertible N ×N linear transformation, N = 2n. GN polarizes
the bit channels Wi : Ui → (Y N , U i−1).

Let A⊗A denote the Kronecker product of a matrix A with itself. E.g.,

G2 ⊗G2 =

[
1 1
0 1

]
⊗G2 =

[
G2 G2

0 G2

]
=




1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1




Then, up to permutation of the input labels,

GN = G⊗n
2 = G2 ⊗G2 ⊗ · · · ⊗G2︸ ︷︷ ︸

n times

.

35 / 37

▶ Compute the capacities C(Wi), 1 ≤ i ≤ N .

▶ Find the set of K indices A = {i1, i2, . . . , iK}
with the largest capacities.
Let Ac = [N ]\A (recall [N ] = {1, 2, . . . , N}).
• Use Ui1 , Ui2 , . . . UiK as information symbols.
• Set the symbols Ui, i ∈ Ac to fixed binary values

forming an N−K-vector uAc , known to the decoder. These are
referred to as frozen bits.

• The encoding is UA → XN . If uA is a message K-vector, then the
corresponding codeword is

x = uAG
A
N + uAcGAc

N = uAG
A
N + v,

where GB
N consists of the rows of GN with indices in B, B ⊆ [N ].

The vector v is fixed. If we set the frozen bits to zero, then v = 0,
and the code is linear. Otherwise, it is a coset of a linear code.
This encoding is not necessarily systematic.
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Comparison with our thought experiment?

Notice the analogy to our thought experiment.

Thought experiment Polar code
All channels in A are perfect. All channels in A are perfect in the

limit, or close to perfect for finite N ,
as long as K/N < C(W ).

All channels in Ac are useless. N (1−C(W )) channels in Ac are
useless in the limit, but we freeze all
of Ac.

Bits corresponding to Ac are pro-
vided by a genie

Bits corresponding to Ac are fixed
and known to the decoder (we are
our own genie).

Decode uN perfectly with a simple
sequential procedure

Decode uN with high probability
with a relatively simple sequential
procedure (successive cancellation
decoding—SCD).
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Polar encoder

▶ Complexity.
• Straightforward computation is O(N2).
• However, the recursive structure of the

transform GN allows for a fast O(N logN)
computation.

f(N) =2f

(
N

2

)
+

N

2
= 4f

(
N

4

)
+ 2

N

2

= · · · = Nf(1) +
N

2
logN

▶ Bit selection: selection of the information coordinates.
• For a given code dimension K = RN , we need to select the K bit

channels with highest capacities, given a known raw channel W .

• Although easier for the BEC, since one can compute the capacity with an
explicit recursion (with the parameter ϵ known), it is still a nontrivial
problem if ϵ changes.
• In principle, one would need to recompute the capacities and the

channel ordering for each value of ϵ.
• Even more complicated for other channels. However, good algorithms and

approximations have been developed and work.
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Channel ordering on the BEC

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

ϵ

Ci

Capacities Ci = C(Wi) of bit channels as a function of ϵ, N = 8
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Channel ordering on the BEC

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

ϵ

Ci

Capacities Ci = C(Wi) of bit channels as a function of ϵ, N = 16

163 / 216



Channel ordering on the BEC

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

ϵ

Ci

Capacities Ci = C(Wi) of bit channels as a function of ϵ, N = 32
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Channel ordering on the BEC

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

ϵ

Ci

Capacities Ci = C(Wi) of bit channels as a function of ϵ, N = 64

165 / 216



Channel ordering on the BEC

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

ϵ

Ci

• Order generally depends on ϵ, although parts of it appear fixed and
independent of ϵ.

• [Ordentlich and Roth (2019)] show that ordering according to
αi = C−1( 12 ) (independently of ϵ) still achieves capacity under SCD,
although with diminished convergence rates.

• [Wu and Siegel (2019)] further study “universal” partial orders for
the BEC and more general channels.
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Channel ordering on the BEC

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

ϵ

Ci

0.5

• Order generally depends on ϵ, although parts of it appear fixed and
independent of ϵ.

• [Ordentlich and Roth (2019)] show that ordering according to
αi = C−1( 12 ) (independently of ϵ) still achieves capacity under SCD,
although with diminished convergence rates.

• [Wu and Siegel (2019)] further study “universal” partial orders for
the BEC and more general channels.
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Encoding example: N = 8, K = 4 on BEC(0.5)

- -

- -

- -

- -

W

W

W

We

q
e

q
e
q

e
q

U8

U7

U6

U5

X8 Y8

X7 Y7

X6 Y6

X5 Y5

- -

- -

- -

- -

W

W

W

We

q
e

q
e
q

e
q

U4

U3

U2

U1

X4 Y4

X3 Y3

X2 Y2

X1 Y1e
e

e
e

q
q

q
q
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Decoding: successive cancellation decoder (SCD)

This is the original decoder proposed by Arikan.
Basic step:

- -W
y2

- -W
y1e

qu2

u1

• Decode W−: observe y1, y2, estimate û1 (treat u2 as noise).

• Decode W+: use û1 in lieu of u1, estimate û2 from y1, y2, û1.
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Successive cancellation decoding (SCD)

In general:

For i = 1, 2, . . . , N :

ûi =

{
ui if i ∈ Ac,

gi(y
N , ûi−1) if i ∈ A,

where gi, i ∈ A, are decision functions

gi(y
N , ûi−1) ≜


0 if

Wi(y
N , ûi−1|ui = 0)

Wi(yN , ûi−1|ui = 1)
≥ 1,

1, otherwise.

Recall:

Polar Codes

Polarization

What we have done:

Gn

-UN
-XN

W - YN

-U1
-X1

W - Y1
-U2

-X2
W - Y2

-Ui
-Xi

W - Yi...
...

...

...
...

...

GN is an invertible N ×N linear transformation, N = 2n. GN polarizes
the bit channels Wi : Ui → (Y N , U i−1).

Let A⊗A denote the Kronecker product of a matrix A with itself. E.g.,

G2 ⊗G2 =

[
1 1
0 1

]
⊗G2 =

[
G2 G2

0 G2

]
=




1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1




Then, up to permutation of the input labels,

GN = G⊗n
2 = G2 ⊗G2 ⊗ · · · ⊗G2︸ ︷︷ ︸

n times

.
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Wi : Ui → (Y N , U i−1)

SCD example

The conditionals Wi(y
N , ûi−1|ui = b) can be computed efficiently through

recursions based on the structure of GN .

We say that a decoder block error occurred if ûN ̸= uN ,
or, equivalently ûA ̸= uA.
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Performance of SCD

Error performance.

Theorem

For any rate R = K/N < C(W ) and block-length N , the probability of
block error for polar codes under successive cancellation decoding is
bounded as

Pe(N,R) = o(2−
√
N+o(

√
N)) .

Complexity. Here, too the structure of GN allows for an efficient
implementation.

Theorem

The complexity of successive cancellation decoding for polar codes is
O(N logN).
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SCD issues

• Compared to ML decoding, SCD is sub-optimal, because it does not
take advantage of the knowledge of frozen bits with indices j > i
when estimating ûi. However, the penalty does not prevent SCD
from approaching channel capacity.

• For channels other than the BEC, the original SCD computation
may still be costly (hidden costs in the complexity of computing
precise decisions). Many improvements have been developed,
successfully addressing these issues.
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A reflection on polar codes and Shannon’s paradise

Taking the BEC as an example:

• The channel is perfect a fraction 1− ϵ of the
times, and useless a fraction ϵ of the times.

• Of course, we do not know which times are going
to be perfect, and which useless.

• The BEC capacity is C(W ) = 1− ϵ, and Shannon
tells us we can communicate at a rate arbitrarily
close to 1− ϵ.

• So, Shannon is telling us we can communicate as
if we had a genie telling us which times are going
to be perfect, and which useless, and we could
send data only at the perfect times.

1 1r -r
1− ϵ

ϵ

0 0r -r1− ϵ

ϵ r?
�������1

PPPPPPPq

Capacity C(W ) = 1− ϵ
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1 1r -r
1− ϵ

ϵ

0 0r -r1− ϵ

ϵ r?
�������1

PPPPPPPq

Capacity C(W ) = 1− ϵ

Polar codes make Shannon’s genie real by designing and identifying the
perfect channels and the useless ones, and sending data only over the
perfect ones.
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Polar codes: development

Polar codes have been extensively studied and improved since the original
publication. Extensions/improvements include:

• non-binary inputs

• non-symmetric channels (where the symmetric capacity can be
attained, generally inferior to the full capacity)

• systematic encoding

• concatenated schemes (with CRC and other codes)

• efficient list decoding

• multi-user settings

• applications to source coding

• many improvements in complexity of code construction and
encoding/decoding algorithms, enabling the practical application of
the codes

• polar codes adopted as part of the 5G standard
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