Universidad de la República Facultad de Ingeniería - IMERL

Cálculo Diferencial e Integral en Varias Variables Mayo 2022

Primer Parcial – 04 Mayo de 2022

Nro de Parcial	Cédula	Apellido y nombre				

Respuestas Verdadero o Falso

1	2	3	4	5	6	7	8	9	10

Respuestas Ejercicios Multiple Opción

E. 1	E. 2	E. 3	E. 4	E. 5	E. 6	E. 7	E. 8	E. 9	E. 10

Importante

- El parcial dura 3h.
- En cada ejercicio se indica la cantidad de puntos que le corresponden. Tienen 10 ejercicios verdadero/falso de 1 punto cada uno y 10 ejercicios múltiple opción de 3 puntos cada uno. El parcial es de 40 puntos en total.
- Solo serán válidas las respuestas indicadas en el cuadro de respuestas.
- En cada ejercicio hay una sola opción correcta.

1. Verdadero - Falso.

Puntajes: 1 punto si la respuesta es correcta, -1 punto si la respuesta es incorrecta, 0 punto por no contestar. Indique sus respuestas (V/F) en los casilleros correspondientes.

- (1) Sea $a_n \neq 0$ para todo $n \geq 1$. Si $\sum_{n=1}^{+\infty} a_n$ converge entonces $\sum_{n=1}^{+\infty} \frac{1}{a_n}$ converge también.
- (2) Si z es un numero complejo entonces $z\overline{z} = Re(z) + Im(z)$
- (3) Si $a \neq 0$, entonces la función f(z) = az transforma el cuadrado con vértices (0,0), (1,0), (0,1) y (1,1) en otro cuadrado.
- (4) Si y_1 e y_2 son soluciones de la misma ecuación diferencial entonces $4y_1 2022y_2$ es solución también de la ecuación diferencial.
- (5) Si $(a_n)_{n\geq 1}$ es una sucesión acotada entonces $(a_n)_{n\geq 1}$ es convergente.
- (6) Si $f: [n_0, +\infty) \to \mathbb{R}$ y $a_n = f(n)$ entonces $\sum_{n=n_0}^{+\infty} a_n$ e $\int_{n_0}^{+\infty} f(x) dx$ se comportan de la misma manera.
- (7) Si z_0 es raiz de un polinomio P tal que P(0) = i entonces $P(z_0) + P(\overline{z_0}) = 0$.
- (8) Si z_0 es un complejo tal que $Re(z_0) = 0$ entonces $e^{z_0} = e^{Im(z_0)}$
- (9) Sea $a_n \neq 0$ para todo $n \geq 1$. Si $(a_n)_{n \geq 1}$ no converge entonces $(\frac{1}{a_n})_{n \geq 1}$ converge
- (10) Si $f: \mathbb{R} \to \mathbb{R}$ es continua y $\int_a^{+\infty} f(x)dx$ converge entonces $\int_b^{+\infty} f(x)dx$ converge para todo $b \ge a$.

2. Múltiple Opción

Puntajes: 3 puntos si la respuesta es correcta, -1 punto si la respuesta es incorrecta, 0 punto por no contestar. Indique sus respuestas en los casilleros correspondientes.

1. Considera el siguiente número complejo:

$$z_0 = \frac{1}{i + \frac{1}{i + \frac{1}{1 + i}}}$$

La forma binómica de z_0 es igual a:

A. 1.

B. i.

C. -1

D. -i

2. El número complejo $z = \frac{\sqrt{3}}{2} + \frac{1}{2}i$ es la raíz sexta de un cierto complejo, las otras cinco raíces son:

A.
$$i, -i, \frac{\sqrt{3}}{2} - \frac{1}{2}i, -\frac{\sqrt{3}}{2} + \frac{1}{2}i, -\frac{\sqrt{3}}{2} - \frac{1}{2}i$$

B.
$$2i$$
, $-2i$, $\frac{\sqrt{3}}{2} - \frac{1}{2}i$, $-\frac{\sqrt{3}}{2} + \frac{1}{2}i$, $-\frac{\sqrt{3}}{2} - \frac{1}{2}i$

C.
$$i, -i, -\frac{1}{2} + \frac{\sqrt{3}}{2}i, -\frac{\sqrt{3}}{2} + \frac{1}{2}i, \frac{1}{2} - \frac{\sqrt{3}}{2}i$$

D.
$$i, -i, -\frac{1}{2} + \frac{\sqrt{3}}{2}i, -\frac{\sqrt{3}}{2} - \frac{1}{2}i, \frac{1}{2} - \frac{\sqrt{3}}{2}i$$

3. Consideremos la sucesión de números reales $(a_n)_{n\geq 1}$ que satisface la relación

$$a_{n+1} = \sqrt{\frac{{a_n}^2 + 2}{a_n + 2}}$$

y tal que $a_1 = 7$.

Entonces:

- A. $(a_n)_{n\geq 1}$ es monótona decreciente y tiene límite $\neq 1$.
- B. $(a_n)_{n\geq 1}^n$ es monótona decreciente y tiene límite 1.
- C. $(a_n)_{n\geq 1}^-$ no es ni creciente ni decreciente, pero converge a 1.
- D. $(a_n)_{n\geq 1}^{-}$ es monótona creciente y no está acotada superiormente.

4. Sea $m = \sum_{n=0}^{+\infty} 2^{-n}$. Entonces la serie:

$$\sum_{n=1}^{+\infty} \sin^m \left(\frac{1}{n}\right)$$

- A. Converge.
- B. Oscila.
- C. Diverge.
- D. $m = +\infty$, por lo que la serie que se define luego no existe.

3

5. Considere la siguiente serie:

$$\sum_{n=2}^{+\infty} \frac{2}{2n+n^2}$$

Entonces:

- A. La serie converge a $\frac{5}{6}$.
- B. La serie converge a $\frac{3}{2}$.
- C. La serie converge a $\frac{1}{2}$.
- D. La serie diverge.
- 6. La rapidez con que cierto medicamento se disemina en el flujo sanguíneo se rige por la ecuación diferencial

$$x'(t) = A - Bx(t), \quad x(0) = 0,$$

donde A y B son constantes positivas. La función x(t) describe la concentración del medicamento en el flujo sanguíneo en un instante cualquiera t.

- A. $\lim_{t\to +\infty} x(t) = \frac{A}{B}$ y el tiempo que tarda la concentración en alcanzar la mitad de este valor límite es $t=\frac{\log(2)}{B}$.
- B. $\lim_{t\to +\infty} x(t) = \frac{A}{B}$ y el tiempo que tarda la concentración en alcanzar la mitad de este valor límite es $t=\log(2)$.
- C. $\lim_{t\to +\infty} x(t) = \frac{A}{B}$ y el tiempo que tarda la concentración en alcanzar la mitad de este valor límite es $t = \frac{1}{B} \log \left(\frac{2(A-B)}{A} \right)$.

 D. $\lim_{t \to +\infty} x(t) = \frac{B}{A}$ y el tiempo que tarda la concentración en alcanzar la mitad de este valor límite
- 7. Sea E_1 la ecuación diferencial de segundo órden homogénea, lineal y de coeficientes constantes, tal que $y(x) = 3e^x \cos(2x)$ es solución.

Se le llama $y_2(x)$ a la solución de E_1 con las condiciones iniciales: $\begin{cases} E_1 \\ y(0) = 0 \end{cases}$ y'(0) = 2

¿Cuánto vale $y_2(\pi/2)$?

- A. 0.
- B. e.
- C. e^2 .
- D. Ninguna de las anteriores.
- 8. Sea $(a_n)_{n\geq 1}$ una sucesión de términos positivos $(a_n>0,\,\forall n)$. Además sabemos que:

 $(a_{2n})_{n>1}$ es monótona creciente y acotada. $(a_{2n+1})_{n>1}$ no converge y es acotada.

Considere las siguientes afirmaciones:

- I) $(a_n)_{n\geq 1}$ no puede converger.
- II) $(a_{2n+1})_{n>1}$ tiene una subsucesión convergente.
- III) $(a_{4n})_{n>1}$ es necesariamente convergente.
- IV) $(a_{3n})_{n>1}$ no puede converger.

Entonces:

- A. I, II y III son verdaderas y IV es falsa.
- B. Todas son verdaderas.
- C. I y II son verdaderas, III y IV son falsas.
- D. Solamente I es verdadera.
- 9. Sea $\alpha \in \mathbb{R}$. La integral impropia

$$\int_{0}^{+\infty} \frac{e^{\frac{1}{x+1}} - 1}{(x^2 - \ln(1+x^2))^{\alpha}} dx$$

- A. Converge solamente para todo α con $0 < \alpha < 1/4$.
- B. Converge para todo α con $0 < \alpha < 1/2$.
- C. Converge para todo α con $1 < \alpha$.
- D. No converge únicamente si $\alpha < 0$.
- 10. Si $f: \mathbb{R} \{-1\} \to \mathbb{R}$ dada por $f(x) = \frac{2x 3}{(x^2 + 4)(x + 1)}$, consideramos la siguiente integral impropia $\int_0^{+\infty} f(x) dx$

Entonces:

- A. Converge y lo hace a $\frac{\pi}{4}$.
- B. Converge y lo hace a $\frac{\pi}{4} \log 2$.
- C. No converge.
- D. Converge y lo hace a $\frac{\pi}{2}$.