

Aprendizaje Automático para Datos en Grafos Modelos de Grafos Aleatorios - Parte II

Federico 'Larroca' La Rocca Muy basado en transparencias de Gonzalo Mateos

flarroca@fing.edu.uy
http://iie.fing.edu.uy/personal/flarroca

Modelos de Grafos Aleatorios

Modelos de Variables Latentes

2 Random dot product graph

Modelos de Variables Latentes

- Variables Latentes ampliamente usado para modelar datos con observaciones parciales Ex: Hidden Markov Models, análisis factorial
- Esta idea se aplica en análisis estadístico de redes en (básicamente) dos variantes:
 - Modelos de clases latentes: la pertenencia a cierta clase (no observada) es la que marca la tendencia a conectarse
 - Modelos de vectores latentes: las conexiones son más probables en función de que tan "cerca" estén los nodos en cierto espacio latente
- Si bien en redes existen muchas variantes, nos enfocaremos en
 - ⇒ Stochastic block models (SBMs)
 - ⇒ Una variante general y no-paramétrica denominada grafones

Ejemplo 1: Blogs políticos franceses

- Red de blogs políticos franceses de Octubre 2006 [Kolaczyk'17]
 - \Rightarrow Es un grafo con $N_v=192$ blogs conectados por $N_e=1431$ aristas
 - ⇒ Cada color indica la afiliación a cierto partido político

- Visualmente está claro que hay una mezcla de sub-grafos densamente conectados
 - ⇒ Diferentes tasas de conexión entre blogs dependiendo del partido
 - \Rightarrow Erdős-Rényi con p fijo no puede capturar esta estructura

Ejemplo 2: Actores que comparten películas

- Red de colaboración de actores según IMDb entre 2017 y 2021 (ver EVA)
 - \Rightarrow Es un grafo con $N_v = 21617$ actores conectados por $N_e = 73702$ aristas
 - ⇒ Cada color indica comunidad estimada con la modularidad

- Diferentes tasas de conexión entre actores dependiendo de dónde trabajan: Hollywood, independientes. Bollywood, Nollywood, etc.
- Un configuration model tampoco puede capturar esta estructura

Stochastic block models

- Los stochastic block models son explícitos en esta noción
 - \Rightarrow Grupos, módulos o comunidades $\mathcal{C}_1, \dots, \mathcal{C}_Q$
 - \Rightarrow Tasas de conexión π_{qr} de vértices inter/intra grupos

Stochastic block models

- Los stochastic block models son explícitos en esta noción
 - \Rightarrow Grupos, módulos o comunidades C_1, \ldots, C_Q
 - \Rightarrow Tasas de conexión π_{qr} de vértices inter/intra grupos

Modelo generativo para un grafo no-dirigido $G(\mathcal{V}, \mathcal{E})$

■ Cada vértice $i \in \mathcal{V}$ pertenece de manera independiente a \mathcal{C}_q con probabilidad α_q

$$\boldsymbol{\alpha} = [\alpha_1, \dots, \alpha_Q]^{\top}, \quad \mathbf{1}^{\top} \boldsymbol{\alpha} = 1$$

■ Para cada par de vértices $i, j \in \mathcal{V}$, con $i \in \mathcal{C}_q$ y $j \in \mathcal{C}_r \implies (i, j) \in \mathcal{E}$ con proba π_{qr}

P. W. Holland et al., "Stochastic block-models: First steps," Social Networks, vol. 5, pp. 109-137, 1983

Especificación del modelo y flexibilidad

■ En otras palabras, con $Z_{iq} = \mathbb{I}\{i \in \mathcal{C}_q\}$ y $\mathbf{Z}_i = [Z_{i1}, \dots, Z_{iQ}]^{\top}$

$$\mathbf{Z}_i \overset{\text{i.i.d.}}{\sim} \text{Multinomial}(1, \boldsymbol{\alpha}),$$

$$A_{ij} \mid \mathbf{Z}_i = \mathbf{z}_i, \mathbf{Z}_j = \mathbf{z}_j \sim \text{Bernoulli}(\pi_{\mathbf{z}_i, \mathbf{z}_j})$$

para $1 \leq i, j \leq N_v$, donde $A_{ij} = A_{ji}$ y $A_{ii} \equiv 0$

 \blacksquare Parámetros: Q proporciones de grupos (α_q) y Q(Q+1)/2 probas de conexión (π_{qr})

Especificación del modelo y flexibilidad

■ En otras palabras, con $Z_{iq} = \mathbb{I}\{i \in \mathcal{C}_q\} \text{ y } \mathbf{Z}_i = [Z_{i1}, \dots, Z_{iQ}]^\top$

$$\mathbf{Z}_i \overset{\text{i.i.d.}}{\sim} \text{Multinomial}(1, \boldsymbol{\alpha}),$$

$$A_{ij} \mid \mathbf{Z}_i = \mathbf{z}_i, \mathbf{Z}_j = \mathbf{z}_j \sim \mathrm{Bernoulli}(\pi_{\mathbf{z}_i, \mathbf{z}_j})$$

para $1 \leq i, j \leq N_v$, donde $A_{ij} = A_{ji}$ y $A_{ii} \equiv 0$

- **Parámetros**: Q proporciones de grupos (α_q) y Q(Q+1)/2 probas de conexión (π_{qr})
- Es una mezcla de grafos aleatorios clásicos

$$P(A_{ij} = 1) = P\left(\bigcup_{1 \le q, r \le Q} (i \in C_q) \cap (j \in C_r) \cap ((i, j) \in \mathcal{E})\right) = \sum_{1 \le q, r \le Q} \alpha_q \alpha_r \pi_{qr}$$

- Es más flexible para capturar la estructura de grafos observados
 - ⇒ Hay temas de identificabilidad [Allman et al'11]

Especificación del modelo y flexibilidad (cont.)

■ Mezcla de modelos Erdős-Rényi puede ser sorprendentemente flexible

Grafones y f-random graphs

■ Una variante no-parámetrica de SBM se puede definir así:

$$U_1, \dots, U_{N_v} \overset{\text{i.i.d.}}{\sim} \text{Uniform}[0, 1],$$

$$A_{ij} \mid U_i = u_i, U_j = u_j \sim \text{Bernoulli}(f(u_i, u_j))$$

para
$$1 \leq i, j \leq N_v$$
, donde $A_{ij} = A_{ji}$ y $A_{ii} \equiv 0$

- Grafón: función simétrica y medible $f:[0,1]^2 \mapsto [0,1]$
 - \Rightarrow El grafo resultante G se denomina f-random graph

Grafones y f-random graphs

■ Una variante no-parámetrica de SBM se puede definir así:

$$U_1, \dots, U_{N_v} \overset{\text{i.i.d.}}{\sim} \text{Uniform}[0, 1],$$
 $A_{ij} \mid U_i = u_i, U_j = u_j \sim \text{Bernoulli}(f(u_i, u_j))$

para $1 \leq i, j \leq N_v$, donde $A_{ij} = A_{ji}$ y $A_{ii} \equiv 0$

- Grafón: función simétrica y medible $f:[0,1]^2 \mapsto [0,1]$
 - \Rightarrow El grafo resultante G se denomina f-random graph
- \blacksquare Variables aleatorias latentes U_i uniformes en [0,1] dan la posición de cada nodo
 - \Rightarrow El grafón $f(u_i, u_j)$ especifica la probabilidad de conexión entre i, j
- \blacksquare SBM: variables latentes \mathbf{Z}_i dan la membresía de los vértices a uno de los Q grupos
 - \Rightarrow La probabilidad π_{qr} define la proabilidad de conexión entre $i \in \mathcal{C}_q, j \in \mathcal{C}_r$

L. Lovász, "Large Networks and Graph Limits," AMS Colloquium Publications, vol. 60, 2012

Ejemplo: grafones SBM

■ El modelo f-random incluye a SBM (paramétrico). ¿Cómo?

Ejemplo: grafones SBM

- El modelo f-random incluye a SBM (paramétrico). ¿Cómo?
 - (i) Partimos [0,1] en Q sub-intervalos de largo α_1,\ldots,α_Q
 - (ii) Tomamos el producto cartesiano para partir $[0,1]^2$ en Q^2 bloques
 - (iii) Definimos f para ser constante a tramos en los bloques: el bloque qr tiene "altura" π_{qr}

Ejemplo: grafones SBM

- El modelo f-random incluye a SBM (paramétrico). ¿Cómo?
 - (i) Partimos [0,1] en Q sub-intervalos de largo α_1,\ldots,α_Q
 - (ii) Tomamos el producto cartesiano para partir $[0,1]^2$ en Q^2 bloques
 - (iii) Definimos f para ser constante a tramos en los bloques: el bloque qr tiene "altura" π_{qr}

- Se puede aproximar cualquier función medible por una constante a tramos
 - \Rightarrow Podemos aproximar cualquier f-random graph (en distribución) con un SBM
 - \Rightarrow Peeeero el número de bloques Q puede ser enorme...

Ejemplo: Generación de grafo

- Consideremos un grafo f-random con $f(x,y) = \min(x,y)$ [Lovász'12]
 - \Rightarrow La gráfica de la izquierda muestra el grafón en escala de grises f
- **Q:** ¿Qué pinta tienen los grafos generados? Ejemplo con $N_v = 40$

- Gráfica del centro muestra una realización de la matriz de adyacencia A
 - \Rightarrow Dado sólo **A**, es imposible reconocer el origen del grafo
- \blacksquare Pero ordenando los vértices según la conectividad $d_{(1)}, \ldots, d_{(40)}$ aparece un patrón
 - ⇒ Parece posible una estimación no-paramétrica del grafón

Intercambiabilidad de vértices

■ **Def:** una matriz aleatoria $\mathbf{A} = [A_{ij}]_{i,j \in \mathcal{V}}$ es intercambiable en vértices si $\mathbf{A}_{\sigma} := [A_{\sigma(i)\sigma(j)}]_{i,j \in \mathcal{V}} \stackrel{D}{=} \mathbf{A}$ para cada permutación $\sigma : \mathcal{V} \mapsto \mathcal{V}$

- Modelos intercambiables asignan la misma probabilidad a grafos isomorfos
 - ⇒ Estos modelos son más naturales para grafos no etiquetados

Intercambiabilidad de vértices

■ **Def:** una matriz aleatoria $\mathbf{A} = [A_{ij}]_{i,j \in \mathcal{V}}$ es intercambiable en vértices si $\mathbf{A}_{\sigma} := [A_{\sigma(i)\sigma(j)}]_{i,j \in \mathcal{V}} \stackrel{D}{=} \mathbf{A}$ para cada permutación $\sigma : \mathcal{V} \mapsto \mathcal{V}$

- Modelos intercambiables asignan la misma probabilidad a grafos isomorfos
 - ⇒ Estos modelos son más naturales para grafos no etiquetados
- \blacksquare Como en SBMs, uno puede demostrar que los grafos f-random son intercambiables
- \blacksquare Notablemente, cada modelo intercamiable es una mezcla de grafos f-random
 - ⇒ El teorema de Aldous-Hoover extiende el resultado sobre secuencias de de Finetti

D. J. Aldous, "Representations for partially exchangeable arrays of random variables," Journal of Mulivariate Analysis, vol. 11, 1981

Todo grafo f-random es intercambiable

■ La distribución de un grafo f-random con N_v vértices es

$$P(\mathbf{A} = \mathbf{a}) =$$

Todo grafo f-random es intercambiable

■ La distribución de un grafo f-random con N_v vértices es

$$P(\mathbf{A} = \mathbf{a}) = \int_{[0,1]^{N_v}} \prod_{1 \le i \ne j \le N} f(u_i, u_j)^{a_{ij}} (1 - f(u_i, u_j))^{1 - a_{ij}} du_1 \dots du_{N_v}$$

Todo grafo f-random es intercambiable

■ La distribución de un grafo f-random con N_v vértices es

$$P(\mathbf{A} = \mathbf{a}) = \int_{[0,1]^{N_v}} \prod_{1 \le i \ne j \le N_v} f(u_i, u_j)^{a_{ij}} (1 - f(u_i, u_j))^{1 - a_{ij}} du_1 \dots du_{N_v}$$

■ Para permutaciones arbitrarias $\sigma: \mathcal{V} \mapsto \mathcal{V}$ resulta

$$P(\mathbf{A}_{\sigma} = \mathbf{a}_{\sigma}) = \int_{[0,1]^{N_{v}}} \prod_{1 \leq i \neq j \leq N_{v}} f(u_{i}, u_{j})^{a_{\sigma(i)\sigma(j)}} (1 - f(u_{i}, u_{j}))^{1 - a_{\sigma(i)\sigma(j)}} du_{1} \dots du_{N_{v}}$$

$$= \int_{[0,1]^{N_{v}}} \prod_{1 \leq i \neq j \leq N_{v}} f(u_{\sigma^{-1}(i)}, u_{\sigma^{-1}(j)})^{a_{ij}} (1 - f(u_{\sigma^{-1}(i)}, u_{\sigma^{-1}(j)}))^{1 - a_{ij}}$$

$$\times du_{\sigma^{-1}(1)} \dots du_{\sigma^{-1}(N_{v})}$$

$$= \int_{[0,1]^{N_{v}}} \prod_{1 \leq i \neq j \leq N_{v}} f(u_{i}, u_{j})^{a_{ij}} (1 - f(u_{i}, u_{j}))^{1 - a_{ij}} du_{1} \dots du_{N_{v}}$$

$$= P(\mathbf{A} = \mathbf{a})$$

Problemas de identidad

■ Dos f distintas pueden producir grafos f-random con la misma distribución \Rightarrow No identificable

Ej: grafones f(x,y) y f(1-x,1-y) resultan en el mismo modelo

$$U \stackrel{D}{=} 1 - U$$
 para $U \sim \text{Uniform}[0, 1]$

Ej: dos grafones f(x,y) y $f(\phi(x),\phi(y))$ para un ϕ que preserve la medida, i.e.,

$$\phi:[0,1]\mapsto [0,1]$$
 para el cual $\phi(U)\sim \mathrm{Uniform}[0,1]$

Problemas de identidad

■ Dos f distintas pueden producir grafos f-random con la misma distribución \Rightarrow No identificable

Ej: grafones f(x,y) y f(1-x,1-y) resultan en el mismo modelo

$$U \stackrel{D}{=} 1 - U$$
 para $U \sim \text{Uniform}[0, 1]$

Ej: dos grafones f(x,y) y $f(\phi(x),\phi(y))$ para un ϕ que preserve la medida, i.e.,

$$\phi:[0,1]\mapsto [0,1]$$
 para el cual $\phi(U)\sim \mathrm{Uniform}[0,1]$

- \blacksquare Son necesarias ciertas restricciones en el grafón f para su modelado estadístico
- **Def:** f es estrictamente monótono si $\exists \phi$ tal que $\tilde{f}(x,y) = f(\phi(x),\phi(y))$ tiene una función de grados $\tilde{g}(x) = \int_{[0,1]} \tilde{f}(x,y) dy$ estrictamente creciente
 - \Rightarrow Esta restricción a \tilde{f} resulta en un modelo identificable [Bickel-Chen'09]

Límite de un grafo

■ Una secuencia de grafos $G_n(\mathcal{V}_n, \mathcal{E}_n)$ con una cantidad de vértices creciente $N_v = n$

Q: ¿Cuándo podemos decir que $\{G_n\}_{n=1}^{\infty}$ converge a un límite?

Q: ¿Qué sentido tiene esta convergencia?

Q: ¿Qué tipo de objeto es este límite?

■ Spoiler: Si la secuencia $\{G_n\}_{n=1}^{\infty}$ converge, el límite es un grafón f

Ej: La secuencia ER(n,p) a medida que $n \to \infty$

Def: Homomorfismos h son aquellos mapeos del motif $F(\mathcal{V}', \mathcal{E}')$ (i.e. un grafo pequeño) a un grafo $G(\mathcal{V}, \mathcal{E})$ que preservan la adyacencia

$$h: \mathcal{V}' \mapsto \mathcal{V}$$
 tal que $(i, j) \in \mathcal{E}'$ implica $(h(i), h(j)) \in \mathcal{E}$

- **E**xisten $\binom{|\mathcal{V}|}{|\mathcal{V}'|}$ mapeos posibles de F a G, pero sólo hom(F,G) son homomorfismos
 - \Rightarrow Def: Densidad de homomorfismos del motifFen el grafoGes

$$t(F, G) = \frac{\hom(F, G)}{\binom{|\mathcal{V}|}{|\mathcal{V}'|}}$$

Def: Homomorfismos h son aquellos mapeos del motif $F(\mathcal{V}', \mathcal{E}')$ (i.e. un grafo pequeño) a un grafo $G(\mathcal{V}, \mathcal{E})$ que preservan la adyacencia

$$h: \mathcal{V}' \mapsto \mathcal{V}$$
 tal que $(i, j) \in \mathcal{E}'$ implica $(h(i), h(j)) \in \mathcal{E}$

■ Existen $\binom{|\mathcal{V}|}{|\mathcal{V}'|}$ mapeos posibles de F a G, pero sólo hom(F,G) son homomorfismos \Rightarrow **Def:** Densidad de homomorfismos del motif F en el grafo G es

$$t(F, G) = \frac{\hom(F, G)}{\binom{|\mathcal{V}|}{|\mathcal{V}'|}}$$

- \blacksquare Medida relativa del número de formas en que F puede mapearse a G
- Interpretación: si se sortea uniforme aleatorio un mapeo, cuál es la probabilidad de que sea un homomorfismo?

Def: Homomorfismos h son aquellos mapeos del motif $F(\mathcal{V}', \mathcal{E}')$ (i.e. un grafo pequeño) a un grafo $G(\mathcal{V}, \mathcal{E})$ que preservan la adyacencia

$$h: \mathcal{V}' \mapsto \mathcal{V}$$
 tal que $(i, j) \in \mathcal{E}'$ implica $(h(i), h(j)) \in \mathcal{E}$

■ Existen $\binom{|\mathcal{V}|}{|\mathcal{V}'|}$ mapeos posibles de F a G, pero sólo hom(F,G) son homomorfismos \Rightarrow **Def:** Densidad de homomorfismos del motif F en el grafo G es

$$t(F, G) = \frac{\hom(F, G)}{\binom{|\mathcal{V}|}{|\mathcal{V}'|}}$$

- \blacksquare Medida relativa del número de formas en que F puede mapearse a G
- Interpretación: si se sortea uniforme aleatorio un mapeo, cuál es la probabilidad de que sea un homomorfismo?

Def: Homomorfismos h son aquellos mapeos del motif $F(\mathcal{V}', \mathcal{E}')$ (i.e. un grafo pequeño) a un grafo $G(\mathcal{V}, \mathcal{E})$ que preservan la adyacencia

$$h: \mathcal{V}' \mapsto \mathcal{V}$$
 tal que $(i, j) \in \mathcal{E}'$ implica $(h(i), h(j)) \in \mathcal{E}$

Existen $\binom{|\mathcal{V}|}{|\mathcal{V}'|}$ mapeos posibles de F a G, pero sólo hom(F,G) son homomorfismos \Rightarrow **Def:** Densidad de homomorfismos del motif F en el grafo G es

$$t(F, G) = \frac{\hom(F, G)}{\binom{|\mathcal{V}|}{|\mathcal{V}'|}}$$

- \blacksquare Medida relativa del número de formas en que F puede mapearse a G
- Interpretación: si se sortea uniforme aleatorio un mapeo, cuál es la probabilidad de que sea un homomorfismo?

Def: Homomorfismos h son aquellos mapeos del motif $F(\mathcal{V}', \mathcal{E}')$ (i.e. un grafo pequeño) a un grafo $G(\mathcal{V}, \mathcal{E})$ que preservan la adyacencia

$$h: \mathcal{V}' \mapsto \mathcal{V}$$
 tal que $(i, j) \in \mathcal{E}'$ implica $(h(i), h(j)) \in \mathcal{E}$

Existen $\binom{|\mathcal{V}|}{|\mathcal{V}'|}$ mapeos posibles de F a G, pero sólo hom(F,G) son homomorfismos \Rightarrow **Def:** Densidad de homomorfismos del motif F en el grafo G es

$$t(F, G) = \frac{\hom(F, G)}{\binom{|\mathcal{V}|}{|\mathcal{V}'|}}$$

- \blacksquare Medida relativa del número de formas en que F puede mapearse a G
- Interpretación: si se sortea uniforme aleatorio un mapeo, cuál es la probabilidad de que sea un homomorfismo?

Def: Homomorfismos h son aquellos mapeos del motif $F(\mathcal{V}', \mathcal{E}')$ (i.e. un grafo pequeño) a un grafo $G(\mathcal{V}, \mathcal{E})$ que preservan la adyacencia

$$h: \mathcal{V}' \mapsto \mathcal{V}$$
 tal que $(i, j) \in \mathcal{E}'$ implica $(h(i), h(j)) \in \mathcal{E}$

Existen $\binom{|\mathcal{V}|}{|\mathcal{V}'|}$ mapeos posibles de F a G, pero sólo hom(F,G) son homomorfismos \Rightarrow **Def:** Densidad de homomorfismos del motif F en el grafo G es

$$t(F, G) = \frac{\hom(F, G)}{\binom{|\mathcal{V}|}{|\mathcal{V}'|}}$$

- \blacksquare Medida relativa del número de formas en que F puede mapearse a G
- Interpretación: si se sortea uniforme aleatorio un mapeo, cuál es la probabilidad de que sea un homomorfismo?

Def: Homomorfismos h son aquellos mapeos del motif $F(\mathcal{V}', \mathcal{E}')$ (i.e. un grafo pequeño) a un grafo $G(\mathcal{V}, \mathcal{E})$ que preservan la adyacencia

$$h: \mathcal{V}' \mapsto \mathcal{V}$$
 tal que $(i, j) \in \mathcal{E}'$ implica $(h(i), h(j)) \in \mathcal{E}$

- Existen $\binom{|\mathcal{V}|}{|\mathcal{V}'|}$ mapeos posibles de F a G, pero sólo hom(F,G) son homomorfismos \Rightarrow **Def:** Densidad de homomorfismos del motif F en el grafo G es
 - $t(F, G) = \frac{\hom(F, G)}{\binom{|\mathcal{V}|}{|\mathcal{V}|}}$
- \blacksquare Medida relativa del número de formas en que F puede mapearse a G
- Interpretación: si se sortea uniforme aleatorio un mapeo, cuál es la probabilidad de que sea un homomorfismo?

Convergencia de secuencias de grafos

- **Def:** Una secuencia de grafos $\{G_n\}_{n=1}^{\infty}$ converge cuando para todo motif F, la secuencia de densidad de homomorfismos $\{t(F,G_n)\}_{n=1}^{\infty}$ converge
- Algunas aspectos importantes de la definición
 - Si la secuencia se vuelve constante, entonces converge
 - Secuencias de grafos isomórficos converge
 - La convergencia es en cantidades normalizadas, no en número de aristas, triángulos, . . .
 - Los resultados son para secuencias de grafos densos, i.e., $|\mathcal{E}_n| = \Omega(n^2)$

Convergencia de secuencias de grafos

- **Def:** Una secuencia de grafos $\{G_n\}_{n=1}^{\infty}$ converge cuando para todo motif F, la secuencia de densidad de homomorfismos $\{t(F,G_n)\}_{n=1}^{\infty}$ converge
- Algunas aspectos importantes de la definición
 - Si la secuencia se vuelve constante, entonces converge
 - Secuencias de grafos isomórficos converge
 - La convergencia es en cantidades normalizadas, no en número de aristas, triángulos, . . .
 - Los resultados son para secuencias de grafos densos, i.e., $|\mathcal{E}_n| = \Omega(n^2)$
- Respondimos las dos primeras preguntas. Sólo nos queda la tercera y última
 - \Rightarrow El límite de una secuencia de grafos no es necesariamente un grafo
 - \Rightarrow Q: ¿Qué tipo de objeto es este límite?

L. Lovász and B. Szegedy, "Limits of dense graph sequences," Journal of Combinatorial Theory, Series B, vol. 96, 2006

Grafón inducido

- Todo grafo admite una representación denominada grafón inducido
 - Consideremos un grafo $G(\mathcal{V}, \mathcal{E})$ con matriz de adyacencia A
 - Hagamos una partición uniforme de [0,1] en N_v sub-intervalos $\Rightarrow I_i = \left[\frac{i-1}{N_v}, \frac{i}{N_v}\right]$

Def: El grafón inducido f_G de G es

$$f_G(x,y) = \sum_{1 \le i,j \le N_v} A_{ij} \mathbb{I} \left\{ x \in I_i \right\} \mathbb{I} \left\{ y \in I_j \right\}$$

Grafo cíclico G con $N_v = 6$ nodos

Grafón f_G inducido por el grafo G

El límite es un grafón

 \blacksquare Propiedad: La densidad de homomorfismo del motif F en el grafo G está dado por

$$t(F,G) = \int_{[0,1]^{|\mathcal{V}'|}} \prod_{(i,j)\in\mathcal{E}'} f_G(u_i, u_j) du_1 \dots du_{|\mathcal{V}'|}$$

El límite es un grafón

 \blacksquare Propiedad: La densidad de homomorfismo del motif F en el grafo G está dado por

$$t(F,G) = \int_{[0,1]^{|\mathcal{V}'|}} \prod_{(i,j)\in\mathcal{E}'} f_G(u_i, u_j) du_1 \dots du_{|\mathcal{V}'|}$$

 E_i : Sea F el motif más simple: una arista

• t(F,G) responde la pregunta "Cuántas aristas tiene G (dividido entre las $N_v \times N_v$ posibilidades)?"

• Podemos contar las aristas o simplemente calcular $\int_{[0,1]^2} f_G(u_1, u_2) du_1 du_2$ (el área gris en el grafón inducido)

■ Esto sigue siendo cierto en el límite. Si la secuencia $\{G_n\}_{n=1}^{\infty}$ converge, entonces

$$\lim_{n \to \infty} t(F, G_n) = \int_{[0,1]^{|\mathcal{V}'|}} \prod_{(i,j) \in \mathcal{E}'} f(u_i, u_j) du_1 \dots du_{|\mathcal{V}'|}$$

para alguna función $f:[0,1]^2\mapsto [0,1]$ simétrica y medible

■ Esto sigue siendo cierto en el límite. Si la secuencia $\{G_n\}_{n=1}^{\infty}$ converge, entonces

$$\lim_{n \to \infty} t(F, G_n) = \int_{[0,1]^{|\mathcal{V}'|}} \prod_{(i,j) \in \mathcal{E}'} f(u_i, u_j) du_1 \dots du_{|\mathcal{V}'|}$$

- para alguna función $f:[0,1]^2\mapsto [0,1]$ simétrica y medible
- La intuición es la misma de antes: probabilidad de mapear el motif

Ej Sea F el motif tipo estrella de antes

$$t(F,G) = \int_{[0,1]^4} f(u_1, u_2) f(u_1, u_3) f(u_1, u_4) du_1 du_2 du_3 du_4$$

■ Esto sigue siendo cierto en el límite. Si la secuencia $\{G_n\}_{n=1}^{\infty}$ converge, entonces

$$\lim_{n \to \infty} t(F, G_n) = \int_{[0,1]^{|\mathcal{V}'|}} \prod_{(i,j) \in \mathcal{E}'} f(u_i, u_j) du_1 \dots du_{|\mathcal{V}'|}$$

- para alguna función $f:[0,1]^2\mapsto [0,1]$ simétrica y medible
- La intuición es la misma de antes: probabilidad de mapear el motif

Ej Sea F el motif tipo estrella de antes

$$t(F,G) = \int_{[0,1]^4} \underbrace{f(u_1, u_2) f(u_1, u_3) f(u_1, u_4)}_{\text{probabilidad de la estrella}} \underbrace{du_1 du_2 du_3 du_4}_{\text{dados } (u_1, u_2, u_3, u_4)}$$

■ Esto sigue siendo cierto en el límite. Si la secuencia $\{G_n\}_{n=1}^{\infty}$ converge, entonces

$$\lim_{n \to \infty} t(F, G_n) = \int_{[0,1]^{|\mathcal{V}'|}} \prod_{(i,j) \in \mathcal{E}'} f(u_i, u_j) du_1 \dots du_{|\mathcal{V}'|}$$

- para alguna función $f:[0,1]^2\mapsto [0,1]$ simétrica y medible
- La intuición es la misma de antes: probabilidad de mapear el motif

Ej Sea F el motif tipo estrella de antes

$$t(F,G) = \int_{[0,1]^4} \underbrace{\frac{f(u_1, u_2)f(u_1, u_3)f(u_1, u_4)}{\text{probabilidad de la estrella}}}_{dados\ (u_1, u_2, u_3, u_4)} du_1 du_2 du_3 du_4$$

promediada entre los (u_1, u_2, u_3, u_4) sorteados uniformes

■ Esto sigue siendo cierto en el límite. Si la secuencia $\{G_n\}_{n=1}^{\infty}$ converge, entonces

$$\lim_{n \to \infty} t(F, G_n) = \int_{[0,1]^{|\mathcal{V}'|}} \prod_{(i,j) \in \mathcal{E}'} f(u_i, u_j) du_1 \dots du_{|\mathcal{V}'|}$$

- para alguna función $f:[0,1]^2\mapsto [0,1]$ simétrica y medible
- La intuición es la misma de antes: probabilidad de mapear el motif

Ej Sea F el motif tipo estrella de antes

$$t(F,G) = \int_{[0,1]^4} \underbrace{\frac{f(u_1,u_2)f(u_1,u_3)f(u_1,u_4)}{\text{probabilidad de la estrella}}}_{\text{dados }(u_1,u_2,u_3,u_4)} du_1 du_2 du_3 du_4$$
promediada entre los (u_1,u_2,u_3,u_4) sorteados uniformes

■ Identificamos el objeto límite – el grafón – con f

¿Y esto para qué sirve?

Impacto matemático

■ Trae herramientas de análisis a lo que a priori es un contexto puramente combinatorio

Impacto en inferencia estadística

- Realizaciones grandes se vuelven representativas del proceso generativo
 - \Rightarrow Inferir el mecanismo de generación de los datos examinando una única realización

Impacto en machine learning

- Estudiar filtros de grafos y GNNs en el límite de grandes grafos
 - \Rightarrow Transferabilidad e.g., entrenando en un grafo más pequeño que donde se aplica

L. Ruiz et al, "Graphon neural networks and the transferability of graph neural networks," NeurIPS, 2020

Plausibilidad

- Un buen modelo estadístico debería ser [Robbins-Morris'07]
 - ✓ Estimable a partir de y razonablemente representativo de los datos observados
 - ✓ Plausible teóricamente sobre los efectos que pueden haber producido la red
 - $\checkmark\,$ Capaz de discriminar entre los distintos efectos que mejor explican los datos

Plausibilidad

- Un buen modelo estadístico debería ser [Robbins-Morris'07]
 - ✓ Estimable a partir de y razonablemente representativo de los datos observados
 - ✓ Plausible teóricamente sobre los efectos que pueden haber producido la red
 - $\checkmark\,$ Capaz de discriminar entre los distintos efectos que mejor explican los datos
- Q: ¿Qué tan apropiados son modelos de variables latentes? ¿Son plausibles?
- Q: ¿Podemos aproximar un grafo observado G^{obs} usando un SBM?
 - ⇒ Una variante del lema de regularidad de Szemerédi resulta útil aquí

C. Borgs et al, "Graph limits and parameter testing," Syposium on Theory of Computing, 2006

Cut distance

■ Discutir nociones de aproximación requiere una distancia entre grafos

Def: La cut distance entre los grafos $G(\mathcal{V}, \mathcal{E})$ y $G'(\mathcal{V}', \mathcal{E}')$ (con $|\mathcal{V}| = |\mathcal{V}'| = N_v$) es

$$d_{\square}(G, G') = \frac{1}{N_v^2} \max_{S, \mathcal{T} \in \{1, \dots, N_v\}} \left| \sum_{i \in \mathcal{S}} \sum_{j \in \mathcal{T}} (A_{ij} - A'_{ij}) \right|$$

- \Rightarrow Se puede demostrar que $d_{\square}(\cdot,\cdot)$ efectivamente es una métrica
- La definición y estudio de propiedades de distancias en grafos es un tema súper actual

B. Bollobás and O. Riordan, "Sparse graphs: Metrics and random models," Random Structures & Algorithms, vol. 39, 2011

Un resultado sobre aproximaciones

- Sea $\mathcal{P} = \{\mathcal{V}_1, \dots, \mathcal{V}_Q\}$ una partición de los vértices \mathcal{V} de G en Q clases
- Definamos un grafo completo G_P con vértices \mathcal{V} y pesos

$$w_{ij}(G_P) = \frac{1}{|\mathcal{V}_q||\mathcal{V}_r|} \sum_{u \in \mathcal{V}_q} \sum_{v \in \mathcal{V}_r} A_{uv}, \quad i \in \mathcal{V}_q, j \in \mathcal{V}_r$$

- \Rightarrow Básicamente la aproximación del grafo G por un SBM de Q clases
- \Rightarrow La probabilidad de que una arista una i, j sería $w_{ij}(G_P)$

Un resultado sobre aproximaciones

- Sea $\mathcal{P} = \{\mathcal{V}_1, \dots, \mathcal{V}_Q\}$ una partición de los vértices \mathcal{V} de G en Q clases
- Definamos un grafo completo G_P con vértices \mathcal{V} y pesos

$$w_{ij}(G_P) = \frac{1}{|\mathcal{V}_q||\mathcal{V}_r|} \sum_{u \in \mathcal{V}_q} \sum_{v \in \mathcal{V}_r} A_{uv}, \quad i \in \mathcal{V}_q, j \in \mathcal{V}_r$$

- \Rightarrow Básicamente la aproximación del grafo G por un SBM de Q clases
- \Rightarrow La probabilidad de que una arista una i, j sería $w_{ij}(G_P)$

Teorema: Para todo $\epsilon > 0$ y todo grafo $G(\mathcal{V}, \mathcal{E})$, existe una partición \mathcal{P} de \mathcal{V} en $Q \leq 2^{\frac{2}{\epsilon^2}}$ clases tal que $d_{\square}(G, G_P) \leq \epsilon$.

- Justificación de que un SBM puede aproximar cualquier grafo
 - \Rightarrow La cota superior en Q puede ser gigantesca

iY los grafos f-random?

 \blacksquare Los grafos f-random son apropiados sólo para redes densas

Teorema: Si un grafo G es la restricción a los vértices $\{1, \ldots, N_v\}$ de un grafo aleatorio infinito intercambiable, entonces es denso o está vacío.

Intuitivamente: La proporción de aristas en $G(\mathcal{V}, \mathcal{E})$ es

$$\varphi = \int_{[0,1]^2} f(u_1, u_2) du_1 du_2$$

- \Rightarrow Si $\varphi=0$ entonces f=0c.s. y Gestá vacío. Esparso, pero inútil
- \Rightarrow Si $\varphi > 0$ entonces (en media) $|\mathcal{E}| = \varphi \times \binom{N_v}{2} = \Omega(N_v^2)$
- El principal problema es la intercambiabilidad de vértices
 - Apropiado para grafos sin etiquetas...
 - Si tengo etiquetas, se podrían incorporar al modelo [Sweet'15]

Estimación de los parámetros de un SBM

- Los parámetros de un SBM son $\{\alpha_q\}_{q=1}^Q$ y $\{\pi_{qr}\}_{1\leq q,r\leq Q}$
- Conceptualmente puede simplificar pensar en dos conjuntos de 'observaciones'
 - \Rightarrow Clases: $\mathbf{Z} = \{\{Z_{iq}\}_{q=1}^Q\}_{i \in \mathcal{V}}, \text{ donde } Z_{iq} = \mathbb{I} \{i \in \mathcal{C}_q\}$
 - \Rightarrow Enlaces: $\mathbf{A} = [A_{ij}], \text{ donde } A_{ij} = \mathbb{I}\{(i,j) \in \mathcal{E}\}$
- Pero sólo observamos A (Z típicamente latente). Asumamos Q conocida
 - ⇒ Interesa la estimación de los parámetros pero especialmente agrupar los vértices

Detección de comunidades basada en modelo

Supongamos que G fue generado por un SBM con Q clases. Predecir las pertenencia a clases $\mathbf{Z} = \{\{Z_{iq}\}_{q=1}^{Q}\}_{i\in\mathcal{V}},$ dada la observación $\mathbf{A} = \mathbf{a}$.

Estimación de Máxima Verosimilitud

■ Si observáramos $\mathbf{A} = \mathbf{a}$ y $\mathbf{Z} = \mathbf{z}$, la log-likelihood sería (con $\boldsymbol{\theta} = \{\{\alpha_q\}, \{\pi_{qr}\}\}\)$

$$\ell_{\theta}(\mathbf{a}, \mathbf{z}) = \ell_{\theta}(\mathbf{z}) + \ell_{\theta}(\mathbf{a}|\mathbf{z})$$

$$\operatorname{con} \quad \ell_{\theta}(\mathbf{z}) = \log P\left(\mathbf{Z} = \mathbf{z}\right) = \log \left(\prod_{i} \left(\prod_{q} \alpha_{q}^{z_{iq}}\right)\right) = \sum_{i} \sum_{q} z_{iq} \log \alpha_{q}$$

$$\ell_{\theta}(\mathbf{a}|\mathbf{z}) = \frac{1}{2} \sum_{i \neq i} \sum_{q \neq q} z_{iq} \log \left(\pi_{qr}^{a_{ij}} (1 - \pi_{qr})^{1 - a_{ij}}\right)$$

Estimación de Máxima Verosimilitud

■ Pero no observamos Z. Hay que trabajar con la verosimilitud de los datos observados

$$\ell_{m{ heta}}(\mathbf{a}) = \log \Big(\sum_{\mathbf{z}} \exp \left\{ \ell_{m{ heta}}(\mathbf{a}, \mathbf{z}) \right\} \Big)$$

• ¿Cuántos términos puede haber en esa sumatoria? \Rightarrow calcular $\ell_{\theta}(\mathbf{a})$ es inviable

Estimación de Máxima Verosimilitud

■ Pero no observamos Z. Hay que trabajar con la verosimilitud de los datos observados

$$\ell_{\boldsymbol{\theta}}(\mathbf{a}) = \log \left(\sum_{\mathbf{z}} \exp \left\{ \ell_{\boldsymbol{\theta}}(\mathbf{a}, \mathbf{z}) \right\} \right)$$

- ¿Cuántos términos puede haber en esa sumatoria? \Rightarrow calcular $\ell_{\theta}(\mathbf{a})$ es inviable
- Ver el modelo como una mezcla sugiere usar Expectation Maximization [Snijders'97]
 - \Rightarrow Alternar entre estimar $\mathbb{E}\left[Z_{iq} \mid \mathbf{A} = \mathbf{a}\right] \ \mathbf{y} \ \boldsymbol{\theta}$
 - \Rightarrow No escala más allá de Q=2, P ($\mathbf{Z} \mid \mathbf{A}=\mathbf{a}$) es computacionalmente caro

Máxima verosimilitud variacional

■ Método variacional para optimizar una cota inferior de $\ell_{\theta}(\mathbf{a})$:

$$J(R_{\mathbf{a}}; \boldsymbol{\theta}) = \ell_{\boldsymbol{\theta}}(\mathbf{a}) - \mathrm{KL}(R_{\mathbf{a}}(\mathbf{Z}), P(\mathbf{Z} \mid \mathbf{A} = \mathbf{a}))$$

- KL es la divergencia de Kullback-Leibler
- $R_{\mathbf{a}}(\mathbf{Z})$ es una aproximación "manipulable" de P $(\mathbf{Z} \mid \mathbf{A} = \mathbf{a})$
- Aproximación de campo medio de la distribución condicional

$$R_{\mathbf{a}}(\mathbf{Z}) = \prod_{i=1}^{N_v} h(\mathbf{Z}_i; \boldsymbol{\tau}_i)$$

• $h(\cdot; \boldsymbol{\tau}_i)$: distribución multinomial con parámetro $\boldsymbol{\tau}_i = [\tau_{i1}, \dots, \tau_{iQ}]^{\top}$

J. J. Daudin et al, "A mixture model for random graphs," Stat. Comput., vol. 18, 2008

Algoritmo de maximización alternada

Proposición: Dado $\boldsymbol{\theta}$, el parámetro variacional óptimo $\{\hat{\boldsymbol{\tau}}_i\}$ = $\operatorname{argmax}_{\{\boldsymbol{\tau}_i\}} J(R_{\mathbf{a}}; \{\boldsymbol{\tau}_i\}, \boldsymbol{\theta})$ satisface la siguiente ecuación de punto fijo

$$\hat{\tau}_{iq} \propto \alpha_q \prod_{j \neq i} \prod_r b(A_{ij}; \pi_{qr})^{\hat{\tau}_{jr}}$$

Dados $\{\boldsymbol{\tau}_i\}$, los valores de $\boldsymbol{\theta}$ que maximizan $J(R_{\mathbf{a}}; \{\boldsymbol{\tau}_i\}, \boldsymbol{\theta})$ son

$$\hat{\alpha}_q = \frac{1}{N_v} \sum_i \hat{\tau}_{iq}, \quad \hat{\pi}_{qr} = \sum_{i \neq j} \hat{\tau}_{iq} \hat{\tau}_{jr} A_{ij} / \sum_{i \neq j} \hat{\tau}_{iq} \hat{\tau}_{jr}$$

Algoritmo de maximización alternada

Proposición: Dado $\boldsymbol{\theta}$, el parámetro variacional óptimo $\{\hat{\boldsymbol{\tau}}_i\}$ = $\operatorname{argmax}_{\{\boldsymbol{\tau}_i\}} J(R_{\mathbf{a}}; \{\boldsymbol{\tau}_i\}, \boldsymbol{\theta})$ satisface la siguiente ecuación de punto fijo

$$\hat{\tau}_{iq} \propto \alpha_q \prod_{j \neq i} \prod_r b(A_{ij}; \pi_{qr})^{\hat{\tau}_{jr}}$$

Dados $\{\boldsymbol{\tau}_i\}$, los valores de $\boldsymbol{\theta}$ que maximizan $J(R_{\mathbf{a}}; \{\boldsymbol{\tau}_i\}, \boldsymbol{\theta})$ son

$$\hat{\alpha}_q = \frac{1}{N_v} \sum_i \hat{\tau}_{iq}, \quad \hat{\pi}_{qr} = \sum_{i \neq j} \hat{\tau}_{iq} \hat{\tau}_{jr} A_{ij} / \sum_{i \neq j} \hat{\tau}_{iq} \hat{\tau}_{jr}$$

■ El algoritmo alterna entre actualizaciones de θ y $\{\tau_i\}$:

$$\begin{aligned} \boldsymbol{\theta}[k+1] &= \operatorname*{argmax}_{\boldsymbol{\theta}} J(R_{\mathbf{a}}; \{\boldsymbol{\tau}_i[k]\}, \boldsymbol{\theta}) \\ \{\boldsymbol{\tau}_i[k+1]\} &= \operatorname*{argmax}_{\{\boldsymbol{\tau}_i\}} J(R_{\mathbf{a}}; \{\boldsymbol{\tau}_i\}, \boldsymbol{\theta}[k+1]) \end{aligned}$$

- La secuencia de los valores de J es no-decreciente [Daudin et al'08]
- Resultados de consistencia para $N_v \to \infty$, Q fijo [Celisse et al'12]

¿Cuántas clases usar?

- \blacksquare El número de clases Q es generalmente desconocido y debe ser estimado
 - ⇒ Se pueden usar técnicas bayesianas para selección de modelos
 - \Rightarrow Distribución a priori $g(\theta \mid m_Q)$ de θ dado que el SBM m_Q tiene Q clases
- El criterio Integrated Classification Likelihood (ICL) resulta

$$\begin{split} \text{ICL}(m_Q) &= \max_{\boldsymbol{\theta}} \log \ell_{\boldsymbol{\theta}, m_Q}(\mathbf{a}, \hat{\mathbf{z}}(\boldsymbol{\theta})) \\ &- \frac{Q(Q+1)}{4} \log \frac{N_v(N_v-1)}{2} - \frac{Q-1}{2} \log N_v \end{split}$$

donde $\ell_{\boldsymbol{\theta},m_Q}(\mathbf{a},\hat{\mathbf{z}}(\boldsymbol{\theta}))$ es como antes pero con m_Q explícito

Evaluando la bondad del ajuste

- Goodness-of-fit ⇒ mayormente computacionales y basados en visualización
- Ej: Red de blogs políticos franceses de octubre 2006 [Kolaczyk'17]
 - ⇒ Ajuste a un SBM usando el método variacional (mixer en R)

- \blacksquare Valor óptimo $\hat{Q}=12,$ pero $Q\in[8,12]$ parece razonable (9 partidos políticos)
 - ⇒ Permutar la matriz de adyacencia muestra estructura (margen para agrupar)
- La distribución de grados ajusta razonablemente bien

Estimación del grafón

- \blacksquare Objetivo: estimar el grafón f de la realización observada G^{obs}
- Regresión no-paramétrica: estimar f dados $\{A_{ij}, U_i, U_j\}_{i,j \in \mathcal{V}}$
 - \Rightarrow Desafío es que los puntos U_1, \ldots, U_{N_v} son latentes

Aproximación por SBM

C. Gao et al, "Rate-optimal graphon estimation," Annals of Statistics, vol. 43, 2015

Estimación por histograma (orden y suavizado)

S. H. Chan and E. M. Airoldi, "A consistent histogram estimator for exchangeable graph models," *ICML*, 2014

Modelo como proceso Gaussiano

P. Orbanz and D. M. Roy, "Bayesian models of graphs, arrays and other exchangeable random structures," *IEEE Trans. PAMI*, vol. 37, 2015

Extensiones de SBMs

Degree-corrected SBMs

Comunidades con una distribución de grados "amplia"

B. Karrer B and M. E. Newman, "Stochastic blockmodels and community structure in networks," *Physical Review E.*, vol. 83, 2011

Mixed-membership SBMs

■ Los nodos pueden pertenecer a más de una clase

E. M. Airoldi, "Mixed membership stochastic blockmodels," J. Machine Learning Research, vol. 9, 2008

SBMs jerárquicos

■ Clustering jerárquico combinado con SBMs

A. Clauset et al, "Hierarchical structure and the prediction of missing links in networks," *Nature*, vol. 453, 2008

Modelos de Grafos Aleatorios

🕕 Modelos de Variables Latentes

2 Random dot product graphs

Random dot product graphs

lacksquare Consideremos un espacio latente $\mathcal{X}_d \subset \mathbb{R}^d$ tal que para todo

$$\mathbf{x}, \mathbf{y} \in \mathcal{X}_d \quad \Rightarrow \quad \mathbf{x}^\top \mathbf{y} \in [0, 1]$$

- \Rightarrow Distribución de producto interno $F: \mathcal{X}_d \mapsto [0,1]$
- Random dot product graphs (RDPGs):

$$\mathbf{x}_1, \dots, \mathbf{x}_{N_v} \overset{\text{i.i.d.}}{\sim} F,$$

$$A_{ij} \mid \mathbf{x}_i, \mathbf{x}_j \sim \text{Bernoulli}(\mathbf{x}_i^{\top} \mathbf{x}_j)$$

para
$$1 \leq i, j \leq N_v$$
, donde $A_{ij} = A_{ji}$ y $A_{ii} \equiv 0$

■ Tipo particularmente intuitivo y "tratable" de grafos aleatorios con posiciones latentes

$$\Rightarrow$$
 Posición de los vértices $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_{N_v}]^T \in \mathbb{R}^{N_v \times d}$

S. J. Young and E. R. Scheinerman, "Random dot product graph models for social networks," WAW, 2007

Conexión a otros modelos

■ RDPG incluye varios modelos clásicos de grafos aleatorios

Ej: Erdös-Renyi ER (N_v,p) es un RDPG con d=1 y $\mathcal{X}_d=\{\sqrt{p}\}$

Ej: SBM es un RDGP tal que F es

$$P(\mathbf{X} = \mathbf{x}_q) = \alpha_q, \quad q = 1, \dots, Q$$

con d y $\mathbf{x}_1, \dots, \mathbf{x}_Q$ tal que $\pi_{qr} = \mathbf{x}_q^\top \mathbf{x}_r$

■ Esto último implica que los RDPGs son al menos tan expresivos como los SBMs

Conexión a otros modelos

■ RDPG incluye varios modelos clásicos de grafos aleatorios

Ej: Erdös-Renyi ER (N_v,p) es un RDPG con d=1 y $\mathcal{X}_d=\{\sqrt{p}\}$

Ej: SBM es un RDGP tal que F es

$$P(\mathbf{X} = \mathbf{x}_q) = \alpha_q, \quad q = 1, \dots, Q$$

con d y $\mathbf{x}_1, \dots, \mathbf{x}_Q$ tal que $\pi_{qr} = \mathbf{x}_q^{\top} \mathbf{x}_r$

- Esto último implica que los RDPGs son al menos tan expresivos como los SBMs
- RDPGs son un caso especial de modelos de posiciones latentes [Hoff et al'02]

$$A_{ij} \mid \mathbf{x}_i, \mathbf{x}_j \sim \text{Bernoulli}(\kappa(\mathbf{x}_i, \mathbf{x}_j))$$

 \Rightarrow RDPG aproxima cualquier $\kappa(\cdot)$ con un d suficientemente grande [Tang et al'13]

Estimación de las posiciones latentes

- **Q:** Dado G de un RDPG ¿cuál es el "mejor" $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_{N_v}]^{\top}$?
 - MLE parece una buena idea, pero es impensado para N_v grandes

$$\hat{\mathbf{X}}_{ML} = \underset{\mathbf{X}}{\operatorname{argmax}} \prod_{i < j} (\mathbf{x}_i^{\top} \mathbf{x}_j)^{A_{ij}} (1 - \mathbf{x}_i^{\top} \mathbf{x}_j)^{1 - A_{ij}}$$

Estimación de las posiciones latentes

- **Q:** Dado G de un RDPG ¿cuál es el "mejor" $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_{N_v}]^{\top}$?
- \blacksquare MLE parece una buena idea, pero es impensado para N_v grandes

$$\hat{\mathbf{X}}_{ML} = \underset{\mathbf{X}}{\operatorname{argmax}} \prod_{i < j} (\mathbf{x}_i^{\top} \mathbf{x}_j)^{A_{ij}} (1 - \mathbf{x}_i^{\top} \mathbf{x}_j)^{1 - A_{ij}}$$

- Sea $P_{ij} = P((i,j) \in \mathcal{E})$ y definamos la matriz $\mathbf{P} = [P_{ij}] \in [0,1]^{N_v \times N_v}$
 - \Rightarrow El modelo RDPG especifica que $\mathbf{P} = \mathbf{X}\mathbf{X}^{\top}$
 - \Rightarrow Clave: La **A** observada es una realización ruidosa de **P** ($\mathbb{E}[A] = \mathbb{P}$)
- Sugiere aplicar mínimos cuadrados para hallar X

$$\hat{\mathbf{X}}_{LS} = \underset{\mathbf{X}}{\operatorname{argmin}} \|\mathbf{X}\mathbf{X}^{\top} - \mathbf{A}\|_F^2$$

Adjacency spectral embedding

- lacktriangle Como f A es real y simétrica, podemos descomponerla como $f A = f U \Lambda f U^{ op}$
 - $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_{N_v}]$ es la matriz ortogonal de vectores propios
 - $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_{N_v})$, con valore propios $\lambda_1 \geq \ldots \geq \lambda_{N_v}$

Adjacency spectral embedding

- \blacksquare Como **A** es real y simétrica, podemos descomponerla como $\mathbf{A} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^{\top}$
 - ullet $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_{N_v}]$ es la matriz ortogonal de vectores propios
 - $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_{N_v})$, con valore propios $\lambda_1 \geq \ldots \geq \lambda_{N_v}$
- Definamos $\hat{\mathbf{\Lambda}} = \operatorname{diag}(\lambda_1^+, \dots, \lambda_d^+)$ y $\hat{\mathbf{U}} = [\mathbf{u}_1, \dots, \mathbf{u}_d]$ $(\lambda^+ := \max(0, \lambda))$
- La mejor aproximación de rango d semi-definida positiva de \mathbf{A} es $\hat{\mathbf{U}}\hat{\mathbf{\Lambda}}\hat{\mathbf{U}}^{\top}$
 - \Rightarrow Ajacency spectral embedding (ASE) es $\hat{\mathbf{X}}_{LS} = \hat{\mathbf{U}}\hat{\boldsymbol{\Lambda}}^{1/2}$ dado que

$$\mathbf{A}pprox\hat{\mathbf{U}}\hat{\mathbf{\Lambda}}\hat{\mathbf{U}}^{ op}=\hat{\mathbf{U}}\hat{\mathbf{\Lambda}}^{1/2}\hat{\mathbf{\Lambda}}^{1/2}\hat{\mathbf{U}}^{ op}=\hat{\mathbf{X}}_{LS}\hat{\mathbf{X}}_{LS}^{ op}$$

Adjacency spectral embedding

- \blacksquare Como **A** es real y simétrica, podemos descomponerla como $\mathbf{A} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^{\top}$
 - ullet $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_{N_v}]$ es la matriz ortogonal de vectores propios
 - $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_{N_v})$, con valore propios $\lambda_1 \geq \ldots \geq \lambda_{N_v}$
- Definamos $\hat{\mathbf{\Lambda}} = \text{diag}(\lambda_1^+, \dots, \lambda_d^+)$ y $\hat{\mathbf{U}} = [\mathbf{u}_1, \dots, \mathbf{u}_d]$ $(\lambda^+ := \text{máx}(0, \lambda))$
- \blacksquare La mejor aproximación de rango d semi-definida positiva de \mathbf{A} es $\hat{\mathbf{U}}\hat{\mathbf{\Lambda}}\hat{\mathbf{U}}^{\top}$
 - \Rightarrow Ajacency spectral embedding (ASE) es $\hat{\mathbf{X}}_{LS} = \hat{\mathbf{U}}\hat{\mathbf{\Lambda}}^{1/2}$ dado que

$$\mathbf{A} pprox \hat{\mathbf{U}} \hat{\mathbf{\Lambda}} \hat{\mathbf{U}}^ op = \hat{\mathbf{U}} \hat{\mathbf{\Lambda}}^{1/2} \hat{\mathbf{\Lambda}}^{1/2} \hat{\mathbf{U}}^ op = \hat{\mathbf{X}}_{LS} \hat{\mathbf{X}}_{LS}^ op$$

Q: ¿La solución es única? Nop, dado que el producto interno es invariante a rotaciones

$$\mathbf{P} = \mathbf{X}\mathbf{W}(\mathbf{X}\mathbf{W})^{\top} = \mathbf{X}\mathbf{X}^{\top}, \quad \mathbf{W}\mathbf{W}^{\top} = \mathbf{I}_d$$

⇒ El embedding de un RDPG es identificable modulo rotaciones

Embedding de un grafo Erdös-Renyi

■ Ej: Grafo Erdös-Renyi ER(1000,0,3) (realización de A a la izquierda)

- Para d = 1 calculamos el ASE $\hat{\mathbf{x}}_{LS}$ y graficamos $\hat{\mathbf{x}}_{LS}\hat{\mathbf{x}}_{LS}^{\top}$ (centro)
 - \Rightarrow Buena aproximación de la matriz constante $\mathbf{P} = 0.3 \times \mathbf{11}^{\top}$
 - \Rightarrow El histograma de las entradas de $\hat{\mathbf{x}}_{LS}$ da más evidencia (derecha, $\sqrt{p}=0.547$)
- Resultados sobre consistencia y distribuciones límites disponibles

A. Athreya et al., "Statistical inference on random dot product graphs: A survey," J. Mach. Learn. Res., vol. 18, pp. 1-92, 2018

Embedding de un grafo SBM

■ Ej: SBM con $N_v = 1500$, Q = 3 y parámetros

$$\boldsymbol{\alpha} = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}, \quad \boldsymbol{\Pi} = \begin{bmatrix} 0.5 & 0.1 & 0.05 \\ 0.1 & 0.3 & 0.05 \\ 0.05 & 0.05 & 0.9 \end{bmatrix}$$

- Realización de la adyacencia (izquierda), $\hat{\mathbf{X}}_{LS}\hat{\mathbf{X}}_{LS}^{\top}$ (centro), filas de $\hat{\mathbf{X}}_{LS}$ (derecha)
- Justifica el uso de métodos geométricos (e.g. KNN o GMM del espectro)

 RACUITAD DE INGENIERIA

JDFLAR

Interpretabilidad de los embeddings

■ Ex: Zachary's karate club con $N_v = 34$, $N_e = 78$ (izquierda)

- Embeddings (filas de $\hat{\mathbf{X}}_{LS}$) para d=2 (derecha)
 - El administrador del club (i = 0) y el instructor (j = 33) son ortogonales
- La interpretabilidad es una característica muy valiosa de los RDPGs
 - ⇒ Alineación del vector indica afinidad entre nodos (comunidad)
 - ⇒ Magnitud del vector indica conectividad del nodo

Grafo de colaboración entre matemáticos

■ Ej: Red de colaboración entre matemáticos centrado en Paul Erdős

- \blacksquare La mayoría de los matemáticos tienen un número de Erdős de no más de 4 o 5
 - ⇒ Dibujo creado por R. Graham en 1979

Grafo de colaboración entre matemáticos

- \blacksquare Grafo de co-autoría $G,\ N_v=4301$ nodos con número de Erdős ≤ 2
 - ⇒ No hay una estructura clara de la matriz de adyacnecia "cruda" A (izquierda)

- La estructura de comunidades se revela al permutar la matriz (derecha)
 - (i) Se obtiene el ASE $\hat{\mathbf{X}}_{LS}$ de los matemáticos
 - (ii) K-means angular en las filas de $\hat{\mathbf{X}}_{LS}$ [Scheinerman-Tucker'10]

Relaciones internacionales

- \blacksquare Ei: Red dinámica G_t de relaciones entre naciones
 - \Rightarrow $(i,j) \in \mathcal{E}_t$ si las naciones tuvieron un tratado de alianza en el año t

- Ángulo entre el embedding del Reino Unido y Francia entre 1890 y 1995
 - Ortogonal durante fines del siglo XIX
 - Se acercan durante las guerras, y se vuelve alejar durante la ocupación nazi en la segunda guerra
 - Fuertemente alineados a partir de los 70 hasta la creación de la UE

ACUITAD DE NGENIERÍA **JDFLAR**

Extensiones

- Ignoramos la diagonal $[\hat{\mathbf{X}}_{LS}\hat{\mathbf{X}}_{LS}^{\top}]_{ii} = 0$. Se puede resolver mediante algoritmos iterativos o descenso por gradiente
 - E. R. Scheinerman and K. Tucker, "Modeling graphs using dot product representations," *Comput. Stat.*, vol. 25, pp. 1-16, 2010
 - M. Fiori et al., "Algorithmic Advances for the Adjacency Spectral Embedding," *EUSIPCO*, 2022
- ¿A no es semi-definida positiva? Extensión conocida como generalized RDPG
 - P. Rubin-Delanchy et al, "A statistical interpretation of spectral embedding: The generalised random dot product graph," arXiv:1709.05506 [stat.ML], 2017
- Considerar el caso con pesos y/o dirigido es posible
 - B. Marenco et al., "Online Change Point Detection for Weighted and Directed Random Dot Product Graphs," *IEEE TSIPN*, 2022
- Permite varias aplicaciones en testing, clustering, change-point detection, ...

Online change point detection: entrenamiento

- Idea: Usar "estimating function" [Kirsch-Tadjuidje'15]
 - \Rightarrow Entrenar con m grafos "limpios" (sin cambios)

Online change point detection: Monitoreo

 \blacksquare Observar las matrices secuencialmente $\mathbf{A}[m+1], \mathbf{A}[m+2], \ldots$

• Monitorear la suma acumulada
$$\mathbf{S}[m,k] = \sum_{t=m+1}^{m+k} \left(\hat{\mathbf{X}}\hat{\mathbf{X}}^{\top} - \mathbf{A}[t]\right)$$

Proposición: Para k grande y bajo la hipótesis nula de no-cambio, $\Gamma[m,k] := \|\mathbf{S}[m,k]\|^2$ tiene una distribución χ^2 generalizada.

Liviano: requisito de memoria y computacional de $O(N^2)$

FACULTAD DE INGENIERÍA LIDELAR

Monitoreo de una red inalámbrica

- Extensión del modelo para incluir grafos con pesos y dirigidos
- \blacksquare Red inalámbrica del Plan Ceibal. Medidas@hora del RSSI para $N=6~\mathrm{APs}$
 - ⇒ Según el administrador de red: AP 4 fue movido el 30 de octubre

- Explicar el cambio a través de la interpretabilidad del ASE
- Reproducibilidad ⇒ Código disponible en @ https://github.com/git-artes/cpd_rdpg

FACULTAD DE INGENIERÍA UDELAR

Futuro

- Descenso por gradiente para hallar el ASE: escalabilidad y tracking
 - Manejo de datos faltantes, alineación mediante inicialización (M. Fiori et al.

■ Propiedades estadísticas del modelo no-paramétrico del weighted RDPG

$$\mathbb{E}\left[e^{tA_{ij}}|\mathbf{X}\right] = \sum_{m=0}^{\infty} \frac{t^m \mathbb{E}\left[A_{ij}^m\right]}{m!} = 1 + \sum_{m=1}^{\infty} \frac{t^m \mathbf{x}_i^{\top}[m] \mathbf{x}_j[m]}{m!}$$

