

Aprendizaje Automático para Datos en Grafos Modelos de Grafos Aleatorios - Parte II

Federico 'Larroca' La Rocca Muy basado en transparencias de Gonzalo Mateos

flarroca@fing.edu.uy
http://iie.fing.edu.uy/personal/flarroca

Modelos de Grafos Aleatorios

2 Random dot product graphs

Modelos de Variables Latentes

- Variables Latentes ampliamente usado para modelar datos con observaciones parciales Ex: Hidden Markov Models, análisis factorial
- Esta idea se aplica en análisis estadístico de redes en (básicamente) dos variantes:
 - Modelos de clases latentes: la pertenencia a cierta clase (no observada) es la que marca la tendencia a conectarse
 - Modelos de vectores latentes: las conexiones son más probables en función de que tan "cerca" estén los nodos en cierto espacio latente
- **S**i bien en redes existen muchas variantes, nos enfocaremos en
 - \Rightarrow Stochastic block models (SBMs)
 - \Rightarrow Una variante general y no-paramétrica denominada grafones

Ejemplo 1: Blogs políticos franceses

Red de blogs políticos franceses de Octubre 2006 [Kolaczyk'17]

- \Rightarrow Es un grafo con $N_v=192$ blogs conectados por $N_e=1431$ aristas
- \Rightarrow Cada color indica la afiliación a cierto partido político

Visualmente está claro que hay una mezcla de sub-grafos densamente conectados

- \Rightarrow Diferentes tasas de conexión entre blogs dependiendo del partido
- \Rightarrow Erdős-Rényi con pfijo no puede capturar esta estructura

ACULTAD DE NGENIERÍA

Ejemplo 2: Actores que comparten películas

Red de colaboración de actores según IMDb entre 2017 y 2021 (ver EVA)

- \Rightarrow Es un grafo con $N_v=21617$ actores conectados por $N_e=73702$ aristas
- \Rightarrow Cada color indica comunidad estimada con la modularidad

- Diferentes tasas de conexión entre actores dependiendo de dónde trabajan: Hollywood, independientes, Bollywood, Nollywood, etc.
- $\bullet~$ Un configuration model tampo co puede capturar esta estructura

ACULTAD DE NGENIERÍA

Stochastic block models

 \blacksquare Los stochastic block models son explícitos en esta noción

- \Rightarrow Grupos, módulos o comunidades $\mathcal{C}_1, \ldots, \mathcal{C}_Q$
- \Rightarrow Tasas de conexión π_{qr} de vértices inter/intra grupos

Stochastic block models

 \blacksquare Los stochastic block models son explícitos en esta noción

- \Rightarrow Grupos, módulos o comunidades $\mathcal{C}_1, \ldots, \mathcal{C}_Q$
- \Rightarrow Tasas de conexión π_{qr} de vértices inter/intra grupos

Modelo generativo para un grafo no-dirigido $G(\mathcal{V},\mathcal{E})$

\square Cada vértice $i \in \mathcal{V}$ pertenece de manera independiente a \mathcal{C}_q con probabilidad α_q

$$\boldsymbol{\alpha} = [\alpha_1, \dots, \alpha_Q]^\top, \quad \mathbf{1}^\top \boldsymbol{\alpha} = 1$$

Para cada par de vértices $i, j \in \mathcal{V}$, con $i \in \mathcal{C}_q$ y $j \in \mathcal{C}_r \implies (i, j) \in \mathcal{E}$ con proba π_{qr}

P. W. Holland et al., "Stochastic block-models: First steps," Social Networks, vol. 5, pp. 109-137, 1983

Especificación del modelo y flexibilidad

• En otras palabras, con $Z_{iq} = \mathbb{I}\{i \in C_q\}$ y $\mathbf{Z}_i = [Z_{i1}, \dots, Z_{iQ}]^\top$

$$\mathbf{Z}_{i} \stackrel{\text{i.i.d.}}{\sim} \text{Multinomial}(1, \boldsymbol{\alpha}),$$
$$A_{ij} \mid \mathbf{Z}_{i} = \mathbf{z}_{i}, \mathbf{Z}_{j} = \mathbf{z}_{j} \sim \text{Bernoulli}(\pi_{\mathbf{z}_{i}, \mathbf{z}_{j}})$$

para $1 \leq i, j \leq N_v$, donde $A_{ij} = A_{ji}$ y $A_{ii} \equiv 0$

Parámetros: Q proporciones de grupos (α_q) y Q(Q+1)/2 probas de conexión (π_{qr})

Especificación del modelo y flexibilidad

• En otras palabras, con $Z_{iq} = \mathbb{I}\{i \in C_q\}$ y $\mathbf{Z}_i = [Z_{i1}, \dots, Z_{iQ}]^\top$

$$\mathbf{Z}_{i} \stackrel{\text{i.i.d.}}{\sim} \text{Multinomial}(1, \boldsymbol{\alpha}),$$
$$A_{ij} \mid \mathbf{Z}_{i} = \mathbf{z}_{i}, \mathbf{Z}_{j} = \mathbf{z}_{j} \sim \text{Bernoulli}(\pi_{\mathbf{z}_{i}, \mathbf{z}_{j}})$$

para $1 \leq i, j \leq N_v$, donde $A_{ij} = A_{ji}$ y $A_{ii} \equiv 0$

Parámetros: Q proporciones de grupos (α_q) y Q(Q+1)/2 probas de conexión (π_{qr})

Es una mezcla de grafos aleatorios clásicos

DELAR

$$\mathbf{P}\left(A_{ij}=1\right)=\mathbf{P}\left(\bigcup_{1\leq q,r\leq Q}\left(i\in\mathcal{C}_{q}\right)\cap\left(j\in\mathcal{C}_{r}\right)\cap\left(\left(i,j\right)\in\mathcal{E}\right)\right)=\sum_{1\leq q,r\leq Q}\alpha_{q}\alpha_{r}\pi_{qr}$$

Es más flexible para capturar la estructura de grafos observados

 \Rightarrow Hay temas de identificabilidad [Allman et al'11]

Transición de fase en la aparición de una componente gigante [Söderberg'02'03abc]

Especificación del modelo y flexibilidad (cont.)

■ Mezcla de modelos Erdős-Rényi puede ser sorprendentemente flexible

Grafones y f-random graphs

Una variante no-parámetrica de SBM se puede definir así:

$$U_1, \dots, U_{N_v} \stackrel{\text{i.i.d. }}{\sim} \text{Uniform}[0, 1],$$
$$A_{ij} \mid U_i = u_i, U_j = u_j \sim \text{Bernoulli}(f(u_i, u_j))$$

para $1 \leq i, j \leq N_v$, donde $A_{ij} = A_{ji}$ y $A_{ii} \equiv 0$

■ Grafón: función simétrica y medible $f : [0, 1]^2 \mapsto [0, 1]$ ⇒ El grafo resultante G se denomina f-random graph

Grafones y f-random graphs

Una variante no-parámetrica de SBM se puede definir así:

$$U_1, \dots, U_{N_v} \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}[0, 1],$$
$$A_{ij} \mid U_i = u_i, U_j = u_j \sim \text{Bernoulli}(f(u_i, u_j))$$

para $1 \le i, j \le N_v$, donde $A_{ij} = A_{ji}$ y $A_{ii} \equiv 0$

- Grafón: función simétrica y medible $f : [0, 1]^2 \mapsto [0, 1]$ \Rightarrow El grafo resultante G se denomina f-random graph
- Variables aleatorias latentes U_i uniformes en [0, 1] dan la posición de cada nodo \Rightarrow El grafón $f(u_i, u_j)$ especifica la probabilidad de conexión entre i, j
- SBM: variables latentes \mathbf{Z}_i dan la membresía de los vértices a uno de los Q grupos \Rightarrow La probabilidad π_{qr} define la proabilidad de conexión entre $i \in C_q, j \in C_r$

L. Lovász, "Large Networks and Graph Limits," AMS Colloquium Publications, vol. 60, 2012

Ejemplo: grafones SBM

 \blacksquare El modelo f-random incluye a SBM (paramétrico). ¿Cómo?

Ejemplo: grafones SBM

 \blacksquare El modelo f-random incluye a SBM (paramétrico). ¿Cómo?

- (i) Partimos [0,1] en Q sub-intervalos de largo $\alpha_1, \ldots, \alpha_Q$
- (ii) Tomamos el producto cartesiano para partir $[0,1]^2$ en Q^2 bloques
- (iii) Definimos f para ser constante a tramos en los bloques: el bloque qr tiene "altura" π_{qr}

Ejemplo: grafones SBM

 \blacksquare El modelo f-random incluye a SBM (paramétrico). ¿Cómo?

- (i) Partimos [0,1] en Q sub-intervalos de largo $\alpha_1, \ldots, \alpha_Q$
- (ii) Tomamos el producto cartesiano para partir $[0,1]^2$ en Q^2 bloques
- (iii) Definimos f para ser constante a tramos en los bloques: el bloque qr tiene "altura" π_{qr}

 \blacksquare Se puede aproximar cualquier función medible por una constante a tramos

- \Rightarrow Podemos aproximar cualquier $f-{\rm random}$ graph (en distribución) con un SBM
- \Rightarrow Pe
eeero el número de bloques Q puede ser enorme...

Ejemplo: Generación de grafo

Consideremos un grafo f-random con $f(x, y) = \min(x, y)$ [Lovász'12] \Rightarrow La gráfica de la izquierda muestra el grafón en escala de grises f

Q: ¿Qué pinta tienen los grafos generados? Ejemplo con $N_v = 40$

 \blacksquare Gráfica del centro muestra una realización de la matriz de adyacencia ${\bf A}$

 \Rightarrow Dado sólo A, es imposible reconocer el origen del grafo

 \blacksquare Pero ordenando los vértices según la conectividad $d_{(1)},\ldots,d_{(40)}$ aparece un patrón

 \Rightarrow Parece posible una estimación no-paramétrica del grafón

ACULTAD DE NGENIERÍA

Intercambiabilidad de vértices

Def: una matriz aleatoria $\mathbf{A} = [A_{ij}]_{i,j\in\mathcal{V}}$ es intercambiable en vértices si $\mathbf{A}_{\sigma} := [A_{\sigma(i)\sigma(j)}]_{i,j\in\mathcal{V}} \stackrel{D}{=} \mathbf{A}$ para cada permutación $\sigma : \mathcal{V} \mapsto \mathcal{V}$

• Modelos intercambiables asignan la misma probabilidad a grafos isomorfos

 \Rightarrow Estos modelos son más naturales para grafos no etiquetados

Intercambiabilidad de vértices

Def: una matriz aleatoria $\mathbf{A} = [A_{ij}]_{i,j\in\mathcal{V}}$ es intercambiable en vértices si $\mathbf{A}_{\sigma} := [A_{\sigma(i)\sigma(j)}]_{i,j\in\mathcal{V}} \stackrel{D}{=} \mathbf{A}$ para cada permutación $\sigma : \mathcal{V} \mapsto \mathcal{V}$

■ Modelos intercambiables asignan la misma probabilidad a grafos isomorfos ⇒ Estos modelos son más naturales para grafos no etiquetados

- \blacksquare Como en SBMs, uno puede demostrar que los grafos f-random son intercambiables
- \blacksquare Notablemente, cada modelo intercamiable es una mezcla de grafos f-random
 - \Rightarrow El teorema de Aldous-Hoover extiende el resultado sobre secuencias de de Finetti

D. J. Aldous, "Representations for partially exchangeable arrays of random variables," Journal of Mulivariate Analysis, vol. 11, 1981

Todo grafo f-random es intercambiable

 \blacksquare La distribución de un grafo f-random con N_v vértices es

 $P\left(\mathbf{A}=\mathbf{a}\right)=$

Todo grafo f-random es intercambiable

 \blacksquare La distribución de un grafo f-random con N_v vértices es

$$P(\mathbf{A} = \mathbf{a}) = \int_{[0,1]^{N_v}} \prod_{1 \le i \ne j \le N_v} f(u_i, u_j)^{a_{ij}} (1 - f(u_i, u_j))^{1 - a_{ij}} du_1 \dots du_{N_v}$$

Todo grafo f-random es intercambiable

 \blacksquare La distribución de un grafo f-random con N_v vértices es

$$P(\mathbf{A} = \mathbf{a}) = \int_{[0,1]^{N_v}} \prod_{1 \le i \ne j \le N_v} f(u_i, u_j)^{a_{ij}} (1 - f(u_i, u_j))^{1 - a_{ij}} du_1 \dots du_{N_v}$$

 \blacksquare Para permutaciones arbitrarias $\sigma:\mathcal{V}\mapsto\mathcal{V}$ resulta

$$P\left(\mathbf{A}_{\sigma} = \mathbf{a}_{\sigma}\right) = \int_{[0,1]^{N_{v}}} \prod_{1 \le i \ne j \le N_{v}} f(u_{i}, u_{j})^{a_{\sigma(i)\sigma(j)}} (1 - f(u_{i}, u_{j}))^{1 - a_{\sigma(i)\sigma(j)}} du_{1} \dots du_{N_{v}}$$

$$= \int_{[0,1]^{N_{v}}} \prod_{1 \le i \ne j \le N_{v}} f(u_{\sigma^{-1}(i)}, u_{\sigma^{-1}(j)})^{a_{ij}} (1 - f(u_{\sigma^{-1}(i)}, u_{\sigma^{-1}(j)}))^{1 - a_{ij}}$$

$$\times du_{\sigma^{-1}(1)} \dots du_{\sigma^{-1}(N_{v})}$$

$$= \int_{[0,1]^{N_{v}}} \prod_{1 \le i \ne j \le N_{v}} f(u_{i}, u_{j})^{a_{ij}} (1 - f(u_{i}, u_{j}))^{1 - a_{ij}} du_{1} \dots du_{N_{v}}$$

$$= P\left(\mathbf{A} = \mathbf{a}\right)$$

Problemas de identidad

■ Dos f distintas pueden producir grafos f-random con la misma distribución \Rightarrow No identificable

Ej: grafones f(x, y) y f(1 - x, 1 - y) resultan en el mismo modelo

$$U \stackrel{D}{=} 1 - U$$
 para $U \sim \text{Uniform}[0, 1]$

Ej: dos grafones f(x, y) y $f(\phi(x), \phi(y))$ para un ϕ que preserve la medida, i.e.,

 $\phi:[0,1]\mapsto [0,1]$ para el cual $\phi(U)\sim \mathrm{Uniform}[0,1]$

Problemas de identidad

■ Dos f distintas pueden producir grafos f-random con la misma distribución \Rightarrow No identificable

Ej: grafones f(x, y) y f(1 - x, 1 - y) resultan en el mismo modelo

$$U \stackrel{D}{=} 1 - U$$
 para $U \sim \text{Uniform}[0, 1]$

Ej: dos grafones f(x, y) y $f(\phi(x), \phi(y))$ para un ϕ que preserve la medida, i.e.,

 $\phi:[0,1]\mapsto [0,1]$ para el cual $\phi(U)\sim \mathrm{Uniform}[0,1]$

 \blacksquare Son necesarias ciertas restricciones en el grafón fpara su modelado estadístico

Def: f es estrictamente monótono si $\exists \phi$ tal que $\tilde{f}(x, y) = f(\phi(x), \phi(y))$ tiene una función de grados $\tilde{g}(x) = \int_{[0,1]} \tilde{f}(x, y) dy$ estrictamente creciente

 \Rightarrow Esta restricción a \tilde{f} resulta en un modelo identificable [Bickel-Chen'09]

CUITAD DE

Límite de un grafo

In una secuencia de grafos $G_n(\mathcal{V}_n, \mathcal{E}_n)$ con una cantidad de vértices creciente $N_v = n$

- **Q:** ¿Cuándo podemos decir que $\{G_n\}_{n=1}^{\infty}$ converge a un límite?
- Q: ¿Qué tipo de objeto es este límite?

Spoiler: Si la secuencia $\{G_n\}_{n=1}^{\infty}$ converge, el límite es un grafón f

Ej: La secuencia $\mathrm{ER}(n,p)$ a medida que $n\to\infty$

Def: Homomorfismos h son aquellos mapeos del motif $F(\mathcal{V}', \mathcal{E}')$ (i.e. un grafo pequeño) a un grafo $G(\mathcal{V}, \mathcal{E})$ que preservan la adyacencia

 $h: \mathcal{V}' \mapsto \mathcal{V}$ tal que $(i, j) \in \mathcal{E}'$ implica $(h(i), h(j)) \in \mathcal{E}$

Existen $\binom{|\mathcal{V}|}{|\mathcal{V}'|}$ mapeos posibles de F a G, pero sólo hom(F, G) son homomorfismos \Rightarrow **Def: Densidad de homomorfismos** del motif F en el grafo G es

$$t(F, \boldsymbol{G}) = \frac{\hom(F, \boldsymbol{G})}{\binom{|\mathcal{V}|}{|\mathcal{V}'|}}$$

Def: Homomorfismos h son aquellos mapeos del motif $F(\mathcal{V}', \mathcal{E}')$ (i.e. un grafo pequeño) a un grafo $G(\mathcal{V}, \mathcal{E})$ que preservan la adyacencia

 $h: \mathcal{V}' \mapsto \mathcal{V}$ tal que $(i, j) \in \mathcal{E}'$ implica $(h(i), h(j)) \in \mathcal{E}$

Existen $\binom{|\mathcal{V}|}{|\mathcal{V}'|}$ mapeos posibles de F a G, pero sólo hom(F, G) son homomorfismos \Rightarrow **Def: Densidad de homomorfismos** del motif F en el grafo G es

$$t(F,G) = \frac{\hom(F,G)}{\binom{|\mathcal{V}|}{|\mathcal{V}'|}}$$

Def: Homomorfismos h son aquellos mapeos del motif $F(\mathcal{V}', \mathcal{E}')$ (i.e. un grafo pequeño) a un grafo $G(\mathcal{V}, \mathcal{E})$ que preservan la adyacencia

 $h: \mathcal{V}' \mapsto \mathcal{V}$ tal que $(i, j) \in \mathcal{E}'$ implica $(h(i), h(j)) \in \mathcal{E}$

Existen $\binom{|\mathcal{V}|}{|\mathcal{V}'|}$ mapeos posibles de F a G, pero sólo hom(F, G) son homomorfismos \Rightarrow **Def: Densidad de homomorfismos** del motif F en el grafo G es

$$t(F, \boldsymbol{G}) = \frac{\hom(F, \boldsymbol{G})}{\binom{|\mathcal{V}|}{|\mathcal{V}'|}}$$

Def: Homomorfismos h son aquellos mapeos del motif $F(\mathcal{V}', \mathcal{E}')$ (i.e. un grafo pequeño) a un grafo $G(\mathcal{V}, \mathcal{E})$ que preservan la adyacencia

 $h: \mathcal{V}' \mapsto \mathcal{V}$ tal que $(i, j) \in \mathcal{E}'$ implica $(h(i), h(j)) \in \mathcal{E}$

Existen $\binom{|\mathcal{V}|}{|\mathcal{V}'|}$ mapeos posibles de F a G, pero sólo hom(F, G) son homomorfismos \Rightarrow **Def: Densidad de homomorfismos** del motif F en el grafo G es

$$t(F, \boldsymbol{G}) = \frac{\hom(F, \boldsymbol{G})}{\binom{|\mathcal{V}|}{|\mathcal{V}'|}}$$

Def: Homomorfismos h son aquellos mapeos del motif $F(\mathcal{V}', \mathcal{E}')$ (i.e. un grafo pequeño) a un grafo $G(\mathcal{V}, \mathcal{E})$ que preservan la adyacencia

 $h: \mathcal{V}' \mapsto \mathcal{V}$ tal que $(i, j) \in \mathcal{E}'$ implica $(h(i), h(j)) \in \mathcal{E}$

Existen $\binom{|\mathcal{V}|}{|\mathcal{V}'|}$ mapeos posibles de F a G, pero sólo hom(F, G) son homomorfismos \Rightarrow **Def: Densidad de homomorfismos** del motif F en el grafo G es

$$t(F, \boldsymbol{G}) = \frac{\hom(F, \boldsymbol{G})}{\binom{|\mathcal{V}|}{|\mathcal{V}'|}}$$

Def: Homomorfismos h son aquellos mapeos del motif $F(\mathcal{V}', \mathcal{E}')$ (i.e. un grafo pequeño) a un grafo $G(\mathcal{V}, \mathcal{E})$ que preservan la adyacencia

 $h: \mathcal{V}' \mapsto \mathcal{V}$ tal que $(i, j) \in \mathcal{E}'$ implica $(h(i), h(j)) \in \mathcal{E}$

Existen $\binom{|\mathcal{V}|}{|\mathcal{V}'|}$ mapeos posibles de F a G, pero sólo hom(F, G) son homomorfismos \Rightarrow **Def: Densidad de homomorfismos** del motif F en el grafo G es

$$t(F, \boldsymbol{G}) = \frac{\hom(F, \boldsymbol{G})}{\binom{|\mathcal{V}|}{|\mathcal{V}'|}}$$

Def: Homomorfismos h son aquellos mapeos del motif $F(\mathcal{V}', \mathcal{E}')$ (i.e. un grafo pequeño) a un grafo $G(\mathcal{V}, \mathcal{E})$ que preservan la adyacencia

 $h: \mathcal{V}' \mapsto \mathcal{V}$ tal que $(i, j) \in \mathcal{E}'$ implica $(h(i), h(j)) \in \mathcal{E}$

Existen $\binom{|\mathcal{V}|}{|\mathcal{V}'|}$ mapeos posibles de F a G, pero sólo hom(F, G) son homomorfismos \Rightarrow **Def: Densidad de homomorfismos** del motif F en el grafo G es

$$t(F, \boldsymbol{G}) = \frac{\hom(F, \boldsymbol{G})}{\binom{|\mathcal{V}|}{|\mathcal{V}'|}}$$

Convergencia de secuencias de grafos

- **Def:** Una secuencia de grafos $\{G_n\}_{n=1}^{\infty}$ converge cuando para todo motif F, la secuencia de densidad de homomorfismos $\{t(F, G_n)\}_{n=1}^{\infty}$ converge
- Algunas aspectos importantes de la definición
 - Si la secuencia se vuelve constante, entonces converge
 - Secuencias de grafos isomórficos converge
 - La convergencia es en cantidades normalizadas, no en número de aristas, triángulos, ...
 - Los resultados son para secuencias de grafos densos, i.e., $|\mathcal{E}_n| = \Omega(n^2)$

Convergencia de secuencias de grafos

- **Def:** Una secuencia de grafos $\{G_n\}_{n=1}^{\infty}$ converge cuando para todo motif F, la secuencia de densidad de homomorfismos $\{t(F, G_n)\}_{n=1}^{\infty}$ converge
- Algunas aspectos importantes de la definición
 - Si la secuencia se vuelve constante, entonces converge
 - Secuencias de grafos isomórficos converge
 - La convergencia es en cantidades normalizadas, no en número de aristas, triángulos, ...
 - Los resultados son para secuencias de grafos densos, i.e., $|\mathcal{E}_n| = \Omega(n^2)$
- Respondimos las dos primeras preguntas. Sólo nos queda la tercera y última
 - \Rightarrow El límite de una secuencia de grafos no es necesariamente un grafo
 - \Rightarrow **Q**: ¿Qué tipo de objeto es este límite?

L. Lovász and B. Szegedy, "Limits of dense graph sequences," Journal of Combinatorial Theory, Series B, vol. 96, 2006

Grafón inducido

 \blacksquare Todo grafo admite una representación denominada grafón inducido

- $\bullet\,$ Consideremos un grafo $G(\mathcal{V},\mathcal{E})$ con matriz de adyacencia ${\bf A}$
- Hagamos una partición uniforme de [0, 1] en N_v sub-intervalos $\Rightarrow I_i = [\frac{i-1}{N_v}, \frac{i}{N_v}]$

Def: El grafón inducido f_G de G es

$$f_G(x,y) = \sum_{1 \le i,j \le N_v} A_{ij} \mathbb{I} \{ x \in I_i \} \mathbb{I} \{ y \in I_j \}$$

Grafo cíclico G con $N_v = 6$ nodos

Grafón f_G inducido por el grafo G

El límite es un grafón

 \blacksquare **Propiedad:** La densidad de homomorfismo del motif F en el grafo G está dado por

$$t(F,G) = \int_{[0,1]^{|\mathcal{V}'|}} \prod_{(i,j)\in\mathcal{E}'} f_G(u_i, u_j) du_1 \dots du_{|\mathcal{V}'|}$$

El límite es un grafón

Propiedad: La densidad de homomorfismo del motif F en el grafo G está dado por

$$t(F,G) = \int_{[0,1]^{|\mathcal{V}'|}} \prod_{(i,j)\in\mathcal{E}'} f_G(u_i, u_j) du_1 \dots du_{|\mathcal{V}'|}$$

- Ej: Se
a ${\cal F}$ el motif más simple: una arista
 - t(F,G) responde la pregunta "Cuántas aristas tiene G (dividido entre las $N_v \times N_v$ posibilidades)?"

• Podemos contar las aristas o simplemente calcular $\int_{[0,1]^2} f_G(u_1, u_2) du_1 du_2$ (el área gris en el grafón inducido)

Esto sigue siendo cierto en el límite. Si la secuencia $\{G_n\}_{n=1}^{\infty}$ converge, entonces

$$\lim_{n \to \infty} t(F, G_n) = \int_{[0,1]^{|\mathcal{V}'|}} \prod_{(i,j) \in \mathcal{E}'} f(u_i, u_j) du_1 \dots du_{|\mathcal{V}'|}$$

para alguna función $f:[0,1]^2\mapsto [0,1]$ simétrica y medible

Esto sigue siendo cierto en el límite. Si la secuencia $\{G_n\}_{n=1}^{\infty}$ converge, entonces

$$\lim_{n \to \infty} t(F, G_n) = \int_{[0,1]^{|\mathcal{V}'|}} \prod_{(i,j) \in \mathcal{E}'} f(u_i, u_j) du_1 \dots du_{|\mathcal{V}'|}$$

para alguna función $f: [0,1]^2 \mapsto [0,1]$ simétrica y medible La intuición es la misma de antes: probabilidad de mapear el motif

Ej Se
a ${\cal F}$ el motif tipo estrella de antes

$$t(F,G) = \int_{[0,1]^4} f(u_1, u_2) f(u_1, u_3) f(u_1, u_4) du_1 du_2 du_3 du_4$$

Esto sigue siendo cierto en el límite. Si la secuencia $\{G_n\}_{n=1}^{\infty}$ converge, entonces

$$\lim_{n \to \infty} t(F, G_n) = \int_{[0,1]^{|\mathcal{V}'|}} \prod_{(i,j) \in \mathcal{E}'} f(u_i, u_j) du_1 \dots du_{|\mathcal{V}'|}$$

para alguna función $f: [0,1]^2 \mapsto [0,1]$ simétrica y medible La intuición es la misma de antes: probabilidad de mapear el motif

Ej Se
a ${\cal F}$ el motif tipo estrella de antes

$$t(F,G) = \int_{[0,1]^4} \underbrace{f(u_1, u_2)f(u_1, u_3)f(u_1, u_4)}_{\text{probabilidad de la estrella}} du_1 du_2 du_3 du_4$$

Esto sigue siendo cierto en el límite. Si la secuencia $\{G_n\}_{n=1}^{\infty}$ converge, entonces

$$\lim_{n \to \infty} t(F, G_n) = \int_{[0,1]^{|\mathcal{V}'|}} \prod_{(i,j) \in \mathcal{E}'} f(u_i, u_j) du_1 \dots du_{|\mathcal{V}'|}$$

para alguna función $f: [0,1]^2 \mapsto [0,1]$ simétrica y medible La intuición es la misma de antes: probabilidad de mapear el motif

Ej Se
a ${\cal F}$ el motif tipo estrella de antes

$$t(F,G) = \int_{[0,1]^4} \underbrace{f(u_1, u_2)f(u_1, u_3)f(u_1, u_4)}_{\text{probabilidad de la estrella}} du_1 du_2 du_3 du_4$$

promediada entre los (u_1, u_2, u_3, u_4) sorteados uniformes

Esto sigue siendo cierto en el límite. Si la secuencia $\{G_n\}_{n=1}^{\infty}$ converge, entonces

$$\lim_{n \to \infty} t(F, G_n) = \int_{[0,1]^{|\mathcal{V}'|}} \prod_{(i,j) \in \mathcal{E}'} f(u_i, u_j) du_1 \dots du_{|\mathcal{V}'|}$$

para alguna función $f: [0,1]^2 \mapsto [0,1]$ simétrica y medible La intuición es la misma de antes: probabilidad de mapear el motif

Ej Se
a ${\cal F}$ el motif tipo estrella de antes

$$t(F,G) = \int_{[0,1]^4} \underbrace{f(u_1, u_2)f(u_1, u_3)f(u_1, u_4)}_{\text{probabilidad de la estrella}} du_1 du_2 du_3 du_4$$

promediada entre los (u_1, u_2, u_3, u_4) sorteados uniformes

Identificamos el objeto límite – el grafón – con f

¿Y esto para qué sirve?

Impacto matemático

Trae herramientas de análisis a lo que a priori es un contexto puramente combinatorio

Impacto en inferencia estadística

Realizaciones grandes se vuelven representativas del proceso generativo
 ⇒ Inferir el mecanismo de generación de los datos examinando una única realización

Impacto en machine learning

Estudiar filtros de grafos y GNNs en el límite de grandes grafos

 \Rightarrow Transferabilidad e.g., entrenando en un grafo más pequeño que donde se aplica

L. Ruiz et al, "Graphon neural networks and the transferability of graph neural networks," NeurIPS, 2020

Plausibilidad

■ Un buen modelo estadístico debería ser [Robbins-Morris'07]

- $\checkmark\,$ Estimable a partir de y razonablemente representativo de los datos observados
- $\checkmark\,$ Plausible teóricamente sobre los efectos que pueden haber producido la red
- $\checkmark\,$ Capaz de discriminar entre los distintos efectos que mejor explican los datos

Plausibilidad

Un buen modelo estadístico debería ser [Robbins-Morris'07]

- $\checkmark~$ Estimable a partir de y razonablemente representativo de los datos observados
- $\checkmark\,$ Plausible teóricamente sobre los efectos que pueden haber producido la red
- $\checkmark\,$ Capaz de discriminar entre los distintos efectos que mejor explican los datos
- **Q:** $_{i}$ Qué tan apropiados son modelos de variables latentes? $_{i}$ Son plausibles?
- **Q:** ¿Podemos aproximar un grafo observado G^{obs} usando un SBM?
 - \Rightarrow Una variante del lema de regularidad de Szemerédi resulta útil aquí

C. Borgs et al, "Graph limits and parameter testing," Syposium on Theory of Computing, 2006

Cut distance

Discutir nociones de aproximación requiere una distancia entre grafos

(

Def: La cut distance entre los grafos $G(\mathcal{V}, \mathcal{E})$ y $G'(\mathcal{V}', \mathcal{E}')$ (con $|\mathcal{V}| = |\mathcal{V}'| = N_v$) es

$$d_{\Box}(G,G') = \frac{1}{N_v^2} \max_{\mathcal{S}, \tau \in \{1,\dots,N_v\}} \left| \sum_{i \in \mathcal{S}} \sum_{j \in \tau} (A_{ij} - A'_{ij}) \right|$$

 \Rightarrow Se puede demostrar que $d_{\Box}(\cdot, \cdot)$ efectivamente es una métrica

La definición y estudio de propiedades de distancias en grafos es un tema súper actual

B. Bollobás and O. Riordan, "Sparse graphs: Metrics and random models," Random Structures & Algorithms, vol. 39, 2011

Un resultado sobre aproximaciones

Sea \$\mathcal{P} = {\mathcal{V}_1, \ldots, \mathcal{V}_Q}\$ una partición de los vértices \$\mathcal{V}\$ de \$G\$ en \$Q\$ clases
Definamos un grafo completo \$G_P\$ con vértices \$\mathcal{V}\$ y pesos

$$w_{ij}(G_P) = \frac{1}{|\mathcal{V}_q||\mathcal{V}_r|} \sum_{u \in \mathcal{V}_q} \sum_{v \in \mathcal{V}_r} A_{uv}, \quad i \in \mathcal{V}_q, j \in \mathcal{V}_r$$

⇒ Básicamente la aproximación del grafo G por un SBM de Q clases ⇒ La probabilidad de que una arista una i, j sería $w_{ij}(G_P)$

Un resultado sobre aproximaciones

Sea \$\mathcal{P} = {\mathcal{V}_1, \ldots, \mathcal{V}_Q}\$ una partición de los vértices \$\mathcal{V}\$ de \$G\$ en \$Q\$ clases
Definamos un grafo completo \$G_P\$ con vértices \$\mathcal{V}\$ y pesos

$$w_{ij}(G_P) = \frac{1}{|\mathcal{V}_q||\mathcal{V}_r|} \sum_{u \in \mathcal{V}_q} \sum_{v \in \mathcal{V}_r} A_{uv}, \quad i \in \mathcal{V}_q, j \in \mathcal{V}_r$$

 \Rightarrow Básicamente la aproximación del grafo G por un SBM de Q clases \Rightarrow La probabilidad da que una crista una d é caría en (C_{ij})

 \Rightarrow La probabilidad de que una arista una i, j sería $w_{ij}(G_P)$

Teorema: Para todo $\epsilon > 0$ y todo grafo $G(\mathcal{V}, \mathcal{E})$, existe una partición \mathcal{P} de \mathcal{V} en $Q \leq 2^{\frac{2}{\epsilon^2}}$ clases tal que $d_{\Box}(G, G_P) \leq \epsilon$.

I Justificación de que un SBM puede aproximar cualquier grafo

 \Rightarrow La cota superior en Q puede ser gigantesca

ACULTAD DE

¿Y los grafos f-random?

 \blacksquare Los grafos f-random son apropiados sólo para redes densas

Teorema: Si un grafo G es la restricción a los vértices $\{1, \ldots, N_v\}$ de un grafo aleatorio infinito intercambiable, entonces es denso o está vacío.

Intuitivamente: La proporción de aristas en $G(\mathcal{V}, \mathcal{E})$ es

$$\varphi = \int_{[0,1]^2} f(u_1, u_2) du_1 du_2$$

⇒ Si $\varphi = 0$ entonces f = 0 c.s. y G está vacío. Esparso, pero inútil

 \Rightarrow Si $\varphi>0$ entonces (en media) $|\mathcal{E}|=\varphi\times {N_v\choose 2}=\Omega(N_v^2)$

El principal problema es la intercambiabilidad de vértices

• Apropiado para grafos sin etiquetas...

ACULTAD DE

• Si tengo etiquetas, se podrían incorporar al modelo [Sweet'15]

Estimación de los parámetros de un SBM

 \blacksquare Los parámetros de un SBM son $\{\alpha_q\}_{q=1}^Q$ y $\{\pi_{qr}\}_{1 \leq q,r \leq Q}$

Conceptualmente puede simplificar pensar en dos conjuntos de 'observaciones'

$$\Rightarrow \text{ Clases: } \mathbf{Z} = \{\{Z_{iq}\}_{q=1}^Q\}_{i \in \mathcal{V}}, \text{ donde } Z_{iq} = \mathbb{I}\{i \in \mathcal{C}_q\}$$

- \Rightarrow Enlaces: $\mathbf{A} = [A_{ij}], \text{ donde } A_{ij} = \mathbb{I}\{(i, j) \in \mathcal{E}\}$
- \blacksquare Pero sólo observamos A (Z típicamente latente). Asumamos Q conocida
 - \Rightarrow Interesa la estimación de los parámetros pero especialmente agrupar los vértices

Detección de comunidades basada en modelo

Supongamos que G fue generado por un SBM con Q clases. Predecir las pertenencia a clases $\mathbf{Z} = \{\{Z_{iq}\}_{q=1}^Q\}_{i \in \mathcal{V}}, \text{ dada la observación } \mathbf{A} = \mathbf{a}.$

Estimación de Máxima Verosimilitud

I Si observáramos $\mathbf{A} = \mathbf{a}$ y $\mathbf{Z} = \mathbf{z}$, la log-likelihood sería (con $\boldsymbol{\theta} = \{\{\alpha_q\}, \{\pi_{qr}\}\}\}$)

$$\ell_{\boldsymbol{\theta}}(\mathbf{a}, \mathbf{z}) = \ell_{\boldsymbol{\theta}}(\mathbf{z}) + \ell_{\boldsymbol{\theta}}(\mathbf{a}|\mathbf{z})$$

con $\ell_{\boldsymbol{\theta}}(\mathbf{z}) = \log P\left(\mathbf{Z} = \mathbf{z}\right) = \log\left(\prod_{i} \left(\prod_{q} \alpha_{q}^{z_{iq}}\right)\right) = \sum_{i} \sum_{q} z_{iq} \log \alpha_{q}$
 $\ell_{\boldsymbol{\theta}}(\mathbf{a}|\mathbf{z}) = \frac{1}{2} \sum_{i \neq j} \sum_{q \neq r} z_{iq} z_{jr} \log\left(\pi_{qr}^{a_{ij}} (1 - \pi_{qr})^{1 - a_{ij}}\right)$

Estimación de Máxima Verosimilitud

 \blacksquare Pero no observamos Z. Hay que trabajar con la verosimilitud de los datos observados

$$\ell_{\boldsymbol{\theta}}(\mathbf{a}) = \log \left(\sum_{\mathbf{z}} \exp \left\{ \ell_{\boldsymbol{\theta}}(\mathbf{a}, \mathbf{z}) \right\} \right)$$

• ¿Cuántos términos puede haber en esa sumatoria? \Rightarrow calcular $\ell_{\theta}(\mathbf{a})$ es inviable

Estimación de Máxima Verosimilitud

Pero no observamos Z. Hay que trabajar con la verosimilitud de los datos observados

$$\ell_{\boldsymbol{\theta}}(\mathbf{a}) = \log \left(\sum_{\mathbf{z}} \exp \left\{ \ell_{\boldsymbol{\theta}}(\mathbf{a}, \mathbf{z}) \right\} \right)$$

• ¿Cuántos términos puede haber en esa sumatoria? \Rightarrow calcular $\ell_{\theta}(\mathbf{a})$ es inviable

Ver el modelo como una mezcla sugiere usar Expectation Maximization [Snijders'97] \Rightarrow Alternar entre estimar $\mathbb{E}\left[Z_{iq} \mid \mathbf{A} = \mathbf{a}\right] \neq \boldsymbol{\theta}$

 \Rightarrow No escala más allá de Q=2, P $\left({\bf Z}\,\big|\,{\bf A}={\bf a} \right)$ es computacionalmente caro

Máxima verosimilitud variacional

Método variacional para optimizar una cota inferior de $\ell_{\theta}(\mathbf{a})$:

$$J(R_{\mathbf{a}}; \boldsymbol{\theta}) = \ell_{\boldsymbol{\theta}}(\mathbf{a}) - \mathrm{KL}(R_{\mathbf{a}}(\mathbf{Z}), \mathrm{P}\left(\mathbf{Z} \mid \mathbf{A} = \mathbf{a}\right))$$

• KL es la divergencia de Kullback–Leibler

• $R_{\mathbf{a}}(\mathbf{Z})$ es una aproximación "manipulable" de P $(\mathbf{Z} \mid \mathbf{A} = \mathbf{a})$

Aproximación de campo medio de la distribución condicional

$$R_{\mathbf{a}}(\mathbf{Z}) = \prod_{i=1}^{N_v} h(\mathbf{Z}_i; \boldsymbol{\tau}_i)$$

• $h(\cdot; \boldsymbol{\tau}_i)$: distribución multinomial con parámetro $\boldsymbol{\tau}_i = [\tau_{i1}, \ldots, \tau_{iQ}]^{\top}$

J. J. Daudin et al, "A mixture model for random graphs," Stat. Comput., vol. 18, 2008

Algoritmo de maximización alternada

Proposición: Dado $\boldsymbol{\theta}$, el parámetro variacional óptimo $\{\hat{\boldsymbol{\tau}}_i\}$ = $\operatorname{argmax}_{\{\boldsymbol{\tau}_i\}} J(R_{\mathbf{a}};\{\boldsymbol{\tau}_i\},\boldsymbol{\theta})$ satisface la siguiente ecuación de punto fijo

$$\hat{\tau}_{iq} \propto \alpha_q \prod_{j \neq i} \prod_r b(A_{ij}; \pi_{qr})^{\hat{\tau}_{jr}}$$

Dados $\{\boldsymbol{\tau}_i\}$, los valores de $\boldsymbol{\theta}$ que maximizan $J(R_{\mathbf{a}}; \{\boldsymbol{\tau}_i\}, \boldsymbol{\theta})$ son

$$\hat{\alpha}_q = \frac{1}{N_v} \sum_i \hat{\tau}_{iq}, \quad \hat{\pi}_{qr} = \sum_{i \neq j} \hat{\tau}_{iq} \hat{\tau}_{jr} A_{ij} / \sum_{i \neq j} \hat{\tau}_{iq} \hat{\tau}_{jr}$$

Algoritmo de maximización alternada

Proposición: Dado $\boldsymbol{\theta}$, el parámetro variacional óptimo $\{\hat{\boldsymbol{\tau}}_i\}$ = $\operatorname{argmax}_{\{\boldsymbol{\tau}_i\}} J(R_{\mathbf{a}}; \{\boldsymbol{\tau}_i\}, \boldsymbol{\theta})$ satisface la siguiente ecuación de punto fijo

$$\hat{\tau}_{iq} \propto \alpha_q \prod_{j \neq i} \prod_r b(A_{ij}; \pi_{qr})^{\hat{\tau}_{jr}}$$

Dados $\{\boldsymbol{\tau}_i\}$, los valores de $\boldsymbol{\theta}$ que maximizan $J(R_{\mathbf{a}}; \{\boldsymbol{\tau}_i\}, \boldsymbol{\theta})$ son

$$\hat{\alpha}_q = \frac{1}{N_v} \sum_i \hat{\tau}_{iq}, \quad \hat{\pi}_{qr} = \sum_{i \neq j} \hat{\tau}_{iq} \hat{\tau}_{jr} A_{ij} / \sum_{i \neq j} \hat{\tau}_{iq} \hat{\tau}_{jr}$$

El algoritmo alterna entre actualizaciones de $\boldsymbol{\theta}$ y $\{\boldsymbol{\tau}_i\}$:

JDELAR

$$\begin{aligned} \boldsymbol{\theta}[k+1] &= \operatorname*{argmax}_{\boldsymbol{\theta}} J(R_{\mathbf{a}}; \{\boldsymbol{\tau}_{i}[k]\}, \boldsymbol{\theta}) \\ \{\boldsymbol{\tau}_{i}[k+1]\} &= \operatorname*{argmax}_{\{\boldsymbol{\tau}_{i}\}} J(R_{\mathbf{a}}; \{\boldsymbol{\tau}_{i}\}, \boldsymbol{\theta}[k+1]) \end{aligned}$$

• La secuencia de los valores de J es no-decreciente [Daudin et al'08] FACULTAD DE • Resultados de consistencia para $N_v \to \infty$, Q fijo [Celisse et al'12]

¿Cuántas clases usar?

 \blacksquare El número de clases Q es generalmente desconocido y debe ser estimado

- \Rightarrow Se pueden usar técnicas bayesianas para selección de modelos
- \Rightarrow Distribución a priori $g(\boldsymbol{\theta} \mid m_Q)$ de $\boldsymbol{\theta}$ dado que el SBM m_Q tiene Q clases
- El criterio Integrated Classification Likelihood (ICL) resulta

$$ICL(m_Q) = \max_{\boldsymbol{\theta}} \log \ell_{\boldsymbol{\theta}, m_Q}(\mathbf{a}, \hat{\mathbf{z}}(\boldsymbol{\theta})) \\ - \frac{Q(Q+1)}{4} \log \frac{N_v(N_v - 1)}{2} - \frac{Q-1}{2} \log N_v$$

donde $\ell_{\boldsymbol{\theta},m_Q}(\mathbf{a}, \hat{\mathbf{z}}(\boldsymbol{\theta}))$ es como antes pero con m_Q explícito

Evaluando la bondad del ajuste

 \blacksquare Goodness-of-fit \Rightarrow mayormente computacionales y basados en visualización

■ Ej: Red de blogs políticos franceses de octubre 2006 [Kolaczyk'17]
 ⇒ Ajuste a un SBM usando el método variacional (mixer en R)

■ Valor óptimo $\hat{Q} = 12$, pero $Q \in [8, 12]$ parece razonable (9 partidos políticos)

ACULTAD DE NGENIERÍA

⇒ Permutar la matriz de adyacencia muestra estructura (margen para agrupar)
 ■ La distribución de grados ajusta razonablemente bien

Estimación del grafón

Objetivo: estimar el grafón f de la realización observada G^{obs}

Regresión no-paramétrica: estimar f dados $\{A_{ij}, U_i, U_j\}_{i,j \in \mathcal{V}}$

 \Rightarrow Desafío es que los puntos U_1, \ldots, U_{N_v} son latentes

Aproximación por SBM

C. Gao et al, "Rate-optimal graphon estimation," *Annals of Statistics*, vol. 43, 2015 Estimación por histograma (orden y suavizado)

S. H. Chan and E. M. Airoldi, "A consistent histogram estimator for excha

Modelo como proceso Gaussiano

P. Orbanz and D. M. Roy, "Bayesian models of graphs, arrays and other exchangeab random structures," *IEEE Trans. PAMI*, vol. 37, 2015

Extensiones de SBMs

Degree-corrected SBMs

Comunidades con una distribución de grados "amplia"

B. Karrer B and M. E. Newman, "Stochastic blockmodels and community structure in networks," *Physical Review E.*, vol. 83, 2011

Mixed-membership SBMs

 \blacksquare Los nodos pueden pertenecer a más de una clase

E. M. Airoldi, "Mixed membership stochastic blockmodels," J. Machine Learning Research, vol. 9, 2008

SBMs jerárquicos

Clustering jerárquico combinado con SBMs

A. Clauset et al, "Hierarchical structure and the prediction of missing links in networks," *Nature*, vol. 453, 2008

Modelos de Grafos Aleatorios

1 Modelos de Variables Latentes

2 Random dot product graphs

Random dot product graphs

 \blacksquare Consideremos un espacio latente $\mathcal{X}_d \subset \mathbb{R}^d$ tal que para todo

$$\mathbf{x}, \mathbf{y} \in \mathcal{X}_d \quad \Rightarrow \quad \mathbf{x}^\top \mathbf{y} \in [0, 1]$$

 \Rightarrow Distribución de producto interno $F: \mathcal{X}_d \mapsto [0, 1]$

Random dot product graphs (RDPGs):

ACULTAD DE NGENIERÍA DELAR

$$\mathbf{x}_1, \dots, \mathbf{x}_{N_v} \stackrel{\text{i.i.d.}}{\sim} F,$$

 $A_{ij} \mid \mathbf{x}_i, \mathbf{x}_j \sim \text{Bernoulli}(\mathbf{x}_i^\top \mathbf{x}_j)$

para $1 \leq i,j \leq N_v,$ donde $A_{ij} = A_{ji}$ y $A_{ii} \equiv 0$

■ Tipo particularmente intuitivo y "tratable" de grafos aleatorios con posiciones latentes ⇒ Posición de los vértices $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_{N_v}]^T \in \mathbb{R}^{N_v \times d}$

S. J. Young and E. R. Scheinerman, "Random dot product graph models for social networks," WAW, 2007

Conexión a otros modelos

■ RDPG incluye varios modelos clásicos de grafos aleatorios
 Ej: Erdös-Renyi ER(N_v, p) es un RDPG con d = 1 y X_d = {√p}
 Ej: SBM es un RDGP tal que F es

$$P(\mathbf{X} = \mathbf{x}_q) = \alpha_q, \quad q = 1, \dots, Q$$

con d y $\mathbf{x}_1, \ldots, \mathbf{x}_Q$ tal que $\pi_{qr} = \mathbf{x}_q^\top \mathbf{x}_r$

Esto último implica que los RDPGs son al menos tan expresivos como los SBMs

Conexión a otros modelos

■ RDPG incluye varios modelos clásicos de grafos aleatorios
 Ej: Erdös-Renyi ER(N_v, p) es un RDPG con d = 1 y X_d = {√p}
 Ej: SBM es un RDGP tal que F es

$$P(\mathbf{X} = \mathbf{x}_q) = \alpha_q, \quad q = 1, \dots, Q$$

con d y $\mathbf{x}_1, \ldots, \mathbf{x}_Q$ tal que $\pi_{qr} = \mathbf{x}_q^\top \mathbf{x}_r$

CUITAD DE

Esto último implica que los RDPGs son al menos tan expresivos como los SBMs

RDPGs son un caso especial de modelos de posiciones latentes [Hoff et al'02]

 $A_{ij} | \mathbf{x}_i, \mathbf{x}_j \sim \text{Bernoulli}(\kappa(\mathbf{x}_i, \mathbf{x}_j))$

 \Rightarrow RDPG aproxima cualquier $\kappa(\cdot)$ con un *d* suficientemente grande [Tang et al'13]

Estimación de las posiciones latentes

Q: Dado G de un RDPG ¿cuál es el "mejor" $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_{N_v}]^\top$?

 \blacksquare MLE parece una buena idea, pero es impensado par
a N_v grandes

$$\hat{\mathbf{X}}_{ML} = \operatorname*{argmax}_{\mathbf{X}} \prod_{i < j} (\mathbf{x}_i^{\top} \mathbf{x}_j)^{A_{ij}} (1 - \mathbf{x}_i^{\top} \mathbf{x}_j)^{1 - A_{ij}}$$

Estimación de las posiciones latentes

Q: Dado G de un RDPG ¿cuál es el "mejor" $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_{N_v}]^\top$?

 \blacksquare MLE parece una buena idea, pero es impensado par
a N_v grandes

$$\hat{\mathbf{X}}_{ML} = \operatorname*{argmax}_{\mathbf{X}} \prod_{i < j} (\mathbf{x}_i^{\top} \mathbf{x}_j)^{A_{ij}} (1 - \mathbf{x}_i^{\top} \mathbf{x}_j)^{1 - A_{ij}}$$

■ Sea $P_{ij} = P((i, j) \in \mathcal{E})$ y definamos la matriz $\mathbf{P} = [P_{ij}] \in [0, 1]^{N_v \times N_v}$ ⇒ El modelo RDPG especifica que $\mathbf{P} = \mathbf{X}\mathbf{X}^{\top}$

 \Rightarrow Clave: La A observada es una realización ruidosa de P $(\mathbb{E}\left[A\right]=\mathbb{P})$

 \blacksquare Sugiere aplicar mínimos cuadrados para hallar ${\bf X}$

$$\hat{\mathbf{X}}_{LS} = \operatorname*{argmin}_{\mathbf{X}} \|\mathbf{X}\mathbf{X}^{\top} - \mathbf{A}\|_{F}^{2}$$

Adjacency spectral embedding

 \blacksquare Como A es real y simétrica, podemos descomponer
la como $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^\top$

- $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_{N_v}]$ es la matriz ortogonal de vectores propios
- $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_{N_v})$, con valore propios $\lambda_1 \geq \ldots \geq \lambda_{N_v}$

Adjacency spectral embedding

- Como A es real y simétrica, podemos descomponerla como $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\top}$
 - $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_{N_v}]$ es la matriz ortogonal de vectores propios
 - $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_{N_v})$, con valore propios $\lambda_1 \ge \ldots \ge \lambda_{N_v}$
- **D**efinamos $\hat{\mathbf{\Lambda}} = \text{diag}(\lambda_1^+, \dots, \lambda_d^+)$ y $\hat{\mathbf{U}} = [\mathbf{u}_1, \dots, \mathbf{u}_d] \ (\lambda^+ := \text{máx}(0, \lambda))$
- La mejor aproximación de rango *d* semi-definida positiva de **A** es $\hat{\mathbf{U}}\hat{\mathbf{\Lambda}}\hat{\mathbf{U}}^{\top}$ \Rightarrow Ajacency spectral embedding (ASE) es $\hat{\mathbf{X}}_{LS} = \hat{\mathbf{U}}\hat{\mathbf{\Lambda}}^{1/2}$ dado que

$$\mathbf{A} \approx \hat{\mathbf{U}} \hat{\mathbf{\Lambda}} \hat{\mathbf{U}}^\top = \hat{\mathbf{U}} \hat{\mathbf{\Lambda}}^{1/2} \hat{\mathbf{\Lambda}}^{1/2} \hat{\mathbf{U}}^\top = \hat{\mathbf{X}}_{LS} \hat{\mathbf{X}}_{LS}^\top$$

Adjacency spectral embedding

- Como A es real y simétrica, podemos descomponerla como A = UAU[⊤]
 U = [u₁,..., u_{N_v}] es la matriz ortogonal de vectores propios
 - $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_{N_v})$, con valore propios $\lambda_1 \ge \ldots \ge \lambda_{N_v}$
- Definamos $\hat{\mathbf{\Lambda}} = \operatorname{diag}(\lambda_1^+, \dots, \lambda_d^+)$ y $\hat{\mathbf{U}} = [\mathbf{u}_1, \dots, \mathbf{u}_d] \ (\lambda^+ := \max(0, \lambda))$
- La mejor aproximación de rango *d* semi-definida positiva de **A** es $\hat{\mathbf{U}}\hat{\mathbf{\Lambda}}\hat{\mathbf{U}}^{\top}$ \Rightarrow Ajacency spectral embedding (ASE) es $\hat{\mathbf{X}}_{LS} = \hat{\mathbf{U}}\hat{\mathbf{\Lambda}}^{1/2}$ dado que

$$\mathbf{A} pprox \hat{\mathbf{U}} \hat{\mathbf{\Lambda}} \hat{\mathbf{U}}^{ op} = \hat{\mathbf{U}} \hat{\mathbf{\Lambda}}^{1/2} \hat{\mathbf{\Lambda}}^{1/2} \hat{\mathbf{U}}^{ op} = \hat{\mathbf{X}}_{LS} \hat{\mathbf{X}}_{LS}^{ op}$$

 \mathbf{Q} : ¿La solución es única? Nop, dado que el producto interno es invariante a rotaciones

$$\mathbf{P} = \mathbf{X} \mathbf{W} (\mathbf{X} \mathbf{W})^\top = \mathbf{X} \mathbf{X}^\top, \quad \mathbf{W} \mathbf{W}^\top = \mathbf{I}_d$$

 \Rightarrow El embedding de un RDPG es identificable modulo rotaciones

CUITAD DE

Embedding de un grafo Erdös-Renyi

\blacksquare Ej: Grafo Erdös-Renyi ER(1000, 0, 3) (realización de A a la izquierda)

Para d = 1 calculamos el ASE $\hat{\mathbf{x}}_{LS}$ y graficamos $\hat{\mathbf{x}}_{LS}\hat{\mathbf{x}}_{LS}^{\top}$ (centro)

- \Rightarrow Buena aproximación de la matriz constante $\mathbf{P}=0,3\times\mathbf{11}^{\top}$
- \Rightarrow El histograma de las entradas de $\hat{\mathbf{x}}_{LS}$ da más evidencia (derecha, $\sqrt{p}=0.547)$
- Resultados sobre consistencia y distribuciones límites disponibles

ACULTAD DE NGENIERÍA A. Athreya et al., "Statistical inference on random dot product graphs: A survey," J. Mach. Learn. Res., vol. 18, pp. 1-92, 2018

Embedding de un grafo SBM

Ej: SBM con $N_v = 1500, Q = 3$ y parámetros

JDELAR

$$\boldsymbol{\alpha} = \begin{bmatrix} 1/3\\1/3\\1/3 \end{bmatrix}, \quad \boldsymbol{\Pi} = \begin{bmatrix} 0.5 & 0.1 & 0.05\\0.1 & 0.3 & 0.05\\0.05 & 0.05 & 0.9 \end{bmatrix}$$

Realización de la adyacencia (izquierda), $\hat{\mathbf{X}}_{LS}\hat{\mathbf{X}}_{LS}^{\top}$ (centro), filas de $\hat{\mathbf{X}}_{LS}$ (derecha) Justifica el uso de métodos geométricos (e.g. KNN o GMM del espectro)

Interpretabilidad de los embeddings

Ex: Zachary's karate club con $N_v = 34$, $N_e = 78$ (izquierda)

Embeddings (filas de $\hat{\mathbf{X}}_{LS}$) para d = 2 (derecha)

FACULTAD DE INGENIERÍA • El administrador del club (i = 0) y el instructor (j = 33) son ortogonales

La interpretabilidad es una característica muy valiosa de los RDPGs

- \Rightarrow Alineación del vector indica afinidad entre nodos (comunidad)
- \Rightarrow Magnitud del vector indica conectividad del nodo

Grafo de colaboración entre matemáticos

Ej: Red de colaboración entre matemáticos centrado en Paul Erdős

■ La mayoría de los matemáticos tienen un número de Erdős de no más de 4 o 5
 ⇒ Dibujo creado por R. Graham en 1979

FACULTAD DE INGENIERÍA
Grafo de colaboración entre matemáticos

 \blacksquare Grafo de co-autoría $G,\,N_v=4301$ nodos con número de Erdős ≤ 2

 \Rightarrow No hay una estructura clara de la matriz de adyac
necia "cruda" A (izquierda)

La estructura de comunidades se revela al permutar la matriz (derecha)

(i) Se obtiene el ASE $\hat{\mathbf{X}}_{LS}$ de los matemáticos

ACULTAD DE NGENIERÍA

(ii) K-means angular en las filas de $\hat{\mathbf{X}}_{LS}$ [Scheinerman-Tucker'10]

Relaciones internacionales

Ej: Red dinámica G_t de relaciones entre naciones

 \Rightarrow $(i,j)\in \mathcal{E}_t$ si las naciones tuvieron un tratado de alianza en el año t

Angulo entre el embedding del Reino Unido y Francia entre 1890 y 1995

• Ortogonal durante fines del siglo XIX

FACULTAD DE INGENIERÍA

- Se acercan durante las guerras, y se vuelve alejar durante la ocupación nazi en la segunda guerra
- Fuertemente alineados a partir de los 70 hasta la creación de la UE

Extensiones

Ignoramos la diagonal $[\hat{\mathbf{X}}_{LS}\hat{\mathbf{X}}_{LS}^{\top}]_{ii} = 0$. Se puede resolver mediante algoritmos iterativos o descenso por gradiente

A no es semi-definida positiva? Extensión conocida como generalized RDPG

Considerar el caso con pesos y/o dirigido es posible

Online change point detection: entrenamiento

■ Idea: Usar "estimating function" [Kirsch-Tadjuidje'15]

 \Rightarrow Entrenar con m grafos "limpios" (sin cambios)

Online change point detection: Monitoreo

 \blacksquare Observar las matrices secuencialmente $\mathbf{A}[m+1], \mathbf{A}[m+2], \ldots$

• Monitorear la suma acumulada
$$\mathbf{S}[m,k] = \sum_{t=m+1}^{m+\kappa} \left(\hat{\mathbf{X}} \hat{\mathbf{X}}^{\top} - \mathbf{A}[t] \right)$$

Proposición: Para k grande y bajo la hipótesis nula de no-cambio, $\Gamma[m, k] := \|\mathbf{S}[m, k]\|^2$ tiene una distribución χ^2 generalizada.

\blacksquare Liviano: requisito de memoria y computacional de $O(N^2)$

FACULTAD DE INGENIERÍA

Monitoreo de una red inalámbrica

 \blacksquare Extensión del modelo para incluir grafos con pesos y dirigidos

 \blacksquare Red inalámbrica del Plan Ceibal. Medidas@hora del RSSI para $N=6~{\rm APs}$

 \Rightarrow Según el administrador de red: AP 4 fue movido el 30 de octubre

 \blacksquare Explicar el cambio a través de la interpretabilidad del ASE

FACULTAD DE INGENIERÍA

 $\blacksquare Reproducibilidad \Rightarrow Codigo disponible en @ https://github.com/git-artes/cpd_rdpg$

Futuro

Descenso por gradiente para hallar el ASE: escalabilidad y tracking

• Manejo de datos faltantes, alineación mediante inicialización (M. Fiori et al. "Gradient-Based Spectral Embeddings of Random Dot Product Graphs", arXiv preprint arXiv:2307.13818, submitted)

Propiedades estadísticas del modelo no-paramétrico del weighted RDPG

$$\mathbb{E}\left[e^{tA_{ij}}|\mathbf{X}\right] = \sum_{m=0}^{\infty} \frac{t^m \mathbb{E}\left[A_{ij}^m\right]}{m!} = 1 + \sum_{m=1}^{\infty} \frac{t^m \mathbf{x}_i^\top[m] \mathbf{x}_j[m]}{m!}$$

