

Aprendizaje Automático para Datos en Grafos Modelos de Grafos Aleatorios - Parte I

Federico 'Larroca' La Rocca Muy basado en transparencias de Gonzalo Mateos

flarroca@fing.edu.uy
http://iie.fing.edu.uy/personal/flarroca

Modelos de Grafos Aleatorios

- Introducción
- 2 Grafos Aleatorios
- 3 Configuration models
- Network-growth models
- 6 Modelos Small-world
- 6 Exponential random graph models

- Los modelos de grafos aleatorios tienen varios usos:
 - 1) ¿Qué mecanismos pueden explicar propiedades que observamos en grafos reales? Ejemplo: los efectos tipo small-world, o distribuciones de grado con ley de potencia

- Los modelos de grafos aleatorios tienen varios usos:
 - 1) ¿Qué mecanismos pueden explicar propiedades que observamos en grafos reales? Ejemplo: los efectos tipo small-world, o distribuciones de grado con ley de potencia
 - 2) Crear un modelo nulo para testear propiedades de un grafo Ejemplo: ¿El valor del coeficiente de clustering de mi grafo es raro?

- Los modelos de grafos aleatorios tienen varios usos:
 - 1) ¿Qué mecanismos pueden explicar propiedades que observamos en grafos reales? Ejemplo: los efectos tipo small-world, o distribuciones de grado con ley de potencia
 - 2) Crear un modelo nulo para testear propiedades de un grafo Ejemplo: ¿El valor del coeficiente de clustering de mi grafo es raro?
 - 3) Evaluación de factores que puedan predecir relaciones entre los nodos Ejemplo: ¿En este grafo hay efectos transitivos o de reciprocidad?

- Los modelos de grafos aleatorios tienen varios usos:
 - 1) ¿Qué mecanismos pueden explicar propiedades que observamos en grafos reales? Ejemplo: los efectos tipo small-world, o distribuciones de grado con ley de potencia
 - 2) Crear un modelo nulo para testear propiedades de un grafo Ejemplo: ¿El valor del coeficiente de clustering de mi grafo es raro?
 - 3) Evaluación de factores que puedan predecir relaciones entre los nodos Ejemplo: ¿En este grafo hay efectos transitivos o de reciprocidad?
 - 4) Generación de grafos Ejemplo: ¿Grafos para evaluar mi algoritmo de aprendizaje en condiciones "controladas"?

- Los modelos de grafos aleatorios tienen varios usos:
 - 1) ¿Qué mecanismos pueden explicar propiedades que observamos en grafos reales? Ejemplo: los efectos tipo small-world, o distribuciones de grado con ley de potencia
 - 2) Crear un modelo nulo para testear propiedades de un grafo Ejemplo: ¿El valor del coeficiente de clustering de mi grafo es raro?
 - 3) Evaluación de factores que puedan predecir relaciones entre los nodos Ejemplo: ¿En este grafo hay efectos transitivos o de reciprocidad?
 - 4) Generación de grafos Ejemplo: ¿Grafos para evaluar mi algoritmo de aprendizaje en condiciones "controladas"?
- Nos vamos a enfocar en la construcción de varios de los modelos más populares, algunas propiedades y su uso. Quedará mucho por el camino (ver el EVA para más material).

Modelos de Grafos Aleatorios

■ Definición: Un modelo de grafos aleatorios es una colección

$$\{P_{\theta}(G), G \in \mathcal{G} : \theta \in \Theta\}$$

- ullet es el conjunto de grafos posibles bajo este modelo
- $P_{\theta}(\cdot)$ es la distribución de probabilidad sobre \mathcal{G} (casi siempre va a figurar como $P(\cdot)$ directamente)
- \bullet es el vector de parámetros del modelo, perteneciente a cierto espacio Θ

Modelos de Grafos Aleatorios

■ Definición: Un modelo de grafos aleatorios es una colección

$$\{P_{\theta}(G), G \in \mathcal{G} : \theta \in \Theta\}$$

- ullet es el conjunto de grafos posibles bajo este modelo
- P_θ(·) es la distribución de probabilidad sobre G (casi siempre va a figurar como P (·) directamente)
- \bullet θ es el vector de parámetros del modelo, perteneciente a cierto espacio Θ
- La riqueza y la utilidad del modelo dependen de cómo especifiquemos $P_{\theta}(\cdot)$
 - ⇒ Como veremos en estas clases, los métodos van de lo simple a lo complejo

1) $P(\cdot)$ uniforme en \mathcal{G} , tomando en cuenta restricciones estructurales sobre los grafos en \mathcal{G} Ejemplo: Grafos tipo Erdös-Renyi o el denominado modelo Configurational

- 1) $P(\cdot)$ uniforme en \mathcal{G} , tomando en cuenta restricciones estructurales sobre los grafos en \mathcal{G} Ejemplo: Grafos tipo Erdös-Renvi o el denominado modelo Configurational
- 2) Inducir P(·) a través de la aplicación de un modelo generativo Ejemplo: small world, preferential attachment, copying models, deep generative models

- 1) $P(\cdot)$ uniforme en \mathcal{G} , tomando en cuenta restricciones estructurales sobre los grafos en \mathcal{G} Ejemplo: Grafos tipo Erdös-Renyi o el denominado modelo Configurational
- 2) Inducir $P(\cdot)$ a través de la aplicación de un modelo generativo Ejemplo: small world, preferential attachment, copying models, deep generative models
- 3) Modelar propiedades estructurales y sus efectos sobre la topología de G Ejemplo: exponential random graph models

- 1) $P(\cdot)$ uniforme en \mathcal{G} , tomando en cuenta restricciones estructurales sobre los grafos en \mathcal{G} Ejemplo: Grafos tipo Erdös-Renyi o el denominado modelo Configurational
- 2) Inducir $P(\cdot)$ a través de la aplicación de un modelo generativo Ejemplo: small world, preferential attachment, copying models, deep generative models
- 3) Modelar propiedades estructurales y sus efectos sobre la topología de G Ejemplo: exponential random graph models
- 4) Modelar la tendencia de los nodos a conectarse mediante variables latentes Ejemplo: stochastic block models, graphons, random dot product graphs

- 1) $P(\cdot)$ uniforme en \mathcal{G} , tomando en cuenta restricciones estructurales sobre los grafos en \mathcal{G} Ejemplo: Grafos tipo Erdös-Renyi o el denominado modelo Configurational
- 2) Inducir $P(\cdot)$ a través de la aplicación de un modelo generativo Ejemplo: small world, preferential attachment, copying models, deep generative models
- Modelar propiedades estructurales y sus efectos sobre la topología de G
 Ejemplo: exponential random graph models
- 4) Modelar la tendencia de los nodos a conectarse mediante variables latentes Ejemplo: stochastic block models, graphons, random dot product graphs
- Costo computacional de algoritmos de inferencia y generación son aspectos importantes

Modelos de Grafos Aleatorios

- Introducción
- 2 Grafos Aleatorios
- 3 Configuration models
- Network-growth models
- 6 Modelos Small-world
- 6 Exponential random graph models

■ Se le asigna la misma probabilidad a todos los grafos (no-dirigidos) de cierto orden y tamaño

- Se le asigna la misma probabilidad a todos los grafos (no-dirigidos) de cierto orden y tamaño
 - Se especifica la colección \mathcal{G}_{N_v,N_e} como aquellos grafos G(V,E) con $|V|=N_v, |E|=N_e$
 - $P(G) = \binom{N}{N_e}^{-1}$ para cada $G \in \mathcal{G}_{N_v,N_e}$, donde $N = |V^{(2)}| = \binom{N_v}{2}$

- Se le asigna la misma probabilidad a todos los grafos (no-dirigidos) de cierto orden y tamaño
 - Se especifica la colección \mathcal{G}_{N_v,N_e} como aquellos grafos G(V,E) con $|V|=N_v, |E|=N_e$
 - $P(G) = \binom{N}{N_e}^{-1}$ para cada $G \in \mathcal{G}_{N_v,N_e}$, donde $N = |V^{(2)}| = \binom{N_v}{2}$
- La variante más común es conocida como modelo de Erdös-Renyi(-Gilbert) y la notaremos como ER(n, p) (también se usa $G_{n,p}$)
 - \Rightarrow Grafo no dirigido con $N_v = n$ nodos (igual que antes)
 - \Rightarrow La arista (u, v) existe con probabilidad p independiente del resto

- Se le asigna la misma probabilidad a todos los grafos (no-dirigidos) de cierto orden y tamaño
 - Se especifica la colección \mathcal{G}_{N_v,N_e} como aquellos grafos G(V,E) con $|V|=N_v, |E|=N_e$
 - $P(G) = \binom{N}{N_e}^{-1}$ para cada $G \in \mathcal{G}_{N_v,N_e}$, donde $N = |V^{(2)}| = \binom{N_v}{2}$
- La variante más común es conocida como modelo de Erdös-Renyi(-Gilbert) y la notaremos como ER(n, p) (también se usa $G_{n,p}$)
 - \Rightarrow Grafo no dirigido con $N_v = n$ nodos (igual que antes)
 - \Rightarrow La arista (u, v) existe con probabilidad p independiente del resto
- Simulación: sortear $N = \binom{N_v}{2} \approx N_v^2/2$ i.i.d. Ber(p) VAs
 - \bullet Claramente ineficiente cuando $p \sim N_v^{-1} \Rightarrow$ grafo esparso, la mayoría de las veces vamos a sacar un 0
 - Mejor sortear Geo(p) i.i.d. para ver qué aristas generar (corre en tiempo $O(N_v + N_e)$)

■ ER(n, p) es un modelo ampliamente estudiado, y se conocen expresiones para varios indicadores. Algunas propiedades interesantes:

- ER(n, p) es un modelo ampliamente estudiado, y se conocen expresiones para varios indicadores. Algunas propiedades interesantes:
- P1) Distribución de grados ¿Cuánto vale $P(D_i = d) = P(d)$, la probabilidad de que el nodo i tenga d vecinos?

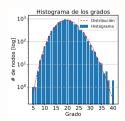
- ER(n, p) es un modelo ampliamente estudiado, y se conocen expresiones para varios indicadores. Algunas propiedades interesantes:
- P1) Distribución de grados ¿Cuánto vale $P(D_i = d) = P(d)$, la probabilidad de que el nodo i tenga d vecinos?

$$\left. \begin{array}{c} D_i = \sum\limits_{\substack{j=1,\ldots,n\\j\neq i}} A_{i,j} \\ (A_{i,j})_{j\neq i} \sim \mathrm{Ber}(p) \text{ i.i.d.} \end{array} \right\} \Rightarrow D_i \sim \mathrm{Bin}(n-1,p)$$

- ER(n, p) es un modelo ampliamente estudiado, y se conocen expresiones para varios indicadores. Algunas propiedades interesantes:
- P1) Distribución de grados ¿Cuánto vale $P(D_i = d) = P(d)$, la probabilidad de que el nodo i tenga d vecinos?

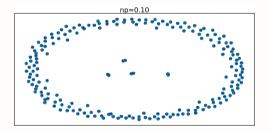
$$\left. \begin{array}{c} D_i = \sum\limits_{\substack{j=1,\dots,n\\j\neq i}} A_{i,j} \\ (A_{i,j})_{j\neq i} \sim \operatorname{Ber}(p) \text{ i.i.d.} \end{array} \right\} \Rightarrow D_i \sim \operatorname{Bin}(n-1,p) \underset{\operatorname{Hoeffding}}{\Rightarrow} P(D_i - p(n-1) \geq t) \leq e^{-\frac{2t^2}{n-1}}$$

 \Rightarrow P (d) está concentrado alrededor de p(n-1) con colas exponenciales Ejemplo Histograma de grados de un ER(n,p) con n=10,000 y p=20/10,000

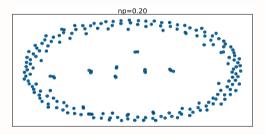


- P2) Transición de fase en la aparición de una componente gigante
 - Si np > 1, ER(n, p) tiene una componente gigante de tamaño O(n) w.h.p.
 - Si np < 1, ER(n, p) tienen componentes de tamaño $O(\log n)$ w.h.p.

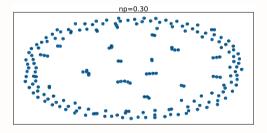
- P2) Transición de fase en la aparición de una componente gigante
 - Si np > 1, ER(n, p) tiene una componente gigante de tamaño O(n) w.h.p.
 - Si np < 1, ER(n, p) tienen componentes de tamaño $O(\log n)$ w.h.p.



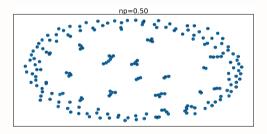
- P2) Transición de fase en la aparición de una componente gigante
 - Si np > 1, ER(n, p) tiene una componente gigante de tamaño O(n) w.h.p.
 - Si np < 1, ER(n, p) tienen componentes de tamaño $O(\log n)$ w.h.p.



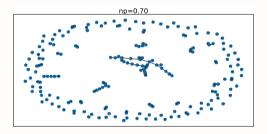
- P2) Transición de fase en la aparición de una componente gigante
 - Si np > 1, ER(n, p) tiene una componente gigante de tamaño O(n) w.h.p.
 - Si np < 1, ER(n, p) tienen componentes de tamaño $O(\log n)$ w.h.p.



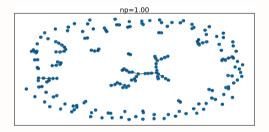
- P2) Transición de fase en la aparición de una componente gigante
 - Si np > 1, ER(n, p) tiene una componente gigante de tamaño O(n) w.h.p.
 - Si np < 1, ER(n, p) tienen componentes de tamaño $O(\log n)$ w.h.p.



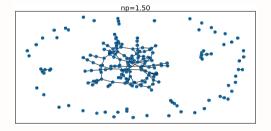
- P2) Transición de fase en la aparición de una componente gigante
 - Si np > 1, ER(n, p) tiene una componente gigante de tamaño O(n) w.h.p.
 - Si np < 1, ER(n, p) tienen componentes de tamaño $O(\log n)$ w.h.p.



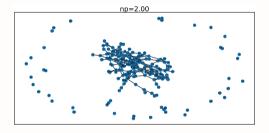
- P2) Transición de fase en la aparición de una componente gigante
 - Si np > 1, ER(n, p) tiene una componente gigante de tamaño O(n) w.h.p.
 - Si np < 1, ER(n, p) tienen componentes de tamaño $O(\log n)$ w.h.p.



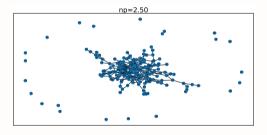
- P2) Transición de fase en la aparición de una componente gigante
 - Si np > 1, ER(n, p) tiene una componente gigante de tamaño O(n) w.h.p.
 - Si np < 1, ER(n, p) tienen componentes de tamaño $O(\log n)$ w.h.p.



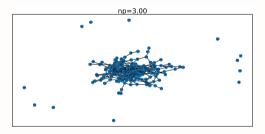
- P2) Transición de fase en la aparición de una componente gigante
 - Si np > 1, ER(n, p) tiene una componente gigante de tamaño O(n) w.h.p.
 - Si np < 1, ER(n, p) tienen componentes de tamaño $O(\log n)$ w.h.p.



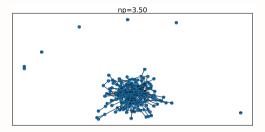
- P2) Transición de fase en la aparición de una componente gigante
 - Si np > 1, ER(n, p) tiene una componente gigante de tamaño O(n) w.h.p.
 - Si np < 1, ER(n, p) tienen componentes de tamaño $O(\log n)$ w.h.p.



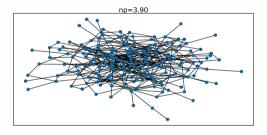
- P2) Transición de fase en la aparición de una componente gigante
 - Si np > 1, ER(n, p) tiene una componente gigante de tamaño O(n) w.h.p.
 - Si np < 1, ER(n, p) tienen componentes de tamaño $O(\log n)$ w.h.p.



- P2) Transición de fase en la aparición de una componente gigante
 - Si np > 1, ER(n, p) tiene una componente gigante de tamaño O(n) w.h.p.
 - Si np < 1, ER(n, p) tienen componentes de tamaño $O(\log n)$ w.h.p.



- P2) Transición de fase en la aparición de una componente gigante
 - Si np > 1, ER(n, p) tiene una componente gigante de tamaño O(n) w.h.p.
 - Si np < 1, ER(n, p) tienen componentes de tamaño $O(\log n)$ w.h.p.



- P2) Transición de fase en la aparición de una componente gigante
 - ¿Cómo podemos demostrarlo?
 - Definamos un proceso de exploración en el grafo que recorra la componente conexa arrancando de algún nodo al azar y veamos con qué tamaño termina

- P2) Transición de fase en la aparición de una componente gigante
 - ¿Cómo podemos demostrarlo?
 - Definamos un proceso de exploración en el grafo que recorra la componente conexa arrancando de algún nodo al azar y veamos con qué tamaño termina
 - Nodos en uno de tres estados: activo (A_t) , inactivo (\mathcal{I}_t) o explorado (\mathcal{E}_t)

- P2) Transición de fase en la aparición de una componente gigante
 - ¿Cómo podemos demostrarlo?
 - Definamos un proceso de exploración en el grafo que recorra la componente conexa arrancando de algún nodo al azar y veamos con qué tamaño termina
 - Nodos en uno de tres estados: activo (A_t) , inactivo (I_t) o explorado (\mathcal{E}_t)

```
G = (V, E) \sim \text{ER}(n, p), V = 1, \dots, n\% Genero un grafo ER
\mathcal{A}_0 = \{1\}, \mathcal{I}_0 = \{2, \dots, n\}, \mathcal{E}_0 = \emptyset \% Inicialización: un activo cualquiera
while A_t \neq \emptyset do
     Esperar tiempo exponencial de media 1
     Elegir v \in \mathcal{A}_t % Explorar algún nodo activo
     foreach w \in \mathcal{I}_t \cap \mathcal{N}(v) do
       A_t \leftarrow A_t \cup \{w\} % Agrego vecinos inactivos de v
     end
     \mathcal{E}_t \leftarrow \mathcal{E}_t \cup \{v\} % Paso v a los explorados
     \mathcal{A}_t \leftarrow \mathcal{A}_t \setminus \{v\}
end
return |\mathcal{E}_t|
```


- P2) Transición de fase en la aparición de una componente gigante
 - Nos interesa $|\mathcal{E}_t| = E_t$. Junto con $|\mathcal{A}_t| = A_t$ forman una cadena de Markov en tiempo continuo:

- P2) Transición de fase en la aparición de una componente gigante
 - Nos interesa $|\mathcal{E}_t| = E_t$. Junto con $|\mathcal{A}_t| = A_t$ forman una cadena de Markov en tiempo continuo:
 - El vector (E_t, A_t) permanece en cada estado durante un tiempo exponencial
 - En los momentos que hay cambio:

$$(E_{t^+},A_{t^+}) = (\underbrace{E_t+1}_{\substack{\text{Un explorado} \\ \text{más } (v)}}, \underbrace{\underbrace{A_t+X_t-1}_{\substack{\text{Los vecinos inactivos} \\ \text{de } v \text{ ahora son activos} \\ (y \ v \text{ ahora es explorado})}}$$

- P2) Transición de fase en la aparición de una componente gigante
 - Nos interesa $|\mathcal{E}_t| = E_t$. Junto con $|\mathcal{A}_t| = A_t$ forman una cadena de Markov en tiempo continuo:
 - El vector (E_t, A_t) permanece en cada estado durante un tiempo exponencial
 - En los momentos que hay cambio:

$$\begin{split} (E_{t^+}, A_{t^+}) &= (\underbrace{E_{t} + 1}_{\text{Un explorado}}, \underbrace{A_{t} + X_{t} - 1}_{\text{Los vecinos inactivos} \text{ inactivos} \\ \text{de } v \text{ ahora son activos} \\ (y \text{ } v \text{ ahora es explorado}) \end{split}$$

$$X_{t} \sim \text{Bin}(|\mathcal{I}_{t}|, p) = \text{Bin}(n - A_{t} - E_{t}, p)$$

- P2) Transición de fase en la aparición de una componente gigante
 - Nos interesa $|\mathcal{E}_t| = E_t$. Junto con $|\mathcal{A}_t| = A_t$ forman una cadena de Markov en tiempo continuo:
 - El vector (E_t, A_t) permanece en cada estado durante un tiempo exponencial
 - En los momentos que hay cambio:

$$(E_{t^+}, A_{t^+}) = (\underbrace{E_{t} + 1}_{\text{Un explorado}}, \underbrace{A_{t} + X_{t} - 1}_{\text{Los vecinos inactivos}})$$

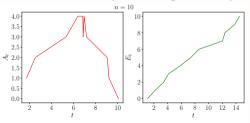
$$\underbrace{A_{t} + X_{t} - 1}_{\text{Un explorado}})$$

$$\underbrace{A_{t} + X_{t} - 1}_{\text{Un explorado}}$$

- P2) Transición de fase en la aparición de una componente gigante
 - Nos interesa $|\mathcal{E}_t| = E_t$. Junto con $|\mathcal{A}_t| = A_t$ forman una cadena de Markov en tiempo continuo:
 - El vector (E_t, A_t) permanece en cada estado durante un tiempo exponencial
 - En los momentos que hay cambio:

$$(E_{t^+},A_{t^+}) = (\underbrace{E_t+1}_{\text{Un explorado}},\underbrace{A_t+X_t-1}_{\text{Los vecinos inactivos}},\underbrace{A_t+X_t-1}_{\text{de v ahora son activos}})$$

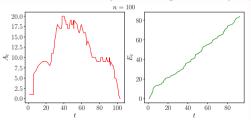
$$X_t \sim \text{Bin}(|\mathcal{I}_t|, p) = \text{Bin}(n - A_t - E_t, p)$$



- P2) Transición de fase en la aparición de una componente gigante
 - Nos interesa $|\mathcal{E}_t| = E_t$. Junto con $|\mathcal{A}_t| = A_t$ forman una cadena de Markov en tiempo continuo:
 - El vector (E_t, A_t) permanece en cada estado durante un tiempo exponencial
 - En los momentos que hay cambio:

$$(E_{t^+},A_{t^+}) = (\underbrace{E_t+1}_{\text{Un explorado}},\underbrace{A_t+X_t-1}_{\text{Los vecinos inactivos}},\underbrace{A_t+X_t-1}_{\text{de }v \text{ ahora son activos}})$$

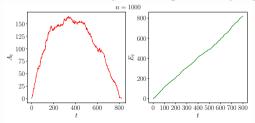
$$X_t \sim \text{Bin}(|\mathcal{I}_t|, p) = \text{Bin}(n - A_t - E_t, p)$$



- P2) Transición de fase en la aparición de una componente gigante
 - Nos interesa $|\mathcal{E}_t| = E_t$. Junto con $|\mathcal{A}_t| = A_t$ forman una cadena de Markov en tiempo continuo:
 - El vector (E_t, A_t) permanece en cada estado durante un tiempo exponencial
 - En los momentos que hay cambio:

$$(E_{t^+},A_{t^+}) = (\underbrace{E_t+1}_{\text{Un explorado}},\underbrace{A_t+X_t-1}_{\text{de v ahora son activos}})$$

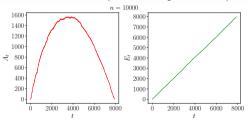
$$X_t \sim \text{Bin}(|\mathcal{I}_t|, p) = \text{Bin}(n - A_t - E_t, p)$$



- P2) Transición de fase en la aparición de una componente gigante
 - Nos interesa $|\mathcal{E}_t| = E_t$. Junto con $|\mathcal{A}_t| = A_t$ forman una cadena de Markov en tiempo continuo:
 - El vector (E_t, A_t) permanece en cada estado durante un tiempo exponencial
 - En los momentos que hay cambio:

$$(E_{t^+},A_{t^+}) = (\underbrace{E_t+1}_{\text{Un explorado}},\underbrace{A_t+X_t-1}_{\text{Los vecinos inactivos}\atop\text{de }v\text{ ahora son activos}\\\text{(y }v\text{ ahora es explorado)}}$$

$$X_t \sim \text{Bin}(|\mathcal{I}_t|, p) = \text{Bin}(n - A_t - E_t, p)$$



- P2) Transición de fase en la aparición de una componente gigante
 - Los procesos escalado $\frac{E_{\tau n}}{n}=e_{\tau}$ y $\frac{A_{\tau n}}{n}=a_{\tau}$ parecen tener un comportamiento determinístico con $n\to\infty$: límite fluido

- P2) Transición de fase en la aparición de una componente gigante
 - Los procesos escalado $\frac{E_{\tau n}}{n} = e_{\tau}$ y $\frac{A_{\tau n}}{n} = a_{\tau}$ parecen tener un comportamiento determinístico con $n \to \infty$: límite fluido
 - Una cadena de Markov admite la siguiente descomposición:

$$Y(t) = Y(0) + \int_0^t \mathbf{Q}(Y(s))ds + M(t)$$

con $Q(l)=\sum_m(l-m)q(l,m)=\sum_m(l-m)p_{l,m}\lambda_l$ el drift del proceso (el cambio promedio del proceso en l) y M(t) una martingala (ruido)

P2) Transición de fase en la aparición de una componente gigante

- Los procesos escalado $\frac{E_{\tau n}}{n} = e_{\tau}$ y $\frac{A_{\tau n}}{n} = a_{\tau}$ parecen tener un comportamiento determinístico con $n \to \infty$: límite fluido
 - Una cadena de Markov admite la siguiente descomposición:

$$Y(t) = Y(0) + \int_0^t \frac{\mathbf{Q}}{\mathbf{Q}}(Y(s))ds + M(t)$$

con $Q(l) = \sum_m (l-m)q(l,m) = \sum_m (l-m)p_{l,m}\lambda_l$ el drift del proceso (el cambio promedio del proceso en l) y M(t) una martingala (ruido)

• Para este caso en particular resulta

$$E_t = 0 + \int_0^t 1ds + M_E(t)$$

$$A_t = 1 + \int_0^t (p(n - A_s - E_s) - 1) ds + M_A(t)$$

- P2) Transición de fase en la aparición de una componente gigante
 - \bullet Re-escalando, usando p=c/n (cantidad de vecinos promedio $\approx c)...$

$$e_{\tau} = \frac{E_{\tau n}}{n} = 0 + \frac{1}{n} \int_{0}^{\tau n} 1 ds + \frac{M_{E}(\tau n)}{n}$$

$$a_{\tau} = \frac{A_{\tau n}}{n} = \frac{1}{n} + \frac{1}{n} \int_{0}^{\tau n} \left(\frac{c}{n} (n - A_{s} - E_{s}) - 1 \right) ds + \frac{M_{A}(\tau n)}{n}$$

- P2) Transición de fase en la aparición de una componente gigante
 - Re-escalando, usando p = c/n (cantidad de vecinos promedio $\approx c$)...

$$e_{\tau} = \frac{E_{\tau n}}{n} = 0 + \frac{1}{n} \int_{0}^{\tau n} 1 ds + \frac{M_{E}(\tau n)}{n}$$

$$a_{\tau} = \frac{A_{\tau n}}{n} = \frac{1}{n} + \frac{1}{n} \int_{0}^{\tau n} \left(\frac{c}{n}(n - A_{s} - E_{s}) - 1\right) ds + \frac{M_{A}(\tau n)}{n}$$

 \dots y suponiendo que las martinagalas re-escaladas van a cero en n

$$e_{\tau} = \tau$$

$$\frac{da_{\tau}}{d\tau} = \frac{1}{n} \left(\frac{c}{n} (n - A_{\tau n} - E_{\tau n}) - 1 \right) n$$

$$a_0 = 0$$

- P2) Transición de fase en la aparición de una componente gigante
 - Re-escalando, usando p=c/n (cantidad de vecinos promedio $\approx c)...$

$$e_{\tau} = \frac{E_{\tau n}}{n} = 0 + \frac{1}{n} \int_{0}^{\tau n} 1 ds + \frac{M_{E}(\tau n)}{n}$$

$$a_{\tau} = \frac{A_{\tau n}}{n} = \frac{1}{n} + \frac{1}{n} \int_{0}^{\tau n} \left(\frac{c}{n}(n - A_{s} - E_{s}) - 1\right) ds + \frac{M_{A}(\tau n)}{n}$$

 \dots y suponiendo que las martinagalas re-escaladas van a cero en n

$$e_{\tau} = \tau$$

$$\frac{da_{\tau}}{d\tau} = \frac{1}{n} \left(\frac{c}{n} (n - A_{\tau n} - E_{\tau n}) - 1 \right) n = c(1 - a_{\tau} - e_{\tau}) - 1$$

$$a_0 = 0$$

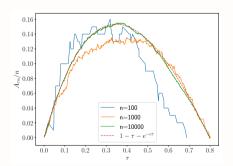
... que tiene solución analítica!

- P2) Transición de fase en la aparición de una componente gigante
 - ullet Finalmente, en el límite $n \to \infty$

$$e_{\tau} = \tau$$

$$a_{\tau} = 1 - \tau - e^{-c\tau}$$

Ejemplo: p = 2/n



- P2) Transición de fase en la aparición de una componente gigante
 - Finalmente, en el límite $n \to \infty$

$$e_{\tau} = \tau$$

$$a_{\tau} = 1 - \tau - e^{-c\tau}$$

 \Rightarrow Habrá una componente gigante $\Leftrightarrow c>1$ y su tamaño (proporcional a n)será la solución positiva de $1-\tau=e^{-c\tau}$

- P2) Transición de fase en la aparición de una componente gigante
 - Finalmente, en el límite $n \to \infty$

$$e_{\tau} = \tau$$

$$a_{\tau} = 1 - \tau - e^{-c\tau}$$

 \Rightarrow Habrá una componente gigante $\Leftrightarrow c>1$ y su tamaño (proporcional a n)será la solución positiva de $1-\tau=e^{-c\tau}$

■ Ver Remco van der Hofstad, "Random Graphs and Complex Networks. Volume One." Cambridge Series in Statistical and Probabilistic Mathematics (2017) para más formalidad

- P2) Transición de fase en la aparición de una componente gigante
 - Finalmente, en el límite $n \to \infty$

$$e_{\tau} = \tau$$

$$a_{\tau} = 1 - \tau - e^{-c\tau}$$

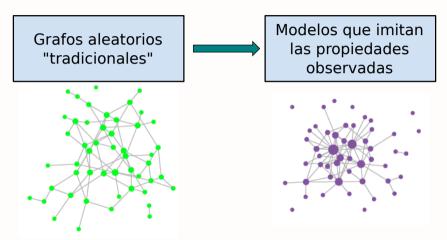
- \Rightarrow Habrá una componente gigante $\Leftrightarrow c>1$ y su tamaño (proporcional a n)será la solución positiva de $1-\tau=e^{-c\tau}$
- Ver Remco van der Hofstad, "Random Graphs and Complex Networks. Volume One." Cambridge Series in Statistical and Probabilistic Mathematics (2017) para más formalidad
- P3) Clustering coefficient pequeño de orden $O(n^{-1})$ y diámetro corto de orden $O(\log n)$ w.h.p.

Modelos de Grafos Aleatorios

- Introducción
- 2 Grafos Aleatorios
- Configuration models
- Network-growth models
- 6 Modelos Small-world
- 6 Exponential random graph models

Modelos para redes reales

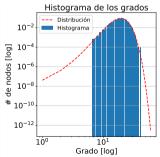
■ Quizá la inovación más importante en los modelos modernos de grafos



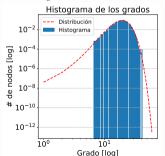
- Receta para generalizar el modelo de Erdös-Renyi
 - \Rightarrow Especificar \mathcal{G} conteniendo los grafos de orden N_v , pero que además posean cierta característica
 - \Rightarrow Asignamos probabilidad uniforme para todos los grafos $G \in \mathcal{G}$

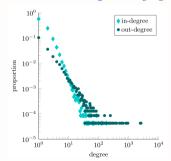
- Receta para generalizar el modelo de Erdös-Renyi
 - \Rightarrow Especificar \mathcal{G} conteniendo los grafos de orden N_v , pero que además posean cierta característica
 - \Rightarrow Asignamos probabilidad uniforme para todos los grafos $G \in \mathcal{G}$
- ¿Con qué dato contamos sobre nuestra red?
 - ullet Lo único que sabemos es la cantidad media de vecinos c
 - $\Rightarrow \text{ER}(n, c/n)$ parece una buena elección

- Receta para generalizar el modelo de Erdös-Renyi
 - \Rightarrow Especificar \mathcal{G} conteniendo los grafos de orden N_v , pero que además posean cierta característica
 - \Rightarrow Asignamos probabilidad uniforme para todos los grafos $G \in \mathcal{G}$
- ¿Con qué dato contamos sobre nuestra red?
 - ullet Lo único que sabemos es la cantidad media de vecinos c
 - $\Rightarrow \text{ER}(n, c/n)$ parece una buena elección
 - ¿Y si sabemos la secuencia o la distribución de grados? ¿Sigue pareciendo?



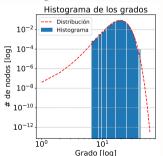
- Receta para generalizar el modelo de Erdös-Renyi
 - \Rightarrow Especificar \mathcal{G} conteniendo los grafos de orden N_v , pero que además posean cierta característica
 - \Rightarrow Asignamos probabilidad uniforme para todos los grafos $G \in \mathcal{G}$
- ¿Con qué dato contamos sobre nuestra red?
 - Lo único que sabemos es la cantidad media de vecinos c
 - $\Rightarrow \text{ER}(n, c/n)$ parece una buena elección
 - ¿Y si sabemos la secuencia o la distribución de grados? ¿Sigue pareciendo?

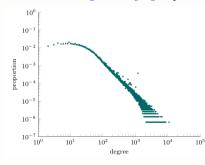




Conectividad entre Autonomous Systems (ASs)

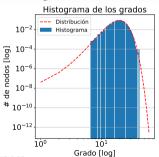
- Receta para generalizar el modelo de Erdös-Renyi
 - \Rightarrow Especificar \mathcal{G} conteniendo los grafos de orden N_v , pero que además posean cierta característica
 - \Rightarrow Asignamos probabilidad uniforme para todos los grafos $G \in \mathcal{G}$
- ¿Con qué dato contamos sobre nuestra red?
 - ullet Lo único que sabemos es la cantidad media de vecinos c
 - $\Rightarrow \text{ER}(n, c/n)$ parece una buena elección
 - ¿Y si sabemos la secuencia o la distribución de grados? ¿Sigue pareciendo?

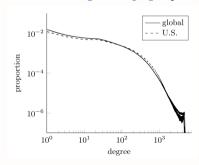




Actores que comparten películas en IMdB

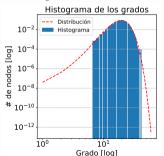
- Receta para generalizar el modelo de Erdös-Renyi
 - \Rightarrow Especificar \mathcal{G} conteniendo los grafos de orden N_v , pero que además posean cierta característica
 - \Rightarrow Asignamos probabilidad uniforme para todos los grafos $G \in \mathcal{G}$
- ¿Con qué dato contamos sobre nuestra red?
 - ullet Lo único que sabemos es la cantidad media de vecinos c
 - $\Rightarrow \text{ER}(n, c/n)$ parece una buena elección
 - ¿Y si sabemos la secuencia o la distribución de grados? ¿Sigue pareciendo?

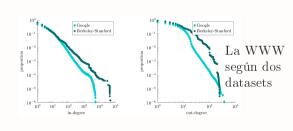




Conectividad entre amigos en Facebook

- Receta para generalizar el modelo de Erdös-Renyi
 - \Rightarrow Especificar \mathcal{G} conteniendo los grafos de orden N_v , pero que además posean cierta característica
 - \Rightarrow Asignamos probabilidad uniforme para todos los grafos $G \in \mathcal{G}$
- ¿Con qué dato contamos sobre nuestra red?
 - ullet Lo único que sabemos es la cantidad media de vecinos c
 - $\Rightarrow \text{ER}(n, c/n)$ parece una buena elección
 - ¡Y si sabemos la secuencia o la distribución de grados? ¡Sigue pareciendo?



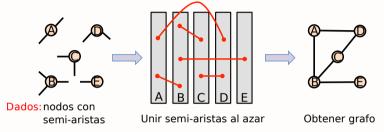


- Configuration model: secuencia de grados dada $\mathbf{d} = \{d_1, \dots, d_{N_v}\}$
 - El tamaño también queda dado bajo este modelo: $N_e = \sum_i d_i/2 = \bar{d}N_v/2 \Rightarrow \mathcal{G} \subset \mathcal{G}_{N_v,N_e}$
 - O sea, que es equivalente a especificar el modelo mediante una distribución condicional en \mathcal{G}_{N_v,N_e}

- Configuration model: secuencia de grados dada $\mathbf{d} = \{d_1, \dots, d_{N_v}\}$
 - El tamaño también queda dado bajo este modelo: $N_e = \sum_i d_i/2 = \bar{d}N_v/2 \Rightarrow \mathcal{G} \subset \mathcal{G}_{N_v,N_e}$
 - O sea, que es equivalente a especificar el modelo mediante una distribución condicional en \mathcal{G}_{N_v,N_e}
- Modelos tipo configuration son útiles como 'nulos' Ej: comparar grafo observado G con $G' \in \mathcal{G}$ con power-law P(d)
- También son útiles para imponer restricciones de conectividad Ej: La mayoría de los grafos no tienen nodos aislados

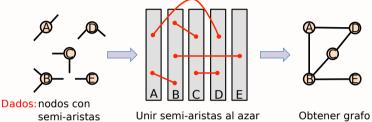
Simulando Configuration Models $CM_n(\mathbf{d})$

■ Matching algorithm. Ejemplo: $\mathbf{d} = \{1, 2, 2, 2, 3\}$

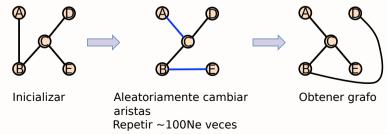


Simulando Configuration Models $CM_n(\mathbf{d})$

■ Matching algorithm. Ejemplo: $\mathbf{d} = \{1, 2, 2, 2, 3\}$



■ Switching algorithm.



Simulando Configuration Models

- \blacksquare Muchas veces me interesa generar grafos con cierta distribución de grados P(d)
- Puedo sortear la secuencia $\mathbf{d} = \{d_1, d_2, \dots, N_v\}$ iid de P(d)

Simulando Configuration Models

- \blacksquare Muchas veces me interesa generar grafos con cierta distribución de grados P(d)
- Puedo sortear la secuencia $\mathbf{d} = \{d_1, d_2, \dots, N_v\}$ iid de P(d)
 - ¿Cualquier secuencia es válida?
 - \Rightarrow Al menos necesito que $\sum_i d_i$ sea par. ¿Qué más?

- \blacksquare Muchas veces me interesa generar grafos con cierta distribución de grados P(d)
- Puedo sortear la secuencia $\mathbf{d} = \{d_1, d_2, \dots, N_v\}$ iid de P(d)
 - ¿Cualquier secuencia es válida?
 - \Rightarrow Al menos necesito que $\sum_i d_i$ sea par. ¿Qué más?
 - \Rightarrow Ejemplo: $\mathbf{d} = \{5, 3, 1, 1, 1, 1\}$ puede generar un grafo simple?

- \blacksquare Muchas veces me interesa generar grafos con cierta distribución de grados P(d)
- Puedo sortear la secuencia $\mathbf{d} = \{d_1, d_2, \dots, N_v\}$ iid de P(d)
 - ¿Cualquier secuencia es válida?
 - \Rightarrow Al menos necesito que $\sum_i d_i$ sea par. ¿Qué más?
 - \Rightarrow Ejemplo: $\mathbf{d} = \{5, 3, 1, \overline{1}, 1, 1\}$ puede generar un grafo simple?
 - Teorema de Erdös-Gallai Condición necesaria y suficiente para que la secuencia sea gráfica: ser par y además

$$\sum_{i=1}^k d_i \leq \underbrace{k(k-1)}_{\substack{2\times \text{m\'aximo n\'umero de aristas entre k nodos primero k nodos}} + \underbrace{\sum_{i=k+1}^{N_v} \min(d_i,k)}_{\substack{1\leq k\leq N_v}} \forall 1\leq k\leq N_v$$

 $con d_1 \leq d_2 \leq \ldots \leq d_{N_v}$

- \blacksquare Muchas veces me interesa generar grafos con cierta distribución de grados P(d)
- Puedo sortear la secuencia $\mathbf{d} = \{d_1, d_2, \dots, N_v\}$ iid de P(d)
 - ¿Cualquier secuencia es válida?
 - \Rightarrow Al menos necesito que $\sum_i d_i$ sea par. ¿Qué más?
 - \Rightarrow Ejemplo: $i.d = \{5, 3, 1, 1, 1, 1\}$ puede generar un grafo simple?
 - Teorema de Erdös-Gallai Condición necesaria y suficiente para que la secuencia sea gráfica: ser par y además

$$\sum_{i=1}^k d_i \leq \underbrace{k(k-1)}_{\substack{2 \times \text{m\'aximo n\'umero de aristas entre k nodos primero k nodos}} + \underbrace{\sum_{i=k+1}^{N_v} \min(d_i,k)}_{\substack{4 \le k \le N_v}} \forall 1 \le k \le N_v$$

$$con d_1 \le d_2 \le \ldots \le d_{N_v}$$

■ Por suerte, no hace falta chequear esta condición para el algoritmo de matching

- Problema Incluso si la secuencia $\mathbf{d} = \{d_1, d_2, \dots, d_{N_v}\}$ es gráfica, el algoritmo de matching puede generar multi-aristas y loops
 - \Rightarrow Borrémoslos del grafo resultante y llamemos a esta nueva secuencia $\mathbf{d}^{(er)} \Rightarrow$ típicamente $\mathbf{d} \neq \mathbf{d}^{(er)}$

- Problema Incluso si la secuencia $\mathbf{d} = \{d_1, d_2, \dots, d_{N_v}\}$ es gráfica, el algoritmo de matching puede generar multi-aristas y loops
 - \Rightarrow Borrémoslos del grafo resultante y llamemos a esta nueva secuencia $\mathbf{d}^{(er)} \Rightarrow$ típicamente $\mathbf{d} \neq \mathbf{d}^{(er)}$
 - Por suerte, si P(d) tiene media finita y $P(D \ge 1) = 1$ entonces

$$P\left(\sum_{d=1}^{N_v} |P^{(er)}(d) - P(d)| > \epsilon\right) \to 0$$

- Problema Incluso si la secuencia $\mathbf{d} = \{d_1, d_2, \dots, d_{N_v}\}$ es gráfica, el algoritmo de matching puede generar multi-aristas y loops
 - \Rightarrow Borrémoslos del grafo resultante y llamemos a esta nueva secuencia $\mathbf{d}^{(er)} \Rightarrow$ típicamente $\mathbf{d} \neq \mathbf{d}^{(er)}$
 - Por suerte, si P(d) tiene media finita y $P(D \ge 1) = 1$ entonces

$$P\left(\sum_{d=1}^{N_v} |P^{(er)}(d) - P(d)| > \epsilon\right) \to 0$$

■ Otro problema ¿Pero $CM_n(\mathbf{d})$ genera al azar uniforme entre todos los que tiene secuencia de grados \mathbf{d} ?

- Problema Incluso si la secuencia $\mathbf{d} = \{d_1, d_2, \dots, d_{N_v}\}$ es gráfica, el algoritmo de matching puede generar multi-aristas y loops
 - \Rightarrow Borrémoslos del grafo resultante y llamemos a esta nueva secuencia $\mathbf{d}^{(er)} \Rightarrow$ típicamente $\mathbf{d} \neq \mathbf{d}^{(er)}$
 - Por suerte, si P(d) tiene media finita y $P(D \ge 1) = 1$ entonces

$$P\left(\sum_{d=1}^{N_v} |P^{(er)}(d) - P(d)| > \epsilon\right) \to 0$$

- Otro problema ¿Pero $CM_n(\mathbf{d})$ genera al azar uniforme entre todos los que tiene secuencia de grados \mathbf{d} ?
 - \checkmark Condicionado al evento $\{CM_n(\mathbf{d}) \text{ es un grafo simple}\}$
 - \Rightarrow si además
 var $(D)<\infty$ entonces la probabilidad de obtener un grafo simple bajo
 $\mathrm{CM}_n(\mathbf{d})$ converge en N_v a

$$e^{-\nu/2-\nu^2/4}$$
 con $\nu = \mathbb{E}\{D(D-1)\}/\mathbb{E}\{D\}$

- ¿Para qué sirve lo anterior?
 - Quiero estudiar una propiedad de los grafos uniformes con secuencia de grados d (UG_n(d)) del estilo

$$\lim_{n\to\infty} P\left(\mathrm{UG}_n(\mathbf{d})\in\mathcal{E}_n\right)\to 1$$

• Puedo hacer el siguiente razonamiento, y estudiar si $P(\mathrm{CM}_n(\mathbf{d}) \in \mathcal{E}_n^c) \to 0$ (que es mucho más fácil)

$$P\left(\mathrm{UG}_{n}(\mathbf{d}) \in \mathcal{E}_{n}^{c}\right) = P\left(\mathrm{CM}_{n}(\mathbf{d}) \in \mathcal{E}_{n}^{c} \middle| \mathrm{CM}_{n}(\mathbf{d}) \text{ simple}\right)$$

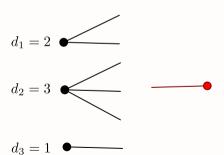
$$= \frac{P\left(\mathrm{CM}_{n}(\mathbf{d}) \in \mathcal{E}_{n}^{c}, \mathrm{CM}_{n}(\mathbf{d}) \text{ simple}\right)}{P\left(\mathrm{CM}_{n}(\mathbf{d}) \text{ simple}\right)}$$

$$\leq \frac{P\left(\mathrm{CM}_{n}(\mathbf{d}) \in \mathcal{E}_{n}^{c}\right)}{P\left(\mathrm{CM}_{n}(\mathbf{d}) \text{ simple}\right)} \to 0$$

- P1) Transición de fase en la aparición de una componente gigante
 - Se puede hacer un análisis con ecuaciones diferenciales como hicimos para ER(n, c/n)
 - Hay que considerar el proceso dado por $A_t(j)$ (nodos activos de grado j), E_t (nodos explorados, lo que me interesa contar) y U_t (semi-aristas sin juntar)
 - Componente gigante de tamaño O(n) como en ER(n, c/n)
 - Condición: $\nu = \mathbb{E}\{D(D-1)\}/\mathbb{E}\{D\} > 1$ (caso $\mathrm{ER}(n,c/n)$ equivale a c(1+c) > 2c)

- P1) Transición de fase en la aparición de una componente gigante
 - Se puede hacer un análisis con ecuaciones diferenciales como hicimos para ER(n, c/n)
 - Hay que considerar el proceso dado por $A_t(j)$ (nodos activos de grado j), E_t (nodos explorados, lo que me interesa contar) y U_t (semi-aristas sin juntar)
 - Componente gigante de tamaño O(n) como en ER(n, c/n)
 - Condición: $\nu = \mathbb{E}\{D(D-1)\}/\mathbb{E}\{D\} > 1$ (caso $\mathrm{ER}(n,c/n)$ equivale a c(1+c) > 2c)
 - Intuitivamente: necesito que el grado (menos uno) de un vecino del nodo sea mayor a 1

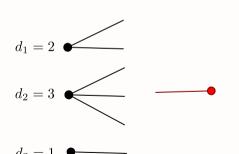
- P1) Transición de fase en la aparición de una componente gigante
 - Se puede hacer un análisis con ecuaciones diferenciales como hicimos para ER(n, c/n)
 - Hay que considerar el proceso dado por $A_t(j)$ (nodos activos de grado j), E_t (nodos explorados, lo que me interesa contar) y U_t (semi-aristas sin juntar)
 - Componente gigante de tamaño O(n) como en ER(n, c/n)
 - Condición: $\nu = \mathbb{E}\{D(D-1)\}/\mathbb{E}\{D\} > 1$ (caso $\mathrm{ER}(n,c/n)$ equivale a c(1+c) > 2c)
 - Intuitivamente: necesito que el grado (menos uno) de un vecino del nodo sea mayor a 1



$$P ext{(grado del vecino} = j) = \frac{\sum_{i} d_{i} \mathbb{I}_{d_{i}=j}}{\sum_{i} d_{i}}$$

P1) Transición de fase en la aparición de una componente gigante

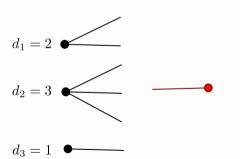
- Se puede hacer un análisis con ecuaciones diferenciales como hicimos para ER(n, c/n)
 - Hay que considerar el proceso dado por $A_t(j)$ (nodos activos de grado j), E_t (nodos explorados, lo que me interesa contar) y U_t (semi-aristas sin juntar)
- Componente gigante de tamaño O(n) como en ER(n, c/n)
- Condición: $\nu = \mathbb{E}\{D(D-1)\}/\mathbb{E}\{D\} > 1$ (caso $\mathrm{ER}(n,c/n)$ equivale a c(1+c) > 2c)
 - Intuitivamente: necesito que el grado (menos uno) de un vecino del nodo sea mayor a 1



$$\begin{split} P\left(\text{grado del vecino} = j\right) &= \frac{\sum_i d_i \mathbb{I}_{d_i = j}}{\sum_i d_i} = \\ &= \frac{j \sum_i \mathbb{I}_{d_i = j}}{\sum_i d_i} = \frac{j n_j}{\sum_i i n_i} = \frac{j p_j}{\sum_i i p_i} \end{split}$$

P1) Transición de fase en la aparición de una componente gigante

- Se puede hacer un análisis con ecuaciones diferenciales como hicimos para ER(n, c/n)
 - Hay que considerar el proceso dado por $A_t(j)$ (nodos activos de grado j), E_t (nodos explorados, lo que me interesa contar) y U_t (semi-aristas sin juntar)
- Componente gigante de tamaño O(n) como en ER(n, c/n)
- Condición: $\nu = \mathbb{E}\{D(D-1)\}/\mathbb{E}\{D\} > 1$ (caso $\mathrm{ER}(n,c/n)$ equivale a c(1+c) > 2c)
 - Intuitivamente: necesito que el grado (menos uno) de un vecino del nodo sea mayor a 1



$$\begin{split} P\left(\text{grado del vecino} = j\right) &= \frac{\sum_i d_i \mathbb{I}_{d_i = j}}{\sum_i d_i} = \\ &= \frac{j \sum_i \mathbb{I}_{d_i = j}}{\sum_i d_i} = \frac{j n_j}{\sum_i i n_i} = \frac{j p_j}{\sum_i i p_i} \\ \mathbb{E}\{\text{grado del vecino} - 1\} &= \sum_j (j-1) \frac{j p_j}{\sum_i i p_i} = \\ &= \frac{\mathbb{E}\{D(D-1)\}}{\mathbb{E}\{D\}} \end{split}$$

P2) El clustering coefficient también se va a 0 como en ER(n, c/n)

- P2) El clustering coefficient también se va a 0 como en ER(n, c/n)
- P3) Distancias típicas dependen de P(d)
 - Si $Var(D) < \infty \Rightarrow$ distancias típicas de orden $O(\log_n n)$
 - Caso particular de una power-law $P(d) \sim Cd^{-\alpha}$ con $\alpha \in (2,3)$ (i.e. media finita y varianza infinita) \Rightarrow distancias típicas de orden $O(\log \log(n))$

- P2) El clustering coefficient también se va a 0 como en ER(n, c/n)
- P3) Distancias típicas dependen de P(d)
 - Si $Var(D) < \infty \Rightarrow$ distancias típicas de orden $O(\log_{\nu} n)$
 - Caso particular de una power-law $P(d) \sim Cd^{-\alpha}$ con $\alpha \in (2,3)$ (i.e. media finita y varianza infinita) \Rightarrow distancias típicas de orden $O(\log \log(n))$
- P4) Se puede calcular cotas sobre el independence number de estos grafos analizando procesos de exploración mediante límites fluidos.
 - Brightwell, Graham, Svante Janson, and Malwina Luczak. "The greedy independent set in a random graph with given degrees." Random Structures & Algorithms 51, no. 4 (2017): 565-586.
 - Bermolen, Paola, Matthieu Jonckheere, and Pascal Moyal. "The jamming constant of uniform random graphs." Stochastic Processes and their Applications 127, no. 7 (2017): 2138-2178.

Aplicación 1: Indicadores Estadísticamente Significativos

- \blacksquare Consideremos un grafo G^{obs} que se obtuvo de una observación
- **Q**: Es el indicador estructural $\eta(G^{obs})$ estadísticamente significativo, i.e., inusual?
 - ⇒ Para evaluar si es significativo se necesita un marco de referencia: un modelo nulo

Aplicación 1: Indicadores Estadísticamente Significativos

- \blacksquare Consideremos un grafo G^{obs} que se obtuvo de una observación
- **Q**: Es el indicador estructural $\eta(G^{obs})$ estadísticamente significativo, i.e., inusual?
 - ⇒ Para evaluar si es significativo se necesita un marco de referencia: un modelo nulo
 - ⇒ Es habitual usar grafos aleatorios como marco de referencia

Aplicación 1: Indicadores Estadísticamente Significativos

- \blacksquare Consideremos un grafo G^{obs} que se obtuvo de una observación
- **Q**: Es el indicador estructural $\eta(G^{obs})$ estadísticamente significativo, i.e., inusual?
 - ⇒ Para evaluar si es significativo se necesita un marco de referencia: un modelo nulo
 - ⇒ Es habitual usar grafos aleatorios como marco de referencia
- Definamos una colección \mathcal{G} , y comparemos $\eta(G^{obs})$ con los valores $\{\eta(G): G \in \mathcal{G}\}$
 - ⇒ Más formalmente, construyamos una distribución de referencia

$$P_{\eta,\mathcal{G}}(t) = \frac{|\{G \in \mathcal{G} : \eta(G) \le t\}|}{|\mathcal{G}|}$$

- Si $\eta(G^{obs})$ es suficientemente improbable bajo $P_{n,G}(t)$
 - \Rightarrow Evidencia contra la hipótesis nula H_0 : G^{obs} es una muestra uniforme de \mathcal{G}

Ejemplo: club de karate de Zachary

- El club de karate de Zachary tiene coeficiente de clustering $cl(G^{obs}) = 0.2257$
 - ⇒ Usemos grafos aleatorios para verificar si este es un valor inusual

Ejemplo: club de karate de Zachary

- El club de karate de Zachary tiene coeficiente de clustering $cl(G^{obs}) = 0.2257$
 - ⇒ Usemos grafos aleatorios para verificar si este es un valor inusual
- Construimos dos referencias
 - 1) Conjunto \mathcal{G}_1 de grafos aleatorios con el mismo $N_v = 34$ y $N_e = 78$ (i.e. $\mathrm{ER}(N_v, N_e)$)
 - 2) Agregar la restricción que los grafos en \mathcal{G}_2 tengan la misma secuencia de grados que G^{obs} (i.e. $\mathrm{CM}_{N_n}(\mathbf{d})$)

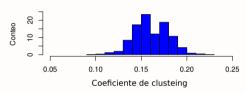
Ejemplo: club de karate de Zachary

- El club de karate de Zachary tiene coeficiente de clustering $cl(G^{obs}) = 0.2257$
 - ⇒ Usemos grafos aleatorios para verificar si este es un valor inusual
- Construimos dos referencias
 - 1) Conjunto \mathcal{G}_1 de grafos aleatorios con el mismo $N_v = 34$ y $N_e = 78$ (i.e. $\mathrm{ER}(N_v, N_e)$)
 - 2) Agregar la restricción que los grafos en \mathcal{G}_2 tengan la misma secuencia de grados que G^{obs} (i.e. $\mathrm{CM}_{N_v}(\mathbf{d})$)
- \blacksquare $|\mathcal{G}_1| \approx 8.4 \times 10^{96} \text{ y } |\mathcal{G}_2|$ mucho más pequeño, pero igual enorme
 - \Rightarrow Hallar todos los grafos \mathcal{G}_1 o \mathcal{G}_2 para obtener las distribuciones $P_{\eta,\mathcal{G}_1}(t)$ o $P_{\eta,\mathcal{G}_2}(t)$ es imposible
- Alternativa: usa simulaciones para aproximar las distribuciones
 - \Rightarrow Generamos 10.000 muestras uniformes G de \mathcal{G}_1 y \mathcal{G}_2
 - \Rightarrow Calculamos $\eta(G) = \operatorname{cl}(G)$ para cada muestra y graficamos los histogramas

Ejemplo: club de karate de Zachary (cont.)

■ Gráfica de histogramas para aproximar la distribución

Misma secuencia de grados



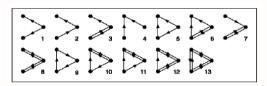
- El valor $\operatorname{cl}(G^{obs}) = 0.2257$ es muy poco probable para ambos modelos Ej: solo 3 de las 10.000 muestras de \mathcal{G}_1 tenía $\operatorname{cl}(G) > 0.2257$
- La evidencia nos hace concluir que G^{obs} no fue obtenida de una muestra uniforme en \mathcal{G}_1 o \mathcal{G}_2

Aplicación 2: Detectar motifs en grafos

- Otra aplicación de grafos aleatorios es la detección de network motifs
 - ⇒ Hallar las estructuras de las que se construye el grafo

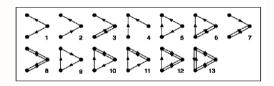
Aplicación 2: Detectar motifs en grafos

- Otra aplicación de grafos aleatorios es la detección de network motifs
 - ⇒ Hallar las estructuras de las que se construye el grafo
- **Def:** Network motifs son sub-grafos pequeños que ocurren mucho más frecuentemente en el grafo observado que en un grafo aleatorio comparable
- Ej: Hay $L_3 = 13$ grafos dirigidos (y conexos) distintos con k = 3 vértices



Aplicación 2: Detectar motifs en grafos

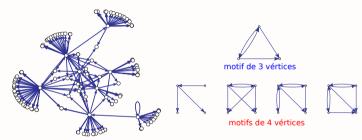
- Otra aplicación de grafos aleatorios es la detección de network motifs
 - \Rightarrow Hallar las estructuras de las que se construye el grafo
- **Def:** Network motifs son sub-grafos pequeños que ocurren mucho más frecuentemente en el grafo observado que en un grafo aleatorio comparable
- Ej: Hay $L_3 = 13$ grafos dirigidos (y conexos) distintos con k = 3 vértices



- Sea N_i^k el número de sub-grafos de k vértices del tipo i en $G, i = 1, ..., L_k$
 - \Rightarrow Cada valor N_i^k puede compararse con referencia $P_{N_i,G}$
 - \Rightarrow Si N_i^k es extremo \Rightarrow sub-grafo es network motif

Ejemplo: red de blogs sobre SIDA

- Red de blogs sobre SIDA G^{obs} con $N_v = 146$ bloggers y $N_e = 183$ enlaces
 - \Rightarrow Se buscan motifs con k=3 and 4 vertices



- Se simulan 10.000 grafos dirigidos usando el algoritmo de switching
 - \Rightarrow Se respetó la secuencia de grados de entrada y salida de G^{obs} , así como las aristas mutuas
 - \Rightarrow Se estimaron distribuciones de referencia $P_{N_s,G}(t)$



Desafíos para detectar motifs

- Los motifs generalmente se intersectan con copias de sí mismos
 - \Rightarrow Un requisito extra puede ser que sean subgrafos frecuentes pero también disjuntos

Desafíos para detectar motifs

- Los motifs generalmente se intersectan con copias de sí mismos
 - \Rightarrow Un requisito extra puede ser que sean subgrafos frecuentes pero también disjuntos
- A medida que el grafo crece, los desafíos computacionales son cada vez mayores
 - \Rightarrow Por ejemplo, el número de potenciales motifs L_k crece muy rápidamente con k Ei: Subgrafos dirigidos $L_3 = 13$, $L_4 = 199$, $L_5 = 9364$

Desafíos para detectar motifs

- Los motifs generalmente se intersectan con copias de sí mismos
 - \Rightarrow Un requisito extra puede ser que sean subgrafos frecuentes pero también disjuntos
- A medida que el grafo crece, los desafíos computacionales son cada vez mayores
 - \Rightarrow Por ejemplo, el número de potenciales motifs L_k crece muy rápidamente con k Ej: Subgrafos dirigidos $L_3=13, L_4=199, L_5=9364$
- Una estrategia posible es muestrear el grafo

Modelos de Grafos Aleatorios

- Introducción
- 2 Grafos Aleatorios
- 3 Configuration models
- Network-growth models
- 6 Modelos Small-world
- 6 Exponential random graph models

- Un buen modelo estadístico debería ser [Robbins-Morris'07]
 - ✓ Estimable a partir de y razonablemente representativo de los datos observados
 - ✓ Plausible teóricamente sobre los efectos que pueden haber producido la red
 - ✓ Capaz de discriminar entre los distintos efectos que mejor explican los datos

- Un buen modelo estadístico debería ser [Robbins-Morris'07]
 - \checkmark Estimable a partir de y razonablemente representativo de los datos observados
 - \checkmark Plausible teóricamente sobre los efectos que pueden haber producido la red
 - ✓ Capaz de discriminar entre los distintos efectos que mejor explican los datos
- El modelo $CM_n(\mathbf{d})$ puede generar grafos tomando en cuenta la distribución de grados, incluso varios casos de power-law
 - ¿Pero qué mecanismo lleva a esta configuración?
 - Modelos como el Preferential Attachement dan una explicación sencilla pero que brinda intuición

- Muchas redes crecen o al menos evolucionan en el tiempo
 - Ej: Web, citas científicas, Twitter, genoma ...
- Posible encare para modelos que imitan el crecimiento de un grafo
 - Especificar mecanismos simples para la dinámica del grafo
 - ullet Estudiar las características estructurales que emergen a medida que el tiempo $t o \infty$
- Q: Estas propiedades son las que se observan en grafos del mundo real?

- Muchas redes crecen o al menos evolucionan en el tiempo
 - Ej: Web, citas científicas, Twitter, genoma ...
- Posible encare para modelos que imitan el crecimiento de un grafo
 - Especificar mecanismos simples para la dinámica del grafo
 - \bullet Estudiar las características estructurales que emergen a medida que el tiempo $t \to \infty$
- Q: Estas propiedades son las que se observan en grafos del mundo real?
- Los dos métodos de este tipo más populares por lejos son
 - ⇒ Preferential attachment models
 - \Rightarrow Copying models
- Mecanismos que pueden explicar popularidad y duplicación de genes respectivamente

Preferential attachment model

- Modelo simple para la creación de, por ejemplo, enlaces entre páginas web
 - Los vértices se crean de a uno, y los notamos $1, \ldots, N_v$

- Modelo simple para la creación de, por ejemplo, enlaces entre páginas web
 - Los vértices se crean de a uno, y los notamos $1, \ldots, N_v$
 - Cuando el nodo j es creado tiene un único enlace hacia $i, 1 \le i < j$

- Modelo simple para la creación de, por ejemplo, enlaces entre páginas web
 - Los vértices se crean de a uno, y los notamos $1, \ldots, N_v$
 - Cuando el nodo j es creado tiene un único enlace hacia $i, 1 \le i < j$
 - La creación del enlace (j, i) es aleatorio:
 - ullet Con probabilidad $p,\,j$ se conecta con i elegido uniforme al azar
 - Con probabilidad 1-p, j se conecta con i con probabilidad $\propto d_i^{in}$

- Modelo simple para la creación de, por ejemplo, enlaces entre páginas web
 - Los vértices se crean de a uno, y los notamos $1, \ldots, N_v$
 - Cuando el nodo j es creado tiene un único enlace hacia $i, 1 \le i < j$
 - La creación del enlace (j, i) es aleatorio:
 - \bullet Con probabilidad p, j se conecta con i elegido uniforme al azar
 - ullet Con probabilidad $1-p,\,j$ se conecta con i con probabilidad $\propto d_i^{in}$
- \blacksquare El grafo resultante es dirigido, donde cada vértice tiene $d_v^{out}=1$

- Modelo simple para la creación de, por ejemplo, enlaces entre páginas web
 - Los vértices se crean de a uno, y los notamos $1, \ldots, N_v$
 - Cuando el nodo j es creado tiene un único enlace hacia $i, 1 \le i < j$
 - La creación del enlace (j, i) es aleatorio:
 - \bullet Con probabilidad p, j se conecta con i elegido uniforme al azar
 - Con probabilidad 1-p, j se conecta con i con probabilidad $\propto d_i^{in}$
- El grafo resultante es dirigido, donde cada vértice tiene $d_v^{out} = 1$
- El modelo preferential attachment lleva a una dinámica de "rico se vuelve más rico"
 - \Rightarrow Los enlaces se forman preferentemente hacia los nodos que (actualmente) son los más populares
 - \Rightarrow La probabilidad de que el nodo iaumente su popularidad \propto a la popularidad actual del nodo i

Preferential attachment resulta en power laws

Teorema

El preferential attachment model resulta en una distribución de grados del tipo power-law con exponente $\alpha = 1 + \frac{1}{1-p}$, i.e.,

$$P\left(d^{in} = d\right) \propto d^{-\left(1 + \frac{1}{1-p}\right)}$$

Preferential attachment resulta en power laws

Teorema

El preferential attachment model resulta en una distribución de grados del tipo power-law con exponente $\alpha = 1 + \frac{1}{1-n}$, i.e.,

$$P\left(d^{in}=d\right) \propto d^{-\left(1+\frac{1}{1-p}\right)}$$

- La clave: "j se conecta con i con probabilidad $\propto d_i^{in}$ " es básicamente copiar, i.e., "j elige una arista uniforme al azar y copia su destino", i.e., "copiar la decisión de otro nodo elegido uniforme al azar"
- Importante: Copiar las decisiones de otros vs. decisiones totalmente independientes en ER(n, p) o $CM_n(\mathbf{d})$

Preferential attachment resulta en power laws

Teorema

El preferential attachment model resulta en una distribución de grados del tipo power-law con exponente $\alpha = 1 + \frac{1}{1-n}$, i.e.,

$$P\left(d^{in} = d\right) \propto d^{-\left(1 + \frac{1}{1-p}\right)}$$

- La clave: "j se conecta con i con probabilidad $\propto d_i^{in}$ " es básicamente copiar, i.e., "j elige una arista uniforme al azar y copia su destino", i.e., "copiar la decisión de otro nodo elegido uniforme al azar"
- Importante: Copiar las decisiones de otros vs. decisiones totalmente independientes en ER(n, p) o $CM_n(\mathbf{d})$
- A medida que $p \to 0 \implies$ La copia se vuelve más frecuente \implies Menor $\alpha \to 2$
 - Intuitivamente: mucho más probable encontrarse con páginas web extremadamente populares (colas más pesadas en la distribución de grados)

Aproximación Continua usando Límites Fluidos

- Grado entrante $d_i^{in}(t)$ del nodo i en tiempo $t \ge i$ es una cadena de Markov:
 - 1) Condición inicial: $d_i^{in}(i) = 0$ dado que el nodo i se crea en tiempo t = i
 - 2) Dinámica: $d_i^{in}(t)$ aumenta en uno con probabilidad (cf. hay t aristas creadas en tiempo t)

$$P((t+1,i) \in E) = p \times \frac{1}{t} + (1-p) \times \frac{d_i^{in}(t)}{t}$$

Aproximación Continua usando Límites Fluidos

- Grado entrante $d_i^{in}(t)$ del nodo i en tiempo $t \ge i$ es una cadena de Markov:
 - 1) Condición inicial: $d_i^{in}(i) = 0$ dado que el nodo i se crea en tiempo t = i
 - 2) Dinámica: $d_i^{in}(t)$ aumenta en uno con probabilidad (cf. hay t aristas creadas en tiempo t)

$$P((t+1,i) \in E) = p \times \frac{1}{t} + (1-p) \times \frac{d_i^{in}(t)}{t}$$

- \blacksquare Hagamos una aproximación por límite fluido como ya hicimos con $\mathrm{ER}(n,c/n)$
 - Tiempo continuo $t \in [0, N_v]$
 - Los grados ahora son continuos e indexados por $i: x_i^{in}(t): [i, N_v] \mapsto \mathbb{R}_+$

Aproximación Continua usando Límites Fluidos

- Grado entrante $d_i^{in}(t)$ del nodo i en tiempo $t \ge i$ es una cadena de Markov:
 - 1) Condición inicial: $d_i^{in}(i) = 0$ dado que el nodo i se crea en tiempo t = i
 - 2) Dinámica: $d_i^{in}(t)$ aumenta en uno con probabilidad (cf. hay t aristas creadas en tiempo t)

$$P((t+1,i) \in E) = p \times \frac{1}{t} + (1-p) \times \frac{d_i^{in}(t)}{t}$$

- \blacksquare Hagamos una aproximación por límite fluido como ya hicimos con $\mathrm{ER}(n,c/n)$
 - Tiempo continuo $t \in [0, N_v]$
 - Los grados ahora son continuos e indexados por $i: x_i^{in}(t): [i, N_v] \mapsto \mathbb{R}_+$
- Como siempre crece en uno, el drift resulta en la siguiente ecuación diferencial:

$$\frac{dx_i^{in}(t)}{dt} = \frac{p}{t} + \frac{(1-p)x_i^{in}(t)}{t}, \quad x_i^{in}(i) = 0$$

Resolviendo la ecuación diferencial

■ La ecuación diferencial es (con q = 1 - p)

$$\frac{dx_i^{in}(t)}{dt} = \frac{p + qx_i^{in}(t)}{t}$$

Resolviendo la ecuación diferencial

■ La ecuación diferencial es (con q = 1 - p)

$$\frac{dx_i^{in}(t)}{dt} = \frac{p + qx_i^{in}(t)}{t}$$

■ Divido ambos lados por $p + qx_i^{in}(t)$ e integro en t

$$\int \frac{1}{p + qx_i^{in}} \frac{dx_i^{in}}{dt} dt = \int \frac{1}{t} dt$$

Resolviendo la ecuación diferencial

■ La ecuación diferencial es (con q = 1 - p)

$$\frac{dx_i^{in}(t)}{dt} = \frac{p + qx_i^{in}(t)}{t}$$

■ Divido ambos lados por $p + qx_i^{in}(t)$ e integro en t

$$\int \frac{1}{p + qx_i^{in}} \frac{dx_i^{in}}{dt} dt = \int \frac{1}{t} dt$$

■ Resolviendo las integrales resulta (c es una constante)

$$\ln\left(p + qx_i^{in}\right) = q\ln\left(t\right) + c$$

Resolviendo la ecuación diferencial (cont.)

■ Tomando exponentes y usando $K = e^c$ se obtiene

$$\ln(p + qx_i^{in}(t)) = q \ln(t) + c \implies x_i^{in}(t) = \frac{1}{q} (Kt^q - p)$$

Resolviendo la ecuación diferencial (cont.)

■ Tomando exponentes y usando $K = e^c$ se obtiene

$$\ln(p + qx_i^{in}(t)) = q \ln(t) + c \implies x_i^{in}(t) = \frac{1}{q} (Kt^q - p)$$

■ Para determinar la constante K usamos la condición inicial

$$0 = x_i^{in}(i) = \frac{1}{q} (Ki^q - p) \implies K = \frac{p}{i^q}$$

Resolviendo la ecuación diferencial (cont.)

■ Tomando exponentes y usando $K = e^c$ se obtiene

$$\ln(p + qx_i^{in}(t)) = q \ln(t) + c \implies x_i^{in}(t) = \frac{1}{q} (Kt^q - p)$$

 \blacksquare Para determinar la constante K usamos la condición inicial

$$0 = x_i^{in}(i) = \frac{1}{q} (Ki^q - p) \implies K = \frac{p}{i^q}$$

■ Y finalmente el límite fluido de $d_i^{in}(t)$ resulta

$$x_i^{in}(t) = \frac{1}{q} \left(\frac{p}{i^q} \times t^q - p \right) = \frac{p}{q} \left[\left(\frac{t}{i} \right)^q - 1 \right]$$

■ Q: En tiempo t qué fracción $\bar{F}(d)$ de los nodos tiene grado $\geq d$?

En términos del límite fluido: ¿Qué fracción de las funciones cumple $x_i^{in}(t) \geq d$ en tiempo t?

$$x_i^{in}(t) = \frac{p}{q} \left[\left(\frac{t}{i} \right)^q - 1 \right] \ge d$$

■ Q: En tiempo t qué fracción $\bar{F}(d)$ de los nodos tiene grado $\geq d$?

En términos del límite fluido: ¿Qué fracción de las funciones cumple $x_i^{in}(t) \geq d$ en tiempo t?

$$x_i^{in}(t) = \frac{p}{q} \left[\left(\frac{t}{i} \right)^q - 1 \right] \ge d$$

 \blacksquare Se puede re-escribir en términos de i como

$$i \le t \left[\left(\frac{q}{p} \right) d + 1 \right]^{-1/q}$$

■ Q: En tiempo t qué fracción $\bar{F}(d)$ de los nodos tiene grado $\geq d$?

En términos del límite fluido: ¿Qué fracción de las funciones cumple $x_i^{in}(t) \geq d$ en tiempo t?

$$x_i^{in}(t) = \frac{p}{q} \left[\left(\frac{t}{i} \right)^q - 1 \right] \ge d$$

 \blacksquare Se puede re-escribir en términos de i como

$$i \le t \left[\left(\frac{q}{p} \right) d + 1 \right]^{-1/q}$$

 \blacksquare En tiempo t hay exactamente t nodos en el grafo, así que la fracción es

$$\bar{F}(d) = \left[\left(\frac{q}{p} \right) d + 1 \right]^{-1/q} = 1 - F(d)$$

- \blacksquare La distribución de grados está dada por la PDF P(d)
- Recordemos que la PDF, la CDF y la CCDF tienen la siguiente relación

$$p(x) = \frac{dF(x)}{dx} = -\frac{d\bar{F}(x)}{dx}$$

- \blacksquare La distribución de grados está dada por la PDF P(d)
- Recordemos que la PDF, la CDF y la CCDF tienen la siguiente relación

$$p(x) = \frac{dF(x)}{dx} = -\frac{d\bar{F}(x)}{dx}$$

■ Tomando la derivada de $\bar{F}(d) = \left[\left(\frac{q}{p} \right) d + 1 \right]^{-1/q}$ resulta

$$P(d) = \frac{1}{p} \left[\left(\frac{q}{p} \right) d + 1 \right]^{-\left(1 + \frac{1}{q}\right)}$$

 \Rightarrow "Mostramos" que $P(d) \propto d^{-(1+1/q)}$, una distribución tipo power law con exponente $\alpha = 1 + \frac{1}{1-p}$

Modelo de Barabási-Albert

- El modelo de Barabási-Albert (BA) es para grafos no-dirigidos
- El grafo inicial $G_{BA}(0)$ tiene $N_v(0)$ vértices y $N_e(0)$ aristas (t=0)

Modelo de Barabási-Albert

- El modelo de Barabási-Albert (BA) es para grafos no-dirigidos
- El grafo inicial $G_{BA}(0)$ tiene $N_v(0)$ vértices y $N_e(0)$ aristas (t=0)
- Para t = 1, 2, ... el grafo actual $G_{BA}(t-1)$ "crece" a $G_{BA}(t)$:
 - Se agrega un vertice u de grado $d_u(t) = m \ge 1$
 - Las m aristas nuevas son incidentes a m vértices diferentes en $G_{BA}(t-1)$
 - ullet El nuevo vertice u se conecta a $v \in V(t-1)$ con probabilidad

$$P((u,v) \in E(t)) = \frac{d_v(t-1)}{\sum_{v'} d_{v'}(t-1)}$$

- El nuevo vértice prefiere nodos con grado más alto
- A. Barabási and R. Albert, "Emergence of scaling in random networks," *Science*, vol. 286, pp. 509-512, 1999

- El modelo de BA tiene varios problemas formales (y no tanto):
 - No se especifica el grafo inicial
 - ullet El número de aristas medio es 1 y no m
 - \bullet Se sortea un grupo de m vértices, pero no se dan las marginales de cada nodo
- El Linearized chord diagram (LCD) model (y otros) elimina estas ambigüedades

- El modelo de BA tiene varios problemas formales (y no tanto):
 - No se especifica el grafo inicial
 - ullet El número de aristas medio es 1 y no m
 - ullet Se sortea un grupo de m vértices, pero no se dan las marginales de cada nodo
- El Linearized chord diagram (LCD) model (y otros) elimina estas ambigüedades
- Para m=1, se comienza con $G_{LCD}(0)$: un único nodo con un self-loop

- El modelo de BA tiene varios problemas formales (y no tanto):
 - No se especifica el grafo inicial
 - ullet El número de aristas medio es 1 y no m
 - ullet Se sortea un grupo de m vértices, pero no se dan las marginales de cada nodo
- El Linearized chord diagram (LCD) model (y otros) elimina estas ambigüedades
- Para m=1, se comienza con $G_{LCD}(0)$: un único nodo con un self-loop
- Para t = 1, 2, ... el grafo $G_{LCD}(t-1)$ "crece" a $G_{LCD}(t)$:
 - Se agrega un vértice v_t con una arista hacia $v_s \in V(t)$
 - El vértice destino v_s , $1 \le s \le t$ se elige con probabilidad

$$P(s = j) = \begin{cases} \frac{d_{v_j}(t-1)}{2t-1}, & \text{si } 1 \le j \le t-1, \\ \frac{1}{2t-1}, & \text{si } j = t \end{cases}$$

- El modelo de BA tiene varios problemas formales (y no tanto):
 - No se especifica el grafo inicial
 - ullet El número de aristas medio es 1 y no m
 - Se sortea un grupo de m vértices, pero no se dan las marginales de cada nodo
- El Linearized chord diagram (LCD) model (y otros) elimina estas ambigüedades
- Para m=1, se comienza con $G_{LCD}(0)$: un único nodo con un self-loop
- Para t = 1, 2, ... el grafo $G_{LCD}(t-1)$ "crece" a $G_{LCD}(t)$:
 - Se agrega un vértice v_t con una arista hacia $v_s \in V(t)$
 - El vértice destino v_s , $1 \le s \le t$ se elige con probabilidad

$$P(s = j) = \begin{cases} \frac{d_{v_j}(t-1)}{2t-1}, & \text{si } 1 \le j \le t-1, \\ \frac{1}{2t-1}, & \text{si } j = t \end{cases}$$

- \blacksquare Para m>1 simplemente se repite lo anterior m veces en cada t
 - Los m vértices creados se "colapsan" en un único vértice, manteniendo las aristas
- A. Bollobás et al, "The degree sequence of a scale-free random graph process," Random Struct. and Alg., vol. 18, pp. 279-290, 2001

- P1) Cuando $t \to \infty$, $G_{LCD}(t)$ tiene distribución de grados tipo power-law con $\alpha = 3$
 - \Rightarrow Se genera $\alpha = 3 + \delta/m > 2$ agregando un bias $\delta > -m$ a las probabilidades
 - ⇒ Ver Remco van der Hofstad, "Random Graphs and Complex Networks. Volume One." Cambridge Series in Statistical and Probabilistic Mathematics (2017)

- P1) Cuando $t \to \infty$, $G_{LCD}(t)$ tiene distribución de grados tipo power-law con $\alpha = 3$
 - \Rightarrow Se genera $\alpha=3+\delta/m>2$ agregando un bias $\delta>-m$ a las probabilidades
 - ⇒ Ver Remco van der Hofstad, "Random Graphs and Complex Networks. Volume One." Cambridge Series in Statistical and Probabilistic Mathematics (2017)
- P2) El grafo $G_{LCD}(t)$ es conexo w.h.p.

- P1) Cuando $t \to \infty$, $G_{LCD}(t)$ tiene distribución de grados tipo power-law con $\alpha = 3$
 - \Rightarrow Se genera $\alpha = 3 + \delta/m > 2$ agregando un bias $\delta > -m$ a las probabilidades
 - ⇒ Ver Remco van der Hofstad, "Random Graphs and Complex Networks. Volume One." Cambridge Series in Statistical and Probabilistic Mathematics (2017)
- P2) El grafo $G_{LCD}(t)$ es conexo w.h.p.
- P3) Diámetro pequeño

$$\operatorname{diam}(G_{LCD}(t)) = \begin{cases} O(\log N_v(t)), & m = 1\\ O(\frac{\log N_v(t)}{\log \log N_v(t)}), & m > 1 \end{cases}$$

- P1) Cuando $t \to \infty$, $G_{LCD}(t)$ tiene distribución de grados tipo power-law con $\alpha = 3$
 - \Rightarrow Se genera $\alpha = 3 + \delta/m > 2$ agregando un bias $\delta > -m$ a las probabilidades
 - ⇒ Ver Remco van der Hofstad, "Random Graphs and Complex Networks. Volume One." Cambridge Series in Statistical and Probabilistic Mathematics (2017)
- P2) El grafo $G_{LCD}(t)$ es conexo w.h.p.
- P3) Diámetro pequeño

$$\operatorname{diam}(G_{LCD}(t)) = \begin{cases} O(\log N_v(t)), & m = 1\\ O(\frac{\log N_v(t)}{\log \log N_v(t)}), & m > 1 \end{cases}$$

P4) Clustering pequeño, pues para m > 1

$$\mathbb{E}\left[\operatorname{cl}(G_{LCD}(t))\right] \approx \frac{m-1}{8} \frac{(\log N_v(t))^2}{N_v(t)}$$

 \Rightarrow Apenas mejor que el $O(N_n^{-1})$ de los grafos aleatorios clásicos

- La copia es otro mecanismo de interés
 - Ej: la duplicación de genes para re-usar información en la evolución de organismos
- Ya vimos que copiar lleva distribuciones tipo power law
 - Preferential Attachment genera $\alpha > 2$, pero muchas redes biológicas tienen $1 < \alpha < 2$
 - Copiar varias decisiones de otro nodo puede generar esos exponentes

- La copia es otro mecanismo de interés
 - Ej: la duplicación de genes para re-usar información en la evolución de organismos
- Ya vimos que copiar lleva distribuciones tipo power law
 - Preferential Attachment genera $\alpha > 2$, pero muchas redes biológicas tienen $1 < \alpha < 2$
 - Copiar varias decisiones de otro nodo puede generar esos exponentes
- Inicializo con el grafo $G_C(0)$ (t=0)

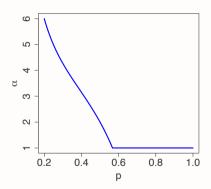
- La copia es otro mecanismo de interés
 - Ej: la duplicación de genes para re-usar información en la evolución de organismos
- Ya vimos que copiar lleva distribuciones tipo power law
 - Preferential Attachment genera $\alpha > 2$, pero muchas redes biológicas tienen $1 < \alpha < 2$
 - Copiar varias decisiones de otro nodo puede generar esos exponentes
- Inicializo con el grafo $G_C(0)$ (t=0)
- Para t = 1, 2, ... el grafo actual $G_C(t-1)$ "crece" a $G_C(t)$:
 - ullet Agregar un vértice nuevo u
 - Elegir otro vértice $v \in V(t-1)$ aleatorio uniforme (i.e. con proba $\frac{1}{N_v(t-1)}$)
 - ullet Unir el nuevo vértice u con los vecinos de v independiente con probabilidad p

- La copia es otro mecanismo de interés Ei: la duplicación de genes para re-usar información en la evolución de organismos
- Ya vimos que copiar lleva distribuciones tipo power law
 - Preferential Attachment genera $\alpha > 2$, pero muchas redes biológicas tienen $1 < \alpha < 2$
 - Copiar varias decisiones de otro nodo puede generar esos exponentes
- Inicializo con el grafo $G_C(0)$ (t=0)
- Para t = 1, 2, ... el grafo actual $G_C(t-1)$ "crece" a $G_C(t)$:
 - ullet Agregar un vértice nuevo u
 - Elegir otro vértice $v \in V(t-1)$ aleatorio uniforme (i.e. con proba $\frac{1}{N_v(t-1)}$)
 - ullet Unir el nuevo vértice u con los vecinos de v independiente con probabilidad p
- \blacksquare El caso p=1 lleva a copiar totalmente las aristas de un nodo pre-existente
- F. Chung et al, "Duplication models for biological networks," *Journal of Computational Biology*, vol. 10, pp. 677-687, 2003

Distribución de grados asintótica

- La distribución de grados tiende a una power law w.h.p. [Chung et al'03]
 - \Rightarrow El exponente α en la curva es la solución de la ecuación

$$p(\alpha - 1) = 1 - p^{\alpha - 1}$$



- \blacksquare Duplicación total (p=1) no genera power-law; aunque sí lo hace si
 - \Rightarrow se copia parcialmente una fracción $q \in (0,1)$ de veces

JDFLAR

Modelos de Grafos Aleatorios

- Introducción
- 2 Grafos Aleatorios
- 3 Configuration models
- Network-growth models
- Modelos Small-world
- 6 Exponential random graph models

- Seis grados de separación se volvió popular a partir de una obra de teatro [Guare'90]
 - \Rightarrow Caminos cortos entre nosotros y cualquiera en el mundo
 - ⇒ El término es relativamente nuevo, no así el concepto

- Seis grados de separación se volvió popular a partir de una obra de teatro [Guare'90]
 - ⇒ Caminos cortos entre nosotros y cualquiera en el mundo
 - ⇒ El término es relativamente nuevo, no así el concepto
- El escritor húngaro Frigyes Karinthy lo describe en uno de sus cuentos de 1929
 - ⇒ El mundo moderno se está 'achicando' debido al aumento en la conectividad humana
 - \Rightarrow Apuesta que puede encontrar a cualquier persona usando no más de 5 individuos, siendo uno de ellos un conocido suyo, y todos usando su red contactos personales

- Seis grados de separación se volvió popular a partir de una obra de teatro [Guare'90]
 - ⇒ Caminos cortos entre nosotros y cualquiera en el mundo
 - ⇒ El término es relativamente nuevo, no así el concepto
- El escritor húngaro Frigyes Karinthy lo describe en uno de sus cuentos de 1929
 - ⇒ El mundo moderno se está 'achicando' debido al aumento en la conectividad humana
 - ⇒ Apuesta que puede encontrar a cualquier persona usando no más de 5 individuos, siendo uno de ellos un conocido suyo, y todos usando su red contactos personales
- Primer tratamiento matemático en [Kochen-Pool'50]
 - ⇒ Modela formalmente los mecanismos de las redes sociales
 - ⇒ Pero la cuestión de los 'grados de separación' quedó sin responder

- Seis grados de separación se volvió popular a partir de una obra de teatro [Guare'90]
 - \Rightarrow Caminos cortos entre nosotros y cualquiera en el mundo
 - ⇒ El término es relativamente nuevo, no así el concepto
- El escritor húngaro Frigyes Karinthy lo describe en uno de sus cuentos de 1929
 - ⇒ El mundo moderno se está 'achicando' debido al aumento en la conectividad humana
 - \Rightarrow Apuesta que puede encontrar a cualquier persona usando no más de 5 individuos, siendo uno de ellos un conocido suyo, y todos usando su red contactos personales
- Primer tratamiento matemático en [Kochen-Pool'50]
 - ⇒ Modela formalmente los mecanismos de las redes sociales
 - ⇒ Pero la cuestión de los 'grados de separación' quedó sin responder
 - ⇒ Este trabajo a su vez inspira el famoso experimento en [Milgram'67]
- Mucha más info e historia en Schnettler, Sebastian. "A structured overview of 50 years of small-world research." Social networks 31, no. 3 (2009).

Experimento de Milgram

- Q1: ¿Cuál es la distancia típica entre dos personas?
 - ⇒ La idea es medirlo en la red social (global) de amistades
 - \Rightarrow Dado que no puedo obtener la red completa, es necesario estimar las distancias

Experimento de Milgram

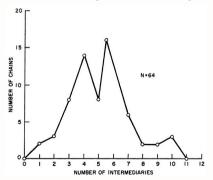
- Q1: ¿Cuál es la distancia típica entre dos personas?
 - ⇒ La idea es medirlo en la red social (global) de amistades
 - ⇒ Dado que no puedo obtener la red completa, es necesario estimar las distancias
- La (muy ingeniosa) solución de S. Milgram en su famoso experimento de 1967
 - Se enviaron 296 cartas a personas en Wichita, Kansas y Omaha, Nebraska
 - Las cartas indicaban una (única) persona de contacto en Boston, Massachusetts
 - Las instrucciones eran hacer llegar la carta al contacto siguiendo las siguientes reglas

Experimento de Milgram

- Q1: ¿Cuál es la distancia típica entre dos personas?
 - ⇒ La idea es medirlo en la red social (global) de amistades
 - ⇒ Dado que no puedo obtener la red completa, es necesario estimar las distancias
- La (muy ingeniosa) solución de S. Milgram en su famoso experimento de 1967
 - Se enviaron 296 cartas a personas en Wichita, Kansas y Omaha, Nebraska
 - Las cartas indicaban una (única) persona de contacto en Boston, Massachusetts
 - Las instrucciones eran hacer llegar la carta al contacto siguiendo las siguientes reglas
- Amigo: alguien que tratamos por nombre de pila
 Regla 1: Si el contacto es un amigo, enviarlo al amigo; sino
 - Regla 2: Re-enviarlo al amigo que más probablemente sea amigo del contacto
- Q2: ¿Cuántas llegaron? ¿Cuánto demoraron?

Resultados del experimento de Milgram

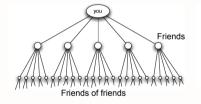
- 64 de las 296 cartas llegaron al destino, con un largo promedio de $\bar{\ell} = 6,2$
 - ⇒ Esto a su vez inspiró la obra de Guare
- Conclusión: caminos cortos conectan dos personas cualesquiera

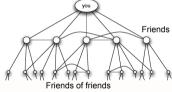


■ S. Milgram, "The small-world problem," Psychology Today, vol. 2, pp. 60-67, 1967

¿Qué pasa acá?

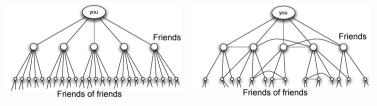
- Milgram muestra que los caminos cortos existen y en abundancia
- Q: ¿Es la teoría del mundo pequeño razonable? Por supuesto si asumimos:
 - Tenemos 100 amigos, cada cual con otros 100 amigo, ...
 - Después de 5 grados tenemos 10¹⁰ personas > doble de la población de la Tierra





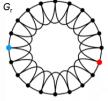
¿Qué pasa acá?

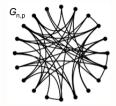
- Milgram muestra que los caminos cortos existen y en abundancia
- Q: ¿Es la teoría del mundo pequeño razonable? Por supuesto si asumimos:
 - Tenemos 100 amigos, cada cual con otros 100 amigo, ...
 - Después de 5 grados tenemos 10¹⁰ personas > doble de la población de la Tierra



- No parece un modelo razonable para una red social, que típicamente es:
 - ⇒ Homofilia [Lazarzfeld'54]
 - ⇒ Abundantes triángulos cerrados [Rapoport'53]
- Q: ¿Una red muy estructurada localmente y globalmente pequeña? ¿Cómo?

Estructura y aleatoriedad como extremos



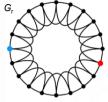


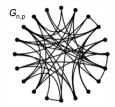
High clustering and diameter

Low clustering and diameter

- Lattice regular uni-dimensional G_r de N_v vértices
 - Cada vértice está conectado a sus 2r vecinos más cercanos (r a cada lado)

Estructura y aleatoriedad como extremos





High clustering and diameter

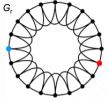
Low clustering and diameter

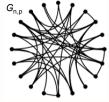
- Lattice regular uni-dimensional G_r de N_v vértices
 - Cada vértice está conectado a sus 2r vecinos más cercanos (r a cada lado)

Tanta estructura resulta en clustering alto, pero también en un diámetro alto

$$\operatorname{cl}(G_r) = \frac{3r - 3}{4r - 2} \ \operatorname{ydiam}(G_r) = \frac{N_v}{2r}$$

Estructura y aleatoriedad como extremos





High clustering and diameter

Low clustering and diameter

- Lattice regular uni-dimensional G_r de N_v vértices
 - Cada vértice está conectado a sus 2r vecinos más cercanos (r a cada lado)

Tanta estructura resulta en clustering alto, pero también en un diámetro alto

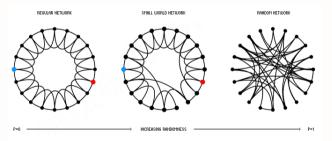
$$\operatorname{cl}(G_r) = \frac{3r-3}{4r-2} \ \operatorname{ydiam}(G_r) = \frac{N_v}{2r}$$

■ El otro extremo es un grafo aleatorio $ER(N_v, p)$ con $p = O(N_v^{-1})$ Ya vimos que esta aleatoriedad generar un diámetro pequeño, pero un bajo clustering

$$cl(G_{N_v,p}) = O(N_v^{-1})$$
 y $diam(G_{N_v,p}) = O(\log N_v)$

El modelo Watts-Strogatz

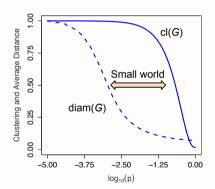
- Small-world model: mezcla estructura con una pizca de aleatoriedad
 - 1: Inicializamos con un lattice regular que tenga el clustering buscado
 - 2: La aleatoriedad se genera introduciendo atajos en el grafo
 - \Rightarrow Cada arista se re-conecta aleatoriamente con probabilidad (pequeña) p



■ La reconexión interpola entre los extremos regular y puramente aleatorio

Resultados numéricos

- \blacksquare Simulación del modelo Watts-Strogatz con $N_v=1,000$ y r=6
 - Probabilidad de reconexión p variando de 0 (lattice G_r) a 1 (ER $(N_v, 2r/N_v)$)
 - \bullet cl(G) y diam(G) normalizados respecto al valor máximo (p=0)



■ Intervalo importante de $p \in [10^{-3}, 10^{-1}]$ resulta en diam(G) pequeño y cl(G) grande

El modelo Watts-Strogatz

■ Propiedades estructurales del modelo de Watts-Strogatz

P1: Para N_v grande el clusetring coefficient resulta

$$cl(G) \approx \frac{3r-3}{4r-2}(1-p^3) = cl(G_r)(1-p^3)$$

 ${f P2}$: La distribución de grados se concentra alrededor de su media 2r

El modelo Watts-Strogatz

- Propiedades estructurales del modelo de Watts-Strogatz
 - **P1:** Para N_v grande el clusetring coefficient resulta

$$cl(G) \approx \frac{3r-3}{4r-2}(1-p^3) = cl(G_r)(1-p^3)$$

- **P2:** La distribución de grados se concentra alrededor de su media 2r
- Los modelos y propiedades tipo small-world son importantes en varias disciplinas
- Particularmente en "comunicación" en el sentido amplio
 - ⇒ Dispersión de rumores, chismes, noticias (falsas)
 - ⇒ Dispersión de enfermedades y epidemias
 - ⇒ Búsqueda de información en redes

Modelos de Grafos Aleatorios

- Introducción
- 2 Grafos Aleatorios
- 3 Configuration models
- Network-growth models
- 6 Modelos Small-world
- 6 Exponential random graph models

Exponential random graph models

- Un buen modelo estadístico debería ser [Robbins-Morris'07]
 - ✓ Estimable a partir de v razonablemente representativo de los datos observados
 - ✓ Plausible teóricamente sobre los efectos que pueden haber producido la red
 - ✓ Capaz de discriminar entre los distintos efectos que mejor explican los datos

Exponential random graph models

- Un buen modelo estadístico debería ser [Robbins-Morris'07]
 - ✓ Estimable a partir de v razonablemente representativo de los datos observados
 - ✓ Plausible teóricamente sobre los efectos que pueden haber producido la red
 - ✓ Capaz de discriminar entre los distintos efectos que mejor explican los datos
- Los modelos del tipo Exponential random graph models (ERGMs) (también conocidos como p^* models) se diseñaron específicamente con estos criterios en mente
- G. Robbins et al., "An introduction to exponential random graph (p^*) models for social networks," *Social Networks*, vol. 29, pp. 173-191, 2007

Distribuciones exponenciales

Def: Un vector aleatorio discreto $\mathbf{Z} \in \mathcal{Z}$ pertenece a la familia de las exponenciales si

$$P_{\theta}(\mathbf{Z} = \mathbf{z}) = \exp\left\{\boldsymbol{\theta}^{\top}\mathbf{g}(\mathbf{z}) - \psi(\theta)\right\}$$

- $\theta \in \mathbb{R}^p$ es un vector de parámetros y $\mathbf{g} : \mathcal{Z} \mapsto \mathbb{R}^p$ es una función
- $\psi(\theta)$ es simplemente para normalizar, mateniendo $\sum_{\mathbf{z}\in\mathcal{Z}} P_{\theta}(\mathbf{z}) = 1$
- Ej: Bernoulli, binomial, Poisson, geométrica

Distribuciones exponenciales

■ Def: Un vector aleatorio discreto $\mathbf{Z} \in \mathcal{Z}$ pertenece a la familia de las exponenciales si

$$P_{\theta}(\mathbf{Z} = \mathbf{z}) = \exp\left\{\boldsymbol{\theta}^{\top}\mathbf{g}(\mathbf{z}) - \psi(\theta)\right\}$$

- $\theta \in \mathbb{R}^p$ es un vector de parámetros y $\mathbf{g} : \mathcal{Z} \mapsto \mathbb{R}^p$ es una función
- $\psi(\theta)$ es simplemente para normalizar, mateniendo $\sum_{\mathbf{z}\in\mathcal{Z}} P_{\theta}(\mathbf{z}) = 1$
- Ej: Bernoulli, binomial, Poisson, geométrica
- Las distribuciones continuas tienen una forma similar Ej: gaussiana, Pareto, chi-cuadrado
- Estas distribuciones comparten propiedades algebraicas y geométricas útiles
 - ⇒ Las hace matemáticamente conveniente para inferencia y simulación

Exponential random graph model

- Sea G(V, E) un grafo aleatorio no-dirigido, con $Y_{ij} := \mathbb{I}\{(i, j) \in E\}$
 - La matriz $\mathbf{Y} = [Y_{ij}]$ es la de adyacencia (aleatoria), $\mathbf{y} = [y_{ij}]$ una realización

Exponential random graph model

- Sea G(V, E) un grafo aleatorio no-dirigido, con $Y_{ij} := \mathbb{I}\{(i, j) \in E\}$
 - La matriz $\mathbf{Y} = [Y_{ij}]$ es la de adyacencia (aleatoria), $\mathbf{y} = [y_{ij}]$ una realización
- Un ERGM especifica una forma exponencial para la distribución de Y, i.e.,

$$P_{\theta}(\mathbf{Y} = \mathbf{y}) = \left(\frac{1}{\kappa(\boldsymbol{\theta})}\right) \exp\left\{\sum_{H} \theta_{H} g_{H}(\mathbf{y})\right\}, \text{ donde}$$

- (i) cada H es una configuración: un conjunto posible de aristas en G;
- (ii) $g_H(\mathbf{y})$ es el estadístico de red correspondiente a la configuración H

$$g_H(\mathbf{y}) = \prod_{y_{ij} \in H} y_{ij} = \mathbb{I} \{ H \text{ está en } \mathbf{y} \}$$

- (iii) $\theta_H \neq 0$ solo si las aristas de H son condicionalmente dependendientes; y
- (iv) $\kappa(\boldsymbol{\theta})$ es una constante normalizadora que mantiene $\sum_{\mathbf{y}} P_{\theta}(\mathbf{y}) = 1$

Discusión

- \blacksquare Los vértices del grafo N_v y su orden están fijos y dados, sólo las aristas son aleatorias
 - ⇒ Asumimos aristas no-dirigidas y sin pesos. Extensiones posibles

Discusión

- \blacksquare Los vértices del grafo N_v y su orden están fijos y dados, sólo las aristas son aleatorias
 - ⇒ Asumimos aristas no-dirigidas y sin pesos. Extensiones posibles
- ERGMs describen el grafo aleatorio a partir de patrones locales
 - Estas configuraciones son las características estructurales de interés
 - Ej: ¿Hay efectos de reciprocidad? Agregar arcos mutuos en las configuraciones
 - Ej: ¿Hay efectos de transitividad? Agreguemos triángulos

Discusión

- \blacksquare Los vértices del grafo N_v y su orden están fijos y dados, sólo las aristas son aleatorias
 - ⇒ Asumimos aristas no-dirigidas y sin pesos. Extensiones posibles
- ERGMs describen el grafo aleatorio a partir de patrones locales
 - Estas configuraciones son las características estructurales de interés
 - Ej: ¿Hay efectos de reciprocidad? Agregar arcos mutuos en las configuraciones
 - Ej: ¿Hay efectos de transitividad? Agreguemos triángulos
- \blacksquare La (in)dependencia es condicional en todas las otras variables (aristas) en G
 - \Rightarrow Se controla las configuraciones relevantes (i.e., $\theta_H \neq 0)$ para el modelo
- Ciertas dependencias implican modelos particulares

¿Cómo construir un modelo?

- Al usar un ERGM para una red los pasos son básicamente los siguientes
 - ⇒ Cuidado: hay varias decisiones explícitas que tienen un fuerte impacto
 - Paso 1: Cada arista (relación) es una variable aleatoria
 - Paso 2: Se propone una hipótesis de dependencia
 - Paso 3: La hipótesis de dependencia implica una forma particular para el modelo
 - Paso 4: El modelo se simplifica, e.g., a través de la homogeneización
 - Paso 5: Estimar e interpretar los resultados

Ejemplo: grafos aleatorios de Bernoulli

- \blacksquare Hipótesis: cada arista está presente independientemente de todas las demás (e.g., $\mathrm{ER}(n,p)$)
 - ⇒ La hipótesis más simple (e irrealista) de dependencia

Ejemplo: grafos aleatorios de Bernoulli

- \blacksquare Hipótesis: cada arista está presente independientemente de todas las demás (e.g., $\mathrm{ER}(n,p))$
 - ⇒ La hipótesis más simple (e irrealista) de dependencia
- Para cada (i, j), suponemos Y_{ij} independiente de Y_{uv} , para todo $(u, v) \neq (i, j)$
 - $\Rightarrow \theta_H = 0$ para todo H que involucre dos o más aristas
- Sólo la configuración de arista, i.e., $g_H(\mathbf{y}) = y_{ij}$, es relevante, y el ERGM resulta

$$P_{\theta}(\mathbf{Y} = \mathbf{y}) = \left(\frac{1}{\kappa(\boldsymbol{\theta})}\right) \exp\left\{\sum_{i,j} \theta_{ij} y_{ij}\right\}$$

Ejemplo: grafos aleatorios de Bernoulli

- \blacksquare Hipótesis: cada arista está presente independientemente de todas las demás (e.g., $\mathrm{ER}(n,p))$
 - ⇒ La hipótesis más simple (e irrealista) de dependencia
- Para cada (i, j), suponemos Y_{ij} independiente de Y_{uv} , para todo $(u, v) \neq (i, j)$
 - $\Rightarrow \theta_H = 0$ para todo H que involucre dos o más aristas
- Sólo la configuración de arista, i.e., $g_H(\mathbf{y}) = y_{ij}$, es relevante, y el ERGM resulta

$$P_{\theta}(\mathbf{Y} = \mathbf{y}) = \left(\frac{1}{\kappa(\theta)}\right) \exp\left\{\sum_{i,j} \theta_{ij} y_{ij}\right\}$$

 \Rightarrow Cada arista existe de forma independiente con probabilidad $\propto e^{\theta_{ij}}$ y no existe con probabilidad $\propto 1$

$$\Rightarrow p_{ij} = \frac{\exp(\theta_{ij})}{1 + \exp(\theta_{ij})}$$

Restricción de los parámetros: homogeneidad

- Demasiado parámetros hacen la estimación a partir de un único y imposible
 - \Rightarrow En este caso, tenemos N_v^2 parámetros $\{\theta_{ij}\}$. ¿Reducción?

Restricción de los parámetros: homogeneidad

- lacktriangle Demasiado parámetros hacen la estimación a partir de un único f y imposible
 - \Rightarrow En este caso, tenemos N_v^2 parámetros $\{\theta_{ij}\}$. Reducción?
- Homogeneidad en G, i.e., $\theta_{ij} = \theta$ para todo (i, j) resulta en

$$P_{\theta}(\mathbf{Y} = \mathbf{y}) = \left(\frac{1}{\kappa(\boldsymbol{\theta})}\right) \exp\left\{\theta L(\mathbf{y})\right\}$$

- El estadístico suficiente en este caso es el número de aristas observadas $L(\mathbf{y}) = \sum_{i,j} y_{ij}$
- Este ejemplo de ERGM resulta en un ER(n,p), con $p = \frac{\exp \theta}{1 + \exp \theta}$

Restricción de los parámetros: homogeneidad

- \blacksquare Demasiado parámetros hacen la estimación a partir de un único $\mathbf y$ imposible
 - \Rightarrow En este caso, tenemos N_v^2 parámetros $\{\theta_{ij}\}$. Reducción?
- Homogeneidad en G, i.e., $\theta_{ij} = \theta$ para todo (i, j) resulta en

$$P_{\theta}(\mathbf{Y} = \mathbf{y}) = \left(\frac{1}{\kappa(\boldsymbol{\theta})}\right) \exp\left\{\theta L(\mathbf{y})\right\}$$

- El estadístico suficiente en este caso es el número de aristas observadas $L(\mathbf{y}) = \sum_{i,j} y_{ij}$
- Este ejemplo de ERGM resulta en un ER(n, p), con $p = \frac{\exp \theta}{1 + \exp \theta}$
- Otro ejemplo: sabemos a priori que hay dos tipos de nodos y cuáles son
 - ⇒ Podemos imponer homogeneidad en las aristas intra e inter-conjuntos, i.e.,

$$P_{\theta}(\mathbf{Y} = \mathbf{y}) = \left(\frac{1}{\kappa(\theta)}\right) \exp\left\{\theta_1 L_1(\mathbf{y}) + \theta_{12} L_{12}(\mathbf{y}) + \theta_2 L_2(\mathbf{y})\right\}$$

Más ejemplos: Markov random graphs

- Dependencia tipo Markov para grafos [Frank-Strauss'86]
 - Asumimos que dos aristas son dependientes si comparten un vértice
 - ullet La existencia de la arista (Y_{ij}) depende de todas las otras aristas que involucren i o j
 - Intuición: Los amigos de dos personas nos dicen mucho sobre si son amigos o no

Más ejemplos: Markov random graphs

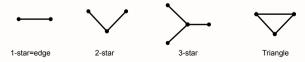
- Dependencia tipo Markov para grafos [Frank-Strauss'86]
 - Asumimos que dos aristas son dependientes si comparten un vértice
 - ullet La existencia de la arista (Y_{ij}) depende de todas las otras aristas que involucren i o j
 - Intuición: Los amigos de dos personas nos dicen mucho sobre si son amigos o no

Teorema

Suponiendo homogeneidad, G es un Markov random graph sii

$$P_{\theta}(\mathbf{Y} = \mathbf{y}) = \left(\frac{1}{\kappa(\boldsymbol{\theta})}\right) \exp\left\{\sum_{k=1}^{N_v - 1} \theta_k S_k(\mathbf{y}) + \theta_{\tau} T(\mathbf{y})\right\}, \quad donde$$

 $S_k(\mathbf{y})$ es el número de k-estrellas, y $T(\mathbf{y})$ el número de triángulos



Estadísticos Alternativos

- \blacksquare Incluir términos para k alto es claramente un desafío
 - \Rightarrow Solución típica: efectos de las estrellas grandes se omiten, e.g., $\theta_k=0,\ k\geq 4$
 - ⇒ Pero esto resulta en modelos que ajustan pobremente los datos. ¿Qué hacemos?

Estadísticos Alternativos

- \blacksquare Incluir términos para k alto es claramente un desafío
 - \Rightarrow Solución típica: efectos de las estrellas grandes se omiten, e.g., $\theta_k = 0, k \geq 4$
 - ⇒ Pero esto resulta en modelos que ajustan pobremente los datos. ¿Qué hacemos?
- Idea: Tomemos una forma paramétrica para $\theta_k \propto (-1)^k \lambda^{2-k}$ [Snijders et al'06]
 - Combinamos $S_k(\mathbf{y}), k \geq 2$ en un único estadístico denominado alternating k-star, i.e.,

$$AKS_{\lambda}(\mathbf{y}) = \sum_{k=2}^{N_v - 1} (-1)^k \frac{S_k(\mathbf{y})}{\lambda^{k-2}}, \quad \lambda > 1$$

Estadísticos Alternativos

- \blacksquare Incluir términos para k alto es claramente un desafío
 - \Rightarrow Solución típica: efectos de las estrellas grandes se omiten, e.g., $\theta_k=0,\ k\geq 4$
 - ⇒ Pero esto resulta en modelos que ajustan pobremente los datos. ¿Qué hacemos?
- Idea: Tomemos una forma paramétrica para $\theta_k \propto (-1)^k \lambda^{2-k}$ [Snijders et al'06]
 - Combinamos $S_k(\mathbf{y}), k \geq 2$ en un único estadístico denominado alternating k-star, i.e.,

$$AKS_{\lambda}(\mathbf{y}) = \sum_{k=2}^{N_v - 1} (-1)^k \frac{S_k(\mathbf{y})}{\lambda^{k-2}}, \quad \lambda > 1$$

• Se puede probar que $AKS_{\lambda}(y) \propto la$ media exponencial de grados

$$GWD_{\gamma}(\mathbf{y}) = \sum_{d=0}^{N_v - 1} e^{-\gamma d} N_d(\mathbf{y}), \quad \gamma > 0$$

 $\Rightarrow N_d(\mathbf{y})$ es el número de vértices de grado d

Incorporando atributos de los vértices

■ Es relativamente sencillo incorporar atributos de los vértices a los ERGMs Ej: género, jerarquía en la organización, función dentro del sistema

Incorporando atributos de los vértices

- Es relativamente sencillo incorporar atributos de los vértices a los ERGMs Ej: género, jerarquía en la organización, función dentro del sistema
 - ullet Tomamos una realización ${\bf x}$ de un vector aleatorio ${\bf X} \in \mathbb{R}^{N_v}$ definido en V
 - Especificamos una familia exponencial para la distribución condicional

$$P_{\theta}(\mathbf{Y} = \mathbf{y} \mid \mathbf{X} = \mathbf{x})$$

- \Rightarrow Se incluyen estadísticas adicionales $g(\cdot)$ sobre y y x
- Ei: configuraciones para Markov, con atributos binarios

Estimación de los parámetros del ERGM

 \blacksquare MLE para el vector $\boldsymbol{\theta}$ en un ERGM es

$$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} \ \left\{ \boldsymbol{\theta}^{\top} \mathbf{g}(\mathbf{y}) - \psi(\boldsymbol{\theta}) \right\}, \quad \text{ donde } \psi(\boldsymbol{\theta}) := \log \kappa(\boldsymbol{\theta})$$

Estimación de los parámetros del ERGM

 \blacksquare MLE para el vector $\boldsymbol{\theta}$ en un ERGM es

$$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} \ \left\{ \boldsymbol{\theta}^{\top} \mathbf{g}(\mathbf{y}) - \psi(\boldsymbol{\theta}) \right\}, \quad \text{ donde } \psi(\boldsymbol{\theta}) := \log \kappa(\boldsymbol{\theta})$$

- lacktriangle Pero $\psi(m{ heta})$ implica la suma de $2^{\binom{N_v}{2}}$ posibles valores de $m{y}$ para cada posible $m{ heta}$
 - ⇒ Se necesitan métodos numéricos para aproximarlo

Estimación de los parámetros del ERGM

■ MLE para el vector $\boldsymbol{\theta}$ en un ERGM es

$$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} \ \left\{ \boldsymbol{\theta}^{\top} \mathbf{g}(\mathbf{y}) - \psi(\boldsymbol{\theta}) \right\}, \quad \text{ donde } \psi(\boldsymbol{\theta}) := \log \kappa(\boldsymbol{\theta})$$

- Pero $\psi(\boldsymbol{\theta})$ implica la suma de $2^{\binom{N_v}{2}}$ posibles valores de \mathbf{y} para cada posible $\boldsymbol{\theta}$ ⇒ Se necesitan métodos numéricos para aproximarlo
- Idea: para valores fijos θ_0 , maximizar log-likelihood ratio

$$r(\boldsymbol{\theta}, \boldsymbol{\theta}_0) = \ell(\boldsymbol{\theta}) - \ell(\boldsymbol{\theta}_0) = (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \mathbf{g}(\mathbf{y}) - [\psi(\boldsymbol{\theta}) - \psi(\boldsymbol{\theta}_0)]$$

■ Identidad clave: (ver transparencias al final)

$$\exp \{ \psi(\boldsymbol{\theta}) - \psi(\boldsymbol{\theta}_0) \} = \mathbb{E}_{\boldsymbol{\theta}_0} \left[\exp \left\{ (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^\top \mathbf{g}(\mathbf{Y}) \right\} \right]$$

Markov chain Monte Carlo MLE

 \blacksquare En limpio: para valores fijos θ_0 , maximizar log-likelihood ratio

$$r(\boldsymbol{\theta}, \boldsymbol{\theta}_0) = (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \mathbf{g}(\mathbf{y}) - \log \left(\mathbb{E}_{\boldsymbol{\theta}_0} \left[\exp \left\{ (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \mathbf{g}(\mathbf{Y}) \right\} \right] \right)$$

Markov chain Monte Carlo MLE

 \blacksquare En limpio: para valores fijos θ_0 , maximizar log-likelihood ratio

$$r(\boldsymbol{\theta}, \boldsymbol{\theta}_0) = (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \mathbf{g}(\mathbf{y}) - \log \left(\mathbb{E}_{\boldsymbol{\theta}_0} \left[\exp \left\{ (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \mathbf{g}(\mathbf{Y}) \right\} \right] \right)$$

 \blacksquare Markov chain Monte Carlo MLE para buscar θ

Paso 1: obtener muestras $\mathbf{y}_1, \dots, \mathbf{y}_n$ del ERGM usando $\boldsymbol{\theta}_0$

Paso 2: aproximar $\mathbb{E}_{\theta_0}[\cdot]$ a través de la media de los $\exp\{(\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \mathbf{g}(\mathbf{y}_k)\}$

Paso 3: aproximar $\psi(\boldsymbol{\theta}) - \psi(\boldsymbol{\theta}_0)$ mediante el logaritmo de lo anterior

Paso 4: evaluar el log-likelihood ratio $r(\theta, \theta_0)$ aproximado

Estimación de los parámetros del ERGM revisited

 \blacksquare MLE para el vector $\boldsymbol{\theta}$ en un ERGM es

$$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} \ \left\{ \boldsymbol{\theta}^{\top} \mathbf{g}(\mathbf{y}) - \psi(\boldsymbol{\theta}) \right\}, \quad \text{ donde } \psi(\boldsymbol{\theta}) := \log \kappa(\boldsymbol{\theta})$$

Estimación de los parámetros del ERGM revisited

■ MLE para el vector $\boldsymbol{\theta}$ en un ERGM es

$$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} \ \left\{ \boldsymbol{\theta}^{\top} \mathbf{g}(\mathbf{y}) - \psi(\boldsymbol{\theta}) \right\}, \quad \text{ donde } \psi(\boldsymbol{\theta}) := \log \kappa(\boldsymbol{\theta})$$

■ Derivando e igualando a cero

$$\mathbf{g}(\mathbf{y}) = \left. \nabla \psi(\boldsymbol{\theta}) \right|_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}}$$

• ¿Cambiamos una expresión horrible por su derivada?

Estimación de los parámetros del ERGM revisited

■ MLE para el vector $\boldsymbol{\theta}$ en un ERGM es

$$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} \ \left\{ \boldsymbol{\theta}^{\top} \mathbf{g}(\mathbf{y}) - \psi(\boldsymbol{\theta}) \right\}, \quad \text{ donde } \psi(\boldsymbol{\theta}) := \log \kappa(\boldsymbol{\theta})$$

■ Derivando e igualando a cero

$$\mathbf{g}(\mathbf{y}) = \left. \nabla \psi(\boldsymbol{\theta}) \right|_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}}$$

- ¿Cambiamos una expresión horrible por su derivada?
- Usando que $\mathbb{E}_{\theta}[\mathbf{g}(\mathbf{Y})] = \nabla \psi(\boldsymbol{\theta})$ (ver slides al final), el MLE es la solución de

$$\mathbb{E}_{\hat{\theta}}[\mathbf{g}(\mathbf{Y})] = \mathbf{g}(\mathbf{y})$$

que puede resolverse usando el método clásico de Robbins y Monro

■ Mejor ajuste elegido de una cierta clase de modelos . . .

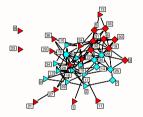
■ Mejor ajuste elegido de una cierta clase de modelos ... pero puede ser un mal ajuste a los datos si la clase de modelos no es suficientemente rica

- Mejor ajuste elegido de una cierta clase de modelos ... pero puede ser un mal ajuste a los datos si la clase de modelos no es suficientemente rica
- ¿Cómo evaluamos un modelo (ERGM)?
 - Paso 1: simulamos muchas realizaciones de grafos aleatorios bajo el modelo ajustado
 - Paso 2: comparamos características de alto nivel con el G^{obs}
 - Ej: distribución de grados, centralidad, diámetro
- Si hay diferencias significativas con G^{obs} , concluimos
 - ⇒ El modelo es incapaz de expresar los datos
 - \Rightarrow Lamentablemente no se han desarrollado indicadores de bondad de ajuste (goodness-of-fit)

- Mejor ajuste elegido de una cierta clase de modelos ... pero puede ser un mal ajuste a los datos si la clase de modelos no es suficientemente rica
- ¿Cómo evaluamos un modelo (ERGM)?
 - Paso 1: simulamos muchas realizaciones de grafos aleatorios bajo el modelo ajustado
 - Paso 2: comparamos características de alto nivel con el G^{obs}
 - Ej: distribución de grados, centralidad, diámetro
- \blacksquare Si hay diferencias significativas con G^{obs} , concluimos
 - ⇒ El modelo es incapaz de expresar los datos
 - ⇒ Lamentablemente no se han desarrollado indicadores de bondad de ajuste (goodness-of-fit)
- Importante: especificar el modelo para los ERGMs es difícil (y muy importante)
 - \Rightarrow Si bien ERGM tiene limitaciones matemáticas importantes, ilustra varios aspectos importantes de modelado estadístico

Ejemplo: red de colaboración de abogados

- \blacksquare Grafo G^{obs} de relaciones laborales entre abogados [Lazega'01]
 - Los nodos son $N_v = 36$ "partners", y las aristas indican si trabajaron juntos



- Además, se incluye varios atributos de cada nodo:
 - Antigüedad (la etiqueta indica el orden en el ranking)
 - Ubicación de la oficina (triángulo, cuadrado o pentágono)
 - Tipo de práctica, i.e., litigación (rojo) o corporativa (cían)
 - Género (sólo tres partners son femeninas, etiquetadas con 27, 29 y 34)
- Objetivo: estudiar la cooperación entre actores sociales en una organización

Modelo para la red de colaboración de abogados

■ Evaluación del efecto de la red: usemos $S_1(\mathbf{y}) = N_e$ y el alternating k-triangles

$$AKT_{\lambda}(\mathbf{y}) = 3T_1(\mathbf{y}) + \sum_{k=2}^{N_v - 2} (-1)^{k+1} \frac{T_k(\mathbf{y})}{\lambda^{k-1}}$$

 \Rightarrow similar al TKS, pero $T_k(\mathbf{y})$ cuenta cuántas veces k triángulos comparten una base

Modelo para la red de colaboración de abogados

■ Evaluación del efecto de la red: usemos $S_1(\mathbf{y}) = N_e$ y el alternating k-triangles

$$AKT_{\lambda}(\mathbf{y}) = 3T_1(\mathbf{y}) + \sum_{k=2}^{N_v - 2} (-1)^{k+1} \frac{T_k(\mathbf{y})}{\lambda^{k-1}}$$

- \Rightarrow similar al TKS, pero $T_k(\mathbf{y})$ cuenta cuántas veces k triángulos comparten una base
- Testear los siguientes efectos exógenos:

$$\begin{split} &h^{(1)}(\mathbf{x}_i,\mathbf{x}_j) = \mathrm{antig"edad}_i + \mathrm{antig"edad}_j, \quad h^{(2)}(\mathbf{x}_i,\mathbf{x}_j) = \mathrm{pr\'actica}_i + \mathrm{pr\'actica}_j \\ &h^{(3)}(\mathbf{x}_i,\mathbf{x}_j) = \mathbb{I}\left\{\mathrm{pr\'actica}_i = \mathrm{pr\'actica}_j\right\}, \quad h^{(4)}(\mathbf{x}_i,\mathbf{x}_j) = \mathbb{I}\left\{\mathrm{g\'enero}_i = \mathrm{g\'enero}_j\right\} \\ &h^{(5)}(\mathbf{x}_i,\mathbf{x}_j) = \mathbb{I}\left\{\mathrm{oficina}_i = \mathrm{oficina}_j\right\}, \quad \mathbf{h}(\mathbf{x}_i,\mathbf{x}_j) := \left[h^{(1)}(\mathbf{x}_i,\mathbf{x}_j),\dots,h^{(5)}(\mathbf{x}_i,\mathbf{x}_j)\right]^T \end{split}$$

Modelo para la red de colaboración de abogados

■ Evaluación del efecto de la red: usemos $S_1(\mathbf{y}) = N_e$ y el alternating k-triangles

$$AKT_{\lambda}(\mathbf{y}) = 3T_1(\mathbf{y}) + \sum_{k=2}^{N_v - 2} (-1)^{k+1} \frac{T_k(\mathbf{y})}{\lambda^{k-1}}$$

- \Rightarrow similar al TKS, pero $T_k(\mathbf{y})$ cuenta cuántas veces k triángulos comparten una base
- Testear los siguientes efectos exógenos:

$$\begin{split} &h^{(1)}(\mathbf{x}_i,\mathbf{x}_j) = \mathrm{antig} \ddot{\mathbf{u}} \mathrm{edad}_i + \mathrm{antig} \ddot{\mathbf{u}} \mathrm{edad}_j, \quad h^{(2)}(\mathbf{x}_i,\mathbf{x}_j) = \mathrm{pr} \dot{\mathbf{a}} \mathrm{ctica}_i + \mathrm{pr} \dot{\mathbf{a}} \mathrm{ctica}_j \\ &h^{(3)}(\mathbf{x}_i,\mathbf{x}_j) = \mathbb{I} \left\{ \mathrm{pr} \dot{\mathbf{a}} \mathrm{ctica}_i = \mathrm{pr} \dot{\mathbf{a}} \mathrm{ctica}_j \right\}, \quad h^{(4)}(\mathbf{x}_i,\mathbf{x}_j) = \mathbb{I} \left\{ \mathrm{g} \dot{\mathbf{e}} \mathrm{nero}_i = \mathrm{g} \dot{\mathbf{e}} \mathrm{nero}_j \right\} \\ &h^{(5)}(\mathbf{x}_i,\mathbf{x}_j) = \mathbb{I} \left\{ \mathrm{oficina}_i = \mathrm{oficina}_j \right\}, \quad \mathbf{h}(\mathbf{x}_i,\mathbf{x}_j) := \left[h^{(1)}(\mathbf{x}_i,\mathbf{x}_j), \dots, h^{(5)}(\mathbf{x}_i,\mathbf{x}_j) \right]^T \end{split}$$

■ ERGM resultante

$$\mathbb{P}_{\boldsymbol{\theta},\boldsymbol{\beta}}(\mathbf{Y} = \mathbf{y}|\mathbf{X} = \mathbf{x}) = \frac{1}{\kappa(\boldsymbol{\theta},\boldsymbol{\beta})} \exp\left\{\theta_1 S_1(\mathbf{y}) + \theta_2 \mathbf{A} \mathbf{K} \mathbf{T}_{\lambda}(\mathbf{y}) + \boldsymbol{\beta}^T \mathbf{g}(\mathbf{y},\mathbf{x})\right\}$$
$$\mathbf{g}(\mathbf{y},\mathbf{x}) = \sum_{i,j} y_{ij} \mathbf{h}(\mathbf{x}_i,\mathbf{x}_j)$$

Resultado del ajuste

■ Resultados del ajuste usando el método de MCMC MLE

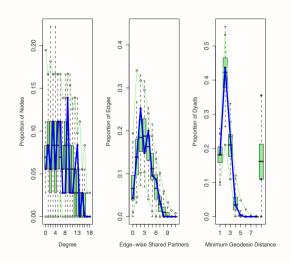
Parameter	Estimate	'Standard Error'
Density (θ_1)	-6.2073	0.5697
Alternating k -triangles (θ_2)	0.5909	0.0882
Seniority Main Effect (β_1)	0.0245	0.0064
Practice Main Effect (β_2)	0.3945	0.1103
Same Practice (β_3)	0.7721	0.1973
Same Gender (β_4)	0.7302	0.2495
Same Office (β_5)	1.1614	0.1952

- ⇒ Errores estándar obtenidos de manera heurística
- Se pueden identificar varios factores que incrementan la probabilidad de cooperación Ej: misma práctica, género y lugar de la oficina duplican las chances
- \blacksquare Gran evidencia de transitividad dado que $\hat{\theta}_2 \gg \mathrm{se}(\hat{\theta}_2)$
 - \Rightarrow Homofilia ya está tomada en cuenta, por lo que hay algo que no tuvimos en cuenta que explica esto

ACUITAD DE

"Goodness-of-fit"

- \blacksquare Evaluemos el modelo respecto a G^{obs}
 - Tomemos muestras del ERGM ajustado
- Comparamos la distribución de
 - Grados
 - Número de vecinos en común
 - Distancia
- Las gráficas muestran un buen ajuste



Anexo 1: Propiedad clave

 \blacksquare Recordemos que $\exp \psi(\boldsymbol{\theta}) = \sum_{\mathbf{y}} \exp \left\{ \boldsymbol{\theta}^{\top} \mathbf{g}(\mathbf{y}) \right\}$ para escribir

$$\exp \{\psi(\boldsymbol{\theta}) - \psi(\boldsymbol{\theta}_0)\} = \frac{\sum_{\mathbf{y}} \exp \left\{\boldsymbol{\theta}^{\top} \mathbf{g}(\mathbf{y})\right\}}{\exp \psi(\boldsymbol{\theta}_0)}$$

Anexo 1: Propied ad clave

 \blacksquare Recordemos que $\exp \psi(\boldsymbol{\theta}) = \sum_{\mathbf{y}} \exp \left\{ \boldsymbol{\theta}^{\top} \mathbf{g}(\mathbf{y}) \right\}$ para escribir

$$\exp \{\psi(\boldsymbol{\theta}) - \psi(\boldsymbol{\theta}_0)\} = \frac{\sum_{\mathbf{y}} \exp \left\{\boldsymbol{\theta}^{\top} \mathbf{g}(\mathbf{y})\right\}}{\exp \psi(\boldsymbol{\theta}_0)}$$

■ Multiplicando y diviendo entre exp $\left\{\boldsymbol{\theta}_0^{\top}\mathbf{g}(\mathbf{y})\right\} > 0$ resulta en

$$\exp \{\psi(\boldsymbol{\theta}) - \psi(\boldsymbol{\theta}_0)\} = \sum_{\mathbf{y}} \exp \{(\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \mathbf{g}(\mathbf{y})\} \times \frac{\exp \{\boldsymbol{\theta}_0^{\top} \mathbf{g}(\mathbf{y})\}}{\exp \psi(\boldsymbol{\theta}_0)}$$
$$= \sum_{\mathbf{y}} \exp \{(\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \mathbf{g}(\mathbf{y})\} P_{\theta_0}(\mathbf{Y} = \mathbf{y})$$
$$= \mathbb{E}_{\theta_0} \left[\exp \{(\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \mathbf{g}(\mathbf{Y})\} \right]$$

Anexo 2: prueba de $\mathbb{E}[q(\mathbf{Y})] = \nabla \psi(\theta)$

■ La densidad de Y es $P_{\theta}(Y = y) = \exp \{\theta^{\top}g(y) - \psi(\theta)\}$, por lo que

$$\mathbb{E}_{\theta}[g(\mathbf{Y})] = \sum_{\mathbf{y}} g(\mathbf{y}) P_{\theta}(\mathbf{Y} = \mathbf{y})$$
$$= \sum_{\mathbf{y}} g(\mathbf{y}) \exp \left\{ \boldsymbol{\theta}^{\top} \mathbf{g}(\mathbf{y}) - \psi(\boldsymbol{\theta}) \right\}$$

Anexo 2: prueba de $\mathbb{E}[g(\mathbf{Y})] = \nabla \psi(\theta)$

■ La densidad de \mathbf{Y} es $P_{\theta}(\mathbf{Y} = \mathbf{y}) = \exp \left\{ \boldsymbol{\theta}^{\top} \mathbf{g}(\mathbf{y}) - \psi(\theta) \right\}$, por lo que

$$\begin{split} \mathbb{E}_{\theta}[g(\mathbf{Y})] &= \sum_{\mathbf{y}} g(\mathbf{y}) P_{\theta}(\mathbf{Y} = \mathbf{y}) \\ &= \sum_{\mathbf{y}} g(\mathbf{y}) \exp \left\{ \boldsymbol{\theta}^{\top} \mathbf{g}(\mathbf{y}) - \psi(\boldsymbol{\theta}) \right\} \end{split}$$

■ Recordemos que $\psi(\boldsymbol{\theta}) = \log \sum_{\mathbf{y}} \exp \left\{ \boldsymbol{\theta}^{\top} \mathbf{g}(\mathbf{y}) \right\}$ y usando la regla de la cadena

$$\nabla \psi(\boldsymbol{\theta}) = \frac{\sum_{\mathbf{y}} g(\mathbf{y}) \exp\left\{\boldsymbol{\theta}^{\top} \mathbf{g}(\mathbf{y})\right\}}{\sum_{\mathbf{y}} \exp\left\{\boldsymbol{\theta}^{\top} \mathbf{g}(\mathbf{y})\right\}} = \frac{\sum_{\mathbf{y}} g(\mathbf{y}) \exp\left\{\boldsymbol{\theta}^{\top} \mathbf{g}(\mathbf{y})\right\}}{\exp\psi(\boldsymbol{\theta})}$$
$$= \sum_{\mathbf{y}} g(\mathbf{y}) \exp\left\{\boldsymbol{\theta}^{\top} \mathbf{g}(\mathbf{y}) - \psi(\boldsymbol{\theta})\right\}$$

Anexo 2: prueba de $\mathbb{E}[q(\mathbf{Y})] = \nabla \psi(\theta)$

■ La densidad de \mathbf{Y} es $P_{\theta}(\mathbf{Y} = \mathbf{y}) = \exp \left\{ \boldsymbol{\theta}^{\top} \mathbf{g}(\mathbf{y}) - \psi(\theta) \right\}$, por lo que

$$\mathbb{E}_{\theta}[g(\mathbf{Y})] = \sum_{\mathbf{y}} g(\mathbf{y}) P_{\theta}(\mathbf{Y} = \mathbf{y})$$
$$= \sum_{\mathbf{y}} g(\mathbf{y}) \exp \left\{ \boldsymbol{\theta}^{\top} \mathbf{g}(\mathbf{y}) - \psi(\boldsymbol{\theta}) \right\}$$

■ Recordemos que $\psi(\theta) = \log \sum_{\mathbf{y}} \exp \left\{ \theta^{\top} \mathbf{g}(\mathbf{y}) \right\}$ y usando la regla de la cadena

$$\nabla \psi(\boldsymbol{\theta}) = \frac{\sum_{\mathbf{y}} g(\mathbf{y}) \exp\left\{\boldsymbol{\theta}^{\top} \mathbf{g}(\mathbf{y})\right\}}{\sum_{\mathbf{y}} \exp\left\{\boldsymbol{\theta}^{\top} \mathbf{g}(\mathbf{y})\right\}} = \frac{\sum_{\mathbf{y}} g(\mathbf{y}) \exp\left\{\boldsymbol{\theta}^{\top} \mathbf{g}(\mathbf{y})\right\}}{\exp\psi(\boldsymbol{\theta})}$$
$$= \sum_{\mathbf{y}} g(\mathbf{y}) \exp\left\{\boldsymbol{\theta}^{\top} \mathbf{g}(\mathbf{y}) - \psi(\boldsymbol{\theta})\right\}$$

FACULTAD DE INGENIERÍA UDELAR