Information and Software Technology 55 (2013) 1237-1259

Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Analyzing an automotive testing process with evidence-based software engineering

Abhinaya Kasoju?, Kai Petersen”*, Mika V. Mantyl3 ¢

2 Systemite AB, Gothenberg, Sweden

b School of Computing, Blekinge Institute of Technology, Box 520, SE-372 25, Sweden
¢ Department of Computer Science and Engineering, Aalto University, Finland

d Department of Computer Science, Lund University, Sweden

ARTICLE INFO ABSTRACT

Article history:

Received 26 September 2012

Received in revised form 18 December 2012
Accepted 22 January 2013

Available online 8 February 2013

Context: Evidence-based software engineering (EBSE) provides a process for solving practical problems
based on a rigorous research approach. The primary focus so far was on mapping and aggregating evi-
dence through systematic reviews.
Objectives: We extend existing work on evidence-based software engineering by using the EBSE process
in an industrial case to help an organization to improve its automotive testing process. With this we con-
tribute in (1) providing experiences on using evidence based processes to analyze a real world automo-
tive test process and (2) provide evidence of challenges and related solutions for automotive software
testing processes.
Methods: In this study we perform an in-depth investigation of an automotive test process using an
extended EBSE process including case study research (gain an understanding of practical questions to
define a research scope), systematic literature review (identify solutions through systematic literature),
and value stream mapping (map out an improved automotive test process based on the current situation
and improvement suggestions identified). These are followed by reflections on the EBSE process used.
Results: In the first step of the EBSE process we identified 10 challenge areas with a total of 26 individual
challenges. For 15 out of those 26 challenges our domain specific systematic literature review identified
solutions. Based on the input from the challenges and the solutions, we created a value stream map of the
current and future process.
Conclusions: Overall, we found that the evidence-based process as presented in this study helps in tech-
nology transfer of research results to industry, but at the same time some challenges lie ahead (e.g. scop-
ing systematic reviews to focus more on concrete industry problems, and understanding strategies of
conducting EBSE with respect to effort and quality of the evidence).

© 2013 Elsevier B.V. All rights reserved.

Keywords:

Evidence-based software engineering
Process assessment

Automotive software testing

1. Introduction number of systematic reviews and maps published that cover a

variety of areas. This ranges from very specific and scoped ques-

Evidence-based software engineering consists of the steps (1)
identify the need for information (evidence) and formulate a ques-
tion, (2) track down the best evidence to answer the question and
critically appraise the evidence, and (3) critically reflect on the evi-
dence provided with respect to the problem and context that the
evidence should help to solve [1]. Overall, the aim is that practitio-
ners who face an issue in their work shall be supported to make
good decisions of how to solve the problems by relying on
evidence.

In software engineering two approaches for identifying and
aggregating evidence (systematic map [2] and systematic review
[3]) have received much attention, which is visible in a high

* Corresponding author. Tel.: +46 4920124850
E-mail addresses: abhinaya.kasoju@systemite.se (A. Kasoju), kai.petersen@bth.
se, kai.petersen@ericsson.com (K. Petersen), mika.mantyla@aalto.fi (M.V. Mdntyld).

0950-5849/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2013.01.005

tions (e.g. within-company vs. cross-company cost estimation
[4]) to very generic questions (e.g. what we know about software
productivity measurement [5] or pair programming [6]). So far
no studies exist that used the evidence based process coming from
a concrete problem raised in an industrial case and then attempt-
ing to provide a solution for that concrete problem/case through
the evidence based process. We extend existing work on evidence
based software engineering by using the evidence based process
for analyzing an industrial automotive software testing process.
In particular, the first contribution of this paper is to demon-
strate the use of the evidence-based process in an industrial case
providing reflections of researchers using the process to help the
company in their improvement efforts. The process is a staged pro-
cess where subsequent stages use the input of the previous ones,
allowing to provide a traceable and holistic picture from practical
challenges to recommendations for improvements. The steps are:

http://dx.doi.org/10.1016/j.infsof.2013.01.005
mailto:abhinaya.kasoju@systemite.se
mailto:kai.petersen@bth.se
mailto:kai.petersen@bth.se
mailto:kai.petersen@ericsson.com
mailto:mika.mantyla@aalto.fi
http://dx.doi.org/10.1016/j.infsof.2013.01.005
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof
Sebastián Pizard
Highlight

1238 A. Kasoju et al. /Information and Software Technology 55 (2013) 1237-1259

identify need for information/problems to be solved (through case
study); identify solutions and critical appraisal of those (through
systematic literature review); critically reflect on the solutions
with respect to the problem and mapping them to solve the prob-
lem (through value stream mapping); reflection on the EBSE
process.

The second contribution is an in-depth understanding of the
automotive software testing process with respect to the current
situation (strengths and weaknesses) as well as defining a target
process based on evidence presented in literature. In other words,
it is shown how an improved automotive software testing process
based on evidence from literature would look like. There is a need
to better understand and address the challenges related to soft-
ware testing in the automotive domain (see e.g. [7,8]), and to iden-
tify what solutions are available to automotive companies to deal
with these challenges, which is of particular importance due to
the specific domain profile of automotive software engineering
(as presented in Pretchner et al. [9]).

The remainder of the paper is structured as follows: Section 2
presents the related work, elaborating on the characteristics of
automotive software engineering. Section 3 presents the staged
evidence-based process using a mixed method design, as well as
the research questions asked in each step. Sections 4, 2, 3, 4, 5, 6,
7 present the different stages of the EBSE process proposed in this
study, and their outcomes. Section 8 presents the validity threats.
Thereafter, Section 9 discusses the results, followed by the conclu-
sions in Section 10.

2. Related work

The related work focuses on characterizing the automotive soft-
ware engineering domain and provides a motivation for the study.
Details on solutions for automotive software testing in response to
the challenges identified are provided through the systematic liter-
ature review (see Section 5).

2.1. Automotive software engineering — characterizing the domain

Pretchner et al. [9] provided a characterization of the automotive
domain based on literature and suggest a roadmap for automotive
software engineering research. In the following paragraphs,
we highlight the combination of characteristics that make automo-
tive software engineering stand out.

Characteristic 1 - Heterogenous subsystems: Many different types
of systems (e.g. multimedia, telematics, human interface, body/
comfort software, software for safety electronics, power train
and chassis control software, and infrastructure software) are
part of cars built today. They are highly heterogenous and as
a consequence there are no standards, but instead very different
methods, processes, and tools for developing automotive
systems.

Characteristic 2 - Clearly divided organizational units: Histori-
cally, the automotive industry is characterized by vertically
organized units being responsible for different parts of the
car. The parts then were assembled. Given that software is more
complex and need to enable communication between the sys-
tems integration becomes a challenge. A general (but in auto-
motive systems amplified) challenge is that suppliers have
freedom in how they realize their solutions, given the lack of
well established standards. Therefore, there is a strong need
for communication between many different stakeholders. Given
the high number of stakeholders involved, there are many
sources for new requirements as well, which leads to require-
ments volatility.

Characteristic 3 - Distribution of software: Previously unrelated
mechanical functions are now related due to the introduction
of software (e.g. driving tasks interact with comfort and info-
tainment). The distribution requires that different functional
units interact through middleware/buses. Furthermore, multi-
ple real-time and operating systems are embedded in a car. This
increases the complexity and may lead to unintentional or
intentional feature interactions and hence makes quality assur-
ance harder.

Characteristic 4 - Highly configurable systems: Automotive soft-
ware is highly configurable. Pretchner et al. [9] state examples
of a car having more than 80 electronic fittings, which has to
be reflected in the software, and they also report of components
having 3488 different component realizations. In addition, con-
figurations over time change and have different life-cycles.
Hardware configurations might have longer life-cycles than
electronic units and their respective software implementations.
This leads to many different versions of software in a car that
result in compatibility problems.

Characteristic 5 - Cost pressure and focus on unit-based cost mod-
els: The automotive domain is characterized by cost pressure
and has a strong focus on unit-based cost models. Optimizing
the cost per unit (e.g. by tailoring a software to a specific pro-
cessor or memory that is restricted by its capacity) leads to
problems later, e.g. when porting or extending/maintaining that
software.

2.2. Automotive software testing

It has been found that little evidence collected from industry
exists on how testing processes are performed in the automotive
domain and challenges in this context are not evaluated [8,10].
Furthermore, interaction between test procedures, methods, tools
and techniques with test management and version management
is left untold [10]. The need to test as early as possible on multiple
integration levels under real time constraints put high demands on
the test process and procedures being used [10]. The need to quan-
tify the quality assurance value of testing activities in automotive
context was identified by Sundmark et al. [8]. They conducted a de-
tailed study on how system testing is performed in connection to a
release process in the automotive context and identified several
challenges in this regard. Moreover, they observed a need for de-
tailed identification and prioritization of areas with improvement
potential. However, there have been no studies with an in-depth
focus on strengths and challenges within the whole test process
from a process improvement perspective in the automotive soft-
ware context.

Hence, the related work underlines the need for gaining a rich
understanding of challenges in the domain, and explore which
solutions are available for these challenges and mapping those to
the software testing process.

3. Evidence-based software engineering process used in the
case study

In evidence based software engineering (EBSE) the “best” solu-
tion for a practical problem should be selected based on evidence.
EBSE consists of the following steps: (1) Identify the need for infor-
mation (evidence) and formulate a question, (2) track down the
“best” evidence to answer the question and critically appraise
the evidence, and (3) critically reflect on the evidence provided
with respect to the problem and context that the evidence should
help to solve. In the end (Step 4), the evidence based process (steps
1-3) should be critically evaluated.

A. Kasoju et al. /Information and Software Technology 55 (2013) 1237-1259 1239

In previous studies the steps of EBSE were conducted in isola-
tion, e.g. case studies investigating challenges and issues (e.g.
[11,12]), systematic reviews are conducted to answer a research
question (e.g. [5,6]), and solutions were evaluated (e.g. [13,14]).

In this research we use a multi-staged EBSE research process
where a subsequent stage builds upon the previous ones (see
Fig. 1). Furthermore, in order to systematically close the gap be-
tween the results from step 1 (Identify the need for information
(evidence) and formulate a question) and step 2 (track down the
“best” evidence to answer the question and critically appraise
the evidence) of the evidence based process we used value stream
analysis in step 3 (critically reflect on the evidence provided with
respect to the problem and context that the evidence should help
to solve).

The overall goal of the research is to improve the software test-
ing process in the context of automotive software engineering. The
stages of the research lead up to the goal as follows:

EBSE Step 1: First, we need to gain an in-depth understanding of
challenges and strengths of the testing process to solve the right
problems. Case studies are suitable to gain an in-depth under-
standing of real-world situations and processes [15]. The
research questions asked in the case study are:

e RQ1: What are the practices in testing that can be considered as
strengths within automotive domain? An inventory of activi-
ties that act as strengths in the testing process is provided
through this research question. This is extracted from the
qualitative data obtained through interviews.

e RQ2: What are the challenges/ bottlenecks identified in testing
automotive systems? Lists of challenges or poorly performed
practices that act as barriers to incept quality in the testing
process are collected to answer this research question.

EBSE Step 2: In the next step we identified the solutions that

would help to address the challenges (EBSE Step 1) related to

automotive software testing through a domain specific system-
atic review. We conducted a domain specific systematic review
for multiple reasons. First, the automotive domain has specific
characteristics, which distinguishes it from other domains.

Hence, findings for solutions in the domain context are more

likely to be transferable. Second, given that the overall testing

process was studied the scope of the review would not be man-

ageable and we would not be able to provide timely input for
the solutions. The results of EBSE Step 2 can be seen as an
inventory of solutions based on which improvements can be
proposed. Results from EBSE Step 1 related to strengths are
added to this inventory. The research question asked in the lit-
erature review is:
e RQ3: What improvements for the automotive testing process
based on practical experiences were suggested in the literature?
EBSE Step 3: Based on the detailed definition of strengths and
challenges, as well as solutions we used value stream analysis.
Value stream analysis was selected as an analytical approach
for the following reasons. First, value stream mapping distin-
guishes between a current state map where the current situa-
tion is analyzed with respect to value (what is working well
and adds value to the customer) and waste (everything not con-
tribution directly or indirectly to the customer value) and the
future state map (desired mapping of the process based on
improvements) [14,16,17]. The current state map therefore uses
the case study as input, while the future state map uses the case
study as well as the systematic review in order to map out the
desired process representing an evidence-based recommenda-
tion to practitioners of how to conduct the testing process. Sec-
ondly, value stream mapping has its origin in the automotive
domain, which makes its usage in the studied context easy.
The following research questions are answered:
e RQ4: What is value and waste in the process considering process
activities, strengths and weaknesses identified in EBSE Step 1?
e RQ5: Based on the solutions identified in EBSE Step 2, how
should the process represented by the current value stream
map be improved?
EBSE Step 4: In the last step, we reflect on the usage of the evi-
dence-based process in improving software engineering current
practices.
e RQ6: What was working well in using the EBSE process with
mixed research methods and how can the process be improved?

4. EBSE Step 1: Case study on strengths and challenges

We conducted an industrial case study [15] to investigate prob-
lems and challenges in test process in automotive software domain
and identify improvement potentials, answering RQ1 and RQ2.

Case Study (EBSE Step 1)

Value Stream Analysis

(EBSE Step 3)
TRas T
D:sr:r?;:ison Activities
Critical Appraisal of
RQ1: Strengths Value Added EBSE Process (EBSE

Step 4)

RQ2: Challenges/
Issues

RQ6:

EBSE Process

s

Systematic Literature) { RQS:
Review (EBSE Step 2) i

Lessons Learned

RQ3: Solutions

Future State Map

Fig. 1. Staged EBSE process.

Sebastián Pizard
Highlight

1240 A. Kasoju et al. /Information and Software Technology 55 (2013) 1237-1259

4.1. Case study design type

The case being studied is one of the development sites of a large
Swedish automotive organization. The case organization is ISO cer-
tified. However, the organization was struggling with achieving the
SPICE levels their customers desired. In particular, different depart-
ments achieved different results in assessments. This is also visible
from this study, as we found that there are no unified test pro-
cesses, and not all projects have proper test planning. They focus
on both soft and hard products involving areas such as telematics,
logistics, electronics, mechanics, simulation modeling and systems
engineering.

We report on a single-case with multiple units of analysis [18],
in which we studied the phenomenon of testing in several projects
in one company. This type of case study helps comparing between
the testing methodologies, methods and tools being used for differ-
ent projects at the case organization.

The units of analysis here are different projects at the studied
company. They were selected in such a way that they have maxi-
mum variation in factors such as methodology being used, team
size, and techniques used for testing. The motivation for focusing
on projects with variation was to be able to elicit a wide array of
challenges and strengths. Furthermore, this aids in generalizability
as the challenges are not biased toward a specific type of project.

4.2. Units of analysis

All the projects studied for this research are bespoke as the case
organization is the supplier to a specific customer. All the projects
here are externally initiated and the organization do not sell any
proprietary products/services. Projects within the organization
are mostly either maintenance projects or evolution of existing
products. It is common within this organization for a role to have
multiple responsibilities in more than one project. An overview
of the studied projects is given in Table 1.

Systems: The majority of systems are embedded applications
(P1, P2, P3, P4, P7, and P8), i.e. they involve software and hard-
ware parts, such as control units, hydraulic parts, and so forth.
Windows applications developed in P2, P5, and P6 do not con-
trol hardware.

Team size: We distinguish small projects (less than four persons
in a team) and large projects (four or more persons in a team).
The majority of the teams are large as shown in Table 1. Small
teams do not necessarily focus on having a structured develop-
ment and test process, roles and responsibilities, test methods
or tools. Three projects (P3, P6, and P8) did not report any test
planning activities. Projects with a higher number of modules
are developed by large teams and these projects are old

Table 1
Overview of projects (units of analysis).

compared to the projects dealt with by small teams. That is,
the systems have grown considerably over time.

Development methods: Different software development method-
ologies are employed within the organization. However model-
based development is the prominent one (P4, P5, P7 and P8)
and is used with waterfall model concepts. Waterfall means a
sequential process involving requirements, design, component
development, integration and testing. Agile development using
Scrum has been adopted in one project (P2). Small teams
involved in maintenance adopted ad hoc methodologies (P6).
Two projects recently introduced some agile practices to incor-
porate iterative development (P1 and P5).

Tools: Varieties of tools are employed in the projects for testing,
such as test case and data generators, test execution tools,
defect detection and management tools, debugging tools,
requirements traceability and configuration management tools
and also tools for modeling and analyzing Electronic Control
Units (ECUs). Apart from these tools customized tools are used
in some projects when any other tool cannot serve the specific
purpose of the project. These tools are usually meant for test
execution, which make test environments close to the target
environment. Small teams (e.g. P3) do not rely on testing tools,
they use spreadsheets instead. Large teams being responsible
for several modules use a diversity of tools for organizing and
managing test artifacts.

Test levels: As can be seen in Table 1 almost all projects (seven
out of eight) had unit testing in place and in five projects Inte-
gration testing was used. Unit/basic tests in the projects were
similar to smoke tests. However, the unit tests in this context
do not have a well defined scope. Half of the projects studied
used test automation. However, the evolving test cases were
not always updated into automation builds. From the interview
data, it was evident that system integration test is not per-
formed by many teams. However, most of the teams assumed
integration test can replace system test. As shown in Table 1,
other forms of testing, like regression and exploratory testing,
were found to be less common and are gaining importance
recently within the company.

4.3. Data collection

The data was collected through interviews and process docu-
mentation. However, data from other sources was not collected
due to lack of availability and inadequacy with respect to data
quality (e.g. quantitative data). The motivation behind using sev-
eral sources of data (triangulation) is to limit the effects of only
one interpretation and by that making the conclusions stronger
[19].

Department Project Testing done in project Methodology Size Application type
Alpha P1 Basic/unit test (smoke test), system test, integration test, session- Waterfall development with some Large Embedded system
based test management, script-based testing, code reviews agile team practices
P2 Basic/unit test, system test, integration test, regression test, Agile software development using Large Windows application
exploratory test Scrum and embedded system
P3 Basic/unit test, integration test, exploratory test Waterfall development methodology Small Embedded system
Beta P4 Basic/unit test, script-based testing, automated testing Waterfall development methodology Large Embedded system
P5 Basic test/unit test, script-based testing, automated testing Waterfall development with some Small Windows application
agile team practices
P6 Integration test, exploratory test Ad-hoc development Small Windows application
P7 Basic test/unit test, system test, integration test, regression test, Waterfall development methodology Large Embedded system
script-based testing, automated test with model-based development
Gamma P8 Basic/unit tests, integration tests, exploratory test Waterfall development methodology Large Embedded system

with model-based development

A. Kasoju et al. /Information and Software Technology 55 (2013) 1237-1259 1241

4.3.1. Interviewee selection
The selection process for interviewees was done using the fol-
lowing steps:

e A complete list of people involved in the testing process irre-
spective of their role was created.

e We aimed at selecting at least two persons per project, which
was not possible from an availability point of view. In particu-
lar, for small projects only one person was selected. For larger
projects more persons were selected. Furthermore, different
roles associated with the testing process should be covered
(including developers, managers, and designated testers). How-
ever, the final list of employees who participated in the inter-
views was based on availability in the time period in which
the interviews were conducted (March 08-April 04, 2011).

e We explained to the interviewees why they have been consid-
ered for the study through e-mail. The mail also contained the
purpose of the study and the invitation for the interview.

The roles selected represented positions that were directly in-
volved with testing related activities or affected by the results of
the entire testing process (see Table 2).

Roles from both the projects and line organization from three
departments alpha, beta and gamma (due to confidentiality rea-
sons, the department names are renamed) were included in our
study. It is also visible that some roles are related to project work
and some are related to line responsibilities within a department,
i.e. they support different projects within a department. The num-
ber of interviews in relation to departments, projects, and roles is
shown in Table 3.

In departments Alpha and Beta a sufficient number of employ-
ees was available, but in Gamma only one person was interviewed
due to lack of availability of persons in that department. The per-
son was selected as she was considered an expert with a vast
amount of experience with respect to testing automotive systems.

4.3.2. Interview design

The interview consisted of four themes; the duration of the
interviews was set to approximately one hour each. All interviews
were recorded in audio format and also notes were taken. A semi-
structured interview strategy [19] has been used in all the inter-
views. The themes of the interviews were:

1. Warm up and experience: Questions regarding the interviewees
background, experience and current activities.

2. Overview of software testing process: Questions related to test
objects, test activities, and information required and produced
in order to conduct the tests.

Table 2
Description of roles.

Table 3
Interviewees

Department ID Number interviewed Roles

Alpha Line 1 Group manager
P1 1 Test leader
P2 2 Test leader, developer
P3 1 Developer

Beta Line 1 Advanced test engineer
Line 1 Test coordinator
P4 3 2 Developers, project manager
P5 1 Developer
P6 1 Developer
P7 1 Domain expert
P8 1 Developer

3. Challenges and strengths in testing process: This theme captured
good practices/strengths as well as challenges/poorly per-
formed practices. The interviewees are supposed to state what
kind of practice they used, what its value contribution is and
where is it located in the testing process.

4. Improvement potentials in testing process: This theme includes
questions to collect information about why the challenge must
be eliminated and how the test process can be improved.

4.3.3. Process documentation

Process documentation, such as software development process
documents, software test description documents, software test
plan documents and test reports have been studied to gain an in-
depth understanding of the test activities. Furthermore, documents
related to organization and process descriptions for the overall
development process have been studied to gain familiarity with re-
spect to the terminology used at the company. This in turn helped
in understanding and analyzing the interview data.

4.4. Data analysis

In order to understand the challenges and strengths in the auto-
motive test process an in-depth analysis of different units of anal-
ysis was done using coding. Manual coding was done for five
interview transcriptions to create an initial set of codes. The codes
were clustered into different main categories, predefined by our re-
search question (Level 1), by literature (Level 2) and through open
coding (Level 3 and 4), see Table 4. With this a coding guide was
developed. For the open coding we coded the transcribed text from
the interviews, which evolved. If we, for example, found a new
statement that did not fit to an already identified code we created
a new code, such as Interaction and communication. When we found
another statement that falls into an existing code, we linked the

Role Description

Group manager
Test leader

Responsible for all test resources such as testing tools. Also responsible to see that the test team has the correct competence level
Traditional role responsible for leading all the test activities such as test case design, implementation and reporting defects. Test leader is also

responsible for test activities in project and their documentation

Developer

projects only)

Advanced test
engineer

Domain expert

The developer uses the requirements specifications to design and implement the system. This role is also responsible for all the testing (for some
Technical Expert that often works with research projects. In order to avoid confusion this role is also termed as developer in the later sections

As a technical expert this person is responsible for research engineering project who strives to continuously improve testing in their team. In

order to avoid confusion this role is also termed as developer in the later sections

Test/quality
coordinator
Project manager
by this role

Responsible to coordinate the all the test activities in the projects and also is responsible for managing the products

Responsible for planning, resource allocation, and development and follow-up related to the project. The requirements inflow is also controlled

1242 A. Kasoju et al. /Information and Software Technology 55 (2013) 1237-1259

Table 4
Analysis through coding.

Coding Descriptions
level

Purpose

Level 1 Codes directly related to case study research questions i.e., testing
practices, strengths and improvement potentials, and problems or
challenges are identified here

Level 2 Value (five categories) [21], Waste (Seven Categories)
(see [22,23])

Level 3 This level defines where in the process practices are
implemented

Level 4 Codes derived from interviews (e.g. all aspects related to
communication, availability of process documentation, etc.)

Structure statements from interviews according to research questions. Results
concerning “testing practices” can be found in Section 4.5.1, results related to
“strength and improvement potential” in Section 4.5.2, and results related to
“problems or challenges” in Section 4.5.3

Structure findings according to value (see Table 10) and waste (see Table 12) to
be used in the current stream map (see Fig. 4). This is then used to map
strengths to value (Table 11) and problems/challenges to waste (Table 13)
Identification of process areas (see e.g. Table 5) to clarify the scope of the
challenges and being able to map waste to test process activities (Fig. 4)
Identify groups of related challenges (see CO1 to C10 in Section 4.5.3)

statement to that code. After having coded the text, we looked at
each cluster identifying very similar statements, and then reformu-
lated them to represent a single challenge/benefit. After having
done that we reviewed the clusters and provide a high level
description for each cluster. The open coding strategy followed in
this research is hence very similar to the one presented in [20].
In order to validate the coding guide, an interview transcription
was manually coded by an employee at the case organization
and the results of the coding were compared with the researchers’
interpretation and required modifications were made. However,
the coding guide was continuously refined throughout the data
extraction phase.

4.5. Results

The results include a description of the test process, as well as
strengths and challenges associated with the process.

4.5.1. Testing process

The majority of the interviewees (nine interviewees) stated that
there is lack of a clear testing process which can be applied to any
project lifecycle. Among eight projects studied only three projects
have an explicitly defined testing process. It is observed that each
project follows a process very similar to what is shown in Fig. 2,
even though not all projects follow all activities outlined in this
process.

A test strategy of an organization describes which type of tests
need to be conducted and how they should be used with develop-
ment projects with minimum risks [24]. The test strategy used at
the company was to mainly focus on black-box testing with only
a minor part of testing being performed as white-box testing. There
is a testers handbook available within the organization which de-
scribes test processes, methods and tools. However, this study
shows that it is not implemented/used by most of the teams. The
main activities conducted are: Test Planning, Test analysis and De-
sign, Test build, Test Execution and Reporting. Among these, test
planning is done in advance by five projects (three large teams rep-
resented by P1, P2, and P4 and two small teams represented by P5
and P7). Most of the small teams did not have any software test
plan even though they had a very flexible test strategy/approach
to carry on with tests.

In the following the steps are described in further detail:

Test planning: This activity aims to address what will be tested
and why. The entry criteria for this activity is to have prioritized
requirements ready for the release as input for test planning.
The delivery of this phase is the software test plan, containing
estimations and scheduling of resources needed, test artifacts
to be created, as well as techniques, tools, and test environ-
ments needed. The roles involved in this phase of testing are

customer, project manager and test leader. If there is no test
leader available for the project, the developers themselves par-
ticipate in the test planning activities. The exit criterion for test
planning is the approval of the test plan by the customer and
project management.

Test analysis and design: This activity of testing aims to deter-
mine how the tests (by defining test data, test cases and sche-
dule progress for the process or system under test) will be
carried out, which is documented in the software test descrip-
tion. Software test description also defines what tests (i.e., test
techniques) will be performed during test execution. The other
deliveries during this phase are requirements traceability
matrix, test cases and test scripts design to fulfill the test cases.
Test cases are written and managed using test case manage-
ment tools, which are used in all projects. The criterion to enter
this phase is to have the software test plan approved by the cus-
tomer and project management. The test plan scheduled in the
previous phase is updated with all detailed schedules for every
test activity. The roles involved at this stage are test leader or a
test coordinator who is responsible for designing, selecting, pri-
oritizing and reviewing the test cases. Since testers share
responsibilities between projects and are not always available
for testing tasks, in most of the projects the developers are
responsible to write test cases for their own code. The project
manager is responsible for the supervision of test activities.
Test build: In automotive software testing, test build is the most
vital part of the test process since it involves building a test
environment, which depicts the target environment. The out-
come of this level is having hardware, which can be visualized
as real time environment, including test scripts and all other
test data. Since the case organization works with control
engines and Electronic Control Units (ECUs) [8] for most of
the projects, modeling tools such as Simulink along with MAT-
LAB are used to visualize the target environment. Mostly testers
or developers are involved in this activity. The project manager
is responsible to provide resources, such as hardware equip-
ment. The test leader supervises the activity.

Test execution and reporting: The final stage of the test process
is to execute tests and report the results to the customer. In
order to execute tests, the test leader or project manager will
chose an appropriate person to run the test scripts. After the
tests are completed the results are recorded in the defect
management system. The outcome of this phase is a software
test report which describes the entire tests carried out as well
as their test verdicts. The results are also later analyzed and
evaluated to find if there are any differences in comparison to
test reports of previous releases. In case of serious errors
these errors are corrected and tests are repeated. The project
manger is responsible to decide the stopping criteria for test
execution.

A. Kasoju et al. /Information and Software Technology 55 (2013) 1237-1259 1243

Roles Activities Deliverables
Test Planning
Test leader, Estimate the requirements,
project manager, """ test techniques, tools, and
customer other test artifacts
Test scheduling
\L— """"""""""""" ‘ Software test plan
Test Analysis and
Test leader, Design
project manager, [------ Update test plans

developer/tester

Identify and design test
scripts and test data

Software test

description,
"""""""" requirements

traceability matrix,

Test Build

Test leader,
project manager,
developer/tester

Collect and build all the
_______ required test environment,
test scripts, and other test
data designed during the
previous stage

test cases

Test scripts,
""""""""""""""""""" test data,

test environment

Test leader,
project manager, f------1 Run tests and record
customer defects,

Test Execution and
Reporting

evaluate test results and
generate a report

i ------------------- Software test report

Fig. 2. Testing process.

4.5.2. Strengths and good practices

The strengths of the test process are found to be dependent on
team size. Most of the practices considered as strengths in small
teams were not perceived as strengths in large teams and vice
versa. That is, it is evident from the interviews that the strengths
vary with team size.

Work in small, agile teams: In small teams test activities are
flexible, and there is no need to generate extensive test reports.
Large teams do this for small releases only. Large teams have a
very structured and plan-driven approach for testing. Small
teams focus on continuous integration and iterative develop-
ment (e.g. P2 using Scrum with continuous integration and
sprint planning). Agile test practices make it easier for them
to plan tests for every iteration that are compatible with the
requirement specification. This in turn enables alignment of
testing with other activities (such as requirements and design)
properly. In comparison to small teams, large teams have a

stronger focus on reusing test cases most of the time, which
makes them more efficient.

Communication: Strengths regarding communication are found
in a project having agile practices such as stand-up meetings,
regular stakeholder collaboration and working together in open
office space. Every activity involves a test person, which indi-
cates parallel testing effort throughout the whole development
lifecycle. In addition to this the agile approach enhanced the
team spirit, leading to efficient interactions between team
members, and resulting in a cross-functional team. Other pro-
jects use weekly meetings and other electronic services, such
as email and messaging within a project.

Shared roles and responsibilities: Small teams consider having
one person to perform the tester & developer role as strength
since this would not delay the process for having to wait for
someone to test the software, one developer was stating that:
“While we are working, since the tester is the same person as the
developer, there is no delay in reporting it. So if the Developer/Tes-

1244 A. Kasoju et al. /Information and Software Technology 55 (2013) 1237-1259

ter finds out the fault he knows where it is introduced, and instead
of blaming someone else, the developer becomes more careful while
writing the code”. However, large teams do not consider this as
strength; most of these teams do not have any dedicated testers
(except one large team which has dedicated testing team).

Test techniques, tools, and environments: Here we made different
observations with respect to size of the projects. In small teams
fewer testing tools and methods are used to avoid more docu-
mentation. These teams generally have less project modules
when compared to large teams. In this case the system is well
known to the tester/developer (Developing and testing done
by one person in small teams) which makes it easy to test using
minimum number of tools and methods. Small teams (for
example, projects P3 and P6) generally perform smoke or unit
test which tests the basic functionality of the system and then
have an integration test. An employee conveys the use of
unit/basic test in the following way: “I think unit testing is a
strength. With this one goes into details and make sure that each
and every subsystem works as it is supposed to.” Tools for testing
used here are developed by the teams to suit the project
requirements. However, these customized tools developed for
their specific team are not shared among the teams. The main
focus in small teams is to have a test environment that has
the same hardware and interface as the target environment.
This makes maintenance of tests efficient within a project.

Contrary to the small teams, large teams use a variety of meth-
ods and tools for testing to perform multiple activities. One of the
most perceived strength found in large teams is experience-based
testing (e.g. projects such as P1, P2, P4, and P8). As the same team
members have been working on the same project over the years,
they find it easy to use their experience based knowledge in prod-
uct development and testing. An employee responsible for quality
coordination in a large team says “The metrics used for testing are
not very helpful to us as a team as testing is more based on our expe-
rience with which we decide what types of test cases we need to run
and all”. The other perceived strength is exploratory testing/ses-
sion-based test management applied in projects P1 and P2. An em-
ployee pointed out “Executing charters for session based tests (i.e.,
exploratory tests) we find critical bugs at a more detailed level”. Hard-
ware in the loop (HIL) is also considered as strengths for one of the
large teams since it detects most of the defects during integration
testing. HIL used for integration and system level testing is per-
ceived as a strength as it detects the most critical defects such as
timing issues and other real time issues for large and complex sys-
tems. Informal code reviews are considered as strength in large
teams even though they are also used in small teams. Informal
code reviews avoid testing getting biased since it is performed by
the person other than the one who is responsible for coding.

Coming to the tools, test case management tools are considered
as an advantage in large teams (e.g., P4) as one employee pointed
out “I think test case management tool is a great way to store the test
cases and to select the tests that should be performed and also for the
tester to provide feedback”. Other tools considered useful are defect
management tools (for e.g., projects). Test environment in large
teams is quite good for testing as it depicts real time environment.

4.5.3. Challenges

Challenges are grouped into challenge areas. For each challenge
area, we also state the number of projects for which the challenges
within the challenge area were brought up, as well as the process
areas that were concerned by the challenge area (see Table 5), and
in each area a set of related issues is reported.

CO01: Organization of test and its process related issues: Orga-
nizational issues relate to poorly performed practices related to

organization and its test processes, such as change manage-
ment and lack of structured test process. Organizational issues
also include stakeholders attitude towards testing (If testing is
given low priority).

CO1_1: No unified test process: Projects vary in their use of test-
ing methods and tools, and it was considered challenging to
find a unified process that suits all projects because of scattered
functionality and evolving complexity in hard- and software.
Even though a testers handbook is available that might help
in achieving a more unified process, it is not used as teams
are not aware about it, or people do not feel that it suits their
project characteristics. Unstructured and less organized pro-
cesses work well for the small projects, but not for the larger
ones, as it compromises quality. As interviewees pointed out
“It feels there is lack of a structured testing process and it is also
un-organized always. It works fine for small projects, but not for
large projects”.

C01_2: Testing is done in haste which is not well planned: The
delivery date is not extended when more time would be
needed, which results in testing being compromised and done
in haste. Furthermore, the customer does not deliver the hard-
ware for testing in time and good quality, hence tests can not be
done early; a consequence is a generally low respect for dead-
lines with respect to testing.

C01_3: Stakeholders attitude towards testing: Improvement work
in the past has been focused on implementation, not testing.
Hence, new approaches for testing do not get much support
from management, which sometimes makes teams develop
their own methods and tools, which requires high effort.
C01_4: Asynchronous testing activities: Testing is not synchro-
nized with other activities related to contractors; test artifacts
have to be re-structured in order to synchronize with the arti-
fact supplied by the contractor. This leads to rework with
respect to testing.

C02: Time and cost constraints for testing: Challenges regard-
ing time and cost constraints can be due to insufficient time
spent on requirements, testing activities or test process.
C02_1: Lack of time and budget for specifying validation require-
ments: Validation requirements are requirements, which are
validated during testing (e.g. specifying environmental condi-
tions under which the system has to be tested). Time and
money saved on not writing the validation requirements lead
to a lot of rework and time in other parts of the process, specif-
ically testing. As one interviewee was pointing out: “Re-write
customer specifications into our own requirements? That is not
possible today due to the reason that customer will not pay for it
and we do not have internal budget for that’. Overall, the lack of
validation requirements leads to a lack of objectives and a
defined scope for testing.

C02_2: Availability of test equipment on time: Test equipment not
being available on time and in good quality resulted in unit test-
ing not being conducted.

C03: Requirements related issues: Insufficient requirements
for testing, high-level requirements which are hard to under-
stand, and requirements volatility are the challenges that hin-
der performing proper testing to achieve high quality. These
issues generally occur when customer does not specify require-
ments properly due to lack of time or lack of knowledge which
implies poor requirements management.

C03_1: Lack of requirements clarity: Too little effort is dedicated
to understanding and documenting clear requirements, result-
ing in much effort in re-interpreting them in later stages, such
as testing. As one of the employees specifies: “I think it would
be better for us in beginning to put greater effort with requirements
management to avoid customer complaining about misunder-
standing/misinterpreting the requirements specified by them, in

A. Kasoju et al. /Information and Software Technology 55 (2013) 1237-1259 1245

Table 5
Overview of challenge areas.

ID Challenge area No. of projects Process area

Cco1 Issues related to organization and its processes 6 Requirements, test process, test management, project management
C02 Time and cost constraint related hinders 5 Requirements, project management, test level (basic/unit test)
C03 Requirements related issues 3 Requirements, test process (test planning), project management
co4 Resource constraints related issues 3 Test process, project management

C05 Knowledge management related issues 5 Test management, project management

C06 Resource constraints related issues 3 Test process, project management

co7 Test techniques/tools/environment issues 2 Test process, test management, test levels

C08 Quality aspect related issues 3 Test process

C09 Defect detection related issues 2 Test process, test management

Cc10 Documentation related issues 2 Test process

order to have fewer issues at the end and save time involved in
changing and testing everything repeatedly.”

C03_2: Criteria for finalizing test design and start/stop testing are
unclear: According to the interviews, defining the test process
would be completed once the requirements are stable. The
interviewees connected requirements volatility to start and
stoppage criteria for testing. Requirements volatility required
redefining the entire test planning. This acted as a barrier in
starting with the actual tests. In cases where the organization
used test scripts to perform tests, they had a hard time defining
when to stop scripting and start/stop tests as requirements
were pouring in. The criteria of when to stop testing were
mostly related to budged and time, and not test coverage.
C03_3: Requirements traceability management issues: The trace-
ability between requirements and tests could be better in order
to easily determine which test cases need to be updated when
the requirements change. Furthermore, a lack of traceability
makes it harder to define test coverage. The reason for lacking
traceability is that requirements are sometimes too abstract
to connect them to concrete functions and their test cases.
C04: Resource constraints for testing: These challenges are
related to the availability of skilled testers and their knowledge.
C04_1: Lack of dedicated testers: Not all projects have dedicated
testers, instead the developers interpret the requirements,
implement the software, and write the tests. The lack of inde-
pendent verification and validation (different persons write
the software and test the software) leads to a bias in testing.
C04_2: Unavailability of personnel for testing: Given the complex-
ity of the systems, building knowledge to be a good tester takes
time. In case the experienced testers are shifted between the
projects it is hard to find someone who can complete the task
at hand. An interviewee who manages testing says “It is difficult
to find people with same experience and also they take quite long
period to learn and get to know about the product due to its com-
plexity. For this one need to have same knowledge before being
able to do testing”.

C05: Knowledge management related testing issues: The
issues related to knowledge management found in this case
studies are:

C05_1: Domain and system knowledge transfer and knowledge
sharing issues regarding testing: New testing techniques (explor-
atory testing) used at the company require vast amount of
knowledge, which is not available due to that testers always
change and new testers employed by the studied company
come into projects. No sufficient information and training
material is available on how to test, even though there is a need
to achieve a status where a project is not dependent on a single
person. From the interviews we also found that the challenge of
knowledge transfer is amplified as beyond software it has an
emphasis on control engineering, mechatronics, and electrical
engineering.

C05_2: Lack of basic testing knowledge: Testing is given low pri-
ority due to that testers lack basic testing knowledge. With

regard to this context an interviewee involved in life cycle man-
agement activity stated that “I think there is lack of information
on testing fundamentals. Some of us do not know when to start a
test level and when to end it and it feels like gray areas which is
not clearly defined anywhere”.

C06: Interactions, communications related issues in testing:
Problems in practices related to communication between differ-
ent stakeholders in involved in testing. Also includes improper
form of communication such as lack of regular face-to face
meeting, lack communication between customer and test
personnel.

C06_1: Lack of regular interactions with customer regarding
requirements: In the beginning of projects customer interaction
is more frequent, with respect to validation requirements in
testing there is too little customer interaction. The right person
to communicate with regarding requirements on testing is
unavailable on the customer side.

C06_2: Lack of interactions with other roles within project during
testing: There is a lack of communication with previous team
members that have shifted to another project, even though they
are needed (e.g. in order to verify and fix identified bugs). One
interviewee narrated it in the following way; “I have allocated
a person for our team and then he have to communicate with us
but it has been sometimes quite tough for the person to find the
person since he is working for another team now”.

C06_3: Informal communication with customer: Overall, there is a
lack of face-to-face and informal communication with the cus-
tomer and the customer communicates by providing vague
descriptions, which are then not clarified. A manager adds “I
think it is most critical to maintain the relationship (informal rela-
tionship with customer) and demand the customer that we cannot
start working before you tell us what you want”.

C07: Testing techniques, tools and environment related
issues: Problems related to usage of current test techniques,
environment and tools.

C07_1: Lack of automation leading to rework: The automation of
unit tests and regression testing is not done efficiently. One
interviewee pointed out that “Testing is rework as long as it is
not properly automated”. Generating and efficiently automating
tests is observed as a challenge due to a perceived lack of
unavailability of tool support, leading to rework when wanting
to rerun tests.

C07_2: No unified tool for entire testing activity: One test lead
pointed out the need for unified tool which can be used for test-
ing “we have lot of tools for testing but there are some difficulties in
deciding which tool to use since there are drawbacks and strengths
for every tool being used. Sometime we are forced to develop cus-
tomized tool because we cannot get any tool from the market that
does everything for us”. A tool which does all activities in testing
for automotive domain can be easy to use instead of managing
and organizing large number of tools used right now.

C07_3: Improper maintenance of test equipment: Several test
environments are to be maintained, lack of maintenance leads

1246 A. Kasoju et al. /Information and Software Technology 55 (2013) 1237-1259

to rework and long lead-time before actual testing can start.
One interviewee nicely summarized this as “We have several test
environments and test steps to be maintained. They are not always
maintained and it takes long time before one can get started with
actual testing”.

CO08: Quality aspects related issues: Problems related to incor-
porating quality attributes of testing such as reliability, main-
tainability, correctness, efficiency, effectiveness, testability,
flexibility, and reusability. Involves tradeoffs between quality
and other activities.

C08_1: Reliability issues: Reliability of the system is not achieved
to the degree desired. Quality is hard to incorporate due to lack
of test processes, and due to faulty hardware components. As
one interviewee specifies “Its hard to achieve several requirement
criteria for a system such as working for longer period of time, less
resource intensive, ability to work on different platforms, etc.”.
C08_2: Quality attributes are not specified well right from the
inception of project: Quality requirements are not well specified,
leading to a situation where complex systems had quality
issues on the market for existing products.

C08_3: No quality measurement/assessment: Quality measures
are not present, but their need is recognized to increase the
ability to evaluate the results of testing, one employee saying
that: “the quality curve must be better although our customer is
satisfied. I think the quality measures should be documented in
order to facilitate better analysis of test results”.

C09: Defect detection issues: Problems related to practices
which disable the tester to trace the defect or the root cause
of defect creation, also includes problems related defect
prevention.

C09_1: Testing late in the process makes it costly to fix defects: Due
to the system complexity and late testing the number of defects
in the system increases while it evolves and increases in size.
Missing many defects in previous releases led to a high number
of customer reported defects in the following releases that
needed to be corrected, which made defect fixing costly.
C09_2: Hard to track defects which are not fixed in the previous
releases: For development with complex parts (i.e., which
involves working with timing issues and other critical issues)
the difference in the behavior of the system between two differ-
ent releases need to be same. But this is not always happening
due to the errors which were not fixed during the previous
releases being triggered in the current release. This is because
these errors may become serious in the next releases when they
become untraceable in such a huge system.

C10: Documentation related issues: Poorly performed prac-
tices related to test documentation such as insufficient docu-
mentation, no documentation or too much documentation
that does not give proper support for maintaining quality in test
process are subject of this challenge area.

C10_1: Documentation regarding test artifacts is not updated con-
tinuously: The interviewees emphasized that the documenta-
tion (such as test cases and other test artifacts) provided was
not enough for testing and cannot be trusted; one interviewee
added that “The test documents are not updated continuously, so
we find them unreliable”. One of the reasons mentioned was
there were small changes being done to the test artifacts, which
are not which are not updated accordingly the test document.
Not updating documentation led to rework.

C10_2: No detailed manuals available for some specific test meth-
ods and tools: Another observation in this regard was a lack of
documentation on how tools and methods work which can be
used. One interviewee nicely summarized this as “There is
support for tools, but we always cant find someone who can fix
the problems with them. It could be better documented I guess”.
However, it is observed that there are manuals within the

organization which serve this purpose. But for some specific
tools (such as customized tools) or methods, this does not work.
This issue seems to arise when people performing testing could
not understand the terminology in manuals or they are not
aware of these manuals.

5. EBSE Step 2: Identifying improvements through systematic
literature review

This section describes the purpose and design of our method in
systematic literature review and value stream mapping to improve
the testing process. The research question for this part is RQ3: What
improvements for the automotive testing process based on practical
experiences were suggested in the literature?

In Section 4 we identified the challenges related to software
testing in the industry. In this section, we present EBSE Step 2.
We perform a domain specific systematic literature review to
study the state of the art. Second, we create solutions proposals
based on the results of the review to address the challenges iden-
tified. Doing this is with the spirit of evidence-based software engi-
neering where one needs to consult the evidence base when
creating diagnosis and solution proposals [1].

5.1. Systematic literature review

The purpose of our SLR is to identify testing related problems in
the context of the automotive software domain and solutions that
have been proposed and applied in an industrial context. Our SLR
design consists of several steps that are presented below. Our
SLR is based on guidelines provided by Kitchenhamn [25] with
the exception that we did not exclude studies based on quality,
as the goal was to identify all potential solutions that are based
on industry experience, and not discarding them due to e.g. lack
of reported procedures.

The steps for our literature are:

e Define research question for the review.

o Identification of papers.

e Study selection.

e Results of mapping of solutions to identified challenges.

5.1.1. Identification of papers

In this step we formulated search terms so that they enable the
identification of research papers. Search terms were elaborated
over several test searches in digital libraries. To this end we used
five different search strings (see Table 6). The first two strings iden-
tify articles on testing in the automotive domain, and model-based
tools to support automotive software development in order to cov-
er solutions for challenge areas related to testing. Requirements is-
sues identified were very general requirements problems, but had
an impact on testing. Hence, these are also covered in a separate
search string. Given that some projects were working in an agile
way of working, which was deemed a strength, we also looked
for studies related to agile in automotive.

Search string were applied on Titles and Abstracts in the dat-
abases IEEEXplore, ACM Digital Library, Springerlink, ScienceDirect
and Wiley Interscience. We did not apply search string on full text
as it is found that such approach generally yields too many irrele-
vant results.

5.1.2. Study selection

To select papers relevant to our goal we formulated inclusion/
exclusion criteria. First of all, we excluded papers that are not in
English, published before 2000 (given that in recent years cars con-
tain a vast amount of software and challenges are more related to
recent research) and were not available in full-text. As our goal was

A. Kasoju et al. /Information and Software Technology 55 (2013) 1237-1259 1247

Table 6
Search strings.

Search Search string

SLR_1 Automotive AND software AND (test OR verification R validation)

SLR_2 Automotive AND software AND model-based AND tool

SLR_3 Automotive AND software AND requirements

SLR_4 Automotive AND software AND (agile OR scrum OR extreme
programming OR lean)

SLR_5 Embedded AND software AND (agile OR scrum OR extreme
programming OR lean)

to look for problems and solutions offered in peer-reviewed litera-
ture, we excluded editorial notes, comments, and reviews and so
on. As we intended to look for solutions that were applied in indus-
try, we included papers with solutions that have empirical evalua-
tions in industry and in particular automotive software domain. A
major criterion to include a study was that they present solutions
to problems in relation to software testing. By software testing, we
mean any of the V&V activities spanning across the whole software
development lifecycle (requirements validation, test case genera-
tion, unit or regression testing and so on). To ensure these criteria
are satisfied, papers were scanned against the checklist.

e Is the paper in English?

e Is the paper available in full text?

o Is the paper published in or after 2000?

o Is the context of research automotive software domain?

e Does the paper talk about any problems and solutions or tools
related to any software V&V?

e Does the paper contain an empirical evaluation in industrial
context?

The search for SLR_1 and SLR_2 resulted in 221 papers for SLR_1
and 66 papers for SLR_2. An overview of the distribution of primary
studies across databases is shown in Table 7, also showing the
number of finally selected studies.

The search for SLR_3, SLR_3, and SLR_4 resulted in 301, 12, and
107 papers, respectively. An overview is given in Table 8.

5.1.3. Solutions based on systematic literature review
We mapped the identified challenges and solutions offered in
our SLRs to the challenges found in our interviews. Furthermore,

Table 7
Number of selected studies (SLR_1, SLR_2).

Database Initial search Nr. Primary Full text not
result studies available

Searches SLR_.1 SLR.2 SLR.1 SLR2 SLR_1 SLR_2
ScienceDirect 35 4 5 - -
ACM Digital Library 12 4 - - -
WileyIntercience 5 4 - - - -
Springerlink 46 16 8 4 13 -
IEEE Xplore 123 23 12 1 - -
Total 221 66 29 5

Table 8

Number of selected studies (SLR_3, SLR_4, SLR_5).
Database SLR_3 SLR_4 SLR_5

Total Selected Total Selected Total Selected

IEEEXplore 163 10 5 - 37 3
ACM Digital Library 102 - 1 - 36 -
SpringerLink 3 - 3 -
ScienceDirect 31 - 3 - 17 -
WileyInterscience 5 - 0 - 14 1
Total 301 10 12 0 107 4

we state other references where the challenges observed in this
study have been found. These are shown in Table 9. Based on our
SLRs, we present seven solution proposals. It is important to point
out that there often cannot be a single solution proposal for each
issue. It entirely depends on the type of projects and appropriate
strategies (such a resource management, budget management)
adopted by teams to implement these solutions.

The number of references in relation to the solution proposals
was determined by the availability of information. When we cre-
ated the categories we aimed at not having a category that requires
a small/easy solution and another category that covers a large area
of solutions. Even though test management (SP7) has only one ref-
erence, we believe that research focus on test management is as
large in scope as, for example, test automation and tools, looking
at its complexity and how hard it would be to solve it. Overall,
scope of the problems was the base to decide on the granularity
of categories.

SP1: Requirements management (RM): Overall, we identified
that good requirements are a pre-requisite for good testing in
automotive software development. Requirements related issues
such as Lack of requirements clarity (C03_1), Requirements vol-
atility C03_2), Requirements traceability (C03_3) can be tackled
through better requirements management. Furthermore, we
can understand that Quality attribute specification problems
(C08_2) as well as customer communication problems (C06_1,
and C06_3) can be improved with ideas from the requirements
engineering domain. Our domain specific SLR was able to find
many solutions to these problems (see Table 9). For example,
Grimm from DaimlerChrysler' recommends early simulations
of requirements and derivation of test cases from specification
and suggests tracing and administering requirements across the
entire software development lifecycle [7]; Islam and Omasreiter
[29] presented and evaluated an approach, where text-based
use cases are elicited in interviews from various stakeholders to
elicit and specify user requirements for automotive software;
and Biihne et al. [30] proposed abstraction levels of Software,
Function, System, and Vehicle. Each requirement on each abstrac-
tion level is in turn linked to system goals and scenarios.

SP2: Competence management (CM): Competence manage-
ment was identified to address a number of challenges. We
identified a need for Competence Management based on the
issues of Lack of dedicated testers (C04_1), Unavailability of
personnel for testing (C04_2), Knowledge transfer (C05_1) and
Lack of fundamental testing knowledge (C05_2). Our domain
specific SLR was able to find only one source by Puschnig and
Kolgari [32] who propose means for the involvement of experts
in sharing knowledge and expertise with less experienced tes-
ters in projects, e.g. workshops are recommended, where test
team communicate with experts to communicate information
on testing, tools as a means for informal training.

SP3: Quality assurance and standards: Quality Assurance and
Standards can also help with several problems. Cha and Lim [55]
propose a Waterfall type process for the automotive software
engineering where quality assurance is performed with peer
reviews on artefacts produced in design, implementation and
testing phases. Towards this end, DaimlerChrysler developed
their own Software quality management handbook for their
automotive projects [27], helping to address C01_1/C01_2
which are related to lack of unified test process definitions and
test planning. A Draft of ISO 26262 (Road vehicles Functional
safety) defines the artefacts and activities for requirements
specification, architectural design, implementation and testing,

1 Now Daimler AG after selling the Chrysler Group in 2007.

1248

Table 9

A. Kasoju et al. /Information and Software Technology 55 (2013) 1237-1259

Mapping of challenge areas to references of solutions.

Nr. ID Challenge Sources Process areas

1 Co1_1 No unified test process/approach [26,27] Test management

2 c01_2 Testing done in haste and not well planned [28,29] Agile

3 Co1_3 Stakeholders attitude towards testing: low priority [28] Agile

4 Co1_4 Asynchronous test activities [28] Planning/process

5 C02_1 No time and budget allocated for specifying validation requirements - Planning/process

6 C02_2 Unavailability of test equipment on time [28] Test management

7 C03_1 Lack of requirements clarity [7,30-32,27,33,29,34,35] Requirements management
8 C03_2 Criteria for finalizing test design and start/stop testing are unclear [7,30,36] Requirements management
9 C03_3 Requirements traceability [37,7,33,38,30,27,36,34] Requirements management
10 C04_1 Lack of dedicated testers [32] Competence management
11 C04_2 Unavailability of personnel for testing [32] Competence management
12 C05_1 Knowledge transfer and sharing issues regarding testing - Competence management
13 C05_2 Lack of testing fundamentals - Competence management
14 C06_1 Lack of regular interactions with customer regarding requirements - Requirements/agile

15 C06_2 Lack of interactions with other roles within the project during testing - Test management

16 C06_3 Informal communication with the customer - Requirements

17 C07_1 Lack of automation for test case generation leading to rework [39-41,7,42-46,10,47-50,28] Automation

18 C07_2 No unified tool for entire testing activity [7] Automation/tool

19 C07_3 Improper maintenance of test equipment [51,52] Test management

20 C08_1 Reliability issues [39,53,50] Automation

21 C08_2 Quality attributes are not specified well [51,27,54] Requirements

22 C08_3 Lack of quality measurement/assessment - Quality assurance

23 C09_1 Testing late in the process makes it costly to fix defects - Agile/defect management
24 C09_2 Hard to track defects which are not fixed in previous releases - Agile/defect management
25 C10_1 Documentation regarding test artifacts is not updated continuously - Agile

26 C10_2 No manuals for test methods and tools - Test management

system integration and verification. The standard also prescribes
the use of formal methods for requirements verification, nota-
tions for design and control flow analysis, the use of test case
generation and in-the-loop verification mechanisms, e.g. hard-
ware in the loop, software in the loop, [52] (related to challenge
C07_3 on test equipment). Controller Style Guidelines For
Production Intent Using MATLAB, Simulink and Stateglow is a
modeling catalogue for Simulink models in the context of
automotive systems developed by The MathWorks Automotive
Advisory Board (MAAB) [56]. MAAB is an association of
leading automotive manufacturers such as Ford, Toyota and
DaimlerChrysler.

SP4: Test automation and SP5: test tool deployment: Auto-
mation is clearly one of the most important issues in industry
and there is a considerable amount of research describing the
state of the practice (C07_1). As can be seen in Table 9, numer-
ous test automation solutions have been proposed and used in
the automotive domain. For example model-based black box
testing [39,40] is proposed for systems that have high safety
and reliability requirements (C08_1); evolutionary testing has
been proposed in many works [41] [43] [57] as a solution with
the challenge of automating functional testing, and it has been
successfully implemented at DaimlerChrysler [44] with a tool
called AUSTIN [48] (C07_2); Furthermore, other type of testing
and quality assurance tools have been proposed such as Classi-
fication-Tree editor CTE [58] for a systematic approach to the
design of functional test cases [7]; semi-automatic safety and
reliability analysis of the software design process [59] that
has been validated in a case study by Volvo involving 52 active
safety functions [60]; and a tool for resource usage and timing
analysis [61] (CO8_1). Overall it can be concluded that when it
comes to test automation or tools there is no shortage of pro-
posals focusing on the automotive domain.

SP6: Agile incorporation: In recent years Agile development
methods have become popular in the industry and it can also

help with many problems experienced in the case company.
Based on our interviews, we identified a need for change in
the software development process used in the case organization
to cope with requirements changes (C02_1, C03_1, C03_2), and
here agile process are a natural fit as they offer regular commu-
nication where requirements can be changed or clarified. Agile
also emphasizes collaboration and communication that can be
seen as a solution to knowledge transfer and interaction issues
identified (C05_1, C06_1, C06_2, C06_3). Finally, some agile
methods emphasize continuous and automated testing, which
can potentially help with many testing problems experienced
(C01_1, C01_2, C09_1 and C09_2). Although agile can be theo-
retically linked to many problems our domain specific SLR
was not able to find many academic publications of agile. Agile
development has been implemented at DaimlerChrysler [62]
and it was observed that Agile offers flexibility, high-speed
development and high quality. Mueller and Borzuchowski
[28] report experiences in using Extreme Programming (XP)
on an embedded legacy product and they report that TDD and
automation of Unit tests were the essential ingredients for
success.

SP7: Test management: From the above identified solution
proposals it can found that most of the activities are concerned
with the organization of testing and its artifacts. It was also
evident from our interviews that most of the challenges identi-
fied in the case study were more or less related to management
of test activities. There was no study identified that necessarily
concentrates on test management activities related to automo-
tive domain. However, very few articles were found in literature
which describes the activities that test management must
concentrate in order to improve testing which suits this study
context. So this solution proposal was formulated to coordinate
the above proposed solutions. Test management [63] activities
as observed in our study can incorporate the following
activities.

A. Kasoju et al. /Information and Software Technology 55 (2013) 1237-1259 1249

e Test Process management: Manages various activities within
test process such as test planning, test analysis, test build
and test execution. This activity is also applicable when agile
practices are introduced.

e Test artifacts and assets organization: Reuse and maintenance
of test artifacts such as test cases, test versions, test tools,
test environment, test results and test documentation. This
activity can also be termed as test configuration manage-
ment with which change throughout the life cycle of test
activities can be managed.

e Requirements management in accordance to testing: Responsi-
ble to analyze and determine requirements change which
facilitate reasonable adjustment in test schedule and test
strategy and thus improve test cases to fulfill new
requirements.

e Competence management: Responsible to allocate test per-
sonnel with required stock of skills and knowledge neces-
sary to perform the specific testing activity.

e Defect management: Responsible for early detection of
defects that need to be effectively managed and supported
through various stages by different people working together.

6. Step 3: Critically reflect on the evidence and how to use it to
solve problems in the current situation

Value stream mapping (VSM) as a process analysis tool is used
to evaluate the findings of strengths and weaknesses. This tool is
used for uncovering and eliminating waste [23,14]. A value stream
captures all activities (both value added and non-value added) cur-
rently required to bring a product through the main process steps
to the customer (end-to-end flow of the process). Value adding
activities are those that add value to a product (e.g. by assuring
the quality of a feature), while non-value added refers to waiting
time. The biggest delays or bottlenecks (i.e. non-value added) in
a value stream provide the biggest opportunity for improving the
process capability [23]. The motivation behind choosing VSM is be-
cause it is an efficient tool, with which we could walk through the
testing process to understand workflow and focus explicitly on
identifying waste with an end-to-end perspective [16]. It provides
managers the ability to step back and rethink the entire process
from a value creation perspective [14]. Furthermore, it comes nat-
ural for the automotive industry and is easily accepted as an
improvement approach there, as it originates from the automotive
domain (see e.g. Toyota Product Development System [22]).

A value stream map is done in two steps. In the first step the
current activities are mapped using the notation in Fig. 3, distin-
guishing value adding and non-value adding activities. Through
burst signals wastes and inefficiencies are indicated. Seven wastes
are commonly defined for software engineering (see Table 12)
[22,23]. Thereafter, a future state map is drawn which incorporates
improvements to the identified wastes. Fig. 1 shows how the infor-
mation obtained from the test process assessment done in the case
study maps to the value stream activities.

Process-step

6.1. Current state map

We performed a process activity mapping with which we visu-
alized various activities carried out within test process. This sec-
tion presents the current value stream map, which provides an
overview of wastes identified in VSM and the interviews. The val-
ues created by the process are identified for various team sizes
which are presented in Table 10 (definition of value) and Table
11 (overview of values in the process).

The non-value adding activities are identified in the current va-
lue stream of test process as shown in Fig. 4 in order to see where
improvements are needed.

The current state map of the test process revealed all seven
kinds of wastes as they are defined in [23] in the context of lean
software development/value stream mapping. The seven kinds of
wastes identified are partially done work, extra processing, hand-
offs, task switching, relearning, delays and defects (numbered as
W1-W?7) (see Table 12 for waste definitions).

These wastes are identified in different activities within test
process which cause rework, increase in waiting times or
inefficient time spent within the entire test activity. Fig. 4
illustrates the mapped out test process and the wastes identified.
However, the issues that occur in other activities (e.g., require-
ments management, etc.) which affect testing are not shown in
the current stream map. The reason behind their cause and their
negative influence on test activities are discussed in the previous
section.

We identified twelve areas (1-12 as shown in Fig. 4) in the test
process where wastes occur. Below is a description of the wastes
that occur in every sub-process as identified in the current stream
map.

Waste identified in sub-process 1: The waste observed in sub-
process 1 is partially done work. The reason for not completing
tests are the lack of planning tests due to lack of test definition
and testing done in haste (C1), ultimately resulting in conduct-
ing tests in an unstructured manner with low test coverage.
This is amplified by unclear requirements.

Wastes identified in sub-process 2: In this process we identified
the wastes “extra features” and “handoffs”. Extra features that
are at times removed from the system prior to release, even
though they were implemented, e.g. due to volatile and unclear
requirements (C03). However, testing is also performed on such
features/functions. This waste occurs in the form of effort that is
put in writing the test plan and subsequently scheduling tests
and allocating resources. Unclear requirements further require
relearning (W3).

Waste identified in sub-process 3: As identified in the case study,
one general issue in the case organization is resource con-
straints (C04). The wastes that occur here are lack of availability
of testers (W3: Handoffs) and unclear roles and responsibilities
as a part of organization structure,which hinders the formation
of right teams, resulting in task switching (W4).

Process-step

or - 5 or

Activity

Processing Time

Non-Value Adding

| Value Adding Time Time

Activity

Processing Time

Value Adding Time |

Waiting Time

Fig. 3. Value stream mapping notation.

1250 A. Kasoju et al. /Information and Software Technology 55 (2013) 1237-1259

Table 10
Value definition.

ID Value Description

V01 Functionality The capability of the tested product/service to provide functions which meet stated and implied needs when the software is used under

specific conditions

V02 Quality The capability of the software delivered after testing to provide reliability, usability and other test attributes

V03 Internal Represents proper integration of both products features tested for and test process deployment for better organization of critical
Efficiency complexities within the testing activity with respect to time, cost and quality

V04 Process Value Quality of entire test process in installing/upgrading/receiving the tested artefact with respect to time, cost and quality

V05 Human Capital Refers to the stock of skills and knowledge embodied in the ability to perform labor so as to produce economic value with the testing being

Value done
Table 11
Value.
Strength Small Large Description Value
team team added
Less documentation Vv More time is spent on delivering functionality Vo1
Basic/unit test v Vv Enables to deliver quality functionality Vo1
Integration test Vv Incorporates efficient way of testing by detecting more defects in less time V01, VO3
Test environment depicts target Vv V4 Better deployment of test process with test environment Vo3
environment
Experience based testing V4 Incorporates quality aided by tester’s skill and knowledge V02
Exploratory testing/session-based test Vv Compatible to the project requirements and aids defect prevention. V02, V03
management
Testing tools v Better organization of test activities V03
Continuous integration Vv More functionality Vo1
Iterative development and testing Vv Vv Better functionality and quality V01, V02
Roles and responsibilities v Flexible roles and responsibilities refers that various stock of skills and knowledge V05
used for testing
Verification activities (information code Quality incorporation V02
reviews)
Reuse v Test artefacts from previous releases are organized and reused V03

Waste identified in sub-process 4: Work is not moving forward
and gets delayed (W1: partially done work/W6) due to that cus-
tomer and development organization require much time to
negotiate candidate requirements for the current release. It is
observed that this process repeats itself numerous times involv-
ing several interactions with the customer since no one has the
same view as others on the requirements (C03). In order to
write test cases for the requirements, there must be a stable
and detailed set of requirements to design and analyze the tests
for the next release.

Waste identified in sub-process 5: The delay here again occurs in
form of long waiting times (WO06: Delays) for eliciting validation
requirements (C03) to finalize a checklist of test cases to be per-
formed in the test activity. The test cases from the previous
releases are sometimes not updated. This takes away lot of time
and effort to be spent on rewriting (W5: relearning) the
requirements of the previous version and including those test
cases in the current release. Lack of automation in test case gen-
eration is also a reason for this delay as testing is rework as long
as it is not automated (related to testing tools, C07).

Waste identified in sub-process 6: Documentation regarding test-
ing is not always maintained as discussed in challenge C10 ear-
lier. The test cases from the previous release are not always
updated to the test case repository which means undocu-
mented test artifacts (W1: Partially done work). Some of these
missing test artifacts can put the testing activity into a critical
situation, which ends in repeating the entire testing again.
Wiaste in sub-process area 7: Some projects need test equipment
to perform testing. The test equipment from the customer is not
available for tests on time (W3: Handoffs). However, this waste
is reduced in some cases where the test environment used in
the previous releases is saved and maintained for the later ver-
sions of the product. As identified in challenge C7, there is no
specific reason for this negligence.

Waste in sub-process area 8: All the test activities carried out in
the case organization are managed using different tools, which
are usually meant to save time. But in practice these tools do
not serve this purpose. Instead management and mapping of
test artifacts using these tools consume more resources and
sometimes redundancy creating unnecessary complexity. A
unified tool which can manage and organize all the test activi-
ties for automotive domain is not available which makes it a
challenge (C7) and thus creating a waste called handoffs
(W3), which is related to availability of people, equipment, etc.
Waste in sub-process area 9: Testing is not done as a parallel
activity with development (C09). Tracking defects in the end
consumes time and money which appears to be a burden on
testers leading to huge delays (W6). Verification activities,
which support early defect detection, such as inspections and
code reviews are not used by most of teams. Another kind of
waste (W4: Handoffs) that occurs here can be due to a lack of
availability of testers and training for implementing tests using
specific testing techniques, such as exploratory tests or experi-
ence based testing. Exploratory and experience based testing
are based on testers’ intuition and skills (see C04). Even though
such testing techniques are considered a strength within the
case organization, only a limited number of test personnel
who have the competence to perform such activities are avail-
able right now. This in turn leads to delays in the testing when
such experienced testers quit or are shifted to another project.
However, documentation on how to use testing techniques
and tools are not updated continuously (sometimes not avail-
able), and hence cannot be trusted to perform testing (C10).

Waste in sub-process area 10: The quality attributes that need to
be incorporated in the tested artifact are not properly elicited
since the inception of the project (W1: Partially done work),
which leads to poor quality product. Some of the interviewees
feel that the testing is being done to ensure quality of basic

A. Kasoju et al. /Information and Software Technology 55 (2013) 1237-1259

g T ean

1251

GEET amaa

Create Test plan
Plan test software test review & Zlijgs
plan approval
Processing time
| A |wa
(1) Wi: Co1 (2) W3: C05. (3)W3, W4:C04
W2.C03
LI Test case)
Design test cases for T
requirements b ¥
(8)W1:C03 (5) We: C03 (6) W01:C10

W5:C07

Write test
scripts for test
cases

Build tests

environment

Test

Perform basic/

setup unit test

(7) wa:Co2, co7

Y)
Execute Integration System Exploratory Regression |
tests tests test test test
(8) W3:C07 (9) W7:C09, W3:C04, C10
Report Analyze sg;t‘;,a;fe Approval of
errors test results test fepons test repon

| L]

(10) w1:cos. we:Co4

(11) ws:coa, cos (12) Wi, W7:C09

Fig. 4. Current state map.

Table 12
Waste definition.

ID Waste Description

WO01 Partially done work Test activities which are not completely done such as unfixed defects, undocumented test artefacts or not testing at all

W02 Extra features Testing features/functionalities that are not required by the customer

W03 Relearning Misinterpretation caused due to no documentation of any activity that negatively affect testing. Ex: misinterpreted requirements

W04 Handoffs Lack of availability, knowledge or training in adopting compatible test techniques, data, tools or environment

WO05 Task switching Unclear roles and responsibilities as a part of organization structure with respect to testing which does not result in forming right teams
W06 Delays Delays that occur to elicit clear validation requirements, approvals and other resources to perform test activities

W06 Defects Testing in the end, no early defect detection or prevention activities and lack of verification activities such as code reviews, inspections

functionality only, and thus one cannot ensure the reliability of
the delivered system (C08). There is a lack of quality standard that
is essential to measure the level of quality and to be able to com-
pare test results with previous release. The analysis of test results
helps to redefine the quality improvements that need to be
implemented in the next versions of the product. Some employ-
ees also reported long delays (W6: Delays) for having to wait for

the developers to fix the defects after they are reported. This wait-
ing time seems to be long when persons responsible for the code
are shifted to other projects as soon as they finished their work in
the previous project (see C04). This could be solved if the testing
is performed parallel to development.

Waste in sub-process area 11: Due to requirements volatility
(C3), the requirements specifications are not documented well,

1252 A. Kasoju et al. /Information and Software Technology 55 (2013) 1237-1259

which leads to misinterpretations of requirements. Effort and
resources put in developing and testing misinterpreted require-
ments is not useful (W3: Relearning). Then after a series of
interactions with customer the necessary requirements are elic-
ited and developed, which leads to unnecessary rework and
task switching (W5).

Waste in sub-process area 12: The defects detected in previous
releases are sometimes not fixed (W1: partially done work),
which is agreed by the customer. But these defects are difficult
to track in the next releases as the system evolves. Lack of ver-
ification activities and early defect prevention activities (W7:
Defects) creates a mess before release, with which some of
the unfixed defects in the current release are left for the next
release. This process repeats itself many times during each
release. As the functionality grows there are many unfixed
defects left behind, which are hard to trace in such complex
systems.

A summary of wastes and their relation to challenges is pro-
vided in Table 13.

6.2. Future state map

It is apparent from the results that other processes, especially
requirements gathering and documentation, impact testing in a
negative manner and led to many wastes. We found that most
commonly perceived wastes, i.e., W3: handoffs and W1: partially
done work were occurring due to long delays in eliciting clear
and stable requirements for testing. The identified challenges in
the test process report that continuous inflow of requirements
led to reduction in test coverage and increase in the amount of
faults due to late testing. The faults that arose in the current re-
lease are sometimes not fixed and delivered, due to which the
same faults repeat in the next releases, but becomes hard and
costly to trace and fix. Hence the testing approach currently used
does not suit the continuous flow of requirements, indicating the
necessity of shifting to new approach, which can manage and orga-
nize changes, and at the same add quality.

The future state VSM is shown in Fig. 5 and is agile in nature.
The process shown represents one iteration.

We recommend the use of agile practices (SP6) and test man-
agement (SP7), which helps to utilize the time of testers more effi-
ciently through parallelization of development and testing,
incepting early fault detection, and short ways of communication.
Agile can also help in achieving high transparency in terms of
requirements for testers since the test planning is done for all iter-
ations. However, test plans can be updated in detail for every iter-
ation. In particular agile practices (SP6) emphasize a requirements
backlog and the estimation of resources for iterations to keep them
accurate and flexible. At the same time there is a need to document
the test plan, as this is a pre-requisite to be able to efficiently reuse
test artifacts, and to align testing with requirements activities (pro-
posed in SP7 [63]) for each iteration. To elicit requirements user
stories were found useful (see SP1 [29]). Abstraction levels might
be of importance as when prioritizing requirements on one
abstraction level, the prioritization has to be propagated to the
other levels (see SP1 [30]).

A flexible test process is found to be a strength in the projects,
especially in small teams. Most of time testing is done in a way that
more functionality is delivered (Value: V1) rather than quality.
However, some of the test techniques, such as exploratory and
experience based testing, which totally rely on testers abilities
and skills, are found to add quality to the test process implemented
in the automotive domain. This study also implies that challenges
with respect to resource constraints, such as difficulty in finding
practitioners with right competence in testing who have expertise

and experience in performing testing specific to automotive do-
main, act as a barrier to quality incorporation. The wastes identi-
fied in this context can be long delays or lack of people to
perform testing activities (W3, W4). Almost 6 out of 8 studied pro-
jects lack dedicated testers.

The use of quality standards/measures (SP3) could help to arrive
at a shared view of testing, and hence communication and knowl-
edge sharing becomes easier, which is important when the number
of people doing testing is scarce. An agile test approach may not
automatically lead to quality incorporation, but with agile prac-
tices in place this can be possible (see [62] in SP6). The interview
with the Scrum master in this study clearly indicated that when
properly employed agile methods are a strength, not only provide
flexibility and agility, but also quality.

The challenges related to time and cost constraints and testing
techniques (C02), as well as tools and environment (C07) make it
obvious that writing good tests is challenging. Automating tests
could save time and improve value and benefits in testing. As doc-
umented in SP4 a variety of tools and approaches have been pro-
posed to automate different types of tests, hence the options are
manifold and which option to choose also depends on comparative
analysis in the given context. To further improve on the situations
teams can try to implement other testing techniques, such as
exploratory testing, which is already used in some projects and
can find defects efficiently. Exploratory testing has been men-
tioned as a strength in Section 4.5.2. Automation of unit tests
and regression tests can facilitate reuse of test cases and also add
value to the end product. In agile development (SP6) test driven
development is aiding in automation of unit tests as automated
tests are written before new functionality is coded. A variety of
tools to support testing, which are already used in the automotive
industry, were identified and suggested based on the SLR (see SP4
in Section 5.1.3).

From this study it is reasonable to say that testing is not as
emphasized as developing new code, which was also identified in
[10]. Testing is given low priority, which does not facilitate knowl-
edge sharing and knowledge transfer in testing as observed from
the interviews. In this regard, competence management can be
considered essential to testing with activities, which can improve
skills and knowledge with respect to testing through knowledge
transfer and sharing (see [32] in SP2). In addition, we believe it
would be better if the required testers can be estimated in the
beginning of the project and allocated in a way that they rotate
and share their knowledge with a multitude of teams. This would
also help them improve the competence level for every iteration
and hence improve testing.

Solution proposals for the identified opportunities were based
on the SLR and interviews (considering the values and benefits
mentioned). The validation of the solution proposals was not
possible in the the scope of this research. However, the suggested
proposals were taken from peer-reviewed literature, which were
validated in industry and also are well in-line with the experience
of using agile in the company investigated in this study. Further-
more, the solution was presented to the practitioners who pro-
vided feedback. The future state process presented already
incorporates their feedback.

7. EBSE Step 4: Evaluate and reflect on the EBSE process

We presented a staged EBSE process, which incorporates sys-
tematic literature review and value stream mapping, and used it
for software process improvement applied to an automotive test
process. In particular, our EBSE process included four steps. First,
we performed a case study to investigate the challenges. Second,
we performed a domain specific systematic literature. Based on

Sebastián Pizard
Highlight

A. Kasoju et al. /Information and Software Technology 55 (2013) 1237-1259 1253

For all iterations

—
A Estimate & Test plan
Test planning X ;ﬂ?g‘:ggm allocate review &
resources approval

For every iteration !

e
Write test
cases for
requirements

l Implement ’ > l : |
e Build tests
1
v

|
; Regression Report Evaluate
test errors test results

Potential

release

P

Fig. 5. Future state map.

that we formulated solutions proposals and linked it to our litera-
ture study findings (see Table 9). Third, we performed a value
stream mapping where we mapped the challenges of the testing
process to the value stream, which are all the actions needed to
bring the product through the main steps of process to the cus-
tomer (see Fig. 4). This showed us the locations in the process
where the waste (as the challenges in the value stream map are
called) were located. We created the future state map that shows
the locations where improvements needed to be made (see
Fig. 5). In the fourth step we reflect on the EBSE process.

As far as we can tell, our approach of integrating systematic
literature review and value stream mapping in an EBSE process is
novel. Both of the techniques are widely applied techniques in
their respective domains, i.e. systematic literature reviews [25]
are widely applied and software engineering research domain
and value stream mapping [16] is a technique to do process
improvement in the lean and automotive domain process improve-

ment. Combining these two approaches can be seen as a good way
to do industry academia collaboration and to transfer academic
knowledge to industry.

However, this approach also has obvious challenges. As can be
seen from this paper the problems experienced by the company
where scattered to several different sub-areas of software engi-
neering. Thus, had we performed a complete systematic literature
review for all these challenges, we would have not been able to
complete this work in reasonable time. Therefore, we performed
a domain specific literature review to find the solutions that had
been applied in the automotive and embedded domain only. Natu-
rally, this leaves our knowledge of possible solutions limited, but it
would have not been humanly possible to complete this work had
we not done so.

A possible solution to this problem would be to use existing lit-
erature surveys as input to the solutions proposals and value
stream mapping. However, the current literature surveys in

Sebastián Pizard
Highlight

1254 A. Kasoju et al. /Information and Software Technology 55 (2013) 1237-1259

software engineering are topic specific rather than problem spe-
cific, and thus we saw no possible way of using them. With topic
specific literature review we mean that the current systematic lit-
erature surveys address questions like “The effect of pair program-
ming on software engineering?” [6], or “What do we know about
software productivity?” [5]. We see that industry would actually
benefit more from problem specific literature surveys as they
should address questions like “Why testing window gets squeezed
and what can we do about it?” or “Why do we have poor customer
communications and how can we improve it?”. Maybe in the fu-
ture performing the later types of systematic literature reviews be-
comes more common if the main goal of the software engineering
research community is to serve industrial needs.

8. Validity threats

A validity threat is a specific way in which you might be wrong
[64] Research based on empirical studies does have threats to con-
sider. Potential threats relevant to this case study are: Construct
validity, external validity and reliability or conclusion validity.

8.1. Construct validity

Construct validity is concerned with obtaining right measures
for the concept being studied. The following actions were taken
to mitigate this threat [20].

e Selection of people for interviews: There is a risk to bias the
results of the case study through a biased selection of intervie-
wees. The selection of the representatives of the company was
done having the following aspects in mind such as process
knowledge, roles, distribution across various hierarchies and
having a sufficient number of people involved (according to
Table 2). Hence, care has been taken to assure variety (across
projects and roles) among selected people, which aided in
reducing the risk of bias.

Reactive bias: There is a threat that the presence of research
worker influences the outcome of the study. There has been a
contract signed by the research worker and the organization
to maintain confidentiality, and each interviewee received a
guarantee for treating their responses anonymously and only
presenting aggregated results.

Correct data Interview: Construct validity also addresses misin-
terpretation of interview questions. Firstly, a mock-interview
was conducted with an employee with the organization in order
to ensure the correct interpretation of the questions. Further-
more, the context of the study is clearly explained (through
mail/in person) before the interview. Member checking was
done for each interview by sending the results to each intervie-
wee to validate them.

8.2. External validity

External validity is the ability to generalize the findings to a
specific context as well as to general process models [20].

e A specific company: One of the potential threats to validity is
that test process at only one company is studied for this case
study. It has been impossible to conduct a similar study at
another organization since this particular case study is aimed
to improve the test processes at the respective organization
only. However, this type of in-depth study gave an insight into
automotive development in general and the findings have been
mapped from the company’s specific processes to general pro-
cesses. Thus, the context of the study and the situation at case

organization are clearly described in detail, which supports
the generalization of the problems identified, allowing others
to understand how the results map to another specific context.
Team size: The domain studied is automotive and embedded
software engineering. The team size is influencing the applica-
bility of the solution and the challenges discussed here, e.g.
small teams are a central practice of working agile [65]. We
would like to get an indication whether our case is typical with
respect to the population of automotive software companies.
Given that we were not finding surveys or studies reporting
team sizes in that domain, we looked into similar domains.
Hence, we extended our search looking at the embedded
domain in general (including avionics, robotics, etc.). According
to the survey presented in [66] the team sizes vary a lot, from
teams with less than 3 people to teams with more than 300
people. The most common cases are sizes of less than three peo-
ple (8 out of 31 cases), team sizes of three to 10 people (11
cases) and sizes of more than 10-30 people (10 cases). For team
sizes in general it was found that the size was 8.16, standard
deviation 20.16 and min-max 1-468 (cf. [67]). The authors do
not report median, but based on the numbers it is certainly less
than the mean. This is because the few very large teams have a
big impact on the mean and on the small team side we cannot
have teams smaller than one person. Also, note the high stan-
dard deviation. Thus, the questions of typical the team size is
similar to questions what is a typically size of a town or a soft-
ware module [68]. They all are very likely to be distributed
according to power law (or Pareto principle), i.e. there are few
large teams/cities/modules and many small teams/cities/mod-
ules. Hence, our team sizes seem to match those of other (but
not all) companies.

The team sizes studied in this case relate to 19 out of 31 cases
reported in the survey by Salo and Abrahamsson [66] (team
sizes less than 10), which indicates that a similar domain works
with smaller teams as well. Regarding the applicability of the
solution (agile test process for automotive) we can only gener-
alize to team sizes studied, and hence for automotive compa-
nies working with smaller teams, or companies breaking up a
very large team into smaller teams.

8.3. Reliability

This threat is concerned with repetition or replication, and in
particular that the same result would be found if re-doing the
study in the same setting [20].

Interpretation of data: There is always a risk that the outcome of
the study is affected by the interpretation of the researcher. To
mitigate this threat, the study has been designed so that the data
is collected from different sources, i.e., to conduct triangulation
to ensure the correctness of the findings. The interviews have been
recorded and the correct interpretations have been validated
through member checking to improve the reliability of data. With
respect to the structure of the results (coding, identification of
challenge areas) the researchers participating in the study re-
viewed the coding and interpretation to avoid researcher bias.
We also presented the results to the studied company, who agreed
to the structuring and the identified results. Company representa-
tives in addition to that reviewed the article to check if the infor-
mation is correct with respect to their experience. Prior to
reviewing the report, we also created a structure of the results as
a mind-map. This mind-map was also used for review/member
checking. We had one of the practitioners do coding as well, to ver-
ify if we would arrive at the same interpretation, which allowed us
to discuss/refine the analysis and hence increase the soundness of
interpretation.

Sebastián Pizard
Highlight

A. Kasoju et al. /Information and Software Technology 55 (2013) 1237-1259 1255

9. Discussion

9.1. RQ1: What are the practices in testing that can be considered as
strengths in automotive domain?

The strengths of the testing were first listed in Section 4.5.2 and
further elaborated in Section 6 where they were mapped general
value producing activities (see Table 11). Working in small agile
teams was considered as a benefit as it reduces the need for docu-
mentation and bureaucracy. Small teams were also perceived to
lead to more iterative development, easier continuous integration
and allowing a better alignment of testing with software require-
ments and design. Furthermore, team size and the use of agile
methods were also linked by the interviewees to the improved
communication that made software testing easier. A prior works
also describe the benefits of small and agile teams in relation to
software testing [69]. Additionally, the importance of good com-
munication has been repeatedly discussed in the software engi-
neering literature [70,71].

The shared role of having the same person to write code and
test for that code was considered as a benefit in a small, but the
viewed was a drawback in large teams. In many cases, there were
no dedicated testers either in small or large teams. Traditionally,
the software testing literature suggests that one should not test
their own programs [72]. However, a survey of unit-testing prac-
tices in industry actually shows that the developers create the unit
test [73] and not by an outside test-organization as suggested for
example in [72]. Furthermore, a case study of three software prod-
uct companies shows a similar low share of dedicated testers [74]
as we have reported in this paper. Our findigs extend the findings
of the prior work by suggesting that the need for dedicated testers
and the question whether one should test their own programs
might be related to the context variable of the team size.

However, also large teams experienced several benefits that
were not identified in small teams. For example large teams had
often experienced people available. This allowed using testers
knowledge and skill and in deciding which test to execute. A recent
work of studying exploratory testing in the industry highlights the
importance of tester’s knowledge [75], as does another study of
test design also coming from the industry [76]. Our finding
strengthens the limited prior evidence of the role of knowledge
in industrial software testing.

Exploratory testing was found to be a strength, which is a good
complement to scripted and automated testing. There is evidence
of benefits of ET from industrial context (cf. [75]), such as being
able to find the most critical defects. Also an experimental compar-
ison between ET and TCT suggests that test cases may not add any
benefits when considering defect detection effectiveness [77].

Large teams also had benefits from better management that
was visible in the reuse of testing artefacts, better organization of
test activities, more organized tool usage, and controlling explor-
atory testing with session based management. So although, consid-
erable benefits were seen stemming from small team and agile
way of working also the large teams had benefits, but they origi-
nated more from traditional management.

9.2. RQ2: What the challenges/bottlenecks identified in testing
automotive systems?

Even though many of the large team benefits came from better
management as pointed out in the previous section, it was also
found that organization and process issues were problematic in
both and large and small teams. Lack of an unified testing process
was found problematic. Similar challenges on general software
process improvement can be found, e.g. people are not aware of

the process or the process is incompatible. We also found haste
in testing that was cause by a squeezed testing window due to de-
lays in software development. The time and cost constraints were
also closely linked to the process challenges, e.g. if a customer is
not able to provide validation requirements then testing is obvi-
ously difficult to scope and manage. In the gray literature procured
by industry consultants, it is reported that such squeezing of the
testing window can be linked backed to the V-model of software
development [78]. Furthermore, stakeholders poor attitudes to-
wards testing are something that has repeatedly been mentioned
in presentation and discussion as the authors have interacted with
several software testing professionals.

Additionally, the human resources constrain to testing was
found in teams without dedicated testing team. Thus, they would
have needed dedicated testing personnel or in general, more per-
sonnel that someone would have had time for creating executing
tests. The same problem was found in prior work investigating
companies where testing was purposefully organized as a cross-
cutting activity rather than relying on specialized testers [74].

We found two types of knowledge related problems in software
testing. First, problems were related to the domain or to the system
under test. In other words, the new testers in the case company
needed an training or experience before they could make useful
contributions. The prerequisite of domain and system knowledge
was particularly linked to exploratory testing that matches recent
findings on exploratory testing [75]. We also found that lack of
appreciation to software had led to lack of knowledge regarding
testing fundamentals. The lack of testing fundamentals has also
been recognized by [79] who indicates that although experienced
industry professionals know basic testing techniques they may
not be able to apply them correctly. Again, our empirical findings
strengthen our knowledge of the problems of industrial software
testing and it seems that lack of company specific knowledge as
well as lack of fundamental testing knowledge are challenges also
in the automotive domain.

Problems related to requirements were mentioned in three
development teams. It is well understood that well specified
requirements form the bases for software testing, but addressing
this problem in practice has until recently received limited atten-
tion in empirical software engineering research [80,81]. In our
case, we found problems related to requirement clarity, volatility
and traceability.

The communication challenges were related either due to lack
of customer interaction regarding to the software requirements
or due interaction of previous project employees who had been
transferred to other projects before testing. It is natural that lack
of customer communication combined with insufficient require-
ments leads to problems in software testing. However, the project
staff turnover also affects testing as the original developers or
other personnel will not be available to answer developers ques-
tions towards the end of the project.

We also found challenges related to testing techniques, tools,
and environment. It is surprising that our company was lacking
the tools of test automation, as one would think that automated
test would be well understood in the embedded domain such as
automotive industry. The lack of tool usage could be traced to
the improper fit between the test automation tools the company
had and the requirements for such tools. Sometimes the company
was even forced to develop their own tools. The problems with the
tools are not surprising as a recent survey indicated that roughly
half of the respondents considered that the current testing tools
available in the market offer a good fit for their needs [82].

Also incorporating quality aspects was considered problematic,
e.g. reliability goals were seen as difficult achieve. Furthermore,
missing or too late definition of quality goals and lack of measures
of quality was perceived problematic. It is not surprising that

1256 A. Kasoju et al. /Information and Software Technology 55 (2013) 1237-1259

Table 13
Waste.
ID Challenges Description
WO1: Partially C01, C03, C08, C09, This waste occurs due to partially done work in terms of test activities such as test plan, requirements, quality
done work C10 incorporation, defect detection and prevention and test documentation
WO02: Extra Co3 This waste occurs due to extra features developed due to lack of requirements clarity, which are otherwise misinterpreted
features

WO03: Relearning C02, C03, C04, Co5,

C07, C10

This waste occurs to lack of availability of test equipment on time, requirements for testing, and test personnel with
required competence in testing, knowledge transfer and knowledge sharing within testing, proper documentation on usage

of test techniques and tools. This waste also occurs when there is no test maintenance activity to save test artefacts

WO04: Handoffs Cco4
within the team

WO05: Task €03, €06, C07
switching

WO06: Delays C03, Co4

WO07: Defects Cc09

This waste occurs due to lack of dedicated testing team or test personnel, which is due to unclear roles and responsibilities
This waste occurs due to rework caused by misinterpreted requirements
Delays in the test process to elicit requirements and allocate resources to perform testing

The waste related to defects occur when there are no early defect detection and defect prevention activities, which
indicates that testing is done in the end

companies face problems in these areas and only in recent years
have light weight methods, which have been industrially validated
been developed to answer such problems [13,83].

Problems related to fixing were also found as it was indicated
that finding defects in the source code is difficult from a complex
system. Other reason for difficult defect detection was a big bang
integration and testing at the end of the project rather than contin-
uous testing and integration during the release.

A dualistic problem was faced with regarding the documenta-
tion of testing. On the one hand it was claimed that documentation
was insufficient. On the other hand it was claimed that there is too
much documentation that does not support software testing activ-
ities in the company, which was partially due to the poor updating
of the documents. These documentation related issues are quite
common in software industry and partly the reason why agile
methods have taken over — when there is no documentation one
does not have to feel disappointed when it is constantly outdated.

9.3. RQ3: What improvements for the automotive testing process
based on practical experiences were suggested in the literature?

For 15 out of 26 challenges we found solutions that address
those challenges in literature on automotive testing. Given that
we scoped the literature review on literature related to automotive
and embedded software engineering, we were not able to identify
solutions for all challenges in the automotive literature. Hence, the
solutions might be available beyond the scope of our review, but
they were not applied in the studied domain. We identified seven
solution proposals based on the literature, which were related to
requirements management, competence management, quality
assurance and standards, test automation and tools, agile incorpo-
ration, and test management. The overview of the solutions is pre-
sented in Section 5.1.3, and the mapping between challenges and
solution references in Table 9.

9.4. RQ4: What is value and waste in the process considering process
activities, strengths and weaknesses identified in EBSE Step 1?

We identified wastes and mapped their locations to the auto-
motive software testing process used in the company. A consoli-
dated view of the wastes and values is presented in Table 13.
The table reveals that many wastes are due to requirements issues,
highlighting the importance of requirements in software testing.
Wastes W2, W3, W5, and W6 are related to requirements issues.
A consequence of this is the recent focus of research on aligning
requirements research with verification research. The importance
of combining both disciplines is, for example, highlighted in [84].

9.5. RQ5: Based on the solutions identified in EBSE Step 2, how should
the process represented by the current value stream map be
improved?

A new process was proposed that incorporates the improve-
ment proposals from the literature review (see Fig. 5). The process
incorporates agile software development, reviews, automation of
tests, as well as continuous defect detection and correction. It
was visible that the process of testing is not only concerned by
the improvements suggested, but also the requirements process
is affected. Overall, we can conclude that it is important to conduct
an impact assessment of the improved process on other parts of
the process to align the improvement efforts. That is, when the
process is updated we have to think about the other process, but
also how the change affects the organization, architecture, and so
forth. In this regard, literature talks about alignment of the aspects
of business, organization, process, and architecture (BAPO), but to
date no solutions for the systematic alignment of those activities
are not available [85]. Hence, we highlight the importance here,
but were not able to provide a solution for the end-to-end process
at this point.

The practitioners reviewed the process, and agreed on its de-
sign, feasibility and also that it has the potential to address the
challenges raised in the company context.

9.6. RQ6: What was working well in using the EBSE process with mixed
research methods and how can the process be improved?

In our research we were facing a situation to improve a process
with scattered problem areas (e.g. requirements, test automation,
communication issues, etc.) and at the same time having an expec-
tation from our industry collaborator to provide a solution for their
problem in a reasonable time. As a consequence we decided to
scope the literature review focusing on automotive software engi-
neering. In a longer term we found that existing literature reviews
would help that are less general, and more problem driven/fo-
cused. We provided two examples, namely, “Why testing window
gets squeezed and what can we do about it?” or “Why do we have poor
customer communications and how can we improve it?”.

Beyond that we also see a need to further extend and learn
about evidence-based approaches building upon the previous re-
search. There are a variety of strategies available to conduct the
steps of the evidence-based process, one way of conducting the
evidence-based process for process improvement has been pre-
sented here. In the future, we would largely benefit from contrast-
ing different strategies and providing evidence of their impact on
the result of e.g. a literature review. This will also help in making
trade-off decisions between effort/time invested in the research,

Sebastián Pizard
Highlight

A. Kasoju et al. /Information and Software Technology 55 (2013) 1237-1259 1257

and the quality of the output, allowing us to elaborate to compa-
nies how our strategies will impact what we propose for them.
Example questions are:

e [s it better to search for articles using search strings, conduct
snowball sampling (looking at references of identified papers
- backward snowballing; or looking at papers citing a paper
identified - forward snowballing)?

e Do we have to find all articles, or is there a good strategy of
sampling so that the overall conclusion of a systematic review
does not change?

e How can we select studies in an unbiased manner efficiently to
solve our research problem?

e How shall we interpret and aggregate the conclusions of differ-
ent studies?

In future studies on EBSE we will track time and effort as this is
an important variable, which is seldom reported (neither by us so
far), but we recognize the need for that to make informed decisions
of what strategy to choose. Literature that can be built upon to an-
swer the above mentioned questions has been presented, e.g.
Zhang et al. [86] evaluate searches in systematic literature reviews,
Jalali et al. [87] compared snowball sampling with database
searches, Ali and Petersen [88] identified paper selection strategies
from a set of identified articles, and [89] present strategies to
aggregate evidence.

10. Conclusions

We used a staged evidence-based process that incorporates case
study, systematic literature review, and value stream analysis to
study the challenges and to create a map of solution proposals
for our case company. These techniques have been widely applied,
but to our knowledge this is the first time they have been used in
combination for solving a problem in a concrete case study. We see
that combining these approaches is a good way to do industry aca-
demia collaboration as it allows studying real industrial problems
with rigorous academic methods and produces a result that is
mapped to the companies current software processes. However,
when conducting this we realized a major challenge in this ap-
proach as well. Often the industry problems are scattered over dif-
ferent areas, e.g. problems affecting a testing process may stem for
example from requirements engineering, knowledge management,
or test environments. Performing a literature study over such a
large area would be a task with huge work load. We solved this
by performing a domain specific literature review where we fo-
cused only on the studies of automotive and embedded domain.
Another solution would be to utilize existing literature reviews.
However, they are currently topic specific rather than problem
specific, which severely restricts using them off-the-shelf. Perhaps
in the future, systematic literature reviews should be made prob-
lem specific, i.e. to help the industry, rather than topic specific,
i.e. helping the researchers and thesis students.

For the automotive test process, we have identified the
strengths and challenges of software testing in automotive soft-
ware testing. We did this with a case study of single company by
studying 11 different development teams of three different depart-
ments. We found that although automotive has its own set of un-
ique challenges, e.g. issues related to testing environment, still
most of the challenges identified in this paper can be linked to
problems reported from other domains as discussed in the previ-
ous section. Although, one could think that automotive domain
would often follow strict and rigorous software development ap-
proaches, e.g. use formally specified requirements and highly
plan-driven software development processes, we found that the

opposite was true. Furthermore, it was found that one of the devel-
opment teams that appeared to be one of the least problematic was
benefiting from agile software development methods. However, it
must be admitted that the larger teams often benefitted from bet-
ter management than the small teams did.

In future work there is a need to apply the evidence based pro-
cess to other process improvement problems. Furthermore, we ob-
served the need to characterize the automotive domain with
respect to state of practice (e.g. regarding team size). Hence, sur-
veys and questionnaires characterizing the domain are needed.

Acknowledgements

We would like to thank all the participants in the study who
provided valuable input in interviews. Furthermore, we thank the
anonymous reviewers for valuable comments that helped in
improving the paper. This work has been supported by ELLIIT,
the Strategic Area for ICT research, funded by the Swedish
Government.

References

[1] B. Kitchenham, T. Dyba, M. Jorgensen, Evidence-based software engineering,
in: ICSE 2004, Proceedings of the 26th International Conference on Software
Engineering, 2004, IEEE, 2004, pp. 273-281.

[2] K. Petersen, R. Feldt, S. Mujtaba, M. Matsson, Systematic mapping studies in
software engineering, in: Proceedings of the 12th International Conference on
Evaluation and Assessment in Software Engineering (EASE 2012), British
Computer Society, 2008, pp. 71-80.

[3] B. Kitchenham, Procedures for Performing Systematic Reviews, Tech. Rep. TR/
SE-0401, Department of Computer Science, Keele University, ST5 5BG, UK,
2004.

[4] B.A. Kitchenham, E. Mendes, G.H. Travassos, Cross versus within-company cost
estimation studies: a systematic review, IEEE Transaction on Software
Engineering 33 (5) (2007) 316-329.

[5] K. Petersen, Measuring and predicting software productivity: a systematic map
and review, Information and Software Technology 53 (4) (2011) 317-343.

[6] J. Hannay, T. Dybda, E. Arisholm, D. Sjgberg, The effectiveness of pair
programming: a meta-analysis, Information and Software Technology 51 (7)
(2009) 1110-1122.

[7] K. Grimm, Software technology in an automotive company - major challenges,

in: Proceedings of the 25th International Conference on Software Engineering,

May 3-10, 2003, Portland, Oregon, USA, 2003, pp. 498-505.

D. Sundmark, K. Petersen, S. Larsson, An exploratory case study of testing in an

automotive electrical system release process, in: 6th IEEE International

Symposium on Industrial Embedded Systems (SIES), 2011, Vasteras, Sweden,

15-17 June, 2011, 2011, pp. 166-175.

[9] A. Pretschner, M. Broy, LLH. Kriiger, T. Stauner, Software engineering for
automotive systems: A roadmap, in: International Conference on Software
Engineering, ISCE 2007, Workshop on the Future of Software Engineering, FOSE
2007, May 23-25, 2007, Minneapolis, MN, USA, 2007, pp. 55-71.

[10] E. Bringmann, A. Kramer, Model-based testing of automotive systems, in: First
International Conference on Software Testing, Verification, and Validation,
ICST 2008, Lillehammer, Norway, April 9-11, 2008, 2008, pp. 485-493.

[11] R.Feldt, R. Torkar, E. Ahmad, B. Raza, Challenges with software verification and
validation activities in the space industry, in: Third International Conference
on Software Testing, Verification and Validation, ICST 2010, Paris, France, April
7-9, 2010, pp. 225-234.

[12] L. Karlsson, A.G. Dahlstedt, B. Regnell,].N. och Dag, A. Persson, Requirements
engineering challenges in market-driven software development - an interview
study with practitioners, Information & Software Technology 49 (6) (2007)
588-604.

[13] B. Regnell, R. Svensson, T. Olsson, Supporting roadmapping of quality
requirements, Software, IEEE 25 (2) (2008) 42-47.

[14] S. Mujtaba, R. Feldt, K. Petersen, Waste and lead time reduction in a software
product customization process with value stream maps, in: 21st Australian
Software Engineering Conference (ASWEC 2010), 6-9 April 2010, Auckland,
New Zealand, 2010, pp. 139-148.

[15] P. Runeson, M. Host, Guidelines for conducting and reporting case study
research in software engineering, Empirical Software Engineering 14 (2)
(2009) 131-164.

[16] H.L. McManus, Product Development Value Stream Mapping (PDVSM) Manual,
Tech. rep., Center for Technology, Policy, and Industrial Development,
Massachusetts Institute of Technology, 77 Massachusetts Avenue,
Cambridge, USA (September 2005).

[17] Y. Cai, J. You, Research on value stream analysis and optimization methods, in:
WiCOM’'08, 4th International Conference on Wireless Communications,
Networking and Mobile Computing, 2008, IEEE, 2008, pp. 1-4.

[8

Sebastián Pizard
Highlight

Sebastián Pizard
Highlight

Sebastián Pizard
Highlight

1258 A. Kasoju et al. /Information and Software Technology 55 (2013) 1237-1259

[18] R.K. Yin, Case Study Research: Design and Methods, 4th ed., SAGE, London,
2009.

[19] C. Robson, Real World Research: A Resource for Social Scientists and
Practitioner-Researchers, second ed., Blackwell, Oxford, 2002.

[20] K. Petersen, C. Wohlin, The effect of moving from a plan-driven to an
incremental software development approach with agile practices - an
industrial case study, Empirical Software Engineering 15 (6) (2010) 654-693.

[21] M. Khurum, T. Gorschek, M. Wilson, The software value map - an exhaustive
collection of value aspects for the development of software intensive products,
Journal of Software: Evolution and Process, 2012, in press, http://onlinelibrary.
wiley.com/doi/10.1002/smr.1560/abstract.

[22] J.M. Morgan, J.K. Liker, The Toyota product development system: integrating
people, process, and technology, Productivity Press, New York, 2006.

[23] M. Poppendieck, T. Poppendieck, Lean Software Development: An Agile
Toolkit, Addison-Wesley, Boston, 2003.

[24] T. Dyba, T. Dingseyr, Empirical studies of agile software development: a
systematic review, Information & Software Technology 50 (9-10) (2008) 833-
859.

[25] B. Kitchenham, S. Charters, Guidelines for Performing Systematic Literature
Reviews in Software Engineering, Tech. Rep. EBSE-2007-01, Software
Engineering Group, School of Computer Science and Mathematics, Keele
University (July 2007).

[26] G. Park, D. Ku, S. Lee, W. Won, W. Jung, Test methods of the AUTOSAR
application software components, in: ICCAS-SICE, 2009, IEEE, 2009, pp. 2601-
2606.

[27] M. Weber,]. Weisbrod, Requirements engineering in automotive
development: experiences and challenges, IEEE Software 20 (1) (2003) 16-24.

[28] G. Mueller,]. Borzuchowski, Extreme embedded a report from the front line,
in: OOPSLA 2002 Practitioners Reports, ACM, 2002, pp. 1-ff.

[29] S. Islam, H. Omasreiter, Systematic use case interviews for specification of
automotive systems, in: 12th Asia-Pacific Software Engineering Conference
(APSection 2005), 15-17 December 2005, Taipei, Taiwan, 2005, pp. 17-24.

[30] S. Biithne, G. Halmans, K. Pohl, M. Weber, H. Kleinwechter, T. Wierczoch,
Defining requirements at different levels of abstraction, in: 12th IEEE
International Conference on Requirements Engineering (RE 2004), 2004, pp.
346-347.

[31] X. Liu, X. Yan, C. Mao, X. Che, Z. Wang, Modeling requirements of automotive
software with an extended EAST-ADL2 architecture description language, 2nd
International Conference on Industrial and Information Systems (IIS), 2010,
vol. 2, IEEE, 2010, pp. 521-524.

[32] A. Puschnig, R.T. Kolagari, Requirements engineering in the development of
innovative automotive embedded software systems, in: 12th IEEE
International Conference on Requirements Engineering (RE 2004), 6-10
September 2004, Kyoto, Japan, 2004, pp. 328-333.

[33] H. Post, C. Sinz, F. Merz, T. Gorges, T. Kropf, Linking functional requirements
and software verification, in: RE 2009, 17th IEEE International Requirements
Engineering Conference, Atlanta, Georgia, USA, August 31-September 4, 2009,
20009, pp. 295-302.

[34] B. Hwong, X. Song, Tailoring the process for automotive software requirements
engineering, in: AURE’06, International Automotive Requirements Engineering
Workshop, 2006, IEEE, 2006, pp. 2-2.

[35] P. Braun, M. Broy, F. Houdek, M. Kirchmayr, M. Miiller, B. Penzenstadler, K.
Pohl, T. Weyer, Guiding requirements engineering for software-intensive
embedded systems in the automotive industry, Computer Science-Research
and Development (2010) 1-23.

[36] N. Heumesser, F. Houdek, Experiences in managing an automotive
requirements engineering process, in: 12th [EEE International Conference on
Requirements Engineering (RE 2004), 6-10 September 2004, Kyoto, Japan,
2004, pp. 322-327.

[37] S. Lee, T. Park, K. Chung, K. Choi, K. Kim, K. Moon, Requirement-based testing of
an automotive ECU considering the behavior of the vehicle, International
Journal of Automotive Technology 12 (1) (2011) 75-82.

[38] F. Merz, C. Sinz, H. Post, T. Gorges, T. Kropf, Abstract testing: Connecting source
code verification with requirements, in: Quality Information and
Communications Technology, 7th International Conference on the Quality of
Information and Communications Technology, QUATIC 2010, Porto, Portugal,
29 September-2 October, 2010, Proceedings, 2010, pp. 89-96.

[39] M. Conrad, 1. Fey, S. Sadeghipour, Systematic model-based testing of
embedded automotive software, Electronic Notes in Theoretical Computer
Science 111 (2005) 13-26.

[40] M. Lochau, U. Goltz, Feature interaction aware test case generation for
embedded control systems, Electronic Notes in Theoretical Computer Science
264 (3) (2010) 37-52.

[41] O.Biihler,]. Wegener, Evolutionary functional testing, Computers & OR 35 (10)
(2008) 3144-3160.

[42] C. Pfaller, A. Fleischmann, J. Hartmann, M. Rappl, S. Rittmann, D. Wild, On the
integration of design and test: A model-based approach for embedded systems,
in: Proceedings of the 2006 International Workshop on Automation of Soft-
ware Test, AST 2006, Shanghai, China, May 23-23, 2006, 2006, pp. 15-21.

[43] P.M. Kruse,]J. Wegener, S. Wappler, A highly configurable test system for
evolutionary black-box testing of embedded systems, in: Genetic and
Evolutionary Computation Conference, GECCO 2009, Proceedings, Montreal,
Québec, Canada, July 8-12, 2009, 2009, pp. 1545-1552.

[44] J. Wegener, Evolutionary testing techniques, in: Stochastic Algorithms:
Foundations and Applications, Third International Symposium, SAGA 2005,
Moscow, Russia, October 20-22, 2005, Proceedings, 2005, pp. 82-94.

[45] R. Awedikian, B. Yannou, Design of a validation test process of an automotive
software, International Journal on Interactive Design and Manufacturing 4 (4)
(2010) 1-10.

[46] A. Brillout, N. He, M. Mazzucchi, D. Kroening, M. Purandare, P. Rimmer, G.
Weissenbacher, Mutation-based test case generation for simulink models, in:
Formal Methods for Components and Objects - 8th International Symposium,
FMCO 2009, Eindhoven, The Netherlands, November 4-6, 2009. Revised
Selected Papers, 2009, pp. 208-227.

[47] C. Schwarzl, B. Peischl, Test sequence generation from communicating uml
state charts: An industrial application of symbolic transition systems, in: QSIC,
2010, pp. 122-131.

[48] K. Lakhotia, M. Harman, H. Gross, Austin: a tool for search based software
testing for the c language and its evaluation on deployed automotive systems,
in: 2010 Second International Symposium on Search Based Software
Engineering (SSBSE), IEEE, 2010, pp. 101-110.

[49] V. Chimisliu, C. Schwarzl, B. Peischl, From uml statecharts to lotos: A semantics
preserving model transformation, in: Proceedings of the Ninth International
Conference on Quality Software, QSIC 2009, Jeju, Korea, August 24-25, 2009,
2009, pp. 173-178.

[50] P. Runeson, C. Andersson, M. Host, Test processes in software product
evolution - a qualitative survey on the state of practice, Journal of Software
Maintenance 15 (1) (2003) 41-59.

[51] O. Niggemann, A. Geburzi,]. Stroop, Benefits of system simulation for
automotive applications, in: Model-Based Engineering of Embedded Real-
Time Systems - International Dagstuhl Workshop, Dagstuhl Castle, Germany,
November 4-9, 2007. Revised Selected Papers, 2007, pp. 329-336.

[52] B. Schitz, Certification of embedded software - impact of ISO DIS 26262 in the
automotive domain, in: Leveraging Applications of Formal Methods,
Verification, and Validation - 4th International Symposium on Leveraging
Applications, ISOLA 2010, Heraklion, Crete, Greece, October 18-21, 2010,
Proceedings, Part 1, 2010, p. 3.

[53] J. Seo, B. Choi, S. Yang, Lightweight embedded software performance analysis
method by kernel hack and its industrial field study, Journal of Systems and
Software 85 (1) (2012) 28-42.

[54] J.-L. Boulanger, V.Q. Dao, Requirements engineering in a model-based
methodology for embedded automotive software, in: 2008 IEEE International
Conference on Research, Innovation and Vision for the Future in Computing &
Communication Technologies, RIVF 2008, Ho Chi Minh City, Vietnam, 13-17
July 2008, 2008, pp. 263-268.

[55] J. Cha, D. Lim, C. Lim, Process-based approach for developing automotive
embedded software supporting tool, in: ICSEA’09, Fourth International
Conference on Software Engineering Advances, 2009, IEEE, 2009, pp. 353-
358.

[56] T. Farkas, D. Grund, Rule checking within the model-based development of
safety-critical systems and embedded automotive software, in: International
Symposium on Autonomous Decentralized Systems (ISADS 2007), 21-23
March 2007, Sedona, AZ, USA, 2007, pp. 287-294.

[57] EF. Lindlar, A. Windisch,]. Wegener, Integrating model-based testing with
evolutionary functional testing, in: Workshops Proceedings of the Third
International Conference on Software Testing, Verification and Validation, ICST
2010, Paris, France, April 7-9, 2010, 2010, pp. 163-172.

[58] E.M. Clarke, D. Kroening, F. Lerda, A tool for checking ansi-c programs, in:
TACAS 2004, Proceedings of the 10th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, Barcelona, Spain,
March 29-April 2, 2004, 2004 pp. 168-176.

[59] Y. Papadopoulos, C. Grante, Evolving car designs using model-based
automated safety analysis and optimisation techniques, Journal of Systems
and Software 76 (1) (2005) 77-89.

[60] Y. Papadopoulos, M. Maruhn, Model-based synthesis of fault trees from
matlab-simulink models, in: Proceedings of 2001 International Conference on
Dependable Systems and Networks (DSN 2001) (formerly: FTCS), 1-4 July
2001, Goteborg, Sweden, 2001, pp. 77-82.

[61] C. Ferdinand, R. Heckmann, H. Wolff, C. Renz, O. Parshin, R. Wilhelm, Towards
model-driven development of hard real-time systems, Model-Driven
Development of Reliable Automotive Services (2008) 145-160.

[62] P. Manhart, K. Schneider, Breaking the ice for agile development of embedded
software: An industry experience report, in: 26th International Conference on
Software Engineering (ICSE 2004), 23-28 May 2004, Edinburgh, United
Kingdom, 2004, pp. 378-386.

[63] L. Gao, Research on implementation of software test management, 3rd
International Conference on Computer Research and Development (ICCRD),
2011, vol. 3, IEEE, 2011, pp. 234-237.

[64] J. Li, N.B. Moe, T. Dyba, Transition from a plan-driven process to scrum: a
longitudinal case study on software quality, in: Proceedings of the
International Symposium on Empirical Software Engineering and
Measurement, ESEM 2010, 16-17 September 2010, Bolzano/Bozen, Italy,
2010, pp. 1-10.

[65] K. Petersen, C. Wohlin, A comparison of issues and advantages in agile and
incremental development between state of the art and an industrial case,
Journal of Systems and Software 82 (9) (2009) 1479-1490.

[66] O. Salo, P. Abrahamsson, Agile methods in european embedded software
development organisations: a survey on the actual use and usefulness of
extreme programming and scrum, IET Software 2 (1) (2008) 58-64.

[67] P.C. Pendharkar,].A. Rodger, The relationship between software development
team size and software development cost, Communications of the ACM 52 (1)
(2009) 141-144.

A. Kasoju et al. /Information and Software Technology 55 (2013) 1237-1259 1259

[68] P. Louridas, D. Spinellis, V. Vlachos, Power laws in software, ACM Transactions
on Software Engineering Methodology (2008) 18(1).

[69] V. Kettunen, J. Kasurinen, O. Taipale, K. Smolander, A study on agility and
testing processes in software organizations, in: Proceedings of the 19th
International Symposium on Software Testing and Analysis, ISSTA '10, ACM,
New York, NY, USA, 2010, pp. 231-240. doi:10.1145/1831708.1831737http://
doi.acm.org/10.1145/1831708.1831737.

[70] H. Saiedian, R. Dale, Requirements engineering: making the connection
between the software developer and customer, Information and Software
Technology 42 (6) (2000) 419-428.

[71] L. Layman, L. Williams, D. Damian, H. Bures, Essential communication
practices for extreme programming in a global software development team,
Information and Software Technology 48 (9) (2006) 781-794.

[72] 1. Burnstein, Practical Software Testing: A Process-Oriented Approach,
Springer-Verlag, New York Inc, 2003.

[73] P. Runeson, A survey of unit testing practices, Software, IEEE 23 (4) (2006) 22—
29.

[74] M.V. Mdntyl4,]. Itkonen,]J. livonen, Who tested my software? Testing as an
organizationally cross-cutting activity, Software Quality Journal 20 (2012)
145-172, http://dx.doi.org/10.1007/s11219-011-9157-4.

[75] J. Itkonen, M. Mantyld, C. Lassenius, The role of the tester’s knowledge in
exploratory software testing, IEEE Transactions on Software Engineering
(99)(2012), http://dx.doi.org/10.1109/TSE.2012.55.

[76] A. Beer, R. Ramler, The role of experience in software testing practice, in:
SEAA’08, 34th Euromicro Conference on Software Engineering and Advanced
Applications, 2008, IEEE, 2008, pp. 258-265.

[77]]J. Itkonen, M. Mdntyl4, C. Lassenius, Defect detection efficiency: test case based
vs. exploratory testing, in: Proceedings of the First International Symposium
on Empirical Software Engineering and Measurement (ESEM 2007), 2007, pp.
61-70.

[78] J. Christie, The Seductive and Dangerous »-Model, 2008. <http://
www.clarotesting.com/page11.htm/>.

[79] S.Eldh, H. Hansson, S. Punnekkat, Analysis of mistakes as a method to improve
test case design, in: IEEE Fourth International Conference on Software Testing,
Verification and Validation (ICST), 2011, IEEE, 2011, pp. 70-79.

[80] E. Uusitalo, M. Komssi, M. Kauppinen, A. Davis, Linking requirements and
testing in practice, in: RE’08, 16th IEEE International Requirements
Engineering, 2008, IEEE, 2008, pp. 265-270.

[81] G. Sabaliauskaite, A. Loconsole, E. Engstrom, M. Unterkalmsteiner, B. Regnell, P.
Runeson, T. Gorschek, R. Feldt, Challenges in aligning requirements
engineering and verification in a large-scale industrial context, in:
Requirements Engineering: Foundation for Software Quality, 16th
International Working Conference, REFSQ 2010, Essen, Germany, June 30-
July 2, 2010. Proceedings, 2010, pp. 128-142.

[82] D. Rafi, RD.K. Katam, K. Petersen, M. Mantyld, Benefits and limitations of
automated software testing: Systematic literature review and practitioner
survey, in: AST'08. 7th IEEE 7th Workshop on automated software test, 2012,
IEEE, 2012, pp. 36-42.

[83] J. Vanhanen, M.V. Mdntyl4, J. Itkonen, Lightweight elicitation and analysis of
software product quality goals: A multiple industrial case study, in: 2009 Third
International Workshop on Software Product Management (IWSPM), IEEE,
20009, pp. 42-52.

[84] Z. Alizadeh, A.H. Ebrahimi, R. Feldt, Alignment of requirements specification
and testing: a systematic mapping study, in: Proceedings of the ICST
Workshop on Requirements and Validation, Verification and Testing
(REVVERT'11), IEEE, 2011, pp. 476-485.

[85] S. Betz, C. Wohlin, Alignment of business, architecture, process, and
organisation in a software development context, in: Proceedings of the
International Conference on Empirical Software Engineering and
Measurement (ESEM 2012), Lund, Sweden, September 19-20, 2012, pp. 239-
242.

[86] H. Zhang, M.A. Babar, P. Tell, Identifying relevant studies in software
engineering, Information & Software Technology 53 (6) (2011) 625-637.

[87] S. Jalali, C. Wohlin, Systematic literature studies: database searches vs.
backward snowballing, in: Proceedings of the International Conference on
Empirical Software Engineering and Measurement (ESEM 2012), Lund,
Sweden, September 19-20, 2012, pp. 29-38.

[88] K. Petersen, N.B. Ali, Identifying strategies for study selection in systematic
reviews and maps, in: Proceedings of the International Conference on
Empirical Software Engineering and Measurement (ESEM 2012), Banff,
Canada, September 19-20, 2011, pp. 351-354.

[89] D. Cruzes, T. Dybd, Research synthesis in software engineering: a tertiary
study, Information & Software Technology 53 (5) (2011) 440-455.

http://dx.doi.org/10.1007/s11219-011-9157-4
http://dx.doi.org/10.1109/TSE.2012.55
http://www.clarotesting.com/page11.htm/
http://www.clarotesting.com/page11.htm/

	Analyzing an automotive testing process with evidence-based software engineering
	1 Introduction
	2 Related work
	2.1 Automotive software engineering – characterizing the domain
	2.2 Automotive software testing

	3 Evidence-based software engineering process used in the case study
	4 EBSE Step 1: Case study on strengths and challenges
	4.1 Case study design type
	4.2 Units of analysis
	4.3 Data collection
	4.3.1 Interviewee selection
	4.3.2 Interview design
	4.3.3 Process documentation

	4.4 Data analysis
	4.5 Results
	4.5.1 Testing process
	4.5.2 Strengths and good practices
	4.5.3 Challenges

	5 EBSE Step 2: Identifying improvements through systematic literature review
	5.1 Systematic literature review
	5.1.1 Identification of papers
	5.1.2 Study selection
	5.1.3 Solutions based on systematic literature review

	6 Step 3: Critically reflect on the evidence and how to use it to solve problems in the current situation
	6.1 Current state map
	6.2 Future state map

	7 EBSE Step 4: Evaluate and reflect on the EBSE process
	8 Validity threats
	8.1 Construct validity
	8.2 External validity
	8.3 Reliability

	9 Discussion
	9.1 RQ1: What are the practices in testing that can be considered as strengths in automotive domain?
	9.2 RQ2: What the challenges/bottlenecks identified in testing automotive systems?
	9.3 RQ3: What improvements for the automotive testing process based on practical experiences were suggested in the literature?
	9.4 RQ4: What is value and waste in the process considering process activities, strengths and weaknesses identified in EBSE Step 1?
	9.5 RQ5: Based on the solutions identified in EBSE Step 2, how should the process represented by the current value stream map be improved?
	9.6 RQ6: What was working well in using the EBSE process with mixed research methods and how can the process be improved?

	10 Conclusions
	Acknowledgements
	References

