
Chapter 14
Evidence to Practice: Knowledge
Translation and Di�usion

14.1 What is knowledge translation? . 175
14.2 Knowledge translation in the context of software engineering . . 177
14.3 Examples of knowledge translation in software engineering 180

14.3.1 Assessing software cost uncertainty . 180
14.3.2 E�ectiveness of pair programming . 181
14.3.3 Requirements elicitation techniques . 181
14.3.4 Presenting recommendations . 182

14.4 Di�usion of software engineering knowledge . 183
14.5 Systematic reviews for software engineering education 184

14.5.1 Selecting the studies . 185
14.5.2 Topic coverage . 186

The preceding chapters making up Part I of this book have addressed the
various issues concerned with adapting the practices of the evidence-based
paradigm to the needs of software engineering. In particular, they have de-
scribed the role of a systematic review in amassing and synthesising evidence
related to software engineering topics. So in this, the final chapter of Part I,
we consider what should happen after the systematic review, and in particu-
lar, how the outcomes from a review (the data) can be interpreted to create
knowledge that can then be used to guide practice, to help set standards, and
to assist policy-making.

In other disciplines that make use of systematic reviews, this process of
interpretation for practical use is often termed Knowledge Translation (KT),
although as we will see, there are questions about how appropriate the “trans-
lation” metaphor is. Clearly, the way that KT is performed should itself be
as systematic and repeatable as possible, and it should also reflect the needs
and mores of practitioners, as well as of the di�erent forms of organisational
context within which they work.

In the interpretation of evidence-based practices for software engineering
provided in Section 2.3, Step 4 was described as:

Integrate the critical appraisal with software engineering expertise
and stakeholders’ values.

This essentially describes the role of KT, and while this does occur (we will

173

174 Evidence-Based Software Engineering and Systematic Reviews

examine some examples later in the chapter), the processes used tend to be
rather ad hoc and to lack adequate documentation.

FIGURE 14.1: The pathway from data to knowledge.

Knowledge translation in itself is of course only part of the overall process
of encouraging practitioners and others to make use of the evidence from
a systematic review. Knowledge needs to be disseminated to be useful, and
the processes through which new forms of knowledge become accepted and
adopted by the relevant parts of society has been studied for many years,
with the classic work on this being the book Di�usion of Innovations by
Rogers (2003). The model shown in Figure 14.1 illustrates the sequence of
quite complex processes involved in turning data into something that forms
part of the professional’s “knowledge toolkit”.

Both KT and di�usion are large and complex topics, and we can only
address them fairly briefly here. So, in this chapter we examine how KT is

Evidence to Practice: Knowledge Translation and Di�usion 175

organised in other disciplines; discuss how it might be placed on a more sys-
tematic basis in software engineering; and review a number of examples of
where KT has been performed to provide guidelines about software engineer-
ing practices. We also provide a short discussion of the nature of knowledge
di�usion, and how this may occur for software engineering. Finally, we review
the software engineering knowledge that has emerged from the first ten years
of performing systematic reviews in software engineering and consider how
this might help to inform and underpin better quality teaching, practice and
research—which after all is the purpose of EBSE.

14.1 What is knowledge translation?
While there is quite an extensive literature exploring the concept of KT, we

should observe that it is not the only term used to describe “post-systematic-
review” activities. Other terms that are in use include “Knowledge To Action”
(KTA) and “Knowledge Exchange” (KE), and such words as ‘uptake’ and
‘transfer’ are also used in this context. Part of the reason for the frequent
use of “Knowledge Translation” appears to stem from it being a term used in
the mandate of the Canadian Institutes of Health Research (Straus, Tetroe &
Graham 2009), and because Canadian researchers have authored many papers
on this topic.

A useful definition of KT is that produced by the World Health Organisa-
tion (WHO) in 2005, as:

“the synthesis, exchange and application of knowledge by rele-
vant stakeholders to accelerate the benefits of global and local in-
novation in strengthening health systems and advancing people’s
health” (WHO 2005)

(We might note that this actually refers to the ‘exchange’ of knowledge.)
Other definitions are to be found, with a common thread being the emphasis
on putting the knowledge into use.

The use of guidelines for performing KT so as to produce recommenda-
tions for practice has been investigated extensively for both clinical medicine
and education. Rather confusingly, in the literature, both the procedures for
producing recommendations and the recommendations themselves are apt to
be referred to as guidelines. So in this chapter we will use KT recommenda-
tions for the guidance provided to the eventual users about how to interpret
the outcomes from an individual systematic review. Similarly, wherever we
refer to KT guidelines, these will refer to the set of activities used for deriving
recommendations for practice or policy (KT recommendations), along with
any guidance that might be provided about how to describe them.

An overview of how KT-related guidelines are used in clinical medicine

176 Evidence-Based Software Engineering and Systematic Reviews

is provided by the EU recommendations for drawing up KT guidelines on
best medical practices (Mierzewski 2001). This also reviews the KT guidelines
programmes used in di�erent EU member states.

Within the UK, the National Institute for Clinical Excellence (NICE) has
produced its own KT guidelines (NICE 2009), and these also provide a use-
ful source of descriptions of translation models. International e�orts towards
evaluating KT guidelines produced by di�erent organisations have included
the AGREE II programme for appraisal of KT guidelines (Burgers, Grol,
Klazinga, Mäkelä & Zaat 2003, AGREE 2009) and the assessment of these pro-
cesses for the World Health Organisation (WHO) described in (Schünemann,
Fretheim & Oxman 2006). Together these provide systematic approaches, for
both producing KT recommendations, and also for evaluation of the proce-
dures involved.

As noted earlier, the literature on this topic is extensive, which emphasises
that, for healthcare, the process of translation is complicated by many factors.
For example, Zwarenstein & Reeves (2006) observe that KT is often directed
at producing KT recommendations for a single professional group, whereas
the treatment of patients is likely to involve inter-professional collaboration.
Similarly, Kothari & Armstrong (2011) observe that for KT research in more
general health care, “developing processes to assist community-based organi-
zations to adapt research findings to local circumstances may be the most
helpful way to advance decision-making in this area”.

We should also note that the appropriateness of this terminology has
been challenged. Greenhalgh & Wieringa (2013) argue that the ‘translation’
metaphor is an unhelpful one and that its use “constrains thinking”. Essen-
tially, they argue that this term implicitly creates a model in which the only
form of useful knowledge stems from “objective, impersonal research findings”.
In examining equivalent metaphors from other disciplines they emphasise the
need to also involve such factors as “tacit knowledge of the wider clinical and
social” situation when using such knowledge. In particular, they propose that
a wider set of metaphors should be used, including ones such as “knowledge
intermediation”.

So, what their work highlights is that there are dangers implicit in sim-
ply adopting the ‘translation’ metaphor with its implication of researchers
“handing down” scientifically distilled guidance. More realistically, the pro-
cess of developing guidelines for use should be something that is shared be-
tween researchers and other stakeholders (which reiterates the earlier point
about the use of ‘exchange’ in the definition from the WHO). And, taken to-
gether, what all of these studies also indicate is that systematising KT is a
specific research activity in its own right, and that the process of KT involves
much more than simply supplying the outcomes from systematic reviews to
professionals.

Evidence to Practice: Knowledge Translation and Di�usion 177

14.2 Knowledge translation in the context of software
engineering

In this section we examine how the activities of KT could be interpreted
for software engineering. As a starting point, we have adapted the description
of KT provided by the WHO, quoted in the previous section, as well as the
variation used in Davis, Evans, Jadad, Perrier, Rath, Ryan, Sibbald, Straus,
Rappolt, Wowk & Zwarenstein (2003), in order to define a process of KT for
software engineering as being:

The exchange, synthesis and ethically sound application of
knowledge—within a complex system of interactions between re-
searchers and users—to accelerate the capture of the benefits of
research to help create better quality software and to improve soft-
ware development processes.

The three key elements involved in achieving this are: the outcomes of a sys-
tematic review; the set of interpretations of what these outcomes mean in par-
ticular application contexts; and the forms appropriate for exchanging these
interpretations with the intended audience.

In health care, a widely-cited paper by Graham, Logan, Harrison, Straus,
Tetroe, Caswell & Robinson (2006) refers to this as “knowledge to action” (a
term which we noted earlier). In this, the authors suggest that the process of
KT (or KTA) can be described using a model of two nested and interlocked
cycles that are respectively related to knowledge creation and knowledge ap-
plication. Figure 14.2 shows how this concept can be interpreted for software
engineering (Budgen, Kitchenham & Brereton 2013). The inner knowledge
cycle is concerned with “knowledge creation” (which in the case of software
engineering will be based upon primary studies and systematic reviews). The
outer action cycle “represents the activities that may be needed for knowledge
application”, including the creation and evaluation of both KT guidelines and
KT recommendations produced by using these. This element of the KT pro-
cess is highly-interactive and holistic (Davis et al. 2003), being driven by the
needs of the given topic, and hence evaluation will need to be a key element
in maintaining consistency of practice.

Because of this, the positioning of the elements in the outer cycle should
not be regarded as forming a sequence in the same way as occurs for the
elements of the inner cycle. Rather, the outer cycle describes a set of activities
that may well be interleaved and iterative.

Indeed, the value of Figure 14.2 lies less in its structure than in its identifi-
cation of the various factors involved in performing KT. It also highlights the
point that a transition to an evidence-informed approach to software engineer-
ing can only be achieved through a partnership of researchers, practitioners,
and policy-makers.

178 Evidence-Based Software Engineering and Systematic Reviews

FIGURE 14.2: A knowledge translation model for SE. Reproduced with
permission.

To conclude this discussion of KT, in the book by Khan, Kunz, Kleijnen &
Antes (2011), the authors make some useful observations about the form that
recommendations should have that are as relevant for software engineering as
they are for clinical medicine. In particular, they highlight the following key
points.

• Recommendations should convey a clear message and should be as sim-
ple as possible to follow in practice.

• What possible users “really want to know about recommendations is
how credible (trustworthy) they are”, noting too that ‘credibility of a
recommendation depends only in part on the strength of evidence col-
lated from the review’.

In particular, they suggest classifying any recommendations as being either
strong or weak. They define a strong recommendation as e�ectively forming
a directive to adopt a practice or treatment, whereas a weak recommendation
indicates that a decision about its adoption is something that needs to depend
upon due consideration of other relevant factors.

Another approach to categorising the quality of evidence and strength
of recommendations from a systematic review, again developed in a medical
context, is the GRADE system (Grades of Recommendation, Assessment, De-
velopment and Evaluation), described in (GRADE Working Group 2004). A
discussion and example of using GRADE in a software engineering context
can be found in the paper by Dybå & Dingsøyr (2008b). To employ GRADE
they used four factors: study design; study quality; consistency (“similarity of

Evidence to Practice: Knowledge Translation and Di�usion 179

estimates of e�ect across studies”), and directness (“the extent to which the
people, interventions and outcome measures are similar to those of interest”).

The GRADE scheme specifies four levels for strength of evidence, and
hence of recommendations. In Table 14.1 we provide the GRADE descrip-
tions for each level, and suggest how these might be interpreted in a software
engineering context. As expressed, this allows for the possibility that further
studies may increase the classification assigned to any recommendations.

Evidence-based studies in software engineering are still far from reaching
the level of maturity where strong recommendations can be generated with
any confidence. Indeed, the nature of the e�ects that occur for the creative
processes of software engineering is likely to make the generation of strong
recommendations a relatively rare occurrence, indeed, it is worth noting that
Dybå & Dingsøyr assessed the strength of evidence from their earlier study
on agile methods as ‘very low’.

TABLE 14.1: Strength of Evidence in the GRADE System.
Level GRADE definition SE Interpretation

High Further research is very un-
likely to change our confi-
dence in the estimation of ef-
fect.

Supported by significant re-
sults from more than one
good quality systematic re-
view as well as by expe-
riences from systematically
conducted field studies.

Moderate Further research is likely to
have an important impact
on our confidence in the es-
timate of e�ect and may
change the estimate.

Supported by moderately
significant results from at
least one good quality sys-
tematic review, and by ob-
servational studies.

Low Further research is likely to
have an important impact on
our confidence in the esti-
mate of e�ect and is likely to
change the estimate.

Supported by moderately
significant results from at
least one good quality sys-
tematic review.

Very
Low

Any estimate of e�ect is very
uncertain.

Only supported by results
from one systematic review.

So, in the next section we examine some examples of where systematic
reviews have led to the creation of some form of recommendations about how
the outcomes might be used, and how the authors have qualified these.

180 Evidence-Based Software Engineering and Systematic Reviews

14.3 Examples of knowledge translation in software en-
gineering

The catalogue of 143 published systematic reviews described in (Budgen,
Drummond, Brereton & Holland 2012) identified 43 reviews that contained
material that could be used to inform teaching and practice. However, only
three of these actually provided any form of recommendations about how the
outcomes from the review could be interpreted in terms of practice. So, in this
section we briefly describe each of the studies, the recommendations that they
made, and how these were derived (where known).

14.3.1 Assessing software cost uncertainty
Cost and e�ort estimation have been studied quite extensively, which is

perhaps not surprising given that they can have a major impact upon project
success (and company profit). The study by Jørgensen (2005) particularly
looked at uncertainty in forecasts, and some of the likely causes for this.

This particular study drew upon primary studies that came from both the
software engineering domain and also a range of other domains that employ
forecasting procedures. The paper presents a set of recommendations (termed
‘guidelines’ in the paper) derived from the analysis. For each recommendation,
the paper identifies both the primary studies that provide supporting evidence
and also identifies where this is discussed. The author also provides a rating
using the same terms that we use above, together with explanations of what
these mean in terms of the evidence provided.

Rather than present the whole set of seven recommendations here, we
simply give two examples from them.

Recommendation 1: “Do not rely solely on unaided, intuition-based pro-
cesses.” This is rated as being strong, based upon the number of studies
favouring it.

Recommendation 2: “Do not replace expert judgement with formal mod-
els.” This is rated as medium.

Indeed, although the author describes the rating process as informal and sub-
jective, it is actually quite systematic and provides an excellent model for use
by other authors.

It is also interesting to note that the conclusions from a more recent sum-
mary of work in this area suggest that most of these recommendations are
probably still valid (Jørgensen 2014b).

Evidence to Practice: Knowledge Translation and Di�usion 181

14.3.2 E�ectiveness of pair programming
The meta-analysis on the e�ectiveness of pair programming described by

Hannay et al. (2009) found wide variation in the form and organisation of the
primary studies included, limiting the confidence with which any recommen-
dations could be produced. There are also many other factors that influence
whether or not such a technique might be considered e�ective, particularly
the expertise of the programmers and the complexity of the task involved.

However, they did suggest that two recommendations were appropriate
when pair programming was being used by “professional software developers”,
and in a context where “you do not know the seniority or skill levels of your
programmers, but do have a feeling for task complexity”. In this context they
suggested that it was appropriate to employ pair programming for either of
the following situations:

• When task complexity is low and time is of the essence

• When task complexity is high and correctness is important

No specific process for deriving these was described, although the analysis of
the data implicitly supported them. In terms of the classifications suggested
in Table 14.1 these should probably be considered as recommendations with
low strength. However, in the future, they could be regraded as moderate if
supporting outcomes from observational studies become available, given that
this was a ‘good’ systematic review.

14.3.3 Requirements elicitation techniques
Our third example is a paper by Dieste & Juristo (2011) that examines

elicitation techniques that are often used for determining system requirements.
They present five recommendations (again, termed ‘guidelines’ in the paper),
and for each one they identify the aggregated (synthesised) evidence that
supports or refutes the recommendation. The authors have not attempted to
assess the strength of these recommendations.

Again, we present two of these without attempting to include all of the
supporting detail. We have also slightly reworded them, mainly to fit the role
of a recommendation.

Recommendation 1: “The use of unstructured interviews is equally as, or
more e�ective than, using introspective techniques (such as protocol
analysis) and sorting techniques.” The authors observe that it is rea-
sonable to assume that this recommendation also applies to structured
interviews.

Recommendation 3: “The use of unstructured interviews is less e�cient
than using sorting techniques and Laddering, but is as e�cient as in-
trospective techniques such as protocol analysis.” Again, the authors
observe that this should also apply to structured interviews.

182 Evidence-Based Software Engineering and Systematic Reviews

One of the benefits (and complexities) of this paper was that it looked at
studies that made comparisons between the di�erent techniques, allowing the
reviewers to provide an element of ranking in their recommendations.

14.3.4 Presenting recommendations
Looking at these three examples, we can see some common threads among

them.

• The authors are experts at performing systematic reviews and have ex-
tensive expertise related to the topic of the review, assisting them with
interpreting the outcomes of the review.

• Their reviews found quite substantial numbers of primary studies, so
that the authors have been able to identify areas where these reinforced
each other (or vice versa).

• They present supporting evidence for their recommendations, in two
cases, directly listing the studies that agree/disagree with the recommen-
dation. They also provide a discussion that explains how the primary
studies support a recommendation (or otherwise).

All three examples also follow the advice of Khan et al. (2011) to keep the
recommendations simple and to provide some indication of how trustworthy
they are (in these cases, by discussing the underpinning evidence).

So, where a review team has the technical expertise to do so, there is scope
to provide at least a basic element of knowledge translation of the review
outcomes, in the form of recommendations. We provide a summary of key
points for doing so in the box below.

Guidelines for Producing Recommendations

• Only do so if you have appropriate technical expertise.

• Only do so if your systematic review is a ‘strong’ one.

• Keep any recommendations simple and easy to follow.

• Identify the studies that support/refute each recommendation.

• Provide a separate derivation, related to the studies.

• Provide an indication of how strong a recommendation is (and what
you mean by this).

• Identify the audience for the recommendation, and, where appropriate,
whether the evidence comes from using practitioners or students as
participants in the primary studies.

Evidence to Practice: Knowledge Translation and Di�usion 183

14.4 Di�usion of software engineering knowledge
Neither innovativeness nor quality will necessarily ensure that new devices

or processes will be successful in being accepted by the communities most
likely to benefit from them. So, even if we can produce strong recommen-
dations that address topics of major importance to the software engineering
community, their adoption still requires the community to be persuaded of
their merits.

This situation is by no means unique to software engineering, and the
terminology that is used at the base of Figure 14.1 is drawn from the ideas of
di�usion research as set out by Rogers (2003). This is based upon the premise
that the process of acceptance of innovative ideas and technologies tends to
follow broadly similar processes, regardless of discipline. The topic overall is a
large one and we can only touch lightly upon it here, where our main concern
is to encourage awareness. The world does not automatically beat a path
to the doorway of the person with a better mousetrap, agricultural practice
or software development process. To gain recognition, that person needs to
ensure that knowledge about their innovation gets to, and is accepted by, the
people who will influence others.

The ‘classical’ di�usion model produced by Rogers recognises five major
‘adopter categories’ who are involved in the process of moving an innovation
into the mainstream. Briefly, these are as follows.

• The innovators are people who like to try new ideas and are willing to
take a high degree of risk in doing so. Communication between them is
a strong element in sharing of new ideas, but it is likely that this will
be across organisations rather than within them.

• The early adopters are opinion formers who have influence within organ-
isations, and so they are the people whose opinion is sought by others
who are considering change.

• The early majority are those who are more cautious than the preceding
two groups, but still tend to be ahead of the average. They take longer
to decide about changing their processes than the early adopters, and
tend to follow rather than lead.

• The late majority are even more cautious, and only join in when they
can see that their peers are taking up a change, and that they might
even be disadvantaged by not doing so.

• Finally, the laggards are apt to be suspicious of change and may have
only limited resources, which may also encourage caution about change.

So generally, the key to successful adoption lies in achieving buy-in from the
people who fall into the first two categories.

184 Evidence-Based Software Engineering and Systematic Reviews

An authoritative study in the field of health care by Greenhalgh, Robert,
MacFarlane, Bate & Kyriakidou (2004), based upon a large-scale systematic
review, suggests a wider and rather more proactive view of the way that
knowledge can be transferred. In particular the authors suggest that it is
useful to distinguish between the following three mechanisms.

1. di�usion where knowledge and awareness spread passively through a
community, largely through natural means

2. dissemination through the active communication of ideas to a target
audience

3. implementation through the use of communication strategies that are
targeted at overcoming barriers, using administrative and educational
techniques to make the transfer more e�ective

For recommendations produced from systematic reviews in software engineer-
ing, all three mechanisms can potentially play a useful role.

Pfleeger (1999) suggests that di�erent adopter categories are motivated by
distinct transfer mechanisms. She introduces the idea of the gatekeeper whose
role is to “identify promising technologies for a particular organisation”. An-
other part of their role is to assess the evidence presented for a new or changed
technology. We should also note that identifying appropriate vehicles for com-
municating with the di�erent gatekeeper roles is important, These vehicles
might be social networks (particularly for innovators), trusted media sources
(for early adopters) and some form of ‘packaging’ (which might be the incor-
poration of recommendations into standards) for the early and late majorities.

An associated issue here is that of risk. For the innovators and early
adopters, taking up a new or changed technology may involve a higher level
of risk. So any presentation of new knowledge has to help them make an as-
sessment of how significant this risk might be in their particular context (and
in exchange, what benefits they might derive).

While we cannot really delve deeper into these issues here, they are impor-
tant ones for systematic reviewers to note. Publication of the outcomes of a
review in respected refereed journals is only the first stage of getting knowledge
out to users. In particular, the knowledge embodied in any recommendations
may need to be spread through such means as social media, professional jour-
nals, and incorporation into standards. Another important vehicle is the use
of educational channels (relating to ‘implementation’), and we address this in
a little more detail in the next, and final, section of this chapter.

14.5 Systematic reviews for software engineering educa-
tion

One way in which software engineering does di�er significantly from other
disciplines that use systematic reviews is in the way that the topics of these are

Evidence to Practice: Knowledge Translation and Di�usion 185

decided. For disciplines such as education, social science, and to some degree,
healthcare, systematic reviews are often commissioned by policy-makers, who
may well work within government agencies. To our best knowledge, there
are so far no instances of systematic reviews in software engineering being
commissioned by either government agencies or industry—this may be partly
because secondary studies are still immature for software engineering, but
also because IT-related decisions are rarely evidence-informed at any level.
So, the available secondary studies do tend to have been motivated more
by the interest of particular researchers than through any e�orts to inform
decision-making.

So, in presenting this ‘roadmap’ to available systematic reviews, the reader
should remember that the distribution of topics is driven by ‘bottom-up’ in-
terest from researchers, rather than ‘top-down’ needs of policy-makers. This
may change in the future but for the present it is the situation that exists for
software engineering.

And of course, even before we have finished compiling such a roadmap, it
is inevitably out of date as new reviews become available.

14.5.1 Selecting the studies
The roadmap provided here is based upon a tertiary study that we per-

formed in 2011, and published as (Budgen et al. 2012). The research question
posed for this was:

What is available to enable evidence-informed teaching for software
engineering?

Although this was posed as an educational question, we did seek to identify any
systematic reviews that could provide knowledge, advice or guidance relevant
to either practice or teaching. We excluded any that were purely concerned
with research issues (and of course, almost all mapping studies).

To identify candidate systematic reviews we used a two-part search proce-
dure, organised as follows.

1. List all systematic reviews found in the three published ‘broad’ ter-
tiary studies that were available to us (Kitchenham, Brereton, Budgen,
Turner, Bailey & Linkman 2009, Kitchenham, Pretorius, Budgen, Brere-
ton, Turner, Niazi & Linkman 2010, da Silva et al. 2011). Together, these
covered the period up to the end of 2009. We also included one paper
that was subsequently known to have been missed by these studies.

2. List the systematic reviews found in five major software engineering
journals between the start of 2010 and mid-2011. While recognising that
this would be incomplete, it was felt that it would identify the majority
of published studies for this period.

Together, this produced a set of 143 secondary studies.

186 Evidence-Based Software Engineering and Systematic Reviews

We then excluded any studies that addressed research trends, those with
no analysis of the collected data and those that were not deemed to be relevant
to teaching. Conversely, we included studies that covered a topic considered to
be appropriate for a software engineering curriculum, using Knowledge Areas
(KAs) and Knowledge Units (KUs) from the 2004 ACM/IEEE guidelines for
undergraduate curricula in software engineering. This left us with 43 secondary
studies.

Our data extraction procedure then sought to categorise these studies
against the KAs and KUs, to extract any recommendations provided by the
authors, and in the absence of these, any that we felt were implied by the out-
comes, since few authors provide explicit recommendations. (As we have seen,
knowledge translation is not a trivial task.) Data extraction was performed by
pairs of analysts using di�erent pairings of the four authors in order to reduce
possible bias.

14.5.2 Topic coverage
Table 14.2 provides a count of the number of studies we categorised against

each Knowledge Area.

TABLE 14.2: Number of Systematic Reviews for Each Knowledge Area
KA code Topic Count
QUA Software Quality 6
PRF Professional Practice 2
MGT Software Management 13
MAA Modeling & Analysis 7
DES Software Design 1
VAV Validation & Verification 7
EVO Software Evolution 2
PRO Software Process 5

Total Studies 43

Within these numbers, there are some substantial groupings for particular
Knowledge Units. In particular, nine of the studies classified as MGT were in
the area of project planning, with a preponderance of cost estimation stud-
ies among these. (As this is an important topic, and one that teachers may
not always be particularly expert in, this can of course be seen as a useful
grouping.)

Fuller details of the studies are provided in Appendix A.

