
Chapter 1
The Evidence-Based Paradigm

1.1 What do we mean by evidence? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Emergence of the evidence-based movement . . . . . . . . . . . . . . . . . . . . 7
1.3 The systematic review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Some limitations of an evidence-based view of the world . . . . . . . 14

Since this is a book that is about the use of evidence-based research practices,
we feel that it is only appropriate to begin it by considering what is meant
by evidence in the general sense. However, because this is also a book that
describes how we acquire evidence about software engineering practices, we
then need to consider some of the ways in which ideas about evidence are
interpreted within the rather narrower confines of science and technology.

Evidence is often associated with knowledge. This is because we would
usually like to think that our knowledge about the world around us is based
upon some form of evidence, and not simply upon wishful thinking. If we go
to catch a train, it might be useful to have evidence in the form of a timetable
that shows the intention of the railway company to provide a train at the given
time that will take us to our destination. Or, rather di�erently, if we think
that some factor might have caused a ‘population drift’ away from the place
where we live, we might look at past census data to see if such a drift really has
occurred, and also whether some groups have been a�ected more than others.
Of course the link between evidence and knowledge is rarely well-defined, as
in our second example, where any changes in population we observe might
arise from many di�erent factors. Indeed, it is not unusual, in the wider world
at least, for the same evidence to be interpreted di�erently (just think about
global warming).

In this chapter we examine what is meant by evidence and knowledge, and
the processes by which we interpret the first to add to or create the second. We
also consider some limitations of these processes, both those that are intrinsic,
such as those that arise from the nature of the things being studied, and of data
itself, and also those that arise from the inevitable imperfections of research
practice. In doing so, we prepare the ground for Chapter 2, where we look
at how the discipline of software engineering interprets these concepts, and
review the characteristics of software engineering that influence the nature of
our evidence—and hence the nature of our knowledge too.

3



4 Evidence-Based Software Engineering and Systematic Reviews

1.1 What do we mean by evidence?
As noted above, evidence can be considered as being something that un-

derpins knowledge, and we usually expect that knowledge will be derived from
evidence through some process of interpretation. The nature of that interpre-
tation can take many forms. For example, it might draw upon other forms
of knowledge, as when the fictional detective Sherlock Holmes draws upon
his knowledge about di�erent varieties of tobacco ash, or about the types of
earth to be found in di�erent parts of London, in order to turn a clue into
evidence. Interpretation might also be based upon mathematical or statistical
procedures, such as when a scientist gathers together di�erent forms of ex-
perimental and observational data—for example, using past medical records
to demonstrate that smoking is a cause of lung cancer. Yet another, less sci-
entific, illustration of the concept is when the jury at a criminal trial has to
consider the evidence of a set of witnesses in order to derive reasonable knowl-
edge about what actually happened. Clearly these di�er in terms of when they
arise, the form of knowledge derived, and the rigour of the process used for
its derivation (and hence the quality of the resulting knowledge). What they
do have in common though, is that our confidence about the knowledge will
be increased if there is more than one source (and possibly form) of evidence.
For the fictional detective, this may be multiple clues; for the clinical analy-
sis it might involve using records made in many places and on patients who
have di�erent medical histories; for the jury, it may be that there are several
independent witnesses whose statements corroborate each other. This process
of triangulation between sources (a term derived from navigation techniques)
is also an important means of testing the validity of the knowledge acquired.

Science in its many forms makes extensive use of these concepts, although
not always expressed using this vocabulary. Over the years, particular scien-
tific disciplines have evolved their own accepted set of empirical practices that
are intended to give confidence in the validity and quality of the knowledge
created from the forms of evidence considered to be appropriate to that dis-
cipline, and also to assess how strong that confidence is. Since this book is
extensively concerned with di�erent forms of empirical study, this is a good
point to note that such studies are ones that are based upon observation and
measurement. Indeed, this is a reminder that, strictly speaking, scientific pro-
cesses never ‘prove’ anything (mathematics apart), they only ‘demonstrate’
that some relationship exists between two or more factors of interest. Even
physicists, who are generally in the best position to isolate factors, and to
exclude the e�ect of the observation process, are confronted with this issue.
The charge on an electron, or the universal gravitational constant, may well
be known to a very high level of precision, and with high confidence, but even
so, some residual uncertainty always remains. For disciplines where it can be
harder to separate out the key experimental characteristics and where (hor-



The Evidence-Based Paradigm 5

rors), humans are involved in roles other than as observers, so the element of
variability will inevitably increase. This is of course the situation that occurs
for many software engineering research studies, and we will look at some of
the consequences in the next chapter.

When faced with evidence for which the values and quality may vary,
the approach generally adopted is to use repeated observations, as indicated
above, and even better, to gather observations made by di�erent people in
di�erent locations. By pooling these, it becomes easier to identify where we
can recognise repeated occurrences of patterns in the evidence that can be
used to provide knowledge. This repetition also helps to give us confidence
that we are not just seeing something that has happened by chance.

The assumption that it is meaningful to aggregate the observations from
di�erent studies and to seek patterns in these is termed a positivist philosophy.
Positivism is the philosophy that underpins the ‘scientific method’ in general,
as well as almost all of the di�erent forms of empirical study that are described
in this book.

FIGURE 1.1: A simple model of knowledge acquisition.

Figure 1.1 shows a simple model that describes how these concepts relate
to one another in a rather general sense. The top row represents how, having
noticed the possible presence of some e�ect, we might begin gathering ob-
servations to create a rather informal model to describe some phenomenon.
This model might well identify more than one possible cause. If this looks
promising, then we might formulate a hypothesis (along the lines that “fac-
tor X causes outcome Y to occur”) and perform some more systematically



6 Evidence-Based Software Engineering and Systematic Reviews

organised studies to explore and test this model, during which process, we
may discard or revise our ideas about some of the possible causes. Finally, to
confirm that our experimental findings are reliable, we encourage others to
repeat them, so that our knowledge is now accumulated from many sources
and gathered together by a process that we refer to as synthesis, so that the
risk of bias is reduced. Many well-known scientific discoveries have followed
this path in some way, such as the discovery of X-rays and that of penicillin.

FIGURE 1.2: Does the bush keep the flies o�?

Since this is rather abstract, let’s consider a simple (slightly contrived but
not unrealistic) example. This is illustrated (very crudely) in Figure 1.2. If
we imagine that, while sitting out in a garden one day in order to enjoy the
summer sunshine, we notice that we are far less bothered by flies when sitting
near a particular bush, then this provides an example of informal observation.
If we get enough good weather (we did say this example was contrived), we
might try repeating the observation, perhaps by sitting near other bushes of
that variety. If we continue to notice the e�ect, then this now constitutes an
informal model. Encouraged by visions of the royalties that could arise from
discovering a natural insecticide, we might then go on to pursue this rather
more systematically, and of course, in so doing we will probably find all sorts
of other possible explanations, or indeed, that it is not really an e�ect at all.
But of course, we might also just end up with some systematically gathered
knowledge about the insect-repellent nature of this plant (or perhaps, of this
plant in conjunction with other factors).

This book is mainly concerned with the bottom two layers of the model
shown in Figure 1.1. In Part I and Part III we are concerned with how knowl-
edge from di�erent sources can be ‘pooled’, while in Part II we provide a
subject-specific interpretation of what is meant by the activities in the middle



The Evidence-Based Paradigm 7

layer. In particular, we will be looking at ways of gathering evidence that go
beyond just the use of formal experiments.

In the next section we examine how the concepts of evidence-based knowl-
edge and of evidence-informed decision-making, have been interpreted in the
20th and 21st centuries. In particular, we will discuss the procedures that have
been adopted to produce evidence that is of the best possible quality.

1.2 Emergence of the evidence-based movement
It is di�cult to discuss the idea of evidence-based thinking without first

providing a description of how it emerged in clinical medicine. And in turn, it
is di�cult to categorise this as other than a movement that has influenced the
practice and teaching of medicine (and beyond). At the heart of this lies the
Cochrane Collaboration1, named after one of the major figures in its develop-
ment. This is a not-for-profit body that provides both independent guardian-
ship of evidence-based practices for clinical medicine, and also custodianship
of the resulting knowledge.

So, who was Cochrane? Well, Archie Cochrane was a leading clinician, who
became increasingly concerned throughout his career about how to know what
was the best treatment for his patients. His resulting challenge to the medical
profession was to find the most e�ective and fairest way to evaluate available
medical evidence, and he was particularly keen to put value upon evidence that
was obtained from randomised controlled trials (RCTs). Cochrane’s highly
influential 1971 monograph “E�ectiveness and E�ciency: Random Reflections
on Health Services” (Cochrane 1971) particularly championed the extensive
use of randomisation in RCTs, in order to minimise the influence of di�erent
sources of potential bias (such as trial design, experimenter conduct, allocation
of subjects to groups, etc.). Indeed, he is quoted as saying that “you should
randomise until it hurts”, in order to emphasise the critical importance of
conducting fair and unbiased trials.

Cochrane also realised that even when performed well, individual RCTs
could not be relied upon to provide unequivocal results, and indeed, that where
RCTs on a given topic were conducted by di�erent groups and in di�erent
places, they might well produce apparently conflicting outcomes. From this,
he concluded in 1979 that “it is surely a great criticism of our profession
that we have not organised a critical summary by speciality or subspeciality,
adapted periodically, of all relevant randomised controlled trials”.

Conceptually, this statement was at complete variance with accepted sci-
entific practice (not just that in clinical medicine). In particular, the role of
the review paper has long been well established across much of academia, with

1
www.cochrane.org



8 Evidence-Based Software Engineering and Systematic Reviews

specialist journals dedicated to publishing reviews, and with an invitation
to write a review on a given topic often being regarded as a prestigious ac-
knowledgement of the author’s academic standing. However, a problem with
this practice was (and still is) that two people who are both experts on a
given topic might well write reviews that draw contrasting conclusions—and
with each of them selecting a quite di�erent set of sources in support of their
conclusion.

While this does not mean that an expert review is necessarily of little
value, it does raise the question of how far the reviewer’s own opinions may
have influenced the conclusions. In particular, where the subject-matter of
the review requires interpretation of empirical data, then how this is selected
is obviously a critical parameter. A widely-quoted example of this is the re-
view by Linus Pauling in his 1970 publication on the benefits of Vitamin C
for combatting the common cold. His ‘cherry-picking’ of those studies that
supported his theory, and dismissal of those that did not as being flawed,
produced what is now regarded as an invalid conclusion. (This is discussed
in rather more depth in Ben Goldacre’s book, Bad Science (2009), although
Goldacre does observe that in fairness, cherry-picking of studies was the norm
for such reviews at the time when Pauling was writing—and he also observes
that this remains the approach that is still apt to be favoured by the purveyors
of ‘alternative’ therapies.)

Finding the most relevant sources of data is, however, only one element in
producing reviews that are objective and unbiased. The process by which the
outcomes (findings) from those studies are synthesised is also a key parameter
to be considered. Ideas about synthesis have quite deep roots—in their book
on literature reviews, Booth, Papaioannou and Sutton (2012) trace many of
the ideas back to the work of the surgeon James Lind and his studies of how
to treat scurvy on ships—including his recognition of the need to discard
‘weaker evidence’, and to do so by using an objective procedure. However, the
widespread synthesis of data from RCTs only really became commonplace in
the 1970s, when the term meta-analysis also came into common use2.

Meta-analysis is a statistical procedure used to pool the results from a
number of studies, usually RCTs or controlled experiments (we discuss this
later in Chapters 9–11). By identifying where individual studies show consis-
tent outcomes, a meta-analysis can provide much greater statistical authority
for its outcomes than is possible for individual studies.

Meta-analysis provided one of the key elements in persuading the medical
profession to pay attention. In particular, what Goldacre describes as a “land-
mark meta-analysis” looking at the e�ectiveness of an intervention given to
mothers-to-be who risked premature birth, attracted serious attention. Seven

2
One of us (DB) can claim to have had relatively early experience of the benefits of

synthesis, when analysing scattering data in the field of elementary particle physics (Budgen

1971). Some experiments had suggested the possible presence of a very short-lived � particle,

but this was conclusively rejected by the analysis based upon the composite dataset from

multiple experiments.



The Evidence-Based Paradigm 9

trials of this treatment were conducted between 1972 and 1981, two finding
positive e�ects, while the other five were inconclusive. However, in 1989 (a
decade later) a meta-analysis that pooled the data from these trials demon-
strated very strong evidence in favour of the treatment, and it is a “Forest
Plot” of these results that now forms a central part of the logo of the Cochrane
Collaboration, as shown in Figure 1.33. With analyses such as this, supported
by the strong advocacy of evidence-based decision making from David Sackett
and his colleagues (Sackett, Straus, Richardson, Rosenberg & Haynes 2000),
clinicians became more widely persuaded that such pooling of data could
provide significant benefits. And linking all this back with the ideas about
evidence, Sackett et al. (2000) defined Evidence-Based Medicine (EBM) as
“the conscientious, explicit and judicious use of the current best evidence in
making decisions about the care of individual patients”.

FIGURE 1.3: The logo of the Cochrane Collaboration featuring a forest plot
(reproduced by permission of the Cochrane Collaboration).

The concept has subsequently been taken up widely within healthcare,
although, as we note in Section 1.4, not always without some opposing argu-
ments being raised. It has also been adopted in other disciplines where empir-
ical data is valued and important, with education providing a good example
of a discipline where the outcomes have been used to help determine policy as
well as practice. A mirror organisation to that of the Cochrane Collaboration is
the Campbell Collaboration4, that “produces systematic reviews of the e�ects
of social interventions in Crime & Justice, Education, International Develop-
ment, and Social Welfare”. And of course, in the following chapters, we will
explore how evidence-based ideas have been adopted in software engineering.

So, having identified two key parameters for producing sound evidence
from an objective review process as being:

• objective selection of relevant studies

• systematic synthesis of the outcomes from those studies

3
We provide a fuller explanation of the form of Forest Plots in Chapter 11. The horizontal

bars represent the results from individual trials, with any that are to the left of the centre

line favouring the experimental treatment, although only being statistically significant if

they do not touch the line. The results of the meta-analysis is shown by the diamond at the

bottom.
4
www.campbellcollaboration.org



10 Evidence-Based Software Engineering and Systematic Reviews

we can now move on to discuss the way that this is commonly organised
through the procedures of a systematic review.

1.3 The systematic review
At this point, we need to clarify a point about the terminology we use

in this book. What this section describes is something that is commonly de-
scribed as a process of systematic review (SR). However, in software engi-
neering, a commonly-adopted convention has been to use the term systematic
literature review (SLR). This was because when secondary studies were first
introduced into software engineering, there was concern that they would be
confused with code inspection practices (also termed reviews) and so the use
of ‘literature’ was inserted to emphasise that it was published studies that
were being reviewed, not code.

Now that secondary studies as a key element of evidence-based software
engineering (EBSE) are part of the empirical software engineer’s toolbox, the
likelihood of confusion seems much less. So we feel that it is more appropriate
to use the more conventional term ‘systematic review’ throughout this book.
However, we do mention it here just to emphasise that when reading software
engineering papers, including many of our own, a systematic literature review
is the same thing as a systematic review.

The goal of a systematic review is to search for and identify all relevant
material related to a given topic (with the nature of this material being de-
termined by the underlying question and the nature of the stakeholders who
have an interest in it). Knowledge about that topic is then used to assist with
drawing together the material in order to produce a collective result. The aim
is for the procedures followed in performing the review to be as objective,
analytical, and repeatable as possible—and that this process should, in the
ideal, be such that if the review were repeated by others, it would select the
same input studies and come to the same conclusions. We often refer to a sys-
tematic review as being a secondary study, because it generates its outcomes
by aggregating the material from a set of primary studies.

Not surprisingly, conducting such a review is quite a large task, not least
because the ‘contextual knowledge’ required means that much of it needs to
be done by people with some knowledge of the topic being reviewed. We will
encounter a number of factors that limit the extent to which we can meet
these goals for a review as we progress through the rest of this part of the
book. However, the procedures followed in a systematic review are intended to
minimise the e�ects of these factors and so even when we don’t quite meet the
aim as fully as we would like, the result should still be a good quality review.
(This is not to say that expert reviews are not necessarily of good quality, but



The Evidence-Based Paradigm 11

they are apt to lack the means of demonstrating that this is so, in contrast to
a systematic review.)

So, a key characteristic of a systematic review is that it is just that, sys-
tematic, and that it is conducted by following a set of well-defined procedures.
These are usually specified as part of the Review Protocol, which we will be
discussing in more detail later, in Chapter 4. For this section, we are concerned
simply with identifying what it is that these procedures need to address. Fig-
ure 1.4 illustrates how the main elements of a systematic review are related
once a sensible question has been chosen. Each of the ovals represents one of
the processes that needs to be performed by following a pre-defined procedure.
Each process also involves making a number of decisions, as outlined below.

FIGURE 1.4: The systematic review process.

What searching strategy will be used? An important element of the re-
view is to make clear where we will search, and how we will search for
appropriate review material. In addition, we need to ensure that we have
included all the di�erent keywords and concepts that might be relevant.
We address this in detail in Chapter 5.



12 Evidence-Based Software Engineering and Systematic Reviews

What material is eligible for inclusion? This relates to both the di�er-
ent forms in which material (usually in the form of the outcomes of
empirical studies) might occur, and also any characteristics that might
a�ect its quality. Indeed, we often have more detailed specifications for
what is to be excluded than for what is to be included, since we want
to ensure that we don’t miss anything that could be in a form that we
didn’t anticipate, or expect to encounter. Again, these issues will be
considered more fully in Chapters 6 and 7.

How is the material to be synthesised? This addresses the analytical
procedures that are to be followed. These may be fairly simple, as we
explain below, or quite complex. Chapters 9, 10 and 11 consider the
relevant issues for a software engineering context.

How to interpret the outcomes of the review? This is not necessarily
a single process, since the outcomes might need to be interpreted di�er-
ently when used in specific contexts. The processes involved are termed
Knowledge Translation (KT), and are still the topic of extensive discus-
sion in domains where evidence-based practices are much more estab-
lished than they are in software engineering. However, in Chapter 14, we
do examine how KT can be applied in a software engineering context.

The point to emphasise though, is that all of these activities involve procedures
that need to be applied and interpreted by human beings, with many of them
also needing knowledge about the topic of the review. While tools can help
with managing the process, the individual decisions still need to be made by
a human analyst. In particular, because there will almost certainly be a wide
variation of potential inputs to a review, it is possible that some of these will
be interpreted di�erently by di�erent people. To minimise the e�ects of this,
systematic reviews are often conducted by two (or even more) people, who
compare results at each stage, and then seek to resolve any di�erences (again
in a systematic manner).

As indicated, because systematic reviews have di�erent forms, the process
of synthesis can also take many forms. (A very good categorisation of the wide
range of forms of synthesis used across those disciplines that employ systematic
reviews is provided in the book by Booth et al. (2012).) At its most simple,
synthesis can consist mainly of classification of the material found, identifying
where there are groups of studies addressing a particular issue, or equally,
where there is a lack of studies. We term this a mapping study, and software
engineering research has made quite extensive use of this form. A value of a
mapping study lies partly in identifying where there is scope to perform a fuller
review (the groups of related studies), and also where there is a need for more
primary studies (the gaps). At the other extreme, where the material consists
mostly of RCTs, or good quality experiments, synthesis may be organised in
the form of a statistical meta-analysis. Meta-analyses do exist in the software
engineering literature, but only in small numbers. Most software engineering



The Evidence-Based Paradigm 13

studies use less rigorous forms (and sometimes forms that are less rigorous
than could actually be used), and again, we will examine this in much more
detail in Chapters 9, 10 and 11.

FIGURE 1.5: The context for a systematic review.

Figure 1.5 illustrates the wider context for a systematic review. So far we
have mainly described the things that a�ect a review, but as we can see, the
review itself also has some quite important roles. One of these is in provid-
ing a context for primary studies. Until the adoption of the evidence-based
paradigm, these were mostly viewed as essentially being isolated studies that
formed ‘islands’ of knowledge. When primary studies are viewed in terms of
their role as inputs to a systematic review, there are two new factors that may
influence the way that they are organised. One is the choice of topic—perhaps
because a review has identified the need for further studies. The other is the
way that primary studies report their results—one of the frequent complaints
from analysts who conduct a systematic review is that important information
is apt to be omitted from papers and reports. So designing and reporting of
primary studies now needs to be more influenced by this role as an input to a
secondary study than was the case in the past. Reviews also influence policies,
standards and decisions about practice—and while this is still less likely to
be the case in software engineering than in disciplines such as education and
clinical medicine, consideration of these aspects should increasingly be a goal
when performing systematic reviews.

The systematic review is the main instrument used for evidence-based
studies and so will be discussed in depth through most of this book, and
certainly in the rest of Part I. So, to conclude this introductory chapter, we



14 Evidence-Based Software Engineering and Systematic Reviews

need to consider some of its limitations too. This is because an appreciation of
these is really needed when designing and conducting reviews as well as when
seeking to understand what the outcomes of a review might mean to us.

1.4 Some limitations of an evidence-based view of the
world

Not surprisingly, there has been a growing tendency for researchers, at
least, to consider that knowledge that has been derived from an evidence-
based process must inevitably be better than ‘expert’ knowledge that has
been derived, albeit less systematically, from experience. And as the preceding
sections indicate, we would to some degree support such a view, although
replacing “inevitably” with the caveat “depending upon circumstances”.

In clinical medicine and in wider healthcare, it has been argued that
evidence-based research practices have become the “new orthodoxy”, and that
there are dangers in blind acceptance of the outcomes from this. Some of the
arguments for this position are set out in a paper by Hammersley (2005). In
particular, he questions whether professional practice can be wholly based on
research evidence, as opposed to informed by it, noting that research findings
do themselves rely upon judgement and interpretation. While many of the ar-
guments focus upon how to interpret outcomes for practice, rather than upon
the research method itself, the appropriateness of this form of research for
specific topics does need to be considered. Even for systematic reviews, the
two well known adages of “to a person with a hammer everything looks like a
nail” and “garbage in–garbage out” may sometimes be apt.

So here we suggest some factors that need to be kept in mind when reading
the following chapters. They are in every sense ‘limitations’, in that they do
not necessarily invalidate specific evidence-based studies, but they might well
limit the extent to which we can place full confidence in the outcomes of a
systematic review.

A systematic review is conducted by people. There is inevitably an el-
ement of interpretation in the main activities of a systematic review: per-
forming searches; deciding about inclusion and exclusion; and making
various decisions during synthesis. All of these contain some potential
for introducing bias into the outcomes. The practice of using more than
one analyst can help with constraining the degree of variability that
might arise when performing these tasks, but even then, two analysts
who have the same sort of background might arrive at a set of joint de-
cisions about which primary studies to include that would be di�erent
from those that would be made by two analysts who come from di�erent



The Evidence-Based Paradigm 15

backgrounds. Both the selection of studies, and also the decisions made
in synthesis, can a�ect the outcomes of a review.

The outcomes depend upon the primary studies. The quality of the
primary studies that underpin a systematic review can vary quite con-
siderably. A review based upon a few relatively weak primary studies is
hardly likely to be definitive.

Not all topics lend themselves well to empirical studies. To be more
specific, the type of empirical study that is appropriate to some topics
may well o�er poorer scope for using strong forms of synthesis than occur
(say) when using randomised controlled experiments. We will examine
this more fully in Part II.

All of these are factors that we also need to consider when planning to perform
a systematic review. And in the same way that a report of a primary study will
usually make an assessment of the limitations upon its conclusions imposed
by the relevant “threats to validity” (we discuss this concept further later),
so a report of the outcomes from a systematic review needs to do the same.
Such an assessment can then help the reader to determine how fully they can
depend upon the outcomes and also how limited or otherwise the scope of
these is likely to be.

In the next chapter we go on to look at the way that systematic reviews
are performed in software engineering, and so we also look at some of these
issues in rather more detail and within a computing context.



This page intentionally left blankThis page intentionally left blank



Chapter 2
Evidence-Based Software
Engineering (EBSE)

2.1 Empirical knowledge before EBSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 From opinion to evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Organising evidence-based software engineering practices . . . . . . . 23
2.4 Software engineering characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Limitations of evidence-based practices in software engineering 27

2.5.1 Constraints from software engineering . . . . . . . . . . . . . . . . . . 27
2.5.2 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Although this chapter is mainly about how evidence-based ideas can be used
in software engineering, we actually begin by examining some prior activities
that helped pave the way for an acceptance of evidence-based thinking. To
do so, we first examine some of the ‘challenges’ that empirical software en-
gineer researchers were already posing, as well as some of the other factors
that helped to make it the right time to introduce evidence-based thinking to
software engineering in the years after 2004. We then describe a few exam-
ples of how evidence-based research has contradicted some widely-held beliefs
about software engineering practices, after which we discuss what the concept
of EBSE implies for software engineering and what the use of a systematic
review might expect to achieve within a software engineering context. Finally,
we examine some limitations that apply to evidence-based practices as used
in software engineering research.

2.1 Empirical knowledge before EBSE
From around the mid-1990s there was a perceptible growth in the use

of empirical studies to assess software engineering practices. In particular,
some of these studies looked more widely at what was happening in software
engineering research, and so we first look briefly at three such studies that
have been quite widely cited, and at what they found.

17



18 Evidence-Based Software Engineering and Systematic Reviews

• Zelkowitz & Wallace (1998) developed a classification of empirical val-
idation forms, and to test this, they used it to categorise 612 papers
published in the three years: 1985, 1990 and 1995. These were taken
from a major conference, ICSE (International Conference on Software
Engineering); an archival journal, (IEEE Transactions on Software En-
gineering); and a ‘current practices’ magazine (IEEE Software). After
removing 50 papers because they addressed topics for which a valida-
tion was not appropriate, they then classified the remaining 562. They
observed that about a third of the papers had no validation at all (al-
though the percentage of these dropped from 36% in 1985 to 19% in
1995), and that a third relied upon informal ‘assertions’ (in e�ect, “we
tried it out on a sample and it worked”). They also noted that “experi-
mentation terminology is sloppy”.

• At around the same time Walter Tichy raised the question “should com-
puter scientists experiment more?” (Tichy 1998), and addressed many of
the fallacies that were apt to be raised in opposition whenever the use
of empirical studies was advocated. He particularly argued that com-
puting in general was su�ciently well established to justify wider use
of empirical validation than was being observed, and also observed that
“experimentation can build a reliable base of knowledge, and thus reduce
uncertainty about which theories, methods and tools are adequate”.

• Somewhat later, Glass, Vessey and Ramesh conducted a series of clas-
sification studies of the ways that research was being conducted in the
three major branches of computing: computer science, information sys-
tems and software engineering. These were based on papers published
in a range of journals over the period 1995–1999. Their consolidated
overview was published as (Glass, Ramesh & Vessey 2004), and showed
that each branch had quite distinct characteristics. Once again though,
based upon a sample of 369 papers, software engineering research meth-
ods were predominantly non-empirical, with 44% of the papers being
classified as being “(non-mathematical) concept analysis” and 17% be-
ing “concept implementation” (loosely interpreted as “we built it and it
worked”).

So, when the idea of employing the evidence-based paradigm in software
engineering research was proposed in 2004 by Kitchenham, Dybå & Jørgensen,
this created considerable interest among researchers. We can suggest several
reasons why this was well-timed.

• Firstly, there was the influence of the concerns raised in the studies of
practice described above. These played an important role in widening
awareness of the poor evidential basis available for software engineering
techniques and practices.

• Secondly, empirical software engineering had also been making an in-
creasing impact upon the academic software engineering community over



Evidence-Based Software Engineering (EBSE) 19

the previous decade or so. How can we tell this was so? Two good indi-
cators are:

– The establishment of a specialist journal (Empirical Software Engi-
neering) in 1996, together with the publication of increasing num-
bers of empirical papers in many other journals.

– The establishment of two successful conference series. The first of
these was the IEEE-sponsored ISESE (International Symposium
on Empirical Software Engineering)—which began in 2002, and in
2006 merged with the Metrics conference to form the ESEM (Em-
pirical Software Engineering & Measurement) series. The second
was the smaller and more informal EASE (Evaluation & Assess-
ment in Software Engineering) series of conferences, which began
in 1996.

Taken together, these helped to promote an interest in, and better un-
derstanding of, empirical studies among researchers, as well as providing
a useful corpus of material for secondary studies.

• A further factor in favour of the acceptance of the concepts of EBSE has
been the growing recognition that the results from individual empirical
studies are often inconclusive, and that such studies are di�cult to repli-
cate successfully (Sjøberg, Hannay, Hansen, Kampenes, KarahasanoviÊ,
Liborg & Rekdal 2005, Juristo & Vegas 2011). Since software engineering
researchers are partly motivated by the goal of providing input to both
software engineering practitioners and also policy-makers, an approach
that o�ers the potential for creating more convincing demonstrations to
these audiences is likely to be favourably received.

The rest of this chapter examines some of the ways in which evidence-
based thinking has begun to influence software engineering research. We be-
gin by looking at a number of examples of where evidence-based studies have
contradicted ‘expert’ opinion and established practice to explain some of the
challenges this approach has created. We then look at how EBSE is organ-
ised; consider some aspects of software and software engineering practices that
influence its e�ectiveness; and finally look at some examples of how evidence-
based studies can provide guidelines for using some specific software engineer-
ing practices.

2.2 From opinion to evidence
Expert opinion and experience are often linked in software engineering.

Techniques that have proved e�ective in one context are apt to be extrapolated



20 Evidence-Based Software Engineering and Systematic Reviews

to others, without this necessarily being appropriate. Expert opinion can also
easily become linked to what might loosely be termed ‘academic dogma’, such
as the belief that something that uses mathematically based formalisms or al-
gorithms will be ‘better’ in some way. For some situations, it is certainly true
that mathematical forms of reasoning are appropriate of course (the design of
compilers is a good example). However, given that software engineering can
be characterised as a ‘design discipline’, the associated non-deterministic na-
ture of many software engineering activities (and the corresponding absence of
‘right’ or ‘wrong’ solutions) means that we need to be careful of overly empha-
sising any assumptions about rigour that the use of mathematical formalisms
can confer. Indeed, and in contrast, one of the strengths of evidence-based
studies is the rigour with which they can be conducted, although this is not
conventionally ‘mathematical’ in its form. Their use of systematic and well-
defined procedures provides an appropriate means for both linking experience
to knowledge and also addressing the non-deterministic nature of software
engineering activities.

One consequence of the formulation of ideas about EBSE has been the
proliferation of published secondary studies over the following decade. A series
of three broad ‘tertiary’ studies (a tertiary study is a secondary study that
performs a mapping study of other secondary studies) identified over 100
published systematic reviews in the period up to 2009 (Kitchenham, Brereton,
Budgen, Turner, Bailey & Linkman 2009, Kitchenham, Pretorius, Budgen,
Brereton, Turner, Niazi & Linkman 2010, da Silva, Santos, Soares, França,
Monteiro & Maciel 2011). Keeping up with this proliferation of secondary
studies and indexing them has proved to be quite a challenge1, but we can
estimate that there have been over 200 secondary studies published in the first
decade of EBSE. Inevitably, some of these have contradicted expert opinion
(or “common wisdom” if you prefer) based on experience and expertise. Here
we briefly examine three examples that highlight particular aspects of the
clashes that can occur between evidence and opinion.
Estimating software development e�ort. Project planning for software

projects, like all planning, is a challenging exercise. Over the years,
algorithmic cost modelling approaches, such as that employed by the
well-known COCOMO model (Boehm 1981) has often been viewed as
the ‘right’ approach to predicting project costs. In part, this may well
be because it is much more tractable to teach about using models than
about using experience when teaching students about software engineer-
ing, and so greater emphasis has been placed upon the former. Anyway,
whatever the reason, this belief is clearly challenged by the findings
of Jørgensen (2004), who, from a set of 15 primary studies comparing
models with expert judgement, found that:

• For one third of them, a formal cost model worked best;
1
We do maintain a database on our website at www.ebse.org.uk, but this is inevitably

always well behind the ‘current’ position.



Evidence-Based Software Engineering (EBSE) 21

• In another third, expert cost estimation was most e�ective;
• The remaining third identified no di�erence between expert judge-

ment and model-based forms.

From this, and from examining similar studies in other disciplines, Jør-
gensen observed that “there is no substantial evidence supporting the su-
periority of model estimates over expert estimates”. He noted that there
were “situations where expert estimates are more likely to be more ac-
curate, e.g. situations where experts have important domain knowledge
not included in the models”. And conversely, that “there are situations
where the use of models may reduce large situational or human biases,
e.g. when the estimators have a strong personal interest in the outcome”.

So, here we see an example of how an evidence-based approach can be used
to resolve the di�erent outcomes from a range of studies with outcomes that
may appear to be contradictory, and can synthesise the results in order to
provide useful guidelines on how to use such techniques.

Our next example again highlights the point that the benefits claimed
for well-known software engineering techniques are not always found to occur
upon closer inspection.

Pair-Programming. The emergence of agile methods for software develop-
ment, and of extreme programming in particular, has popularised the
use of pair programming, with this often being used as a technique out-
side of an agile context. In pair programming, two programmers work
together with a single keyboard, mouse and screen, taking it in turns to
be the ‘driver’ and the ‘observer’ or ‘navigator’. The perceived benefits
include roles such as training of novices, producing better quality code,
and speeding up the development process.
Pair programming does lend itself to experimentation. However, the
range of experiments that have been performed is quite wide, and mak-
ing any form of comparison with ‘solo programming’ is something of a
challenge (it is easier to specify what pair programming involves, but not
quite so easy to do so for solo programming). The meta-analysis of the
outcomes from 18 primary studies reported in Hannay, Dybå, Arisholm
& Sjøberg (2009) demonstrates this very clearly—although with some
caveats about the possible existence of reporting bias2. After looking at
the e�ects of pair programming upon measures of quality, duration and
e�ort, the authors advise that:

“If you do not know the seniority or skill levels of your pro-
grammers, but do have a feeling for task complexity, then

2Reporting bias occurs when we find the outcomes of studies with inconclusive or negative

results do not get published, either because the authors do not think them of interest, or

referees reject the submitted papers because they do not show significant results.



22 Evidence-Based Software Engineering and Systematic Reviews

employ pair programming either when task complexity is low
and time is of the essence, or when task complexity is high
and correctness is important.”

So, this example also shows that while there may be benefits to using a par-
ticular technique, they are unlikely to be universal, nor will they necessarily
be consistent with every claim made for it.

Finally, we look at an example that shows that the benefits claimed for a
technique on the basis of early studies may not be supported when a fuller set
of studies is taken into account.

Inspections. The practice of performing inspections has long been accepted
as being a useful technique for validating software and related docu-
ments. So not surprisingly, e�orts have been made to optimise the bene-
fits, usually by structuring the reading technique, with one of these being
perspective-based reading or PBR (Basili, Green, Laitenberger, Lanubile,
Shull, Sorumgard & Zelkowitz 1996). Early studies of its use suggested
that, when compared to other forms, it was possible to achieve a 35%
improvement when using this approach to inspection.
However, the systematic review performed by Ciolkowski (2009) found
that, when used with requirements documents, there was no significant
di�erence between PBR and any of the ad-hoc code inspection tech-
niques in terms of their e�ectiveness. Further, PBR was less e�ective as
a way of structuring inspections than the use of checklists.
One concern was that many of the studies were e�ectively replications
of the original study that used the same dataset as the original study.
However, one of the independent studies did also find positive results
for PBR, and there are other factors that might explain some of the
variation in results.

In many ways this third example shows that initial claims for the benefits of
new software engineering techniques need to be treated carefully, and that the
developers of a technique may not be the most appropriate people to conduct
such studies, however carefully they try to avoid being biased.

We should add an important caveat here, that systematic reviews (in any
discipline) provide evidence that represents the best knowledge available at a
given point in time. If and when more (and hopefully better quality) primary
studies become available, a later extended systematic review may well be
able to refine and revise the original findings. So we should always view the
outcomes of any systematic review as representing the “best knowledge” that
is currently available, and indeed, one of the tasks in reporting a review is to
assess the quality of the primary studies used, and also the e�ect this may
have upon any conclusions (see Chapter 7).

Two key aims of evidence-based studies are to avoid bias and encourage
objectivity, and in the next section we examine how the procedures of a sys-
tematic review can be organised for use with software engineering topics.



Evidence-Based Software Engineering (EBSE) 23

2.3 Organising evidence-based software engineering
practices

The previous section looked at what an evidence-based approach can tell
us about software engineering practices. In this section we discuss how this is
done, and why this should be able to give us confidence in its objectivity.

In proposing the adaptation of evidence-based practices for use in software
engineering, Kitchenham, Dybå & Jørgensen (2004) suggested that this could
be structured as a five-step process.

1. Convert the need for information into an answerable question.

2. Find the best evidence with which to answer the question.

3. Critically appraise the evidence for its validity (how close it comes to the
truth), its impact (the ‘size’ of the e�ects observed), and its applicability
(how useful it is likely to be).

4. Integrate the critical appraisal with software engineering expertise and
stakeholders’ values.

5. Evaluate the e�ectiveness and e�ciency in the previous steps 1–4, and
seek ways to improve them.

The first three steps are essentially the role of the systematic review, while the
fourth is that of Knowledge Translation (we explained what was meant by KT
in the previous chapter, and discuss KT later in Chapter 14). The fifth is one
of ensuring that the research procedures are themselves subject to constant
scrutiny. (An illustration of this is the use of a systematic process to produce
the revised Guidelines that form Part III of this book.)

Our concern here is with the first three steps. These tasks can be structured
as a set of nine activities, grouped as three phases (note that the phases do
not map directly on to the steps, although the number is the same). This is
illustrated in Figure 2.1—although we should note that this shows a somewhat
idealised model, and that in practice, there is likely to be some iteration
between the di�erent activities. We will not discuss each activity in detail
here, since all of them are described more fully in the following chapters. So
the main task here is to identify what each one involves. Practical guidance
on performing these activities is also provided in Part III.

Phase 1: Plan the review. The first phase addresses the task of designing
how the study is to be performed, with this being documented through
the review protocol. Planning a review involves three important activi-
ties.

1. Specify the research question.



24 Evidence-Based Software Engineering and Systematic Reviews

FIGURE 2.1: Overview of the systematic review process.

2. Develop the review protocol.
3. Validate the review protocol.

We discuss the activities of this phase in more detail in Chapter 4.

Phase 2: Conduct the review. In this phase we put the plan into action.
Phase 2 is very much driven by the research protocol, and any diver-
gences that occur, requiring that we change the plan to reflect unex-
pected or other circumstances, need to be carefully documented.

4. Identify relevant research. We discuss this activity in more depth
in Chapter 5.

5. Select primary studies. A fuller explanation of this activity is pro-
vided in Chapter 6.

While all of the di�erent forms of systematic review that we discuss in



Evidence-Based Software Engineering (EBSE) 25

the next chapter should involve performing the first two activities of
this phase, not all will necessarily undertake the remaining three in full
detail.

6. Assess study quality. We discuss these issues further in Chapter 7.
7. Extract required data. This is discussed in more detail in Chapter

8.
8. Synthesize the data. This is a challenging task that we examine in

much greater detail in Chapters 9, 10 and 11.

Phase 3: Document the review. Reporting about the processes and out-
comes of a review is discussed in Chapter 12.

We should note here that applying evidence-based ideas in software engi-
neering is not necessarily confined to conducting systematic reviews, although
this is the form that has largely been taken so far, and that we focus upon in
this book. In the Further Reading section provided at the end of Part I, we
discuss the study reported by Kasoju, Peterson & Mäntylä (2013) which used
EBSE practices as the means of investigating a particular industry problem
(related to the software testing processes used in the automotive industry).
The important distinction here is that whereas a systematic review forms a
topic-specific application of evidence-based ideas, the approach used in that
study was problem-specific, and employed a multi-stage process involving a
mix of empirical forms (including a systematic review).

2.4 Software engineering characteristics
At this point, it is useful to consider how the review process outlined in

the previous section is influenced by some characteristics of the software en-
gineering discipline—and sometimes by the characteristics of its practitioners
too.

The challenges posed by the characteristics of software were outlined by
Fred Brooks Jr. in one of software engineering’s seminal papers (Brooks Jr.
1987). These are obviously important to any researcher conducting a primary
study, and so clearly do have influence upon a secondary study in terms of the
likely spread of results they create. Here we look at some factors that are in
part consequences of the main characteristics identified by Brooks (invisibility,
changeability, mix of static and dynamic properties) and in part consequences
of the way that the discipline has evolved.

• Primary studies involve active participation. In software engineering it
is common to refer to the people who take part in primary studies as



26 Evidence-Based Software Engineering and Systematic Reviews

participants rather than subjects. This is because they perform active
tasks (coding, reviewing, classifying, etc.) rather than simply receiving
some form of treatment (as occurs in much of clinical medicine). Not
only does this make it impractical to conduct Randomized Controlled
Trials (RCTs) in software engineering, since ‘blinding’ of participants
and experimenters is virtually impossible, it also means that the out-
comes of primary studies may well be quite strongly influenced by the
characteristics of the particular set of participants involved, by the skills
that they have, and by their previous experiences. Like some of the other
characteristics we consider here, this one complicates the task of synthe-
sis. We examine some aspects of this further in Part II when we look at
how primary studies are organized.

• Software engineering lacks strong taxonomies. The terms that we use
are often imprecise, and software engineers are rather prone to create
new terms to describe ideas that may well be closely related to existing
ones. This can complicate searching since we need to consider all pos-
sible forms of terminology that might have been used in the titles and
abstracts of papers. Snowballing may help with this, but essentially it
stems from the constraint of studying procedures and artifacts.

• Primary studies lack statistical power. Because software engineering
studies usually need specialist skills and knowledge, it is often di�-
cult for experimenters to recruit enough participants to provide what
is generally regarded as an acceptable level of statistical power (Dybå
et al. 2006). This in turn reduces the strength of the synthesis that can
be achieved in a systematic review.

• There are too few replicated studies. There may be many reasons for this,
not least the problem of getting a paper describing a replicated study
published, particularly one that is considered to be a close replication
(Lindsay & Ehrenberg 1993). Although this view may be inaccurate, if
researchers think it is so, then they will be reluctant to conduct repli-
cated studies. There is also debate about what exactly constitutes a
‘satisfactory’ replication study (we will examine this issue in Chapter
21). Again, this presents a problem for synthesis in particular.

• Reporting standards are often poor. Many primary studies are reported
in a manner that e�ectively ignores the likelihood that, at some time in
the future, a systematic reviewer will attempt to extract data from the
paper. While this might have been more excusable in the past, that really
is not the case now. Another form of reporting problem is related to our
culture of refereed conferences, which can lead to researchers publishing
more than one paper that uses the same set of results—requiring the sys-
tematic reviewer to take care not to count such studies more than once.
Similarly, some papers also describe more than one experiment, compli-
cating separation of individual studies when the analyst conducting a



Evidence-Based Software Engineering (EBSE) 27

systematic review is performing data extraction. We address reporting
needs for primary studies in Part II.

2.5 Limitations of evidence-based practices in software
engineering

We touched on some factors that constrained the use of the evidence-based
paradigm in Chapter 1. In this section we discuss these in the context of EBSE,
and look at how they may be a�ected by the characteristics of software and
software engineering. We also introduce the concept of threats to validity in
rather more detail.

2.5.1 Constraints from software engineering
We begin by considering how these factors are influenced by the nature of

our discipline, as characterised in the preceding section.

A systematic review is conducted by people. As we identified earlier,
a major risk arising from this aspect is that of bias. This can arise in
various stages, for example when searching using electronic forms, our
choice of search engines and of search terms may favour our finding some
studies and perhaps missing others. (As we mentioned in the preced-
ing section, software engineering does lack strong taxonomies.) Equally,
when searching manually, our choice of journals and conferences may
influence the outcomes. Similarly, our inclusion/exclusion criteria might
lead to bias — for example, in software engineering, replicated studies
are probably less likely to be published than original ones, but may be
available as technical reports. Equally, the analyst needs to be aware
that the common practice of expanding conference papers into journal
papers can easily lead to a study being counted twice. The issue of bias
is discussed quite extensively by Booth et al. (2012) in their discussion
of analysis, where they also discuss some strategies that might be used
to cope with this.

The outcomes depend upon the primary studies. Even when it is sys-
tematic, the main contribution of any review will arise from its synthesis
of the outcomes from the primary studies. For software engineering these
primary studies typically:

• exhibit poor statistical power arising from having small numbers
of participants;

• address a wide variety of research questions;



28 Evidence-Based Software Engineering and Systematic Reviews

• employ a range of empirical forms;
• have a tendency to employ student participants for tasks that might

actually be performed rather di�erently by more experienced prac-
titioners.

These are all factors that impede the production of reliable outcomes
from a secondary study, or at least, constrain the scope of any outcomes.

Not all topics lend themselves well to empirical studies. In software
engineering research we are concerned with the study of artefacts, which
we create, rather than of ‘physical’ entities. Glass et al. (2004) identified
a wide range of forms for evaluation that were used in software engi-
neering, and while we might feel that our discipline could make more
use of empirical evaluation, we need to also recognise that forms such
as ‘concept implementation’ are valid approaches to research, and may
sometimes be more appropriate than empirical studies.

Not only do we create and study artefacts, these are also often being
subject to continuous change and evolution. This turn means that di�erent
studies that make use of a given artefact in some way may actually all be
based upon di�erent versions. This can also apply to our conceptual tools—for
example, the UML (Unified Modeling Language) has gone through a number
of versions, adding new diagrammatical forms as it evolves. So di�erent studies
based on using the UML may not always be directly comparable.

2.5.2 Threats to validity
The concept of limitations upon the rigour of an empirical study, expressed

as threats to validity, is well established for primary studies, and we discuss
them in that context in Part II. However, the concept does apply to secondary
studies too, and indeed, they are often discussed when reporting a systematic
review. The factors that influence the validity of a study are largely those
discussed above, but cast into a slightly di�erent perspective within the struc-
ture of a systematic review. Shadish et al. (2002) identify four major forms
of threat arising for primary studies, and here we briefly discuss how each of
these might be interpreted in the context of a secondary study.

Construct Validity is concerned with how well the design of the study is
able to address the research question. Essentially this relates to the
consistency and comparability of the operationalisation of the outcome
measures as used in the primary studies.

Internal Validity is concerned with the conduct of the study, particularly
related to data extraction and synthesis, and whether there are factors
that might have caused some degree of bias in the overall process.



Evidence-Based Software Engineering (EBSE) 29

Conclusion Validity is concerned with how reliably we can draw conclu-
sions about the link between a treatment and the outcomes of an em-
pirical study (particularly experiments). For a secondary study, we can
therefore relate this to the synthesis element of a systematic review,
and how well this supports the conclusions of the review. Hence for sec-
ondary studies there is little distinction between internal and conclusion
validity.

External Validity is concerned with how widely a cause-e�ect relationship
holds, given variations in conditions. For a secondary study this should
be based upon an assessment of the range covered by the primary studies
in terms of their settings, materials and participants.

Taken together, these provide a framework that can be employed to assess the
possible limitations that apply to the outcomes of a review. They need to be
reported by the systematic review team, mainly because they are the people
who are in the best position to assess whether these factors are likely to have
had any e�ect upon the outcomes, and if so, how significant this might be. In
turn, this knowledge may be important to anyone wanting to make use of the
outcomes in making decisions about practice or policy, as well as to anyone
who might in the future wish to extend and update the review.

But do note that...

None of these issues are likely to make it impossible to conduct a useful
systematic review, although they may well limit its scope and usefulness,
since we are often studying di�erences in practice that have fairly small
e�ects upon the outcomes. However, where possible, it is important to
anticipate the influence of the likely ‘threats’ when writing the research
protocol.



This page intentionally left blankThis page intentionally left blank



Chapter 3
Using Systematic Reviews in
Software Engineering

3.1 Systematic reviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Mapping studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Meta-analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

We conduct secondary studies in order to answer a variety of research ques-
tions, so it is not surprising that we need to adapt the way that such a study
is organised according to the question being addressed. Some reviews seek to
answer questions about software engineering practices (for example, “in what
situations is pair programming likely to be a good strategy to adopt?”); oth-
ers may examine research trends (such as “what have been the ‘hot topics’ in
cloud technology research and how have they changed with time?”); while a
‘broad’ form of review might be used to help determine whether a more fo-
cused review of a topic is feasible—or whether it is first necessary to perform
more primary studies on that topic.

The way that we conduct a secondary study, and in particular, the way
that searching is organised and the choice of procedures used to synthesize the
results, will therefore vary substantially. Indeed, the very concept of ‘synthesis’
is apt to have many interpretations, especially when conducting studies of
research trends, where the reviewers may well choose to include non-empirical
forms of input.

Booth et al. (2012) catalogue a range of forms that are used for organising
secondary studies across a range of disciplines. Since not all of these are very
relevant to software engineering, in this chapter we briefly examine those forms
that software engineers do use, and what they use them for. (Each of these
forms will also be discussed in much greater depth in the following chapters.)
The key forms are as follows.

• Systematic reviews (using both qualitative and quantitative inputs). In
some cases, it is also possible to perform a meta-analysis for a quantita-
tive review.

• Mapping studies (used both for secondary and }tertiary studies).
Note that our use of this terminology does di�er a little from that used in

Booth et al., largely reflecting the way that the use of secondary studies has
evolved in software engineering.

31



32 Evidence-Based Software Engineering and Systematic Reviews

Figure 3.1 shows a simple summary of the roles of, and relationships be-
tween, the di�erent forms. In the rest of this chapter we say a little more
about each of these, and in particular, about the way that each form is used
in software engineering.

FIGURE 3.1: The hierarchy of study forms.

3.1 Systematic reviews
While ‘systematic review’ is often used as a generic term for all types

of review conducted using evidence-based practices, a systematic review is
also a well-defined form of study used to answer a specific research question.
Systematic reviews can be further sub-classified according to whether they
involve synthesizing qualitative or quantitative forms of data. In turn, this
will determine how both data extraction and synthesis need to be organised.
In particular, for a quantitative systematic review it may well make it possible
to perform a statistical meta-analysis as the means of synthesis, providing



Using Systematic Reviews in Software Engineering 33

greater confidence in both the statistical significance and also the statistical
power of the outcomes. We discuss this a bit more in Section 3.3.

Since the organisation and use of systematic reviews is covered extensively
in the rest of the book, this section will be confined to discussing how system-
atic reviews are commonly used in software engineering.

A matter of classification

We should observe here that throughout Part I of this book, our clas-
sification of di�erent publications as being mapping studies or systematic
reviews may not always agree with those used by the original authors. This
is because we use the way that synthesis is performed in a study as our
key criteria for di�erentiating between these forms, and so consider some
studies that have been described as “systematic reviews” when published,
to be more correctly classified as mapping studies for that reason.

One role of a systematic review in software engineering is to establish
whether particular techniques or practices work better than others, and if
so, under what conditions this will be true. Existing systematic reviews span
many activities and forms (agile methods, project estimation, design patterns,
requirements elicitation techniques, regression testing techniques, just to name
a few). They are also used for other purposes, such as to evaluate how far
particular techniques have been adopted by industry and commerce, or to
identify the benefits of using tools in a particular context.

The purpose of a review will determine the type of input that is expected,
and hence the way that the inputs from di�erent studies can be synthesized.
For example, a systematic review addressing topics such as pair programming,
inspection techniques or the use of software design patterns might be expected
to involve synthesizing the results from experiments and quasi-experiments.
Studies looking at the adoption of tools in industry, or the take-up of agile
methods, are more likely to be synthesizing the outcomes from observational
studies and case studies. In this book we are mainly concerned with the fol-
lowing two classes of systematic review, as identified in Figure 3.1.

Quantitative reviews Inputs for these are likely to come from experiments
or quasi-experiments, or from data mining using existing repositories,
and the studies themselves may well be performing comparisons or pro-
ducing estimates based on past profiles. Associated research questions
are likely to address comparative aspects such as “does technique X
perform better than technique Y?”. Synthesis may take a range of forms
ranging from tabulation of the di�erent outcomes through to a statisti-
cal meta-analysis, depending on how much the primary studies vary in
terms of topics and measures used. A good example of a quantitative
review is that of Dieste & Juristo (2011), comparing the e�ectiveness of
di�erent requirements elicitation techniques.



34 Evidence-Based Software Engineering and Systematic Reviews

Qualitative reviews These usually address questions about the specific use
of a technology, and so are unlikely to involve making comparisons (and
hence less likely to address questions that involve any sense of something
being ‘better’). In a software engineering context they may well be used
for such tasks as studying adoption issues, or perhaps more likely, the
barriers to adoption, employing procedures for synthesis that can help
to identify patterns in the data. This class of review also includes studies
that look at research methodologies, not just practice, such as Kitchen-
ham & Brereton (2013).

Systematic reviews, along with mapping studies are the two forms that have
been most widely employed in software engineering to date. However, a few
examples of the use of meta-analyses for software engineering topics do exist,
and so we also discuss the role of meta-analysis in the final section.

3.2 Mapping studies
The goal of a mapping study is to survey the available knowledge about

a topic. It is then possible to synthesise this by categorisation in order to
identify where there are ‘clusters’ of studies that could perhaps form the basis
of a fuller review, and also where there are ‘gaps’ indicating the need for more
primary studies. Mapping studies may also be ‘tertiary’ studies, for which the
inputs are secondary studies, so providing a higher level of categorisation of
knowledge.

Mapping studies have found wide acceptance in software engineering, al-
though this form of study appears to be less widely used in other disciplines.
This may reflect the nature of software engineering and its vocabulary in par-
ticular. Software engineering is still not a truly ‘empirical’ discipline, even if
it is slowly moving that way, and so we may often have both very limited
knowledge about how widely a topic has been studied, and also relatively few
studies that are empirical in form. Related to this, empirical studies may well
be reported in many di�erent venues, meaning that we need to search widely
to find all relevant material. In addition, whereas the vocabulary of clinical
medicine is based upon terms used for the parts of the human body and its
conditions, which have been standardised over a long period of time, software
engineering deals with artifacts, and so invents new terms to describe these.
Unfortunately, software engineers are also apt to “reinvent the wheel” when
doing this, sometimes using new terms to describe a concept that was devel-
oped earlier, but may not have been realised at the time because of (say) a
lack of computational power.

If we return to the model of the systematic review process described in the
previous chapter, we can describe a mapping study as a form that involves



Using Systematic Reviews in Software Engineering 35

relatively little synthesis. A mapping study may also include an element of
quality assessment, depending upon its purpose.

FIGURE 3.2: The spectrum of synthesis.

Figure 3.2 illustrates this issue. At one extreme, simple aggregation alone
just groups together any data occurring within a given category, and while
providing knowledge about the count for each category (such as number of
papers published each year), it creates no new derived knowledge. Extending
from that we have a spectrum of synthesis, extending through to a statistical
meta-analysis, whereby new knowledge is derived about such aspects as pat-
terns and associations in the data. The issues related to performing synthesis
across the spectrum of study forms are discussed more fully in Section 10.2.

Searching may well use quite a broad set of terms in order to ensure that
we do not overlook any particular group of studies. It also needs to be as
thorough as possible in order to obtain a clear and useful picture of the topic.

The activity of categorisation may employ a number of di�erent schemes,
intended to reflect specific characteristics of the primary studies. It might use
an existing scheme—for example, we might want to classify the studies found
in terms of the research method employed for each primary study, using a
set of categories such as experiment, quasi-experiment, survey, observational,
and case study. Employing an existing categorisation scheme also provides a
useful basis for identifying where there are ‘gaps’. We might also derive the
categories for a given characteristic by looking at the set of studies found, and
grouping these to reflect the patterns observed.



36 Evidence-Based Software Engineering and Systematic Reviews

So, in what context do we find it useful to conduct a mapping study?
Below, we briefly examine two examples of situations where mapping studies
may be particularly relevant.

Studying research trends. A mapping study may be useful as a means of
analysing how research in a given topic has evolved over a period of time
(so one of the categories used for the studies will need to be publication
date). Such a study may focus upon identifying the “hot issues”, or
the techniques used, or even the countries where the research has been
performed.
One example of its use in this role, mentioned earlier, is that of the ter-
tiary study. To recap, a tertiary study is a form of systematic review for
which the inputs are secondary studies. A broad tertiary study is organ-
ised as a mapping study where the purpose is to categorise these and to
observe trends. The earliest tertiary study conducted in software engi-
neering was that reported in (Kitchenham, Brereton, Budgen, Turner,
Bailey & Linkman 2009). This study identified a set of secondary stud-
ies and categorised them by type (such as research trends) and topic.
Later broad tertiary studies such as (Kitchenham, Pretorius, Budgen,
Brereton, Turner, Niazi & Linkman 2010) and (da Silva et al. 2011) also
included a quality assessment of the secondary studies. Viewed as a se-
ries, the value of these studies was therefore to index the emerging field
of evidence-based studies, identifying those areas of software engineering
where most activity was taking place. This is also an example of where
aggregation is an appropriate form of analysis.

PhD literature review. Preparation for PhD study almost always requires
a candidate to undertake a ‘literature review’ of the state of the art
related to the intended topic. Traditionally this is conducted using in-
formal searching, with expert guidance provided by the supervisor. How-
ever, for PhD projects involving empirical studies in particular, the use
of a mapping study may well provide a very useful initial stage for a
study, as examined in (Kitchenham, Budgen & Brereton 2011). Using
this approach is not just appropriate for empirical topics of course, def-
initions and research trends may usefully be studied in this way too, as
demonstrated in the review of di�erent definitions of ‘service oriented
architecture’ or SOA, provided in (Anjum & Budgen 2012). Here, it is
appropriate to employ a degree of synthesis in analysing the outcome
data.

While these are by no means the only roles that can be performed by a map-
ping study, they are fairly representative of the ways that this form has been
used in software engineering.



Using Systematic Reviews in Software Engineering 37

3.3 Meta-analysis
For clinical medicine, where a secondary study may well be drawing to-

gether the results from a number of Randomized Controlled Trials (RCTs),
the use of a statistical meta-analysis (which we discuss more fully in Chapter
11) is often appropriate. This is because primary studies of a new clinical
treatment are likely to use the same baseline(s) for their comparisons and ask
similar research questions about the e�ective use of a treatment. For software
engineering however, even when a review is drawing together the outcomes of
a set of experiments, these may well vary widely in form, as well as in their
research questions.

Where the use of meta-analysis is an option, this is usually because there is
a reasonable number of primary studies with similar forms, and that these also
use comparable response variables. This was the case for the meta-analysis of
pair programming studies performed by Hannay et al. (2009), although as
here, the analysts may still have to cope with wide variation in the character-
istics of the primary studies. In addition, many primary studies in software
engineering have poor statistical power, as we observed earlier. However, one
benefit of being able to use meta-analysis is that any outcomes can then be
assigned a quantitative measure of confidence based on the use of inferential
statistics.

One question we might well ask is whether this position is likely to change
in the future so that we will see more use of meta-analysis. One of the aims
of this book is to provide guidance for the use of evidence-based practices in
software engineering, and in doing so, to encourage the use of more rigorous
forms of synthesis. As we explain in Chapter 11, meta-analysis is possible in a
variety of circumstances and there seem to be no reasons why it should not be
employed more widely in software engineering. Certainly, if EBSE is to make
greater impact upon the software engineering profession, then an increased use
of meta-analysis is likely to be an important way of helping with providing
potential users with appropriate levels of confidence in the findings from our
studies.


