Operación óptima de sistemas dinámicos

Ruben Chaer - 14 de agosto de 2024

Montevideo Uruguay

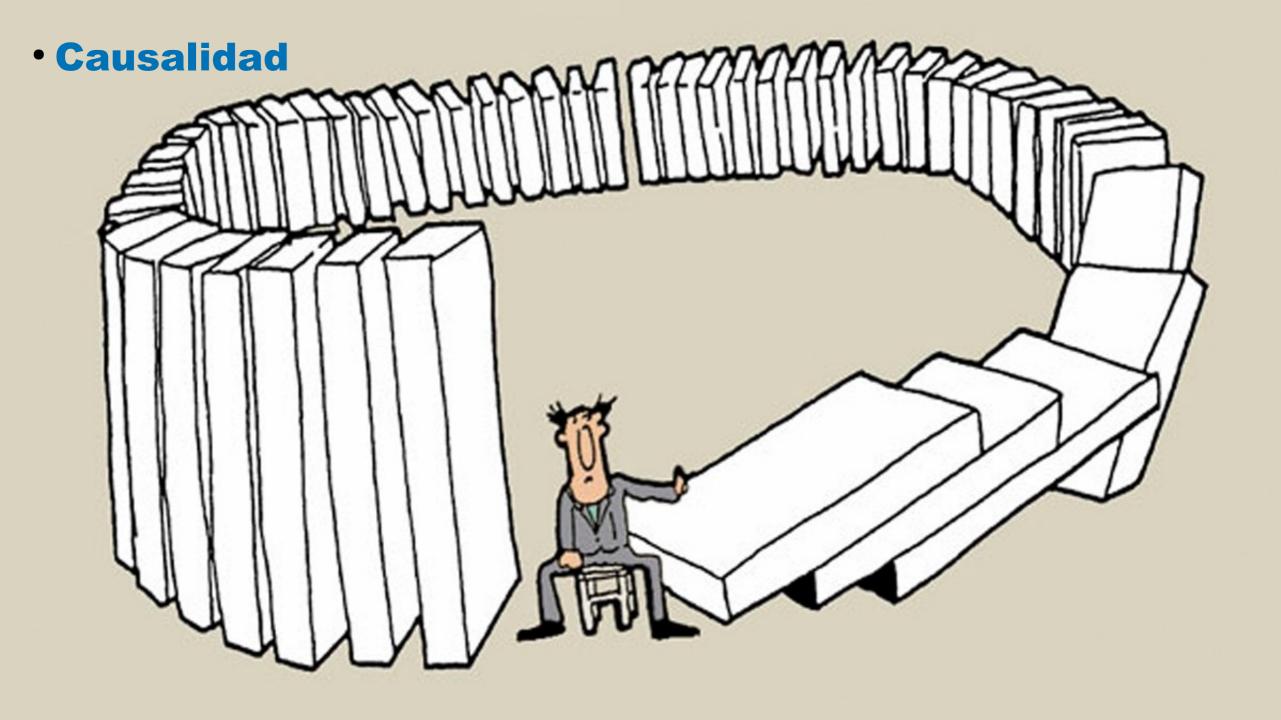
(otro episodio de la serie: "Luchando contra La Maldición de Bellman")

Programa de la presentación

1) Operación óptima = (Programación Dinámica Estocástica)

• Estado de un sistema X, Costo Futuro = CF(X), Recursión de Bellman y Maldición de Bellman

2) Modelado de la incertidumbre = (Procesos Estocásticos)


• Modelos CEGH, histogramas, correlaciones espaciales y temporales

3) Aprendizaje por refuerzo = (REINFORCEMENT LEARNING, MACHINE LEARNING)

- Aproximación de grad(CF(X)) por redes neuronales y bucle de aprendizaje
- Necesidad de reducir la varianza, trayectorias de exploración y modos de evolución del estado.
- Complejidad, capacidad de representación vs. Información y regularizadores

4) Aplicación al caso Argentina, Brasil, Paraguay y Uruguay

• Descripción del modelo y algunso resultados

Las decisiones se vinculan temporalmente.

El uso de los recursos almacenados (agua) hoy reduce los costos operativos del **presente** pero aumenta los costos operativos del **futuro**; y viceversa.

Una Política Óptima reduce el valor esperado del costo de operación futura del sistema.

Una Política Óptima equilibra los efectos de las acciones sobre los costos futuros y presentes.

$$X(t) = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$

Estado del Sistema

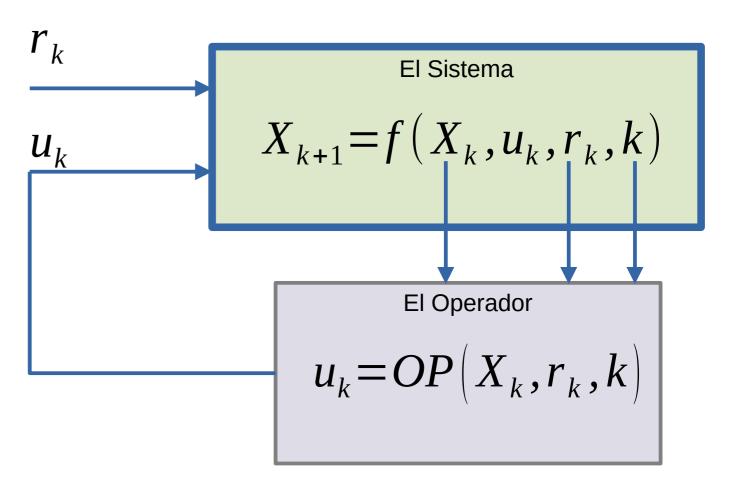
Vector de información que captura lo relevante del pasado del sistema.

Ecuación de evolución del

$$X_{k+1} = f\left(X_k^{\mathsf{Estado:}}, r_k, k\right)$$

Costo de etapa:

$$ce_k = ce(X_k, r_k, u_k, k)$$

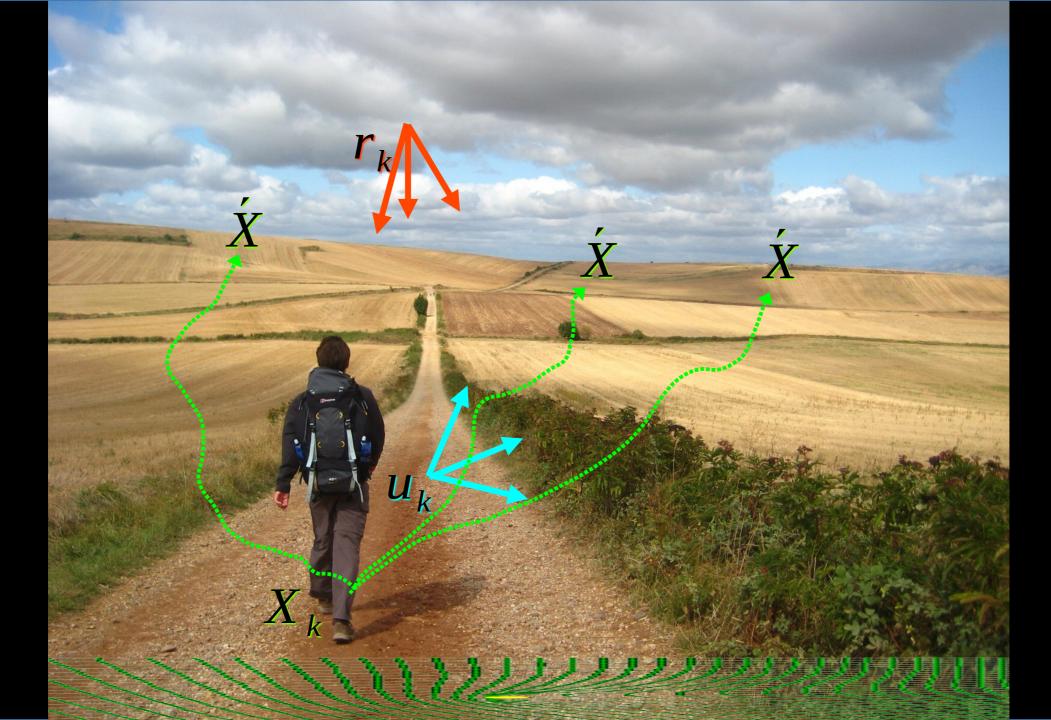

Costo Futuro:

$$CF(X,k) = \langle \sum_{h=k}^{\infty} q^{h-k} c e_h \rangle_{R,U}$$

El Operador y la Política de

Operación

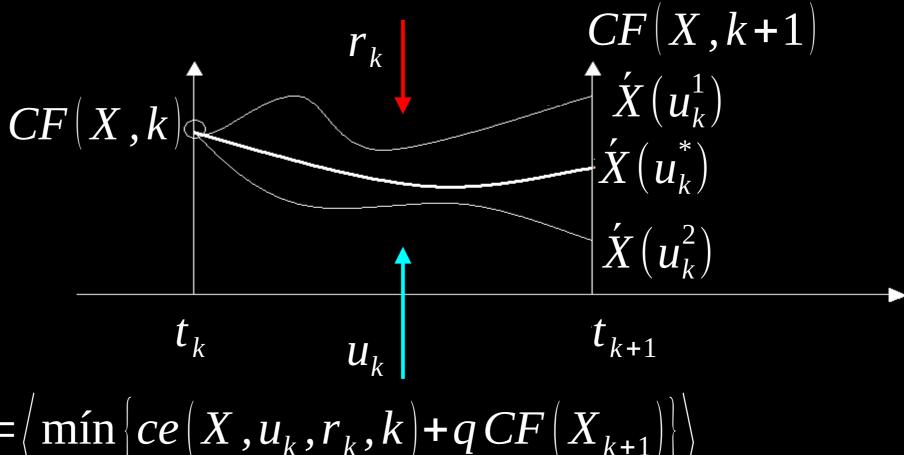
El Costo


Futuro

$$CF(X,k) = \langle \sum_{h=k}^{\infty} q^{h-k} ce_h \rangle_{R,U}$$

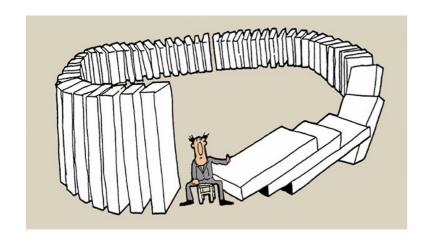
Política Óptima

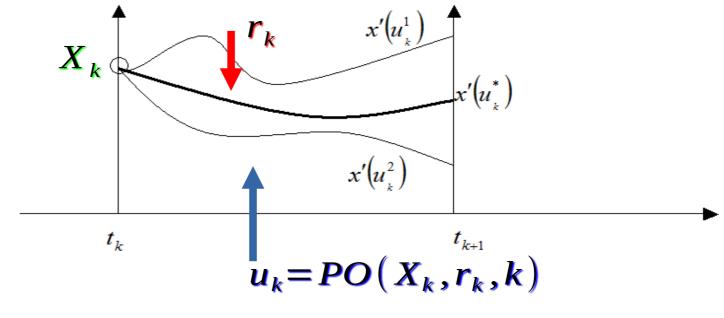
$$\min_{OP} \langle CF(X,k) \rangle_{R}$$



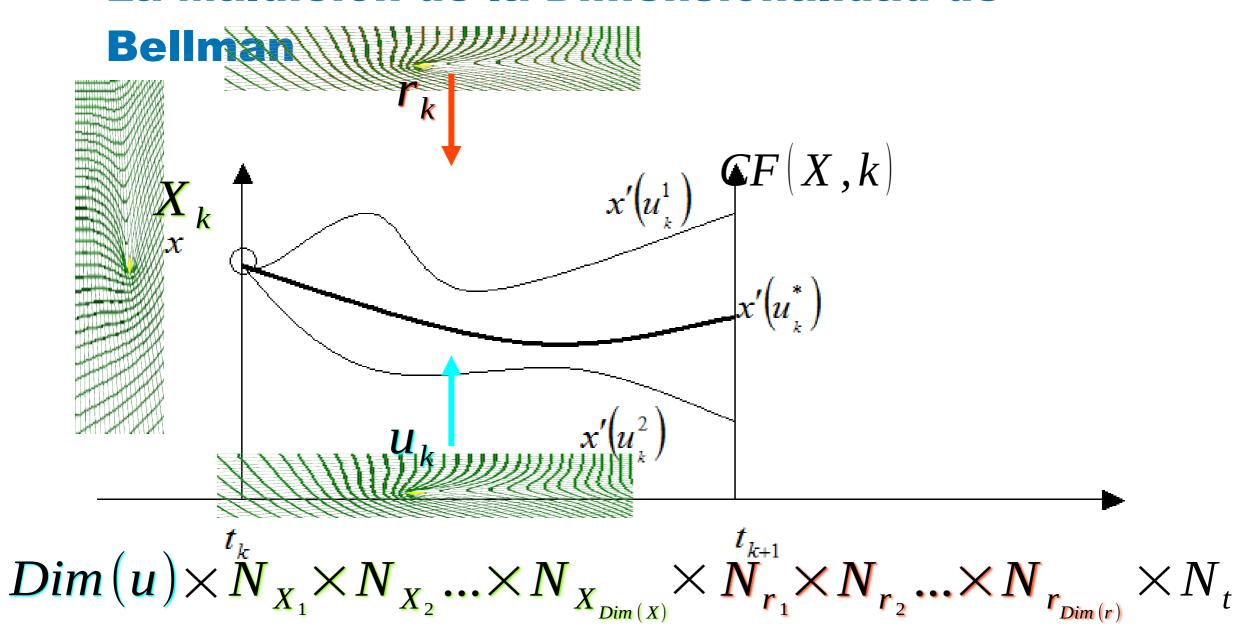
Richard Ernest Bellman (1920–1984)

• Dynamic Programming 1957.


Recursión de Bellman

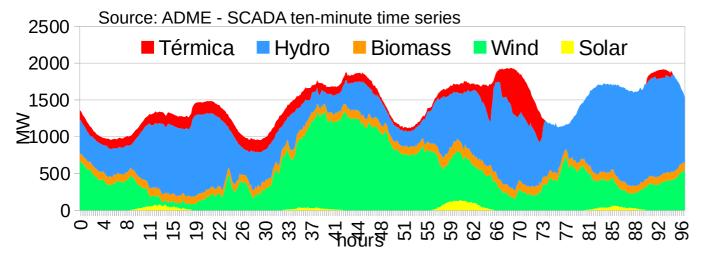


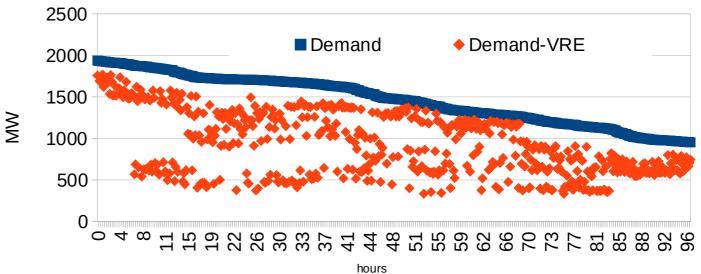
$$CF(X,k) = \left\langle \min_{u_k} \left\{ ce(X,u_k,r_k,k) + qCF(X_{k+1}) \right\} \right\rangle_{\left\{r_k,r_k+1,\ldots\right\}}$$


PO_Optima = Minimizar el valor esperado del Costo Futuro

$$u_k: \min_{u_k} \left\{ ce(X, u_k, r_k, k) + qCF(X_{k+1}) \right\}$$

La Maldición de la Dimensionalidad de





Agregaciones Clásicas

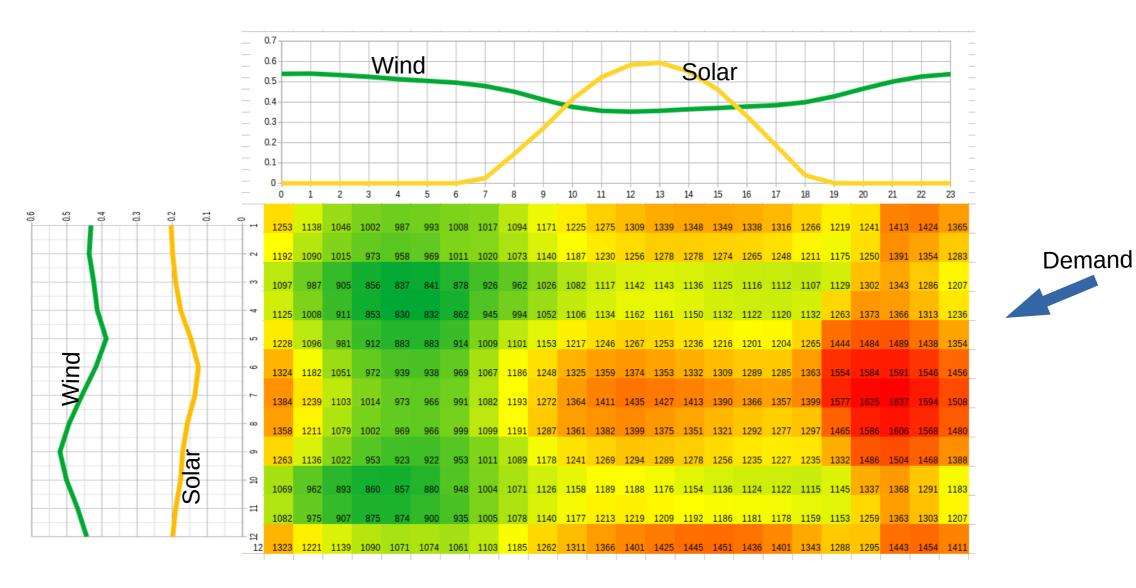
- Encadenamiento de optimizaciones con diferente horizonte y paso temporal (meses, semanas, días, horas).
 Largo_Plazo, Mediano_Plazo y Corto_Plazo.
 En el Largo plazo se consideran como variables de estado las PESADAS y se van agregando variables en el Mediano y en el Corto Plazo.
- En SimSEE con los CEGHs, posibilidad de reducción del estado de los procesos estocásticos.
- 'Subidivición del paso de tiempo en POSTES, Bandas Horarias o PATAMARES.

Postes (UY), Bandas Horarias (AR), Patamares (BR) ... tiene sentido usar la Monótona de Carga? Solo un ejemplo, 4 días cualquiera de julio-2018-Uruguay

SimSEE utiliza Postizado-

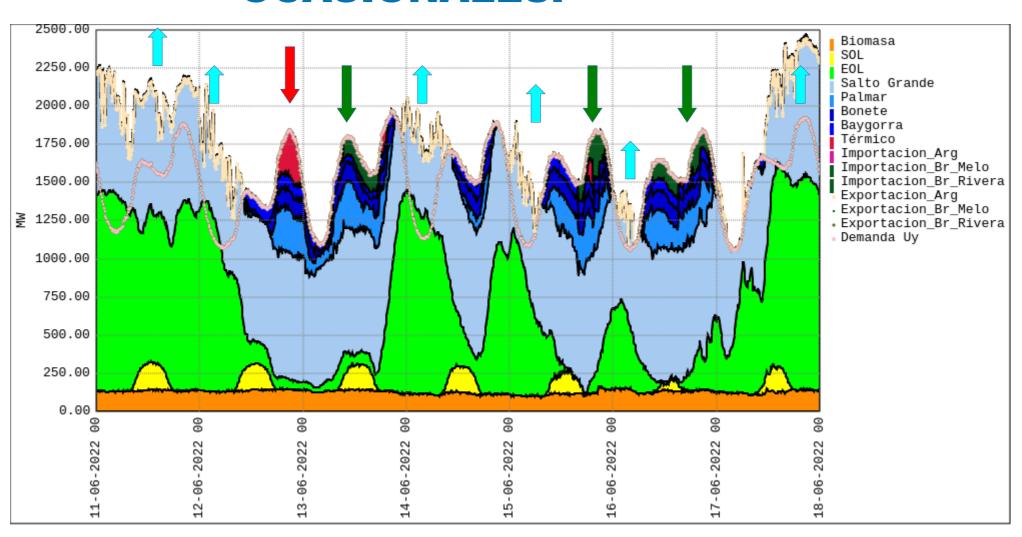
Dinámico

En cada paso de tiempo, se crea la Demanda Neta con detalle horio sumando todas las demandas y restando las energías no-gestionables y en base a la monótona de la Demanda Neta se definen los POSTES para la resolución del paso.


Modelado de la incertidumbre **Procesos** Estocásticos)

Fuentes de aleatoriedad

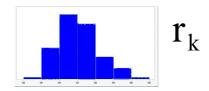
- Demanda
- Caudales de aportes hídricos
- Velocidad del viento
- Radiación solar
- Precio de los mercados vecinos
- Precios de los combustibles
- Disponibilidad de combustibles
- Roturas fortuitas


Wind, Solar and Demand correlations.

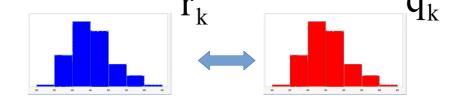
Ejemplo:

Importancia de los INTERCAMBIOS OCASIONALES.

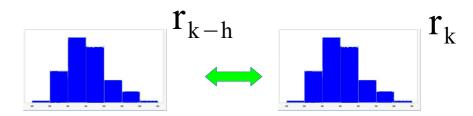
Fundamentos del CEGH.

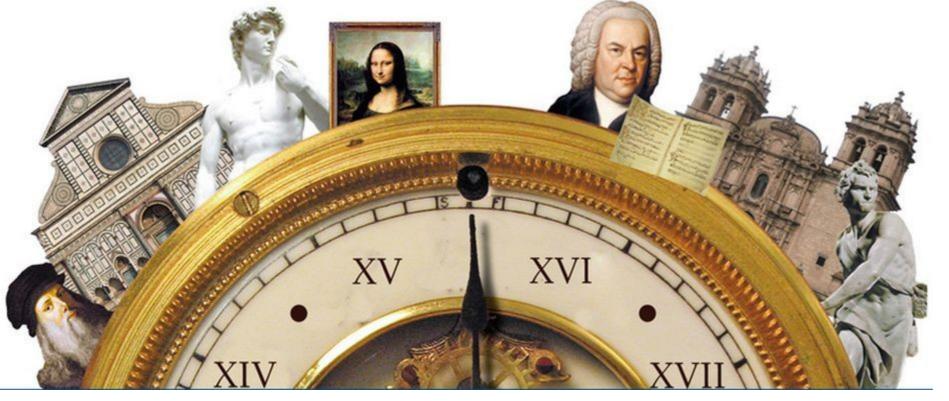

Dado un conjunto de series de datos, como ser caudales medios semanales a las represas.

¿Cómo introducir esa aleatoriedad en las simulaciones?.


¿Cómo generar series sintéticas con iguales características que las series de datos?

¿Qué es importante representar en el modelo?


Histogramas de amplitud:



Correlaciones espaciales:

Correlaciones temporales:

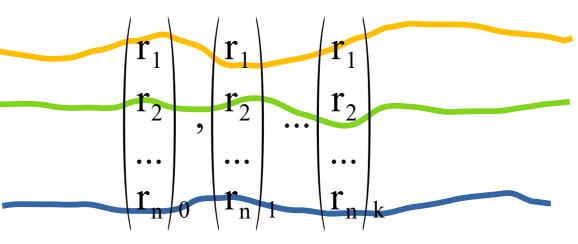


Series históricas. (SIN ESTADO!)

- Simplemente suponer que esas series históricas de medidas se repiten y ver cómo se comporta el sistema con esas entradas.
- Si durante el proceso de Optimización se utiliza una serie determinística el optimizador calculará la política óptima conociendo el Futuro. En la realidad no podrá operar así, porque seguramente no se repita el pasado Tal Cual.

Ruido Blanco en base a la distribución histórica. (SIN ESTADO!)

Generador de números pseudo-aleatorios U(0,1)


Herramientas disponibles

- Terrible arsenal para tratamiento de sistemas lineales invariantes en el tiempo.
- · Algunos resultados aplicables a procesos ergódicos.
- · Algunos resultados sobre procesos gaussianos.

Proceso estocástico

Un conjunto de variables aleatorias variando en el tiempo.

Medidas de probabilidad

$$m(x):R^n \rightarrow R^m$$

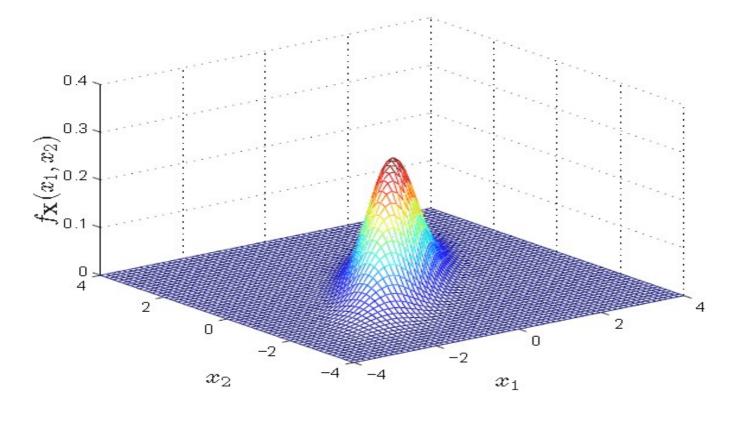
La forma de realizar medidas de probabilidad es mediante la integral de una función ponderada por la función densidad de probabilidad.

$$\langle m(x)\rangle_{x} = \int_{\theta\in R^{n}} m(\theta).p_{x}(\theta)dV_{\theta}$$

Para realizar entonces cualquier cuantificación probabilística es necesario conocer la función de densidad de probabilidad.

Ejemplos de medidas de probabilidad

Valor Esperado

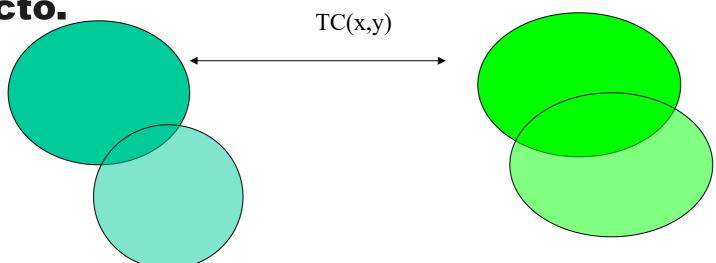

$$E(x) = \langle x \rangle_{x} = \int_{\theta \in \mathbb{R}^{n}} x \cdot p_{x}(\theta) dV_{\theta}$$

Matriz de covarianzas

$$\Sigma_{xx} = \langle (x - E(X))(x - E(X))^T \rangle_{x}$$

FDP Gaussiana

$$p_X(X) = \frac{1}{\sqrt{(2\pi)^N \cdot |\Sigma|}} \cdot e^{-\left(\frac{1}{2}X^T \Sigma^{-1} X\right)}$$

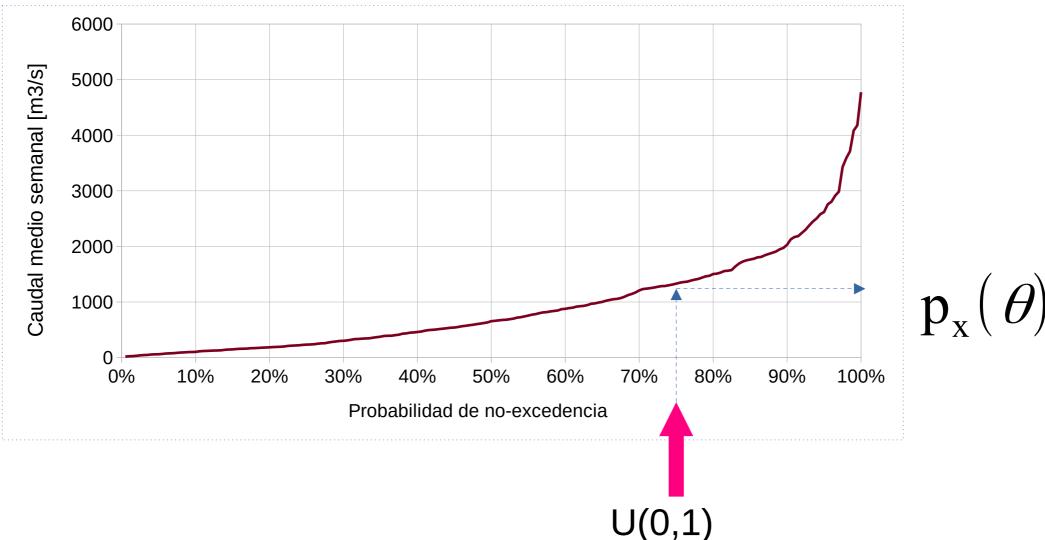


$$\Sigma = \langle X \cdot X^T \rangle$$

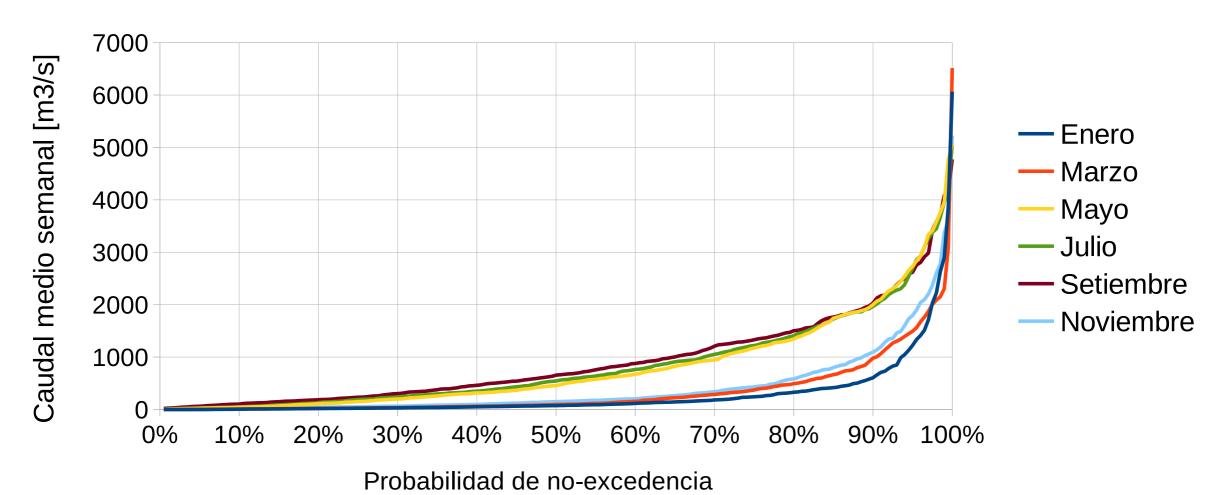
Transformaciones Compactas.

Biunívoca y que transforme todo compacto en un

compacto.


$$\langle m(x)\rangle_{x} = \int_{\theta\in R^{n}} m(\theta).p_{x}(\theta)dV_{\theta}$$

Modelos CEGH#SimSEE

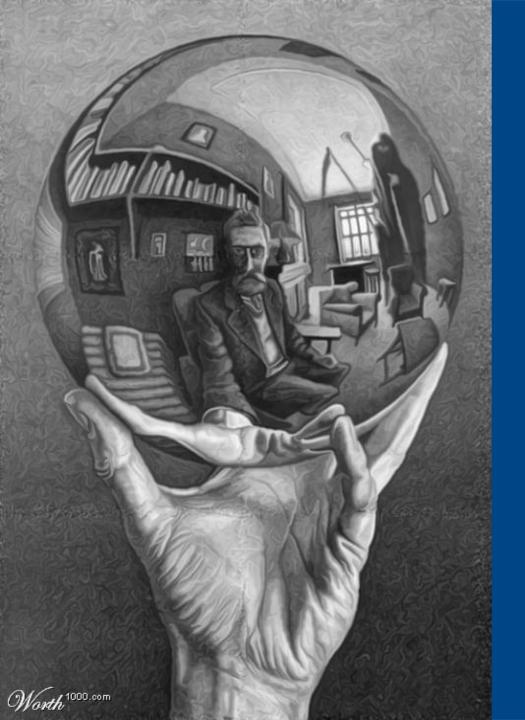

- Reproduce los histogramas de amplitudes de las series.
- Reproduce las correlaciones entre las series y con sus pasados..

Deformadores por canal y por paso de tiempo (compactas)

Deformadores del caudal medio semanal a Rincón de Bonete para para distintos meses del año

Matríz de Covarianzas (en espacio gaussiano)

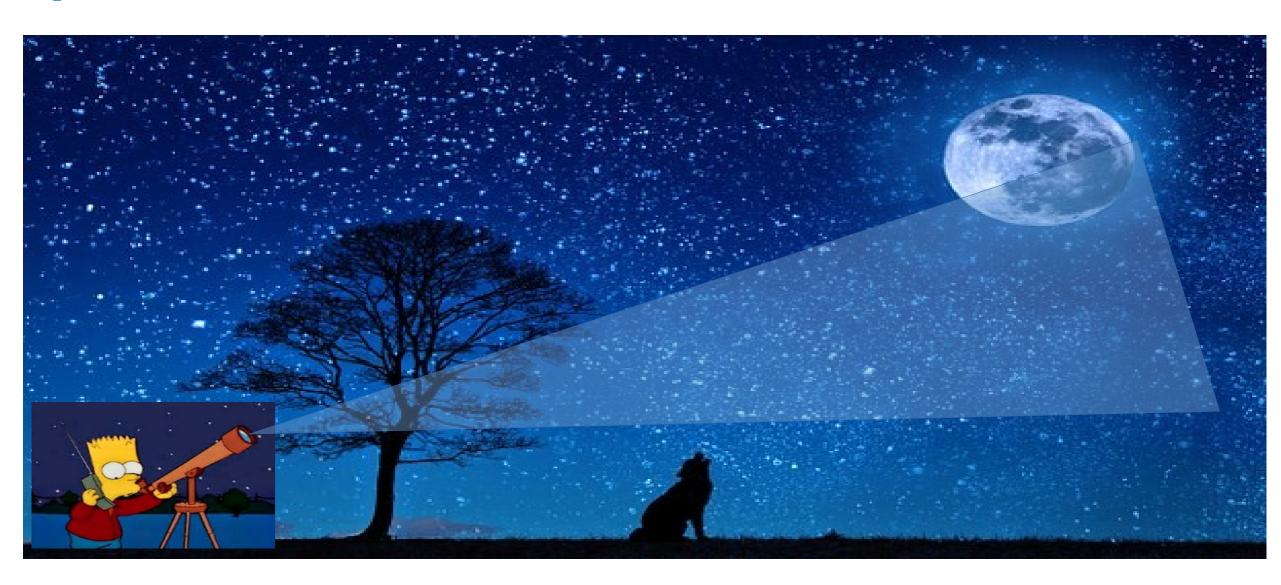
	В	Р	S
В	1.000	0.571	0.536
Р	0.571	1.000	0.296
S	0.536	0.296	1.000

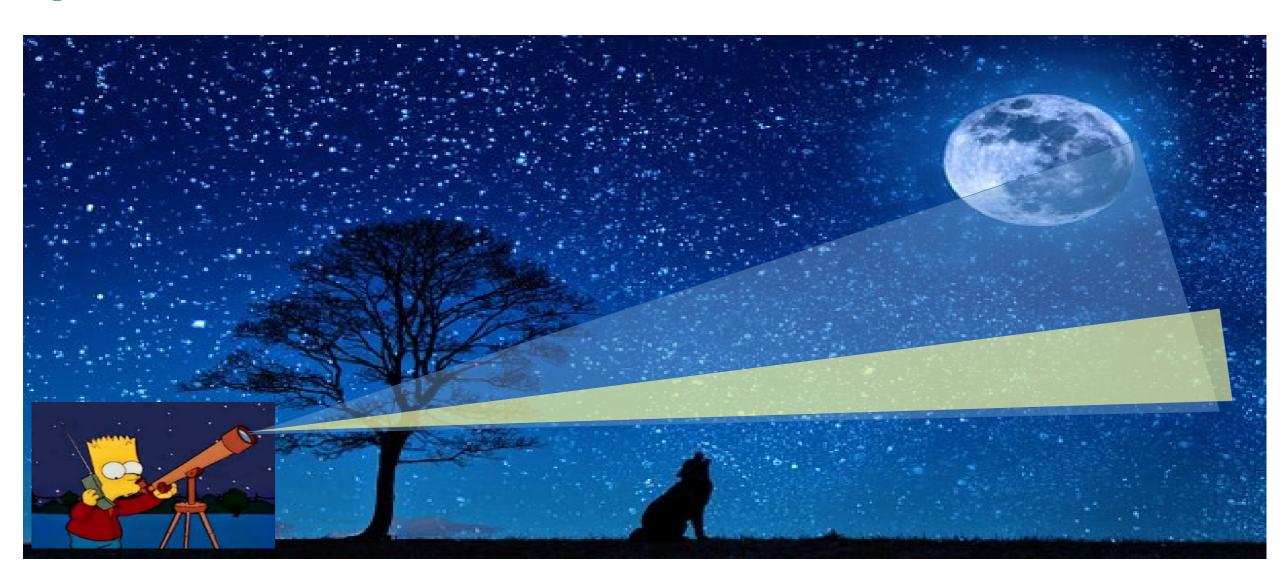

$$\Sigma = \langle X \cdot X^T \rangle$$

$$p_X(X) = \frac{1}{\sqrt{(2\pi)^N \cdot |\Sigma|}} \cdot e^{-\left(\frac{1}{2}X^T \Sigma^{-1} X\right)}$$

Matriz A y B del filtro (1 paso) Bonete, Palmar y Salto

B[l	k]		0.76	0.02	0.08		B[k]		0.38	-0.18	-0.40		R1[k]
P[l	k]	=	0.16	0.63	0.01	*	P[k]	+	0.61	0.25	0.17	*	R2[k]
S[I	k]		0.12	0.02 0.63 -0.03	0.78		S[k]		0.18	-0.48	0.24		R3[k]
	Ī												


Estado = 3x1


Modelos CEGH.

Asimilación de Pronósticos

Operador Sin Pronósticos.

Operador Con Pronósticos.

Facilidad de integración de PRONÓSTICO.

$$X_{k+1} = \sum_{h=0}^{h=n_r-1} A_h X_{k-h} + S_k + F_k \sum_{h=0}^{h=m-1} B_h R_{k-h}$$

Los sesgos (s) cambian la Guía del probabilidad 50% y los factores de atenuación (f) regulan la inyección de ruido, permitiendo ir desde un Pronóstico Deteminístico (ruido nulo) a la desaparición del pronóstico (ruido histórico).

$$S_k = \begin{bmatrix} S_{1,k} \\ \dots \\ S_{n,k} \end{bmatrix}$$

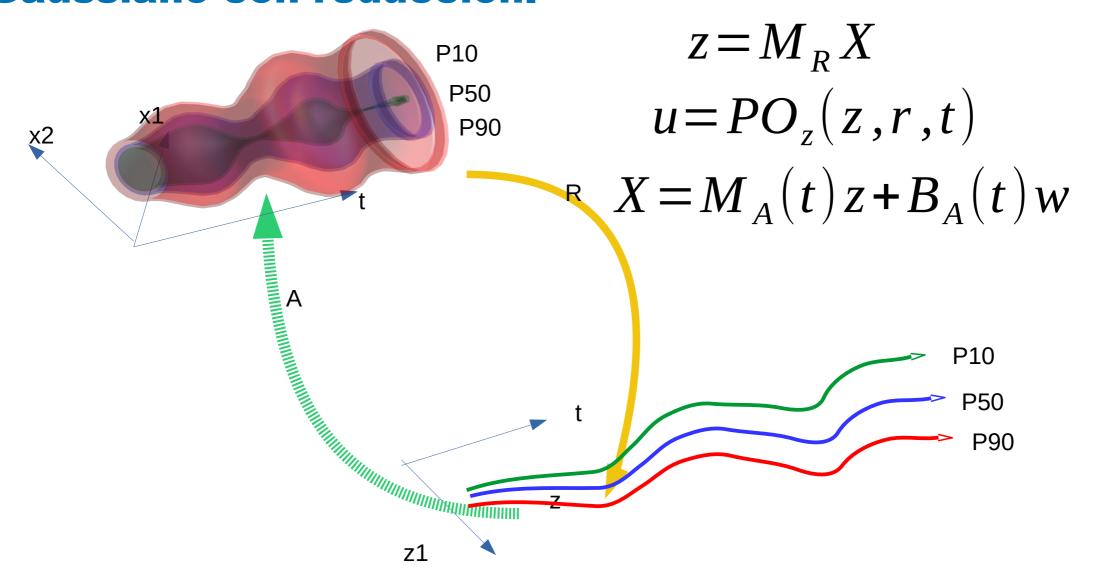
$$F_{k} = \begin{bmatrix} f_{1,k} & 0 & \dots & 0 \\ 0 & f_{2,k} & \dots & 0 \\ 0 & \dots & 0 & f_{n,k} \end{bmatrix}$$

Estado del proceso estocástico.

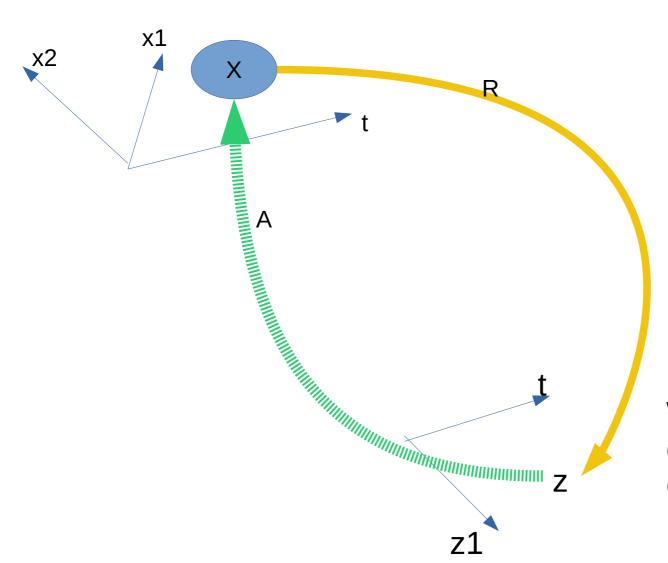
$$X_{k+1} = \sum_{h=0}^{h=n_r-1} A_h X_{k-h} + \sum_{h=0}^{h=m-1} B_h R_{k-h}$$

La información del pasado, necesaria para calcular la salida del sistema lineal en el espacio gaussiano, pasa a formar parte de El Estado del Sistema.

$$X_{k}, X_{k-1}, \dots, X_{k-(n_r-1)}$$


Maldición de Bellma

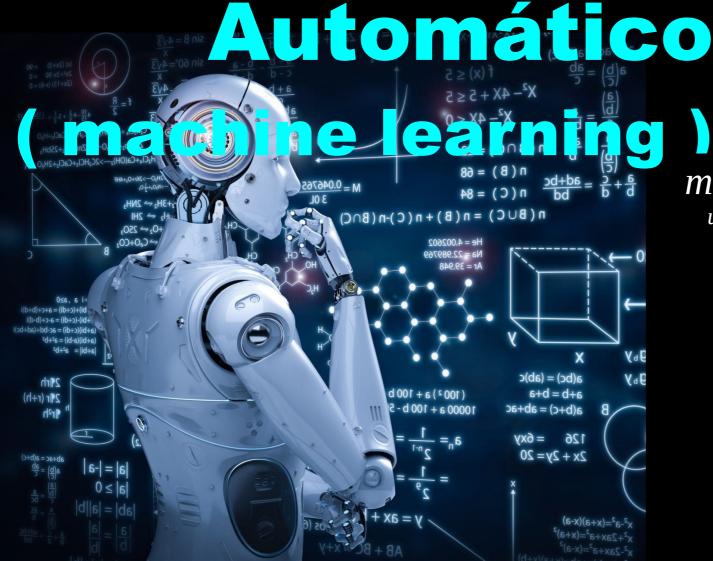
NA TANA



 $Dim(u) \times Dim(x) \times \overline{Dim(r) \times Dim(k)}$

Tratamiento del pronóstico en el espacio Gaussiano con reducción.

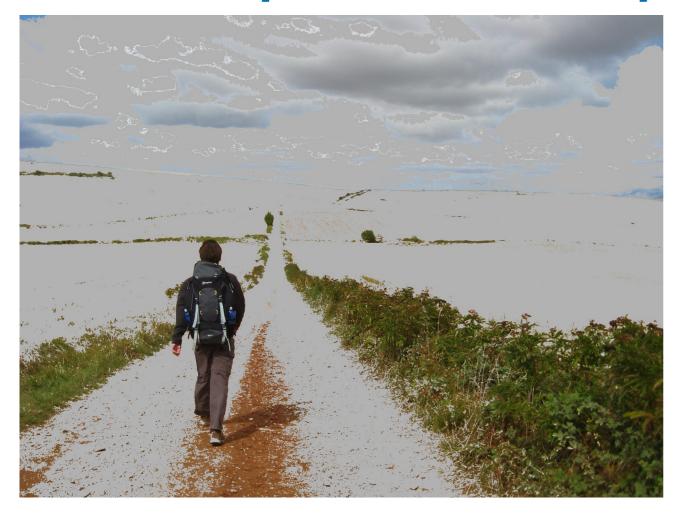
Reducción del Espacio de Estado en modelos CEGH

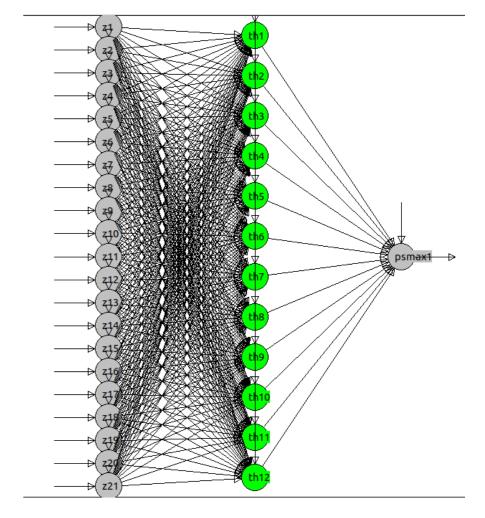

$$z=R(X)$$

$$u=PO_{z}(z,r,t)$$

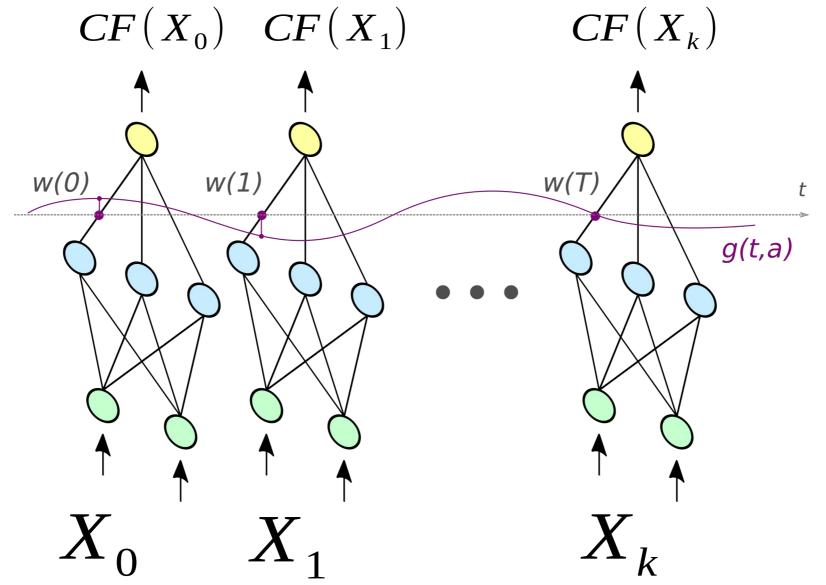
$$X=A(z,w)$$

W es el ruido que permite poblar el volumen de X que mapea en el z dado.

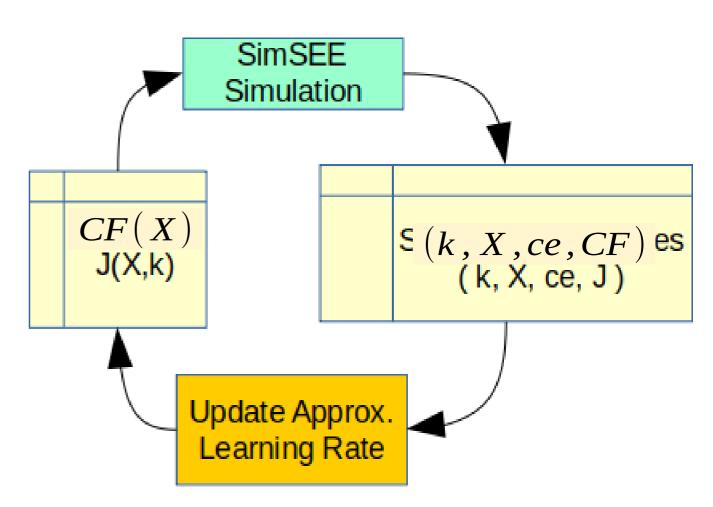

Aprendizaje



$$\min_{u}\left\{ce\left(X_{k},u_{k},r_{k},k\right)+CF\left(X_{s},k+1\right)\right\}$$

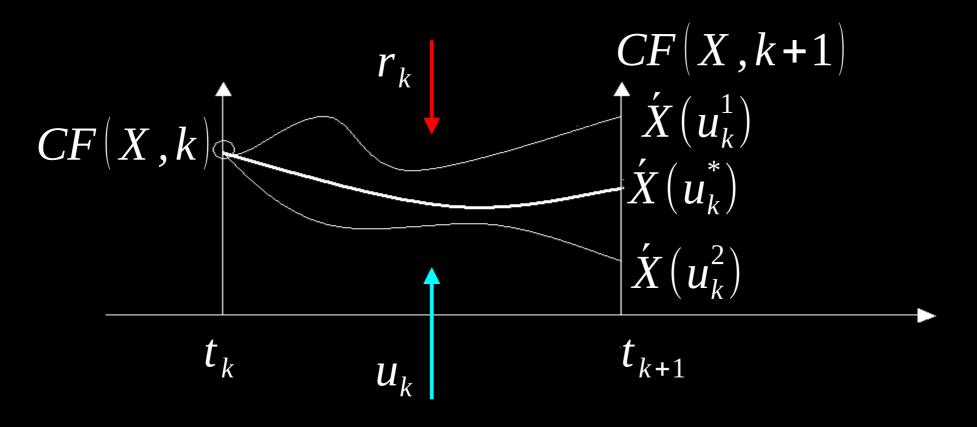

Programación dinámica estocástica aproximada

... dada una aproximación de CF(X) puedo simular

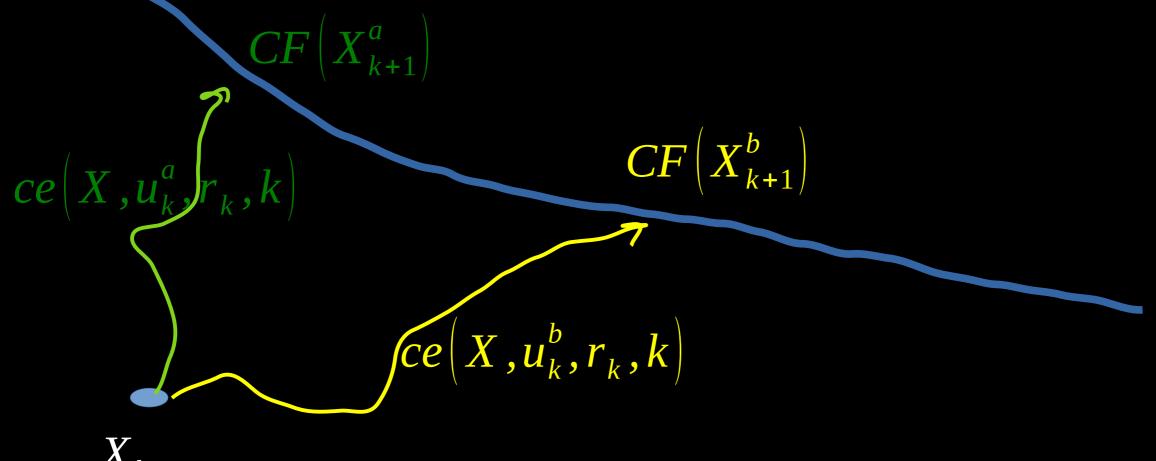


Conjunto de redes neuronales, una por paso de tiempo

Bucle de aprendizaje



Representación de la Política de Operación


$$CF(X,k) = \begin{vmatrix} \min_{u} \left\{ ce(X_{k}, u_{k}, r_{k}, k) + CF(X_{s}, k+1) \right\} \\ w \\ \left\{ u \in \Omega(X_{k}, r_{k}, k) \\ X_{s} = f(X_{k}, u_{k}, r_{k}, k) \right\} \\ \left\{ r_{k} \right\}$$

Recursión de Bellman

$$CF(X,k) = \left\langle \min_{u_k} \left\{ ce(X,u_k,r_k,k) + qCF(X_{k+1}) \right\} \right\rangle_{\left\{r_k,r_k+1,\ldots\right\}}$$

La información está en las diferencias de CF

Realizaciones y generadores de números pseudoaleatorios

Cada entidad en SimSEE tiene su propio generador de números pseudoaleatorios que se inicializan en base a una semilla aleatoria (un número entero) calculado a partir de una Semilla-MADRE igual para todos y un algoritmo que crea una semilla única a partir del Nombre y Tipo de Entidad.

Una Realización de los proceso estocásticos se obtiene en una simulación haciendo que cada entidad en cada paso de tiempo genere los números aleatorios que determinan sus incertidumbres.

Cambiando la Semilla-MADRE se simulan diferentes posibles futuros en base a las realizaciones de los procesos estocásticos representados.

Simulación dada una función CF(X,k)

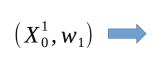
$$\min_{u} \left\{ ce\left(X_{k}, u_{k}, r_{k}, k\right) + CF\left(X_{s}, k+1\right) \right\}$$

$$\bigotimes_{u} \left\{ u \in \Omega\left(X_{k}, r_{k}, k\right) \right\}$$

$$X_{s} = f\left(X_{k}, u_{k}, r_{k}, k\right)$$

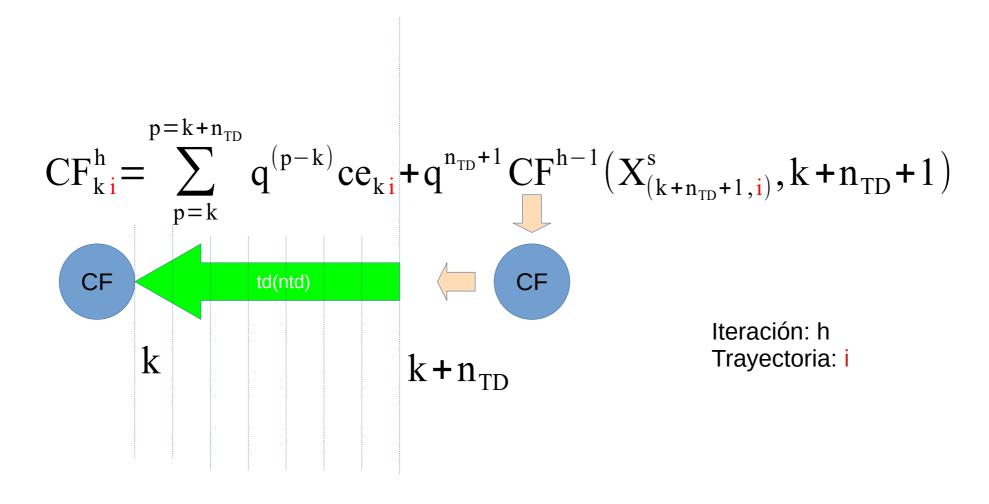
$$\left\{ X_{0}^{1},X_{0}^{2},...X_{0}^{nx}
ight\}$$
 $\left\{ w_{1},w_{2},...w_{nw}
ight\}$

Trayectorias (nx x nw):

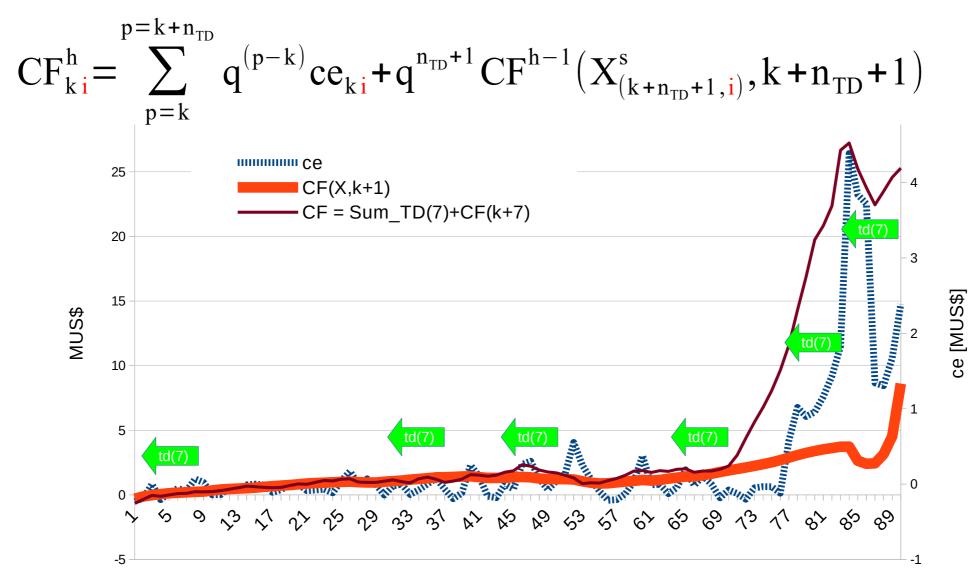

Estados iniciales

Semillas Aleatorias

$$\{X_0^1, X_0^2, ..., X_0^{nx}\} \times \{w_1, w_2, ..., w_{nw}\}$$



$$\begin{pmatrix} (X_0^1, w_1), (X_0^1, w_2), ... (X_0^1, w_{nw}) \\ (X_0^2, w_1), (X_0^2, w_2), ... (X_0^2, w_{nw}) \\ ... \\ (X_0^{nx}, w_1), (X_0^{nx}, w_2), ... (X_0^{nx}, w_{nw}) \end{pmatrix}$$



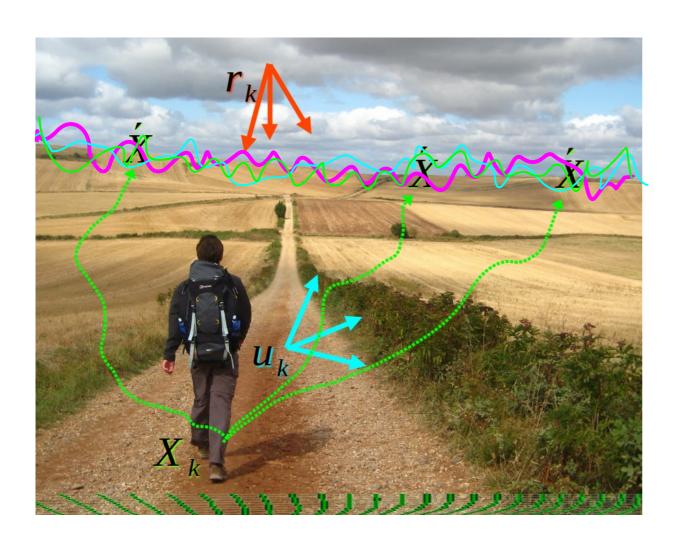
			>	(
k	x1	x2	х3	х4	x5	х6	MEE	ce	CF(X,k+1)
0	6339.434	560.223	1040.023	-1.378	-0.981	-0.811	7	-227978	-297041
1	6188.706	171.883	411.939	-1.368	-0.998	-0.846	7	-188945	-119353
2	6046.920	113.600	411.939	-1.339	-0.954	-0.880	7	-548	-17670
3	5929.287	113.600	411.939	-1.334	-1.021	-0.994	7	-206043	61942
4	5803.822	113.600	411.939	-1.333	-0.924	-1.113	7	-115979	126864
5	5687.223	113.600	411.939	-1.330	-0.960	-1.160	7	-58225	162629
6	5577.711	113.600	411.939	-1.325	-0.967	-1.128	7	-91917	196991
7	5474.921	113.600	411.939	-1.317	-0.963	-1.084	7	68926	231503
8	5378.466	113.600	383.063	-1.307	-1.115	-1.038	7	21433	255490
9	5286.142	112.375	410.533	-1.300	-1.109	-1.044	7	-142275	344703
10	5199.748	113.600	411.939	-1.296	-1.006	-1.079	7	-139002	416420
11	5119.304	113.600	411.939	-1.287	-0.884	-1.102	7	-44928	456890
12	5044.897	113.600	411.939	-1.212	-0.799	-1.105	7	-70140	486965

Estimación de CF a partir de la información de las trayectorias td = Time Diference

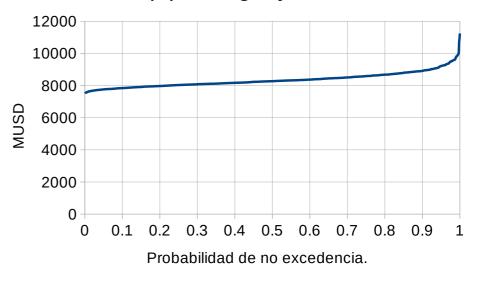
Estimación de CF a partir de la información de las trayectorias td = Time Diference

Claves para el éxito de la implementación

Técnicas de reducción de varianza (Common Random Number)


Evitar convergencia de las trayectorias durante la exploración.

+ mezcla de Time-Diferences acode con las constantes de tiempo del sistema. (Modos de Evolución)

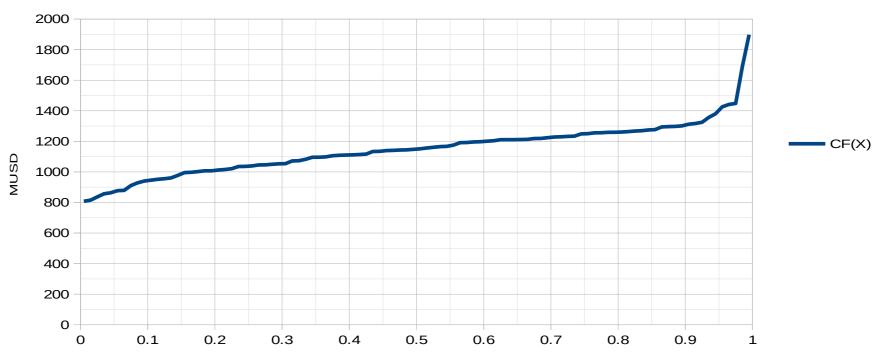

Regularizaciones:

- + Red Neuronal de estructura simple
- + En los parámetros (Redge o Lasso)
- + En la variación temporal de los parámetros.

Por qué son necesarias las técnicas de reducción de la varianza. Simulación 1000 crónicas con paso de tiempo semanal de Uruguay.

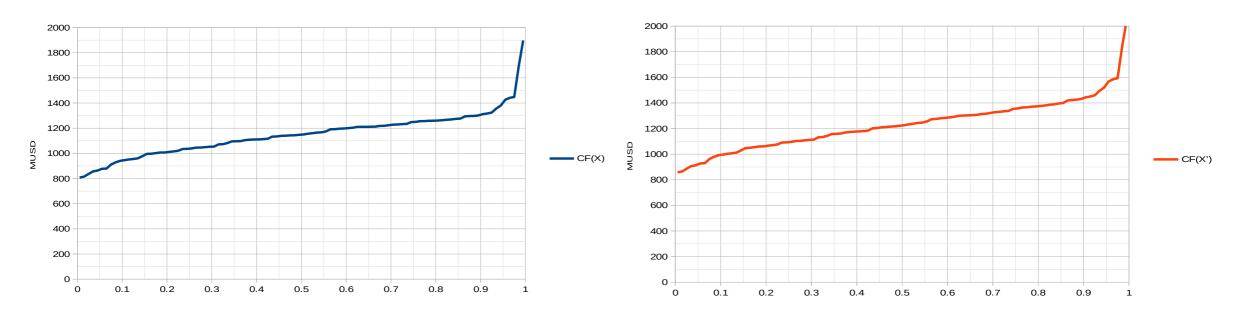
Distribución CF(X) - Uruguay

Distribución del costo de etapa (semanal).

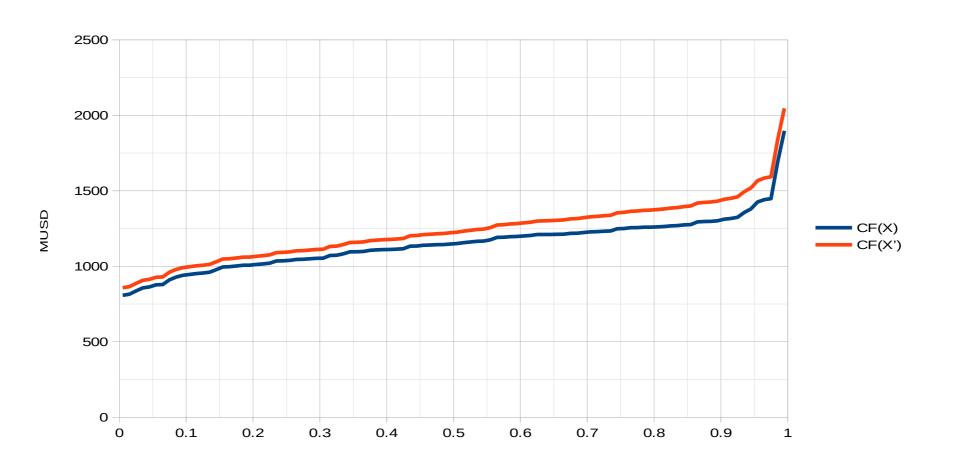


Simulaciones de Montecarlo varianza del valor esperado de la diferencia.

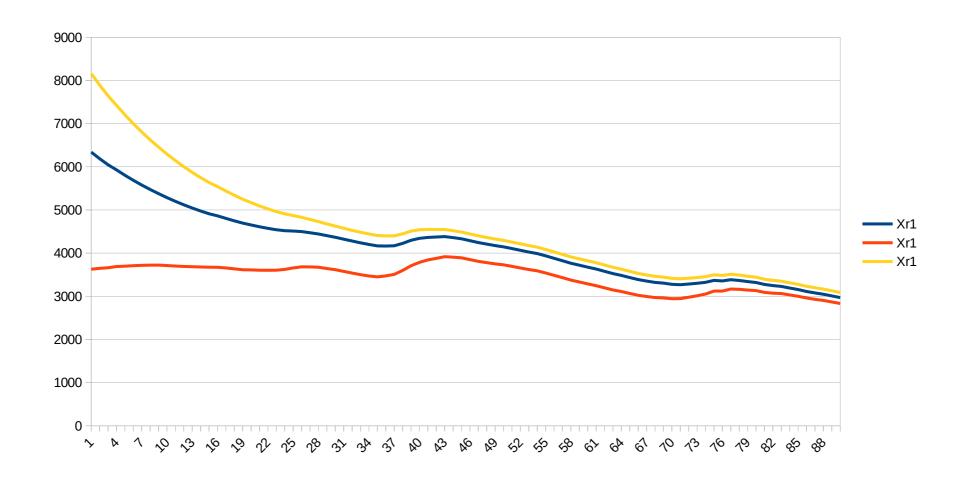
$$\langle (a-b)^2 \rangle = \langle a^2 \rangle + \langle b^2 \rangle - 2 \langle ab \rangle$$


Permanencia del Costo Futuro.

Programación Estacional Nov.2021 - ADME

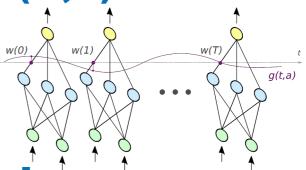


Common Random Numbers. Técnica de reducción de la varianza de la esperanza de la diferencia.


$$\langle (a-b)^2 \rangle = \langle a^2 \rangle + \langle b^2 \rangle - 2 \langle ab \rangle$$

Common Random Numbers. Técnica de reducción de la varianza de la esperanza de la diferencia.

Convergencia de los estados ante realizaciones con CRN

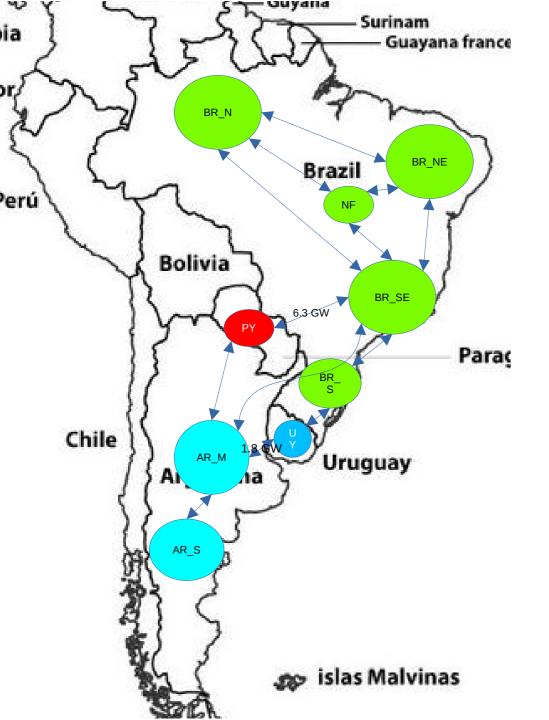


Characterization of the variability in Uruguay.

water inflows 16 years wind & solar 2 month

Representación y entrenamiento de CF(X,k)

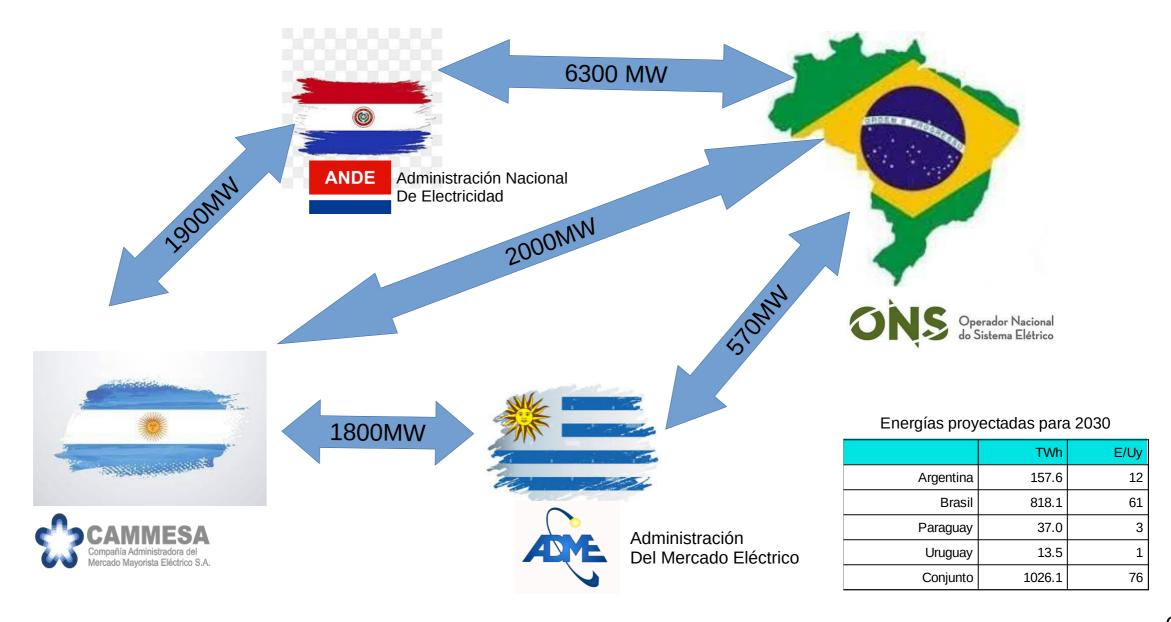
$$CF^h(X,k)=M(X,k,\theta_k)$$



Función de error en base a las diferencias

$$L_{kg} = \frac{1}{4 N^2} \sum_{i \neq j \in g} ((M(X_{kj}, \theta_k) - M(X_{ki}, \theta_k)) - (CF_{kj} - CF_{ki}))^2$$

Función de error completa con regularizadores


$$L = \sum_{k,g} L_{kg} + \lambda \sum_{k} \|\theta_{k}\|^{2} + \beta \sum_{k=2} \|\theta_{k} - \theta_{k-1}\|^{2}$$

Ejemplo de aplicación, aprendizaje de una Política de Operación del conjunto:

- Argentina
- Brasil
- Paraguay
- Uruguay

Sistemas e Interconexiones

Fuentes de información:

Modelo de Uruguay en SimSEE Prog. Estacional Nov. 2021 https://www.adme.com.uy/informes/progest.php

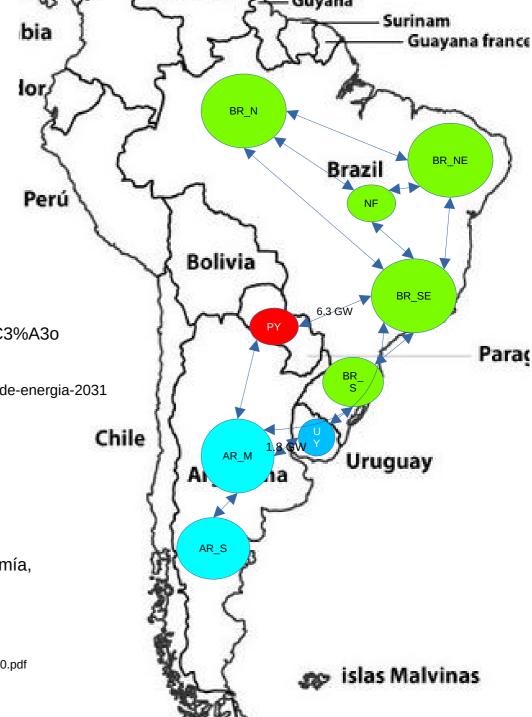
Modelo de Brasil en NEWAVE, programación Diciembre 2021 (CCEE)

Demanda 2021 (ONS)

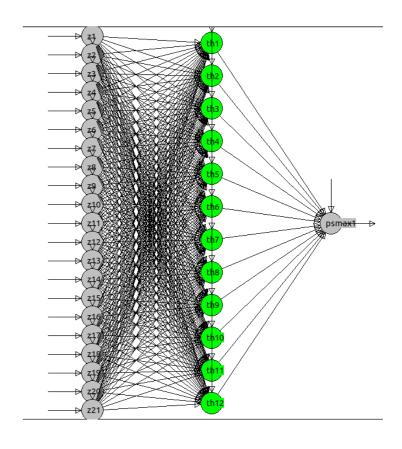
https://dados.ons.org.br/dataset/?tags=Hist%C3%B3rico+da+Opera%C3%A7%C3%A3o

Plano Decenal de Expansão de Energia 2031 (MME - epe)

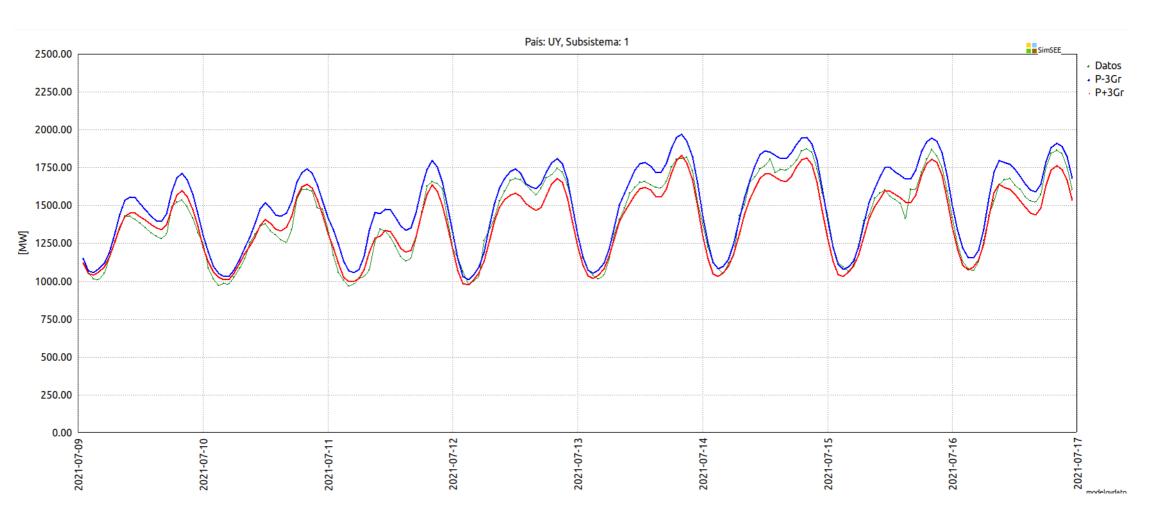
https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/plano-decenal-de-expansao-de-energia-2031


Modelo de Argentina en VMARGO. Programación Estacional Nov2021-Abr2022. https://cammesaweb.cammesa.com/visual-margo/

Lineamientos para un Plan de Transición Energética al 2030. Ministerio de Economía, Secretaría de Energía, Argentina. Octubre 2021 https://www.argentina.gob.ar/economia/energia/planeamiento-energetico



Plan Maestro de Generación. Período: 2021–2040. Paraguay. Febrero 2021 https://www.ande.gov.py/documentos/plan maestro/PLAN%20MAESTRO%20DE%20GENERACION%20%20201-2040.pdf


Modelado de las Demandas

Α	В	C	D	E	F	G	Н	1	J	K	L
VERSION_FORMATO_SERIES:	3	//						ı			
11								I I			
2021	1	1	0	0	0	// año mes d	ia hora minu	to segudo	de la fecha	de primer mue	stra
1	// periodo	de muestre	eo en horas	5							
8760	// cantida	d de puntos	totales po	r serie				i I			
1	// cantida	d de puntos	en un ciclo	2				I I			
1	// cantida	d de cronica	s por serie					I I			
yyyyxxxyyyyxxxyyy	// tipo de	cada serie y	= SALIDA,	x = ENTRAD	Α			1			
								i			
kCron:	1										
	SE	S	NE	N		MTG_Temp	PAL_Temp	RDJ_Temp	SLV_Temp	SNP_Temp	diasem
2021-01-01 00:00:00											
2021-01-01 01:00:00						22.9					6
2021-01-01 02:00:00						23.0					
2021-01-01 03:00:00											
2021-01-01 04:00:00	31233.2					22.9			18.8	19.1	. 6
2021-01-01 05:00:00											
2021-01-01 06:00:00											
2021-01-01 07:00:00								1			
2021-01-01 08:00:00							23.4				
2021-01-01 09:00:00											
2021-01-01 10:00:00											
2021-01-01 11:00:00						-					
2021-01-01 12:00:00											
2021-01-01 13:00:00											
2021-01-01 14:00:00						-	29.3				
2021-01-01 15:00:00							29.3				
2021-01-01 16:00:00											
2021-01-01 17:00:00											
2021-01-01 18:00:00											
2021-01-01 19:00:00	37790.4	10137.9	11263.2	5555.9	27.9	25.3	23.9	22.5	24.3	20.9	6

- 21 Entradas: temperatura media diaria, el tipo de día, el instante temporal y las series de senos y cosenos del instante temporal que permiten captar los tres primeros armónicos del ciclo anual, semanal y diario.
- Capa Oculta: 12 neuronas con saturación del tipo Tangente Hiperbólica (fully-connected).
- Capa de Salida: una neurona con saturación del tipo PonderSofMax.

Ejemplo de salida del modelo Demanda Uruguay +/-3Gr

Series Hidro (iN34:1910, Ar:1943, UY:1909, BR:1931, PY:1978)

	País	Central	País	Central	Pa	aís	Central	País	Central	País	Central
1	Pacífico	iN34	26 BR	BATALHA	51 BI	R	JORDAO	76 BR	MIRANDA	101 BR	FOZ R. CLARO
2	UY	Bonete	27 BR	CORUMBA III	52 BI	R	G.B. MUNHOZ	77 BR	CAPIM BRANC1	102 BR-PY	ITAIPU
3	UY	Palmar	28 BR	EMBORCACAO	53 BI	R	SEGREDO	78 BR	CORUMBA I	103 BR	MANSO
4	UY-AG	Salto Grande	29 BR	NOVA PONTE	54 BI	R	SLT.SANTIAGO	79 BR	FUNIL-GRANDE	104 BR	PONTE PEDRA
5	AG	Alicurá	30 BR	CAPIM BRANC2	55 BI	R	SALTO OSORIO	80 BR	BARRA GRANDE	105 BR	OLHO DAGUA
6	AG	Chocón	31 BR	ITUMBIARA	56 BI	R	SAO JOAO	81 BR	CAMPOS NOVOS	106 BR	QUEBRA QUEIX
7	AG	Condor Cliff	32 BR	CACH.DOURADA	57 BI	R	BAIXO IGUACU	82 BR	MACHADINHO	107 BR	ITUMIRIM
8	AG	Futeleufú	33 BR	SAO SIMAO	58 BI	R	CACHOEIRINHA	83 BR	MONJOLINHO	108 BR	SALTO
9	AG	Planicie Banderita	34 BR	I. SOLTEIRA	59 BI	R	PAI QUERE	84 BR	SALTO CAXIAS	109 BR	JAURU
10	AG-PY	Yacyretá	35 BR	A.A. LAYDNER	60 BI	R	SAO ROQUE	85 BR	BARRA BONITA	110 BR	ITAGUACU
11	BR	CAMARGOS	36 BR	PIRAJU	61 BI	R	GARIBALDI	86 BR	A.S. LIMA	111 PY	YGUAZU
12	BR	ITUTINGA	37 BR	CHAVANTES	62 BI	R	ITA	87 BR	IBITINGA	112 PY	Acaray
13	BR	FURNAS	38 BR	L.N. GARCEZ	63 BI	R	PASSO FUNDO	88 BR	PROMISSAO		
14	BR	M. DE MORAES	39 BR	CANOAS II	64 BI	R	FOZ CHAPECO	89 BR	SLT VERDINHO		
15	BR	ESTREITO	40 BR	CANOAS I	65 BI	R	ESPORA	90 BR	NAVANHANDAVA		
16	BR	JAGUARA	41 BR	STA BRANCA T	66 BI	R	SAO JOSE	91 BR	TRES IRMAOS		
17	BR	IGARAPAVA	42 BR	TIBAGI MONT	67 BI	R	PASSO S JOAO	92 BR	I. SOLT. EQV		
18	BR	VOLTA GRANDE	43 BR	MAUA	68 BI	R	TRAICAO	93 BR	JUPIA		
19	BR	P. COLOMBIA	44 BR	SAO JERONIMO	69 BI	R	PEDREIRA	94 BR	P. PRIMAVERA		
20	BR	CACONDE	45 BR	CAPIVARA	70 BI	R	GUARAPIRANGA	95 BR	CACU		
		E. DA CUNHA	46 BR	TAQUARUCU	71 BI	R	BILLINGS	96 BR	B. COQUEIROS		
22	BR	A.S.OLIVEIRA	47 BR	ROSANA	72 BI	R	SAO DOMINGOS	97 BR	OURINHOS		
23	BR	MARIMBONDO	48 BR	S GDE CHOPIM	73 BI	R	PONTE NOVA	98 BR	SERRA FACAO		
24	BR	A. VERMELHA	49 BR	STA CLARA PR	74 BI	R	EDGARD SOUZA	99 BR	ITIQUIRA II		
25	BR	BOCAINA	50 BR	FUNDAO	75 BI	R	CORUMBA IV	100 BR	ITIQUIRA I		

Variables de estado consideradas

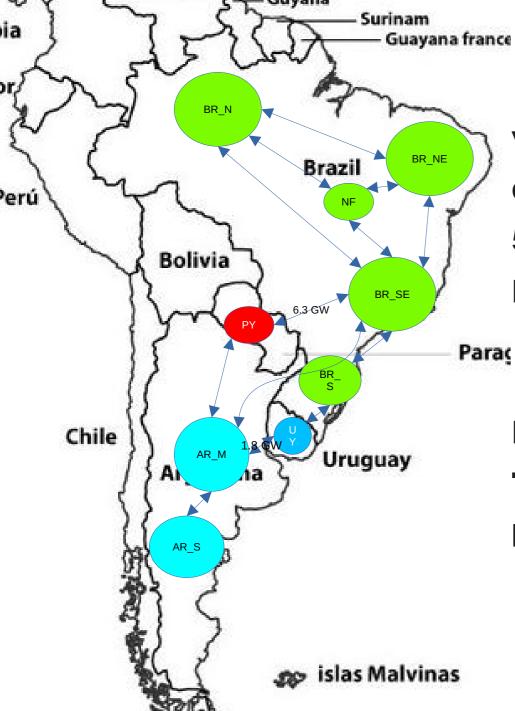
1	AR_hid_ALI_Vol
2	AR_hid_CHO_Vol
3	AR_hid_PBA_Vol
4	AR_hid_PIE_Vol
5	BR_hid_A.ALAYDNER_Vol
6	BR_hid_AVERMELHA_Vol
7	BR_hid_BESPERANCA_Vol
8	BR_hid_BALBINA_Vol
9	BR_hid_BARRA_BONITA_Vol
10	BR_hid_BARRA_GRANDE_Vol
11	BR_hid_BATALHA_Vol
12	BR_hid_BILLINGS_Vol
13	BR_hid_CACONDE_Vol
14	BR_hid_CACU_Vol
15	BR_hid_CAMARGOS_Vol
16	BR_hid_CAMPOS_NOVOS_Vol
17	BR_hid_CAPIM_BRANC1_Vol
18	BR_hid_CAPIVARA_Vol
19	BR_hid_CHAVANTES_Vol
20	BR_hid_CORUMBA_I_Vol
	· · · · · · · · · · · · · · · · · · ·

		hid							
22	$BR_{\underline{\ }}$	_hid_	CO	RUM	1BA	_IV_	Vol		
23	BR_	hid	CUI	RUA	-UN	A_V	'ol		
24	BR_	hid	EM	BOF	RCA	CAC)_V	ol	
25	BR_	hid	ERI	NES	TIN	A_V	ol		
26	BR_	hid	ESI	POR	A_V	/ol			
27	BR_	hid	FU	VIL_	Vol				
28	BR_	hid	FU	RNA	S_V	'ol			
29	$BR_{\underline{\ }}$	hid	G.E	3M	UNH	HOZ	_Vc	ol	
30	$BR_{\underline{\ }}$	hid	G.F	PS	OUZ	<u>Ά_</u> \	/ol		
31	BR_	hid	GΑ	RIBA	۱LDI	_Vc	ol		
32	BR_	hid	GU.	ARA	PIR	ANC	GA_	Vol	
33	BR_	hid	IS	SOL ₁	ΓEIF	<u>۱_</u> A۶	/ol		
34	BR_	hid	IRA	PE_	Vol				
35	BR_	hid	ITA	PAF	RICA	_Vc	ol		
36	BR_	hid	ITU	MBI	AR/	4_V	ol		
37	BR_	hid	JAC	GUA	RI_\	/ol			
38	BR_	hid	JO	RDA	<u>0_</u> V	ol′			
39	$BR_{\underline{\ }}$	hid	LAJ	JES_	Vol				
10	$BR_{\underline{\ }}$	hid	М	DE	МО	RAE	ES_	Vol	

41 BR_hid_MACHADINHO_Vol	61BR_hid_SAO_SIMAO_Vol
42 BR_hid_MANSO_Vol	62BR_hid_SEGREDO_Vol
43 BR_hid_MARIMBONDO_Vol	63BR_hid_SERRA_FACAO_Vol
44BR_hid_MAUA_Vol	64BR_hid_SERRA_MESA_Vol
45 BR_hid_MIRANDA_Vol	65BR_hid_SINOP_Vol
46 BR_hid_NOVA_PONTE_Vol	66BR_hid_SLT.SANTIAGO_Vol
47 BR_hid_PCAVALO_Vol	67BR_hid_SOBRADINHO_Vol
48BR_hid_PESTRELA_Vol	68BR_hid_STA_CLARA_PR_Vol
49BR_hid_PARAIBUNA_Vol	69BR_hid_TRES_IRMAOS_Vol
50 BR_hid_PASSO_FUNDO_Vol	70BR_hid_TRES_MARIAS_Vol
51 BR_hid_PASSO_REAL_Vol	71BR_hid_TUCURUI_Vol
52 BR_hid_PEIXE_ANGIC_Vol	72 PY_hid_Yguazú_Vol
53 BR_hid_PROMISSAO_Vol	73 UY_hid_Bonete_Vol
54BR_hid_QUEBRA_QUEIX_Vol	74 UY_hid_Palmar_Vol
55 BR_hid_QUEIMADO_Vol	75 UY_hid_SaltoGrande_CTM50_Vol
56 BR_hid_RETIRO_BAIXO_Vol	76 iN34
57 BR_hid_RONDON_II_Vol	
58BR_hid_SAMUEL_Vol	
59 BR_hid_SANTA_BRANCA_Vol	
60BR_hid_SAO_ROQUE_Vol	
	·

Temperatura radiación solar y velocidad de viento (CEGH)

Se consutruyó CEGH en base a series de re-análisis en 27 puntos distribuidos entre los cuatro países.


Las series fueron bajadas del sitio: https://cds.climate.copernicus.eu

Las centrales térmicas se agruparon por costo variable y flexibilidad

CV000 = Autodespachadas, biomasa, co-generación. (en la base)

CV060 = Ciclos combinados y centrales nucleares y de carbón (despacho diario)

CV150 = Turbinas de Ciclo Abierto - Moto-Generadores (despacho flexible)

Simulación UY+BR+PY+AG

variables de estado: 76

discretización del espacio de estado:

Recursión de Bellman memoria:

Dimensión Simplex sobre: 5000x2000

Tiempo de resolución Simplex: 64 ms

hora de resolver la recursión de Bellman:

2 * 10^55 * 64/1000/3600/24/365/1000

= 4*10^43 milenios!!!!

Algunos resultados

Tiempo de aprendizaje 200 iterations: 80 horas <<<< 4*10^43 millenios!!!! 2030 Costo Marginales [US\$/MWh]:

	h00h06	h06h12	h12h18	h18h26	Daily
AR_ComPat	40.1	40.1	40.2	40.6	40.3
AR_Mer	41.0	40.9	41.0	41.4	41.1
BR_N	17.1	17.2	17.8	21.5	18.4
BR_NE	15.9	16.0	16.6	20.3	17.2
BR_NO	16.9	16.9	17.6	21.2	18.2
BR_S	17.2	17.2	17.9	21.7	18.5
BR_SE	17.0	17.1	17.7	21.5	18.3
PY	17.4	17.4	18.1	21.9	18.7
UY	46.8	48.0	48.4	50.5	48.4

Algunos resultados

	US\$/MWh	TWh	TWh	TWh	TWh	TWh	TWh	TWh	TWh	TWh	TWh	TWh
	Costo Marginal	Demanda		Exce- dentes	Pérdidas	Hidro	Eolica	Solar	TCV000	TCV060	TCV150	Imp
Argentina	39	158	0.82	0.00	1.33	40.38	22.47	6.50	3.32	77.06	0.00	10.05
Brasil	15	818	0.88	26.17	2.34	544.93	110.09	56.92	115.68	5.33	2.14	12.36
Paraguay	16	37	21.19	0.00	0.71	58.89	0.00	0.00	0.00	0.00	0.00	0.00
Uruguay	48	13	0.18	1.21	0.01	5.77	5.07	0.73	2.62	0.00	0.00	0.66

	US\$/MWh	TWh	%Dem	%Dem	%Dem	%Dem	%Dem	%Dem	%Dem	%Dem	%Dem	%Dem
	Costo Marginal	Demanda	Expor- tación	Exce- dentes	Pérdidas	Hidro	Eolica	Solar	TCV000	TCV060	TCV150	Imp
Argentina	39	158	0.52%	0.00%	0.84%	25.61%	14.26%	4.12%	2.11%	48.88%	0.00%	6.37%
Brasil	15	818	0.11%	3.20%	0.29%	66.61%	13.46%	6.96%	14.14%	0.65%	0.26%	1.51%
Paraguay	16	37	57.27%	0.00%	1.93%	159.20%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Uruguay	48	13	1.37%	8.95%	0.10%	42.86%	37.68%	5.45%	19.49%	0.00%	0.01%	4.93%

Principales dificultades

- La mayor dificultad actual está en la resolución del Despacho de un paso de tiempo por la dimensión del problema de optimización del orden de (5000 variables x 2000 restricciones). Esto lleva a fallas por truncamiento en los resolvedores Simplex disponibles. SimSEE utiliza tres formas de resolver. Si falla la primera prueba la segunda y si falla la segunda prueba la tercera. Igualmente se considera que este es un "talón de aquiles" de las soluciones actuales.
- El tema del POSTIZADO dinámico crea dificultades por las diferencias horarias entre los nodos. Si por ej. se quisiera incorprar Chile tendríamos que resolver cómo hacer el POSTIZADO.

- Particionar el problema por CONJUNTO DE NODOS (CN)
- Cada CN resuelve suponiendo conocido un modelo de los costos marginales de los CN a los que está interconectado
- El modelo de costos marginales de un CN debe ser tal que permita reflejar la sensibilidad del costo marginal a los intercambios.
- En forma iterativa, los CN irán aprendiendo su Política de Operación y aprendiendo el modelo de costos marginales de sus vecinos.
- Esta implementación permite partir la resolución del despacho en subproblemas de menor dimensión.
- Esta implementación permite considear un postizado dinámico difernete para cada CN.

