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Relaciones de dispersion de
fonones: (Caso S1).

Frequency [THz]

A L

Fig. 3.1. Phonon dispersion curves in Si along high-symmetry axes. The circles are data

points from [3.4]. The continuous curves are calculated with the adiabatic bond charge
model of Weber [3.5]



Relaciones de dispersion de
fonones: (Caso GaAs).
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Fig. 3.2. Phonon dispersion curves in GaAs along high-symmetry axes [3.6]. The experi-
mental data points were measured at 12 K. The continuous lines were calculated with an
11-parameter rigid-ion model. The numbers next to the phonon branches label the corre-
sponding irreducible representations
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Funcion de Bloch

p-type lattice-periodic tunction U, {x)

Wavetunction cos (kx + 6}

o —
- —
—

Heal part of

Distance x

Fig. 7.1. Example of the construction of a Bloch wave w, (r) = ulre®” from a lattice-per-
il k
iodie funchion g (r) with p-tvpe bonding character and a plane wave



Acoplamiento en Ecuacion Central
de Teoria de Bandas
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Figure 7 The lower points represent values of the wavevector k = 2#n/L allowed by the periodic
boundary condition on the wavefunction over a ring of circumference L composed of 20 primitive
cells. The allowed values continue to +c. The upper points represent the first few wavevectors
which may enter into the Fourier expansion of a wavefunction {{x), starting from a particular
wavevector k = ko = —8(2n/L). The shortest reciprocal lattice vector is 2w/a = 20(2#/L).



Mezcla Estados en 1D

E
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Fig. 7.5. Splitting of the energy parabola of the
free electron (— — —) at the edges of the first
Brillouin zone k= +m/a in the one-dimen-
14 g 21 :Iiiﬂn'fil case). TL‘iJ a first uppruximatliﬂn the gap
Ve ~ ] 1s given by twice the corresponding Fourier
. coeflicient V; of the potential. Periodic cont-
_ZELL ‘TE[E' 0 _.T__LIL %TTI. k  nuation over the whole of k-space gives rise to

continuous bands @ and @, shown here only
a in the vicinity of the original energy parabola



Red Vacia 1D

Fig. 7.2. The parabolic energy curves of a
free electron in one dimension, periodi-
cally continued in reciprocal space. The
periodicity in real space 1s a. This E (k)
dependence corresponds to a periodic lat-
b _Z2n o 2n 4 K tice with a vanishing potential (“empty”
“a a lattice)




Periodicidad de la Estructura
Electronica en Red Reciproca
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Fig. 7.6. Encrgy dispersion curves £(K) for a one-dimensional lattice (lattice constant a)
in the extended zone scheme. As can be seen, the quasi-free-clectron approximaton mves
rise to forbidden and allowed energy megions due to the opening of band gaps, as shown
mm Fig. 7.5 (cf. the vanishing potential case of Fig. 7.2). The parts of the bands corre-
spondmng to the free-clectron parabola are indicated by the thick lines



Figure 9.4

(a) The mee electron & ws. k
parabofa i one dimension,
(b} Step 1 in the eonstruction
to determine the distorton
in the free clectron parabola
in the meighborhood of 2
Bragp “plane,” due to a weak
pericdic  potential. If the
Bragg “plant” is that deler-
mined by K, a second free
electron parabola 15 drawn,
centered on K. {c) Step 2 in
the consirucnion to deter-
mine the distorlion in the
free electron parabola in the
neighborhood of & Brage
“plane” The degeneracy of
the two parabolas at K2
i5 spht. {d) Those portions
of part (c) corresponding
to the original free electron
parabola given in (a). (¢} EF-
fect of afi additional Brarg
“planes™ on the bee clectron
parabola.  This  particular
way of displaying the elec-
tronie levels v & perodic
potential 15 known as the
extengded-zone scheme. ([ The
levels of (e}, displayed in a
reduced-zone scheme. [g) Free
electron levels of (e) or ([) in
a repeated-zone soheme,

Origen
Bandas

de
Energia
Permitida

Y
Prohibida



Red Vacia Estructura Cubica
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. Fig. 7.3. Bandstructure for a free electron gas in a primi-
/ \\ tive cubic lattice (lattice constant a), represented on a sec-
/ \ tion along k. in the first Brillouin zone. The periodic po-
,;’( X tential is assumed to be vanishing (“empty’” lattice). The
N X / various branches stem from parabolas whose origin 1n re-
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Red Vacia Diamante (fcc) vs.
Estructura Electronica Si

energy

energy (eV)

L A r A X UK z r
wave vector wave vector

Fig. 8.12. Band structure for the three dimensional diamond structure. For vanish-
ing potential (a) and a realistic band structure calculation for Si (b). The numbers

at I" give the irreducible representations (see Sect. 26.4 to 6), still neglecting spin:
According to [T6A1,81M1,96Y1] of Chap. 1
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Figure 1.6: Periodic potential in a one-dimensional crystal.
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Figure 1.7: Periodic potential of the Kronig and Penney model.
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Regiones de Energia Permitida y
Regiones de Energia Prohibida

3
B
o522 Permitted Permitted Permitted |
EZE band = band 2 band
o || 2 2 2
g S 5
= - -=
= = =
1.5} 5 = =
- = 5
i [ w
w
o

0 12 14 16

0 2 4

6 8 1
Energy (eV)

Figure 1.8: P(E) as a function of the electron energy, E, for silicon.
The shaded areas correspond to the permitted energy bands, where
there is a solution to Equation 1.1.29.



Relaciones de Dispersion
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Figure 1.9: Energy versus k in a one-dimension crystal. The dotted
line parabola represents the E(k) relationship for a free electron (from
Figure 1.1).
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Figure 1.10: E(k) diagram of Figure 1.9, repeated with a 2n/(a+b)
period. The shaded area highlights the first Brillouin zone (BZ).[?]
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Fig. 7.14. Form of the density of states D(E) in the vicinity of the four possible types of
critical point in three dimensions. The energy of the critical points is denoted by E_ and
the corresponding A-space position by k. (i = 1,2,3). In the parabolic approximation, the
energy band has the form E(k) = E.+ > ; a-i-(,fc;—.fcf.{-}z in the vicinity of a critical point,
where «; = const. The quantities Dy and C in the figure are also constants



Estructura Electronica y
Densidad de Estados del Cu

Energy (V)
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Fig. 7.12. Bandstructure E(k} for copper along directions of high crystal symmetry (righ!).
The experumental data were measured by various avthors and were presented collectively
by Cowrths and Hiifner [7.4]. The full lines showing the calculated energy bands and the
density of states (fgfr) are from [7.5]. The experimental data agree very well, not only
among themselves, but also with the calculation



Estructura Electronica y
Densidad de Estados del Ge
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Fig. 7.13, Theoretcally derived bandstructure E(k) for permoniem along directions of high
svmmetry (ripht), and the correspondmng eleciromic density of states (fefr). A number of crit-
cal pomits, denoted accordimg o ther position in the Brlloumn wone (X L), cin be seen to
be associaled with regions of the bandsirucure where E(k) has a honzoatal tanpent. The
shaded megion of the density of states cormesponds to the states oocuped by electrons [7.6]



Paquete de Onda Electronico
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Fig. 9.1. Real space representation of the wave packet describing the motion of a spatially
localized free electron at times 1= 0,75, 27y...(Re{w}: : lw|: — — =). The center of the
wave packet, 1.c., in the particle picture the electron itself, moves with the group velocity
v = Ow/dk. The halfwidth of the envelope increases with time. As the wave packet spreads, the
wavelength of the oscillations of Re{y] becomes smaller at the front and larger at the rear



Masa Efectiva
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Fig. 9.2a,b. Schematic behavior of the effective mass m™(k) for a one-dimensional bandstruc-
ture E(k): (a) for strong curvature of the bands. i.e.. small effective masses; (b) for weak cur-
vature, i.e.. large effective masses. The dashed lines denote the points of inflection of E(k)
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