TortuBots y NXT

Fundamentos para programación y robótica Módulo 2 – Programación y robótica Capítulo 3 – TortuBots y NXT

Agenda

- Generalidades sobre el kit Lego NXT
- Conceptos básicos de Lego NXT
- Operando el NXT con TortuBots

Objetivos

- Aprender sobre el kit y familiarizarse con el mismo.
- Conocer sus capacidades y su funcionamiento.
- Conocer las herramientas que tenemos para operar con el mismo desde TortuBots.

Requisitos para este capítulo

- Estar familiarizado con TortuBots.
- Haber completado el capítulo 2.

TortuBots y NXT

Información sobre el kit NXT

Lego NXT

- Kit constructivo de robótica.
- Se puede utilizar conectado al PC. Trabajaremos así.
- Cuenta con un pequeño computador que permite que el robot opere de forma autónoma.
- Se conecta mediante USB o Bluetooth. Utilizaremos USB.

Lego NXT

- Utiliza una electrónica simplificada para el manejo de los sensores y actuadores.
- Sin riesgos de quemar o inutilizar el dispositivo al conectar.
- Puede utilizar una batería o pilas AA. La batería es recargable.

Lego NXT

- La principal ventaja es que permite construir diferentes robots de forma sencilla.
- Esto se debe a que la parte constructiva está basada en los kits Lego clásicos.

TortuBots y NXT

Componentes

Brick

Sensores

Motores

Componentes – El Brick (o ladrillo)

- Es la computadora del robot.
- Permite interactuar con los sensores y actuadores.
- Cuenta con un display y cuatro botones.
- 4 conectores de entrada (1-4).

- 3 conectores de salida. (A,B y C)
- Se enciende con el botón anaranjado.

TortuBots y NXT

Conector USB

Componentes

Conectores de entrada 1, 2, 3 y 4

Componentes

- En los conectores de entrada (1-4) van los sensores.
- En los de salida, los motores.
- Mismo conector para ambos.
- Conectarlos al revés no los rompe.
- Se enciende con el botón anaranjado.

Los sensores:

- El kit lego cuenta con varios tipos de sensores.
- Se conectan al brick en los puertos 1,2,3 y 4.
- Tienen conectores de pieza Lego para que puedan montarse en el robot.

TortuBots y NXT

Los sensores:

Sensor de contacto

- Es un dispositivo mecánico que envía una señal eléctrica cuando se genera contacto físico.
- Usos en robótica: Parachoques
- Ejemplos en la naturaleza :
 - Tacto
 - Antenas de insectos
- En nuestras vidas:
 - Botones de teléfonos

Sensor infrarrojo (Sensor de luz)

 Es un dispositivo electrónico capaz de generar luz infrarroja y medir la radiación reflejada.

- Usos en robótica: Seguir líneas, evitar obstáculos
- Ejemplos en la naturaleza:
 - Algunas serpientes
 - Mosquitos
- En nuestras vidas:
 - Control remoto

Sensor de ruido (micrófono)

 Traduce las vibraciones ejercidas por las ondas sonoras en pulsos eléctricos.

- Usos en robótica: Encender luces con aplauso.
- Ejemplos en la naturaleza:
 - Oído
- En nuestras vidas:
 - Micrófonos

Sensor de ultrasonido

- Es un dispositivo electrónico capaz de emitir impulsos ultrasónicos y medir el tiempo que demora en retornar el eco.
- Usos en robótica: Evitar obstáculos
- Ejemplos en la naturaleza:
 - Delfines
 - Murciélagos
- En nuestras vidas:
 - Sonares

Los motores

- Los motores en los kits Lego se conectan en los puertos A, B y C.
- Compuestos por un motor eléctrico y un conjunto de engranajes.

Los motores

- Los motores son del tipo servo motores. Esto implica que permite que se les indique una posición a donde ir, una velocidad o frenar en cierta posición.
- La velocidad se regula según la potencia.

Los motores

- Cuentan además con un sensor.
- Permiten saber cuánto han girado a partir de un momento dado.
- Útil para conocer la posición del eje del motor.

TortuBots y NXT

¿Qué software utilizaremos?

TortuBots y NXT

- TortuBots cuenta con dos paletas con bloques para operar el NXT.
- Se dividen los bloques según sean para sensores o para motores.

TortuBots y NXT – Paleta de Motores

TortuBots y NXT – Paleta de Sensores

TortuBots y NXT

¿Cómo se conecta el kit a las computadoras?

Pasos para trabajar con el kit.

- Conectar los sensores y motores necesarios.
- Prender el brick.
- Conectarlo al PC.
- Iniciar TortuBots.

TortuBots y NXT

Conexión

TortuBots y NXT

Conexión

Una vez conectado el kit

- Es posible cambiar la configuración de sensores/motores.
- Si se apaga, no pasa nada, volver a encenderlo.
- TortuBots al iniciar busca un brick. Es posible que lo busque nuevamente.
- Para esto, ejecutar el bloque

¿Cómo saber si TortuBots detectó el robot?

- Sin detectar, bloques de robótica grises.
- Detectado, bloques verdes (pero esto no implica que se puedan utilizar todos los sensores).

Programar en TurtleBots

¿Cómo saber si TortuBots detectó el robot? Sin detectar

Programar en TurtleBots

¿Cómo saber si TortuBots detectó el robot? Detectado

TortuBots y NXT

Vamos a probar poner un motor en movimiento.

Armar:

- Conectar un motor al puerto A.
- Conectar el USB.
- Prender el brick.

Inicializar TortuBots-NXT:

- Si no está abierto TortuBots, abrirlo.
- Si ya estaba abierto, ejecutar el bloque

Programar:

- Utilizar el bloque "iniciar motor" en la paleta de de motores Lego.
- Establecer el puerto correcto (Puerto A).
- Ejecutar el bloque.
- Para detenerlo: Menú Tortuga Parar.

Fundamentos para programación y robótica

TortuBots y NXT

Vamos a ver más en detalle los bloques disponibles.

Fundamentos para programación y robótica

TortuBots y NXT

Primero los sensores y su funcionamiento.

Bloques de sensores - Generalidades:

- Los sensores se manejan con un único bloque.
- Es una expresión, el bloque *leer*. Es un bloque de valor (devuelve en su encastre el valor).
- Se le indica el tipo de sensor y el puerto en donde está conectado.

Bloques de sensores - Ejemplo:

 Por ejemplo, si se tiene un sensor de Luz en el puerto 1, se puede leer el valor capturado por el sensor mediante el siguiente bloque.

Fundamentos para programación y robótica

TortuBots y NXT

Bloques de sensores - Ejemplo:

Bloques de sensores:

Los bloques para identificar sensores son:

Bloques de sensores - Ejemplo:

 En este ejemplo se puede leer un botón desde el puerto 3.

Bloques de sensores – Manejo de errores:

- Si en el puerto señalado no existe el sensor indicado el programa no arroja un error.
- Es importante verificar que lo indicado en el programa coincide con la realidad.

Bloques de sensores – Manejo de errores:

¿Qué pasa si se conectan mal los bloques?

Fundamentos para programación y robótica

TortuBots y NXT

Bloques de sensores – Ejemplo error:

Bloques de sensores – Ejercicios:

- Leer el mismo sensor desde diferentes puertos.
 Utilizar únicamente el bloque leer.
- Leer todos los sensores. ¿Cómo hacer para cambiar su valor?

Para la lectura de sensores, es muy útil la estructura *esperar valor* vista en el capítulo anterior...

Programar en TurtleBots

Esperar valor - Repaso:

- Leer el sensor y guardarlo en una variable.
- Revisar el valor y si no está en el rango deseado, esperar un tiempo a ver si cambia.
- Cuando cambia, continuar ejecutando un programa.

Programar en TurtleBots

Esperar valor - Repaso:

- A veces, los cambios de valores pueden entenderse como un *evento*. Ej: Cuando el sensor mide algo menor a 10 cm puede indicar que se está cerca de un objeto/pared.
- Usualmente evaluaremos si el valor está en un cierto rango, no si toma un cierto valor.

Fundamentos para programación y robótica

Programar en TurtleBots

Esperar valor – Ejemplo:

Bloques de sensores – Esperar valor:

- Se puede utilizar para cualquier sensor, tanto del robot como del PC.
- No es necesario utilizarlo siempre.

Bloques de sensores – Ejercicios:

- Hacer un programa que haga avanzar a la tortuga 20 pasos cuando se aprieta el botón.
- Hacer un programa basado en el anterior que avance 20 pasos cada vez que se aprieta el botón.

Bloques de sensores – Posibles soluciones:

Bloques de sensores – Posibles soluciones:

Bloques de sensores – Ejercicios:

- ¿Qué pasa en el segundo programa? ¿Avanza siempre la misma distancia?
- Probar otros valores para la espera.
- Probar otros valores para la distancia que avanza la tortuga.

Fundamentos para programación y robótica

TortuBots y NXT

Veamos ahora los bloques de motor.

Bloques de motores:

- Los motores permiten dos funcionalidades básicas: establecer un giro continuo o girar una cantidad dada de vueltas (grados).
- Además, permite frenarlos y establecer su posición.
- Cuenta además con el bloque que permite leer su posición.

Bloques de motores – Iniciar motor:

- Pone el motor en marcha.
- Valores entre -127 y 127. Los valores negativos lo hacen girar al revés.
- Mientras no se detenga el programa o no se de otro comando, se mantiene en movimiento.

Bloques de motores – Iniciar motor:

Ejemplo: Si hay un motor conectado en el puerto A, lo pone en marcha con potencia 100.

Bloques de motores – Ejercicios:

- Mover el motor con potencias 30, 50, 60, 80, 100 y 120.
- Mover el motor con potencias positivas y otras negativas.

Bloques de motores – Girar motor:

- Girar un motor una cantidad dada de vueltas con una cierta potencia.
- La cantidad de vueltas es positiva.
- La cantidad de vueltas puede ser un float. (Hacer la regla de 3 con 360°)
- Para ir hacia atrás, utilizar una potencia negativa.

Bloques de motores – Girar motor:

 En el ejemplo de abajo, se gira el motor conectado en el puerto A una vuelta a potencia 100.

puerto	PUERTO A
girar motor rotaciones	1
potencia 🗗	100

Fijarse que luego del comando anterior, el motor permanece trancado en la posición dada. *Probar con suavidad!*

Esto se debe al tipo de motor.

Bloques de motores – Ejercicios:

- Mover el motor 3, 5 y 20 vueltas.
- Probar con potencias diferentes.

Probar con 0,5 y 5,5 vueltas.

Bloques de motores – Reiniciar motor:

- Vuelve el motor al estado inicial.
- Esto implica que deja de girar y deja de mantener la posición.
- Además, reinicia el contador de vueltas del motor.

Bloques de motores – Ejemplo reiniciar motor:

- Reinicia el motor.
- Libera el motor que quedó trancado al probar el bloque girar 1 vuelta.

Bloques de motores – Frenar motores:

- Frena el motor si está en movimiento.
- En el lugar que se frena, se mantiene detenido y trancado.
- Si ya está detenido, se mantiene en esa posición y trancado.

Bloques de motores – Frenar motores:

- Probamos ejecutar el siguiente comando.
- Notar que si se trata de mover el motor, está frenado en el lugar.

Bloques de motores – Ejercicios:

- Mover el motor con potencia 120, esperar 10 segundos y luego frenarlo.
- Llevarlo a una posición con la mano y luego detenerlo con el comando *frenar motor*. Intentar moverlo *con suavidad*.

Bloques de motores – Posición del motor:

- Es un bloque de sensado y devuelve un valor.
- El valor es cuántos grados ha sido girado el motor desde el inicio (o reinicio).
- Recordar que es un valor aproximado.
Bloques de motores – Ejemplo posición del motor:

- Probar medir el valor.
- Mover el motor a mano.
- Medir nuevamente el valor.

Fundamentos para programación y robótica

TortuBots y NXT

Utilicemos el sensor de posición del motor.

Bloques de sensores – Ejercicios:

- Cada medio segundo, establecer el rumbo de la tortuga según la posición del motor.
- Antes de entrar en la iteración, reiniciar el motor.

Bloques de sensores – Solución posible:

Objetivos

- Aprender sobre el kit y familiarizarse con el mismo.
- Conocer sus capacidades y su funcionamiento.
- Conocer las herramientas que tenemos para operar con el mismo desde TortuBots.

Fundamentos para programación y robótica

TortuBots y NXT

Fin del Capítulo 4 – TortuBots y NXT