Primer Parcial - Matemática Discreta I

Martes 3 de mayo de 2022.

Número de lista	APELLIDO, Nombre	Cédula de identidad	

MO1	M02	M03	M04	M05	M06	Desarrollo	Puntaje Total

El problema de desarrollo correcto y completo vale 16 puntos.

Cada respuesta correcta de múltiple opción suma 4 puntos.

Respuestas incorrectas restan 1 punto.

La duración del parcial es de tres horas y media.

Múltiple Opción 1

¿De cuántas formas pueden extraerse 9 canicas de una bolsa que contiene 16 canicas: 4 blancas, 4 rojas, 4 azules y 4 negras? A) 80; B) 90; C) 100; D) 110.

Múltiple Opción 2

Sea
$$\{a_n\}_{n\in\mathbb{N}}$$
 tal que $a_{n+2}-a_{n+1}-6a_n=6n+5$ con $a_0=0$ y $a_1=1$. Entonces:
A) $a_{99}=3^{100}-100$; B) $a_{99}=3^{100}-99$; C) $a_{99}=3^{99}-99$; D) $a_{99}=3^{99}-100$.

Múltiple Opción 3

Tenemos n pesos uruguayos para comprar manzanas, duraznos y bananas en la feria. Vamos a usar todo el dinero comprando cantidades enteras en kilogramos. Se sabe que las manzanas salen 20 pesos, los duraznos 30 pesos y las bananas 50 pesos por kilogramo. La función generatriz f(x) que representa la cantidad de compras posibles es:

La función generatriz
$$f(x)$$
 que representa la cantidad de compras posibles es:
A) $\frac{1}{1+x^{20}} \frac{1}{1+x^{30}} \frac{1}{1+x^{50}}$; B) $\frac{1}{1-x^{20}} \frac{1}{1-x^{30}} \frac{1}{1-x^{50}}$; C) $\frac{1}{1+(x^{20}+x^{30}+x^{50})}$; D) $\frac{1}{1-(x^{20}+x^{30}+x^{50})}$.

Múltiple Opción 4

¿De cuántas formas se pueden llenar 10 vasos ordenados y numerados del 1 al 10 usando 4 bebidas posibles de modo que no queden dos vasos consecutivos con la misma bebida? Se asume que todo vaso es llenado con alguna bebida.

A)
$$4^{10}$$
; B) $4^2 \times 3^8$; C) 4×3^9 ; D) $4^{10} - 3^{10}$.

Múltiple Opción 5

Hallar el coeficiente en
$$x^2y^3$$
 de $f(x,y) = (x - 2x^2 + y + 2y^3 + 1)^5$.
A) -20 ; B) -30 ; C) -40 ; D) -50 .

Múltiple Opción 6

Contar la cantidad de subconjuntos de 4 elementos de $S = \{1, 2, ..., 100\}$ tales que la distancia entre toda pareja de elementos sea de 3 o más. A) $\binom{94}{3}$; B) $\binom{94}{4}$; C) $\binom{94}{5}$; D) $\binom{94}{6}$. Aclaración: dados n < m, la distancia entre $n \ y \ m \ es \ m - n$.

Problema de Desarrollo

- 1) Probar que $n^2 \ge 2n + 1$ para todo natural n tal que $n \ge 3$.
- 2) Probar mediante el Principio de Inducción Completa que $2^n \ge n^2$ para todo natural n tal que $n \ge n_0$, donde n_0 se debe encontrar.