Taller de Aprendizaje Automático

Entrenamiento de Redes Neuronales Profundas (Parte 2)

Instituto de Ingeniería Eléctrica Facultad de Ingeniería

Tiempo de entrenamiento: variantes de SGD Descenso por gradiente estocástico (SGD) SGD con momentum Momentum de Nesterov AdaGrad RMSProp ADAM

 Regularización Regularización por norma de parámetros Regularización por Perturbaciones Aleatorias

Entrenamiento de redes profundas: dificultades mayores

- Desvanecimiento o explosión del gradiente
- · Cantidad de datos insuficientes para el problema a abordar
- Tiempo de entrenamiento
- Sobre-ajuste

Aprendizaje como optimización

- Queremos encontrar f aproximación de una función en un conjunto de puntos $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$,
- Definimos una arquitectura de red: $f(\mathbf{x}; \mathbf{W})$, con parámetros \mathbf{W} .
- Minimización de la discrepancia/costo (+Regularización):

$$\hat{\mathbf{W}} = \operatorname{argmin}_{\mathbf{W}} \frac{1}{n} \sum_{i=1}^{n} L(f(\mathbf{x}_i; \mathbf{W}), y_i) + R(\mathbf{W})$$

- $L(\hat{\mathbf{y}},\mathbf{y})$: Función de costo/discrepancia,
 - $R(\mathbf{W})$: Regularizador (penaliza según valores de \mathbf{W})

Descenso por Gradiente

$$\mathbf{W}_{t+1} = \mathbf{W}_t - \eta \nabla_{\mathbf{W}} \mathcal{L}(\mathbf{W}),$$

donde $\eta > 0$ es el paso o *learning rate*

Descenso por Gradiente: Desafíos

¿Qué sucede si la loss es mal condicionada?

(mal condicionada: cambia mucho en una dirección y poco en otra)

 $L(\mathbf{w}) \approx \nabla (\mathbf{w}) \approx \mathbf{T}(\mathbf{w} - \mathbf{w})^{\mathsf{T}} \mathbf{H}(\mathbf{w} - \mathbf{w})$

Mal condicionamiento se mide por el número de condición del Hessiano H (derivada segunda de la *loss*)

Descenso por Gradiente: Desafíos

¿Qué sucede con los mínimos locales y los puntos silla?

- En mínimos locales o puntos silla: $\nabla L(\mathbf{W}) = 0$; **GD** se detiene.
- Punto silla: Hessiano H tiene valores propios de distinto signo; frecuente en alta dimensión

- · Cerca de los puntos silla: se avanza muy muy lento
- Análisis del espacio de funciones generadas por redes neuronales: área **activa** de investigación

Tiempo de entrenamiento: variantes de SGD Descenso por gradiente estocástico (SGD) SGD con momentum Momentum de Nesterov AdaGrad RMSProp ADAM

Regularización Regularización por norma de parámetros Regularización por Perturbaciones Aleatorias

Descenso por Gradiente Estocástico (SGD) Descenso por gradiente (GD)

$$\mathbf{W}_{t+1} = \mathbf{W}_t - \eta \nabla_{\mathbf{W}} \mathcal{L}(\mathbf{W}) \quad \eta > 0 \quad (\text{``learning rate''}).$$

• Dataset muy grande (\mathbf{x}_i, y_i) , $i = 1, \dots, n \gg 1$, es muy costoso calcular:

$$\nabla_{\mathbf{W}} L(\mathbf{W}) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\mathbf{W}} L(\mathbf{x}_i, y_i; \mathbf{W})$$

Descenso por gradiente Estocástico (SGD)

- Aproximar suma utilizando pequeño conjunto (minibatch), $n_{mb} = 1, 2, 4, ..., 128, ... \ll n$.
- En cada paso se utiliza un subconjunto (minibatch) diferente mb(t):

$$\mathbf{W}_{t+1} = \mathbf{W}_t - \eta \left[\frac{1}{n_{mb}} \sum_{i \in \mathsf{mb}(t)} \nabla_{\mathbf{W}} L(\mathbf{x}_i, y_i; \mathbf{W}) \right]$$

• Gradiente estimado ruidoso

Descenso por Gradiente Estocástico (SGD)

Algorithm 8.1 Stochastic gradient descent (SGD) update

```
Require: Learning rate schedule \epsilon_1, \epsilon_2, \ldots

Require: Initial parameter \boldsymbol{\theta}

k \leftarrow 1

while stopping criterion not met do

Sample a minibatch of m examples from the training set \{\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(m)}\} with

corresponding targets \boldsymbol{y}^{(i)}.

Compute gradient estimate: \hat{\boldsymbol{g}} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})

Apply update: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \epsilon_k \hat{\boldsymbol{g}}

k \leftarrow k + 1

end while
```

"Deep Learning" - Goodfellow-Bengio-Courville, 2016

Tiempo de entrenamiento: variantes de SGD Descenso por gradiente estocástico (SGD) SGD con momentum Momentum de Nesterov AdaGrad RMSProp ADAM

Regularización Regularización por norma de parámetros Regularización por Perturbaciones Aleatorias

SGD con Momentum

- Diseñado para tener inercia
- ρ : parámetro de memoria/fricción; típicamente $\rho = 0.9$ o 0.99
- Dirección de descenso: promedio de velocidad y gradiente
- Especialmente adaptado para cuando hay alta curvatura o ruido en el gradiente
- \mathbf{v} : velocidad, $v_0 = 0$

SGD con Momentum

Momentum SGD $v_{t+1} = \rho v_t - \eta \nabla f(x_t)$ $x_{t+1} = x_t + v_{t+1}$

- En SGD el largo del paso es $\eta \| \mathbf{g} \|$, donde \mathbf{g} es el gradiente
- En Momentum SGD depende de toda la secuencia (histórico)
- Si el gradiente siempre apunta para el mismo lado g, el paso llega a velocidad terminal, $\frac{\eta \|\mathbf{g}\|}{1-\rho}$

Influencia de η y ρ : https://distill.pub/2017/momentum/

SGD con Momentum

Algorithm 8.2 Stochastic gradient descent (SGD) with momentum

Require: Learning rate ϵ , momentum parameter α Require: Initial parameter $\boldsymbol{\theta}$, initial velocity \boldsymbol{v} while stopping criterion not met do Sample a minibatch of m examples from the training set $\{\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(m)}\}$ with corresponding targets $\boldsymbol{y}^{(i)}$. Compute gradient estimate: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$. Compute velocity update: $\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \boldsymbol{g}$. Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \boldsymbol{v}$. end while

optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9)

"Deep Learning" - Goodfellow-Bengio-Courville, 2016

1 Tiempo de entrenamiento: variantes de SGD

Descenso por gradiente estocástico (SGD) SGD con *momentum*

Momentum de Nesterov

AdaGrad RMSProp ADAM

Regularización Regularización por norma de parámetros Regularización por Perturbaciones Aleatorias

Nesterov Momentum*[†]

Nesterov Momentum

Momentum SGD

- Nesterov: Calcular el gradiente en el punto que se llegaría si se continúa a la misma velocidad *v*
- En caso convexo se puede probar que acelera la convergencia

^{*}Y. Nesterov, "A method for solving the convex programming problem with convergence rate $o(1/k^2)$," Proceedings of the USSR Academy of Sciences, vol. 269, pp. 543–547, 1983

¹I. Sutskever, J. Martens, G. Dahl, and G. Hinton, "On the importance of initialization and momentum in deep learning," in *Proceedings of the 30th International Conference on International Conference on Machine Learning - Volume 28*, ICML'13, p. III–1139–III–1147, JMLR.org, 2013

Nesterov Momentum

Nesterov Momentum

$$v_{t+1} = \rho v_t - \eta \nabla f(x_t + \rho v_t)$$
$$x_{t+1} = x_t + v_{t+1}$$

$$v_{t+1} = \rho v_t - \eta \nabla f(x_t)$$
$$x_{t+1} = x_t + v_{t+1}$$

Nesterov Momentum

Nesterov Momentum

$$v_{t+1} = \rho v_t - \eta \nabla f(x_t + \rho v_t)$$
$$x_{t+1} = x_t + v_{t+1}$$

Requiere calcular un nuevo punto intermedio $x_t + \rho v_t$ y evaluar $\nabla f(x_t + \rho v_t)$

Sea $\tilde{\mathbf{x}}_t = \mathbf{x}_t + \rho \mathbf{v}_t$, entonces:

$$\mathbf{v}_{t+1} = \rho \mathbf{v}_t - \eta \nabla f(\tilde{\mathbf{x}}_t)$$
$$\tilde{\mathbf{x}}_{t+1} = \mathbf{x}_{t+1} + \rho \mathbf{v}_{t+1}$$
$$= (\mathbf{x}_t + \mathbf{v}_{t+1}) + \rho \mathbf{v}_{t+1}$$

$$= \tilde{\mathbf{x}}_{t} - \rho \mathbf{v}_{t} + (1 + \rho) \mathbf{v}_{t+1} = \tilde{\mathbf{x}}_{t} + \mathbf{v}_{t+1} + \rho (\mathbf{v}_{t+1} - \mathbf{v}_{t})$$

`

Se puede evitar agregando un término de corrección: $\rho(\mathbf{v}_{t+1} - \mathbf{v}_t)$ y trabajando directamente con \tilde{x}_t .

optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9. nesterov=True)

Algoritmos con *learning rate* adaptativo

1 Tiempo de entrenamiento: variantes de SGD

Descenso por gradiente estocástico (SGD) SGD con *momentum Momentum* de Nesterov AdaGrad RMSProp ADAM

Regularización Regularización por norma de parámetros Regularización por Perturbaciones Aleatorias

AdaGrad*

 $\begin{aligned} & \mathsf{AdaGrad} \\ & r_t = r_{t-1} + \nabla f(x_t) \odot \nabla f(x_t) \\ & x_{t+1} = x_t - \eta \frac{1}{\sqrt{r_t} + \delta} \odot \nabla f(x_t) \end{aligned}$

Re-escalado en cada dimensión inversamente proporcional a la suma histórica de los cuadrados del gradiente.

grad_squared = 0
while True:
dx = compute_gradient(x)
grad_squared += dx * dx
x -= learning_rate * dx / (np.sqrt(grad_squared) + :

¿Qué hace? ¿Qué pasa cuándo $t \gg 1$?

- Direcciones con más información (mayor gradiente) se mueven menos
- x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7) Luego de varias iteraciones: el *learning rate* es muy pequeño
 - Consecuencia de la acumulación desde el inicio (t = 0)

^{*}J. Duchi, E. Hazan, and Y. Singer, "Adaptive subgradient methods for online learning and stochastic optimization," J. Mach. Learn. Res., vol. 12, p. 2121–2159, Taller de Aprendizaje Automático 17 / 42

AdaGrad

Algorithm 8.4 The AdaGrad algorithm **Require:** Global learning rate ϵ **Require:** Initial parameter θ **Require:** Small constant δ , perhaps 10^{-7} , for numerical stability Initialize gradient accumulation variable r = 0while stopping criterion not met do Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding targets $\boldsymbol{u}^{(i)}$. Compute gradient: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)}).$ Accumulate squared gradient: $\mathbf{r} \leftarrow \mathbf{r} + \mathbf{g} \odot \mathbf{g}$. Compute update: $\Delta \theta \leftarrow -\frac{\epsilon}{\delta + \sqrt{\pi}} \odot g$. (Division and square root applied element-wise) Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \Delta \boldsymbol{\theta}$. end while

"Deep Learning" - Goodfellow-Bengio-Courville, 2016

1 Tiempo de entrenamiento: variantes de SGD

Descenso por gradiente estocástico (SGD) SGD con *momentum Momentum* de Nesterov AdaGrad **RMSProp** ADAM

Regularización Regularización por norma de parámetros Regularización por Perturbaciones Aleatorias

RMSProp*

AdaGrad

```
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared += dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```

Re-escalado en cada dimensión inversamente proporcional a la suma histórica de los cuadrados del gradiente.

RMSProp

```
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```

Se mantiene una **media móvil** con el cuadrado del gradiente para cada componente

- Extensión natural de AdaGrad: Coeficiente de olvido (decay rate ρ)
- La tasa de "olvido" es exponencial, es una especie de *Momentum* pero en el cuadrado del gradiente (no en el gradiente)
- Es uno de los algoritmos más populares

^{*}T. Tieleman, G. Hinton. Coursera: Neural networks for machine learning, 2012. "Lecture 6.5-RMSProp: Divide the gradient by a running average of its recent magnitude."

RMSProp

Algorithm 8.5 The RMSProp algorithm **Require:** Global learning rate ϵ , decay rate ρ **Require:** Initial parameter θ **Require:** Small constant δ , usually 10^{-6} , used to stabilize division by small numbers Initialize accumulation variables r = 0while stopping criterion not met do Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding targets $\boldsymbol{u}^{(i)}$. Compute gradient: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)}).$ Accumulate squared gradient: $\boldsymbol{r} \leftarrow \rho \boldsymbol{r} + (1-\rho)\boldsymbol{g} \odot \boldsymbol{g}$. Compute parameter update: $\Delta \theta = -\frac{\epsilon}{\sqrt{\delta + r}} \odot g$. $(\frac{1}{\sqrt{\delta + r}}$ applied element-wise)

Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \Delta \boldsymbol{\theta}$. end while

optimizer = keras.optimizers.RMSprop(lr=0.001, rho=0.9)

"Deep Learning" - Goodfellow-Bengio-Courville, 2016

1 Tiempo de entrenamiento: variantes de SGD

Descenso por gradiente estocástico (SGD) SGD con *momentum Momentum* de Nesterov AdaGrad RMSProp ADAM

Regularización Regularización por norma de parámetros Regularización por Perturbaciones Aleatorias

ADAM: Adaptive Moments

1 Mantener inercia (*momentum*, dir. = grad + dir. previa)

2 Mantener un estimador del cuadrado del gradiente e ir dividiendo el learning rate

Usando las dos ideas: Adam = ADAptive Moments

```
first_moment = 0
second_moment = 0
while True:
    dx = compute_gradient(x)
    first_moment = beta1 * first_moment + (1 - beta1) * dx
    second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
    x -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7))
```

Mantiene una estimación con media móvil del primer momento (Momentum) y del segundo momento (AdaGrad/RMSProp). Típicamente: $\beta_1 = 0.9$, $\beta_2 = 0.999$.

¿Qué pasa en t=0? Primer paso: second_moment ≈ 0 , entonces al principio el paso es muy grande (independientemente de la geometría del problema; es un problema de la inicialización)

ADAM: Adaptive Moments*

ADAM (con corrección de bias)

```
first_moment = 0
second_moment = 0
for t in range(num_iterations):
    dx = compute_gradient(x)
    first_moment = beta1 * first_moment + (1 - beta1) * dx
    second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
    first_unbias = first_moment / (1 - beta1 ** t)
    second_unbias = second_moment / (1 - beta2 ** t)
    x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7))
```

- Mantiene las ideas previas (RMSProp + Momentum)
- · Agrega corrección de sesgo (momentos) en func. del tiempo
- En la práctica: $eta_1 = 0.9$, $eta_2 = 0.999$, $\eta = 10^{-3}/10^{-4}$
- Funciona "bien" en gran variedad de problemas.
- Usar por defecto :)

^{*}D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," in 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (Y. Bengio and Y. LeCun, eds.), 2015

ADAM: Adaptive Moments

Algorithm 8.7 The Adam algorithm
Require: Step size ϵ (Suggested default: 0.001)
Require: Exponential decay rates for moment estimates, ρ_1 and ρ_2 in [0, 1) (Suggested defaults: 0.9 and 0.999 respectively)
Require: Small constant δ used for numerical stabilization (Suggested default: 10^{-8})
Require: Initial parameters θ
Initialize 1st and 2nd moment variables $s = 0, r = 0$
Initialize time step $t = 0$
while stopping criterion not met do
Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.
Compute gradient: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$
$t \leftarrow t + 1$
Update biased first moment estimate: $\boldsymbol{s} \leftarrow \rho_1 \boldsymbol{s} + (1 - \rho_1) \boldsymbol{g}$
Update biased second moment estimate: $m{r} \leftarrow ho_2 m{r} + (1 - ho_2) m{g} \odot m{g}$
Correct bias in first moment: $\hat{s} \leftarrow \frac{s}{1-s^t}$
Correct bias in second moment: $\hat{\boldsymbol{r}} \leftarrow \frac{r_1}{1-p_2^t}$
Compute update: $\Delta \theta = -\epsilon \frac{\hat{s}}{\sqrt{\hat{r} + \delta}}$ (operations applied element-wise)
Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \Delta \boldsymbol{\theta}$
end while

optimizer = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999)

"Deep Learning" - Goodfellow-Bengio-Courville, 2016

Comparación de optimizadores

https://imgur.com/a/Hqolp

Imágenes de Alec Radford

Learning rate *decay*

No hay por qué mantener el mismo *learning rate* durante todo el entrenamiento.

Reducción del learning rate:

- Power scheduling: $\eta(t) = \eta_0/(1+t/s)^c$ (η_0, c, s : hiperparámetros)
- Exponential scheduling: $\eta(t) = \eta_0 \cdot 0.1^{t/s}$
- Piecewise constant scheduling: e.g. $\eta_0 = 0.1$ durante 5 épocas, $\eta_1 = 0.001$ durante 50 épocas, etc.
- Performance scheduling: se calcula el error de validación cada N pasos, y se reduce el learning rate un factor λ cuando se estanca.
- 1Cycle scheduling

Learning rate *decay*

No hay por qué mantener el mismo *learning rate* durante todo el entrenamiento.

Reducción del learning rate:

- Power scheduling: $\eta(t) = \eta_0/(1+t/s)^c$ (η_0, c, s : hiperparámetros)
- Exponential scheduling: $\eta(t) = \eta_0 \cdot 0.1^{t/s}$
- Piecewise constant scheduling: e.g. $\eta_0 = 0.1$ durante 5 épocas, $\eta_1 = 0.001$ durante 50 épocas, etc.
- Performance scheduling: se calcula el error de validación cada N pasos, y se reduce el learning rate un factor λ cuando se estanca.
- 1Cycle scheduling

Learning rate *decay*

No hay por qué mantener el mismo *learning rate* durante todo el entrenamiento.

Reducción del learning rate:

- Power scheduling: $\eta(t) = \eta_0/(1+t/s)^c$ (η_0, c, s : hiperparámetros)
- Exponential scheduling: $\eta(t) = \eta_0 \cdot 0.1^{t/s}$
- Piecewise constant scheduling: e.g. $\eta_0 = 0.1$ durante 5 épocas, $\eta_1 = 0.001$ durante 50 épocas, etc.
- Performance scheduling: se calcula el error de validación cada N pasos, y se reduce el learning rate un factor λ cuando se estanca.
- 1Cycle scheduling

Learning rate decay en Keras

Power scheduling con c = 1, s = decay:

```
optimizer = keras.optimizers.SGD(lr=0.01, decay=1e-4)
```

Exponential scheduling:

```
def exponential_decay(lr0, s):
    def exponential_decay_fn(epoch):
        return lr0 * 0.1**(epoch / s)
        return exponential_decay_fn
exponential_decay_fn = exponential_decay(lr0=0.01, s=20)
lr_scheduler =
    keras.callbacks.LearningRateScheduler(exponential_decay_fn)
    history = model.fit(X_train_scaled, y_train, [...], callbacks=
    [lr_scheduler])
```

LearningRateScheduler actualiza el learning_rate al comienzo de cada época.

Learning rate decay en Keras

Piecewise constant scheduling:

```
def piecewise_constant_fn(epoch):
    if epoch < 5:
        return 0.01
    elif epoch < 15:
        return 0.005
    else:
        return 0.001</pre>
```

Luego se define el lr_scheduler con piecewise_constant_fn en lugar de exponential_decay_fn, y se ejecuta el método fit.

Performance scheduling:

lr_scheduler = keras.callbacks.ReduceLROnPlateau(factor=0.5, patience=5)

Learning rate decay en Keras

- Una alternativa es implementar el *scheduling* mediante tf.keras, utilizando uno de los *schedulers* disponibles en keras.optimizer.schedules.
- En este caso la actualización del learning_rate se realiza en cada paso, en lugar de por época.
- Para implementar un *exponential schedule* debemos dividir por el tamaño del batch:

```
s = 20 * len(X_train) // 32 # number of steps in 20 epochs (batch size =
32)
learning_rate = keras.optimizers.schedules.ExponentialDecay(0.01, s, 0.1)
optimizer = keras.optimizers.SGD(learning_rate)
```

Regularización

La **regularización** es "cualquier modificación que le introducimos a un algoritmo de aprendizaje con el objetivo de reducir el error de generalización (pero no el error de entrenamiento)"

Tipos de Regularización:

- Regularización por penalización en la norma de parámetros
- · Regularización por perturbaciones aleatorias
 - Data Augmentation (simetrías, deformaciones, repetición con ruido)
 - Dropout
 - Batch Normalization
- Regularización en la optimización
 - Detención temprana (*early stopping*)
 - SGD (aleatoriedad)
- Regularización por promediado de modelos (Bagging)

Tiempo de entrenamiento: variantes de SGD Descenso por gradiente estocástico (SGD) SGD con momentum Momentum de Nesterov AdaGrad RMSProp ADAM

2 Regularización Regularización por norma de parámetros Regularización por Perturbaciones Aleatoria

Penalización de norma de parámetros

Método (más) clásico de regularización: limitar capacidad del modelo agregando a la función de costo una penalidad a la norma de los parámetros R(W):

$$L_{R}(\mathbf{W}) = \frac{1}{n} \sum_{i=1}^{n} L_{i}(f(\mathbf{x}_{i}, \mathbf{W}), y_{i}) + \lambda R(\mathbf{W})$$

- $\lambda \ge 0$, es un hiperparámetro.
- En redes neuronales se penaliza solo ${f W}$ (no se penaliza los *bias* ${f b}$)
- Se podría tener distintos λ para pesar distintos parámetros (e.g., distintas capas), en general se utiliza el mismo λ .

Regularizaciones ℓ_1 y ℓ_2 en Keras

kernel_regularizer=keras.regularizers.l2(0.01))

Regularización Max-Norm

- En lugar de agregar un término de regularización, restringe los pesos de forma que $\|\mathbf{w}\|_2 \leq r$
- Se implementa calculando $\|\mathbf{w}\|_2$ luego de cada paso de entrenamiento, y se re-escala si excede r ($\mathbf{w} \leftarrow \mathbf{w}r/\|\mathbf{w}\|_2$)
- A menor el hiperparámetro r, mayor la regularización.
- En Keras:

Tiempo de entrenamiento: variantes de SGD Descenso por gradiente estocástico (SGD) SGD con momentum Momentum de Nesterov AdaGrad RMSProp ADAM

2 Regularización Regularización por norma de parámetros Regularización por Perturbaciones Aleatorias

En la pasada hacia adelante durante el entrenamiento, se fijan a cero algunas neuronas de manera aleatoria (con probabilidad p)

*G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, "Improving neural networks by preventing co-adaptation of feature detectors,"

CoRR, vol. abs/1207.0580, 2012. cite arxiv:1207.0580

¹ N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A simple way to prevent neural networks from overfitting," *J. Mach. Learn. Res.*, vol. 15, p. 1929–1958, Jan. 2014

En la pasada hacia adelante durante el entrenamiento (*forward pass*), fijar a cero algunas neuronas de manera aleatoria (con probabilidad p)

```
p = 0.5 # probability of keeping a unit active. higher = less dropout
def train step(X):
  """ X contains the data """
 # forward pass for example 3-laver neural network
 H1 = np.maximum(0, np.dot(W1, X) + b1)
 U1 = np.random.rand(*H1.shape) 
 H1 *= U1 # drop!
 H2 = np.maximum(0, np.dot(W2, H1) + b2)
 U2 = np.random.rand(*H2.shape) < p # second dropout mask
 H2 *= U2 # drop!
 out = np.dot(W3, H2) + b3
 # backward pass: compute gradients... (not shown)
 # perform parameter update... (not shown)
```

Imagen tomada de cs231n (Stanford) - Fei-Fei Li & Justin Johnson & Serena Yeung

Interpretación (I)

Se fuerza a la red a ser redundante, a aprender características robustas que puedan ser útiles con distintos subconjuntos de otras características provenientes de otras neuronas

(b) After applying dropout.

Interpretación (II)

Se produce un efecto *similar* al de entrenar distintos modelos, cada uno de ellos con una máscara binaria distinta ($2^{\#\text{neuronas}}$ posibles modelos). En *test* se combinan todos simultáneamente.

- En *test* todas las neuronas ven todas las entradas.
- Queremos que la salida de cada neurona en test sea igual a la salida esperada (o media) en entrenamiento
- Necesitamos re-escalar la salida en test por p
- Sea x la salida de una neurona sin dropout, con dropout la salida esperada será px + (1 p)0(con probabilidad 1 - p se fija a 0)
- En test si esta neurona está siempre activa debemos ajustar su valor ${f x} o p{f x}$ para lograr la misma salida esperada

- En *test* todas las neuronas ven todas las entradas.
- Queremos que la salida de cada neurona en test sea igual a la salida esperada (o media) en entrenamiento
- Necesitamos re-escalar la salida en test por p
- Sea x la salida de una neurona sin dropout, con dropout la salida esperada será px + (1 p)0(con probabilidad 1 - p se fija a 0)
- En test si esta neurona está siempre activa debemos ajustar su valor ${f x} o p{f x}$ para lograr la misma salida esperada

- En *test* todas las neuronas ven todas las entradas.
- Queremos que la salida de cada neurona en test sea igual a la salida esperada (o media) en entrenamiento
- Necesitamos re-escalar la salida en test por p
- Sea x la salida de una neurona sin dropout, con dropout la salida esperada será px + (1 p)0(con probabilidad 1 - p se fija a 0)
- En test si esta neurona está siempre activa debemos ajustar su valor ${f x} o p{f x}$ para lograr la misma salida esperada

- En *test* todas las neuronas ven todas las entradas.
- Queremos que la salida de cada neurona en test sea igual a la salida esperada (o media) en entrenamiento
- Necesitamos re-escalar la salida en test por p
- Sea x la salida de una neurona sin dropout, con dropout la salida esperada será px + (1 p)0(con probabilidad 1 - p se fija a 0)
- En test si esta neurona está siempre activa debemos ajustar su valor ${f x} o p{f x}$ para lograr la misma salida esperada

- En test todas las neuronas ven todas las entradas.
- Queremos que la salida de cada neurona en test sea igual a la salida esperada (o media) en entrenamiento
- Necesitamos re-escalar la salida en test por p
- Sea x la salida de una neurona sin dropout, con dropout la salida esperada será px + (1 p)0(con probabilidad 1 - p se fija a 0)
- En test si esta neurona está siempre activa debemos ajustar su valor $\mathbf{x} \to p\mathbf{x}$ para lograr la misma salida esperada.

```
def predict(X):
    # ensembled forward pass
H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
out = np.dot(W3, H2) + b3
```

Para no **enlentecer** la etapa de test, se hace **dropout invertido** (re-escalado durante el entrenamiento). El código de predicción es igual que si no se hace dropout.

```
p = 0.5 # probability of keeping a unit active. higher = less dropout
def train step(X):
  # forward pass for example 3-layer neural network
  H1 = np.maximum(0, np.dot(W1, X) + b1)
  U1 = (np.random.rand(*H1.shape) < p) / p # first dropout mask. Notice /pl
  H1 *= U1 # drop!
  H2 = np.maximum(0, np.dot(W2, H1) + b2)
  U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /pl
 H2 *= U2 # drop!
  out = np.dot(W3, H2) + b3
  # backward pass: compute gradients... (not shown)
  # perform parameter update... (not shown)
def predict(X):
  # ensembled forward pass
  H1 = np.maximum(0, np.dot(W1, X) + b1) # no scaling necessary
  H2 = np.maximum(0, np.dot(W2, H1) + b2)
  out = np.dot(W3, H2) + b3
```

Imagen tomada de cs231n (Stanford) - Fei-Fei Li & Justin Johnson & Serena Yeung

Implementación en Keras: capa de dropout.

```
model = keras.models.Sequential([
    keras.layers.Flatten(input_shape=[28, 28]),
    keras.layers.Dropout(rate=0.2),
    keras.layers.Dense(300, activation="elu",
    kernel_initializer="he_normal"),
    keras.layers.Dense(100, activation="elu",
    kernel_initializer="he_normal"),
    keras.layers.Dropout(rate=0.2),
    keras.layers.Dropout(rate=0.2),
    keras.layers.Dropout(rate=0.2),
    keras.layers.Dense(10, activation="softmax")
])
```

Monte Carlo Dropout*

El trabajo de Gal et al. establece motivaciones adicionales para el uso de dropout:

- Revela conexiones entre las redes con dropout y la inferencia bayesiana (bases teóricas)
- Introduce la técnica de MC Dropout, que permite elevar el desempeño de cualquier red entrenada con dropout sin necesida de re-entrenarla.
- Muy fácil de implementar. En Keras:

- Hacemos 100 predicciones con training=True para asegurarnos que la capa de Dropout está activa. Estas 100 predicciones son distintas; inferimos tomando el promedio.
- Esto nos da una estimación Monte Carlo que suele mejorar la predicción.

^{*}Y. Gal and Z. Ghahramani, "Dropout as a bayesian approximation: Representing model uncertainty in deep learning," in *Proceedings of The 33rd International Conference on Machine Learning* (M. F. Balcan and K. Q. Weinberger, eds.), vol. 48 of *Proceedings of Machine Learning Research*, (New York, New York, USA), pp. 1050–1059, PMLR, 20–22 Jun 2016

Monte Carlo Dropout

Comparemos las predicciones sin y con MC Dropout en Fashion MNIST:

El model tiene la casi total certeza que la imagen pertenece a la clase 9 (*ankle boot*). MC Dropout da el resultado siguiente:

```
>>> np.round(y_probas[:, :1], 2)
array([[[0. , 0. , 0. , 0. , 0. , 0. , 0. 14, 0. , 0.17, 0. , 0.68]],
        [[0. , 0. , 0. , 0. , 0. , 0.16, 0. , 0.2, 0. , 0.64]],
        [[0. , 0. , 0. , 0. , 0. , 0.02, 0. , 0.01, 0. , 0.97]],
        [...]
>>> np.round(y_proba[:1], 2)
array([[0. , 0. , 0. , 0. , 0. , 0. , 0.22, 0. , 0.16, 0. , 0.62]],
        dtype=float32)
```

El modelo sigue optando por la clase 9, pero conserva cierta duda de si no se trata de una instancia de la clase *sandal* o *sneaker*, lo cual tiene más sentido.

Universidad de la República

Monte Carlo Dropout

MC Dropout también permite cuantificar la incertidumbre asociada a las estimaciones de probabilidades, calculando el desvío estándar sobre las 100 predicciones:

Finalmente, vemos que además permite alcanzar un mejor desempeño (sin MC Dropout era 86.8%):

```
>>> accuracy = np.sum(y_pred == y_test) / len(y_test)
>>> accuracy
0.8694
```

Referencias I

- Y. Nesterov, "A method for solving the convex programming problem with convergence rate $o(1/k^2)$," Proceedings of the USSR Academy of Sciences, vol. 269, pp. 543–547, 1983.
- I. Sutskever, J. Martens, G. Dahl, and G. Hinton, "On the importance of initialization and momentum in deep learning," in *Proceedings of the 30th International Conference on International Conference on Machine Learning Volume 28*, ICML'13, p. III–1139–III–1147, JMLR.org, 2013.
- J. Duchi, E. Hazan, and Y. Singer, "Adaptive subgradient methods for online learning and stochastic optimization," J. Mach. Learn. Res., vol. 12, p. 2121–2159, July 2011.
- D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," in 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (Y. Bengio and Y. LeCun, eds.), 2015.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, "Improving neural networks by preventing co-adaptation of feature detectors," *CoRR*, vol. abs/1207.0580, 2012. cite arxiv:1207.0580.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A simple way to prevent neural networks from overfitting," J. Mach. Learn. Res., vol. 15, p. 1929–1958, Jan. 2014.

Y. Gal and Z. Ghahramani, "Dropout as a bayesian approximation: Representing model uncertainty in deep learning," in *Proceedings of The 33rd International Conference on Machine Learning* (M. F. Balcan and K. Q. Weinberger, eds.), vol. 48 of *Proceedings of Machine Learning Research*, (New York, New York, USA), pp. 1050–1059, PMLR, 20–22 Jun 2016.

- A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition. O'Reilly Media, Inc., 2022.
- T. Hastie, R. Tibshirani, and J. Friedman, *The Elements of Statistical Learning*. Springer Series in Statistics, New York, NY, USA: Springer New York Inc., 2001.

F

Referencias II

- C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.
- X. Glorot and Y. Bengio, "Understanding the difficulty of training deep feedforward neural networks," in JMLR W&CP: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2010), vol. 9, pp. 249–256, May 2010.
- S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.
- K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification," in 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1026–1034, 2015.
- S. loffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," in *Proceedings of the 32nd International Conference on International Conference on Machine Learning Volume 37*, ICML'15, p. 448–456, JMLR.org, 2015.
- J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell, "Decaf: A deep convolutional activation feature for generic visual recognition," in *Proceedings of the 31st International Conference on International Conference on Machine Learning Volume 32*, ICML'14, p. I–647–I–655, JMLR.org, 2014.
- Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, "Realtime multi-person 2d pose estimation using part affinity fields," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.
 - G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, p. 1527–1554, July 2006.