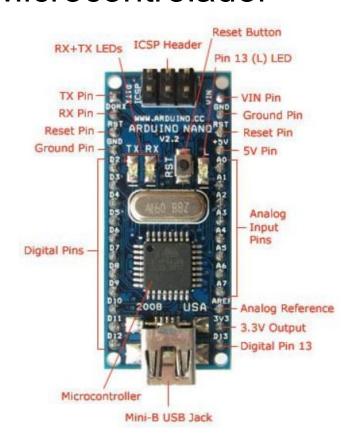
Tallerine 2024

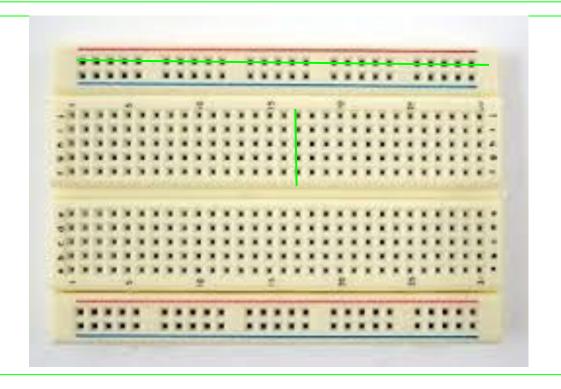
Efectos digitales de audio

Arduino Nano - Microcontrolador

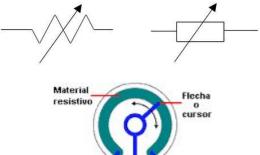

8 Entradas analógicas

14 I/O digitales

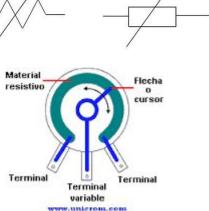
Vcc=5V


I dc I/O = 40 mA

Mini- B USB



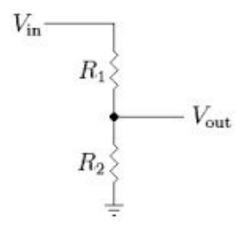
Protoboard - Conectando circuitos de práctica

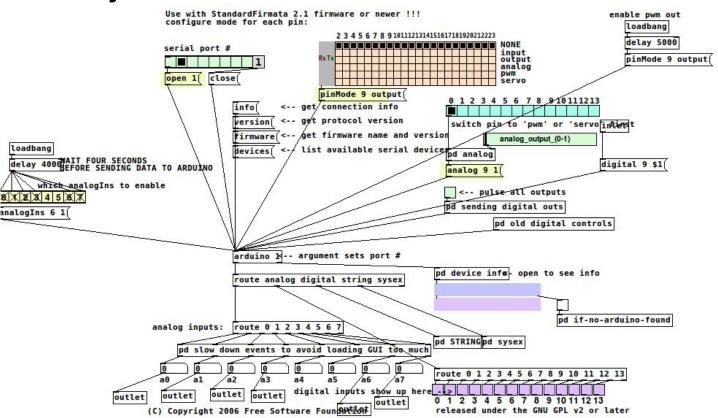


Potenciometro - Divisor resistivo

Simbolo

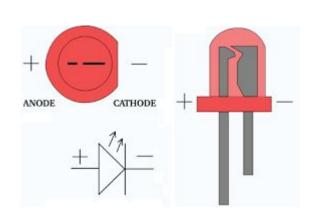
Funcionamiento

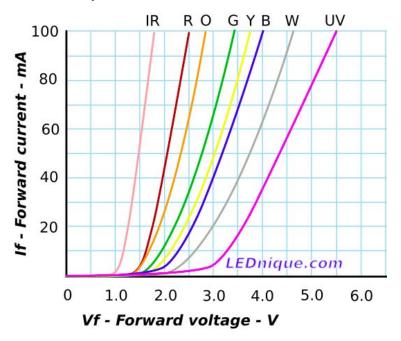



Potenciometro - Divisor resistivo

ACTIVIDAD

- Calcular el voltaje de salida Vout en función de Vin, R1 y R2
- o Implementar el circuito en el protoboard, conectarlo a la entrada analógica A3 del arduino




Manejando Arduino desde PureData

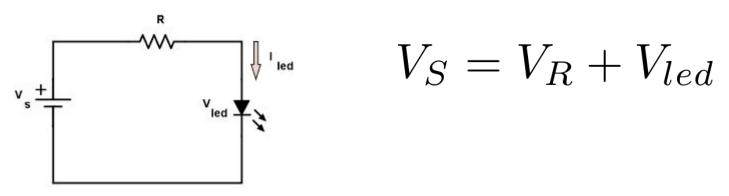
LED (Light Emitting Diode)

 Diodo, semiconductor que básicamente permite la circulación de corriente en un solo sentido. LED, diodo emisor de luz ampliamente utilizado.

Para simplificar aproximamos la curva de corriente directa del diodo como una recta que cumple la siguiente ecuación:

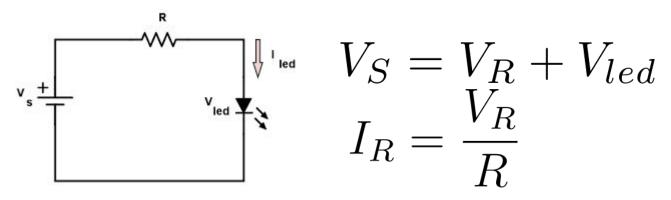
En zona de corte:

$$V_{led} < 2 \rightarrow I_{led} = 0$$


En la zona activa:

$$I_{led} > 0 \rightarrow V_{led} = 2$$

Typical LED Characteristics							
Semiconductor Material	Wavelength	Colour	V _F @ 20mA				
GaAs	850-940nm	Infra-Red	1.2v				
GaAsP	605-620nm	Amber	2.0v				
GaAsP:N	585-595nm	Yellow	2.2v				
AlGaP 550-570nm		Green	3.5v				
SiC	SiC 430-505nm		3.6v				
GalnN	450nm	White	4.0v				

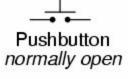

ACTIVIDAD: Para limitar la corriente a manejar por la salida digital del arduino colocaremos una resistencia en serie con el diodo.

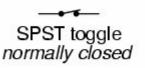
 Dimensionar dicha resistencia (R) de forma de que la corriente en el cirucuito no supere el 30% de la corriente máxima (Imax=40mA)

ACTIVIDAD: Para limitar la corriente a manejar por la salida digital del arduino colocaremos una resistencia en serie con el diodo.

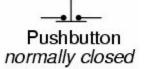
 Dimensionar dicha resistencia (R) de forma de que la corriente en el cirucuito no supere el 30% de la corriente máxima (Imax=40mA)

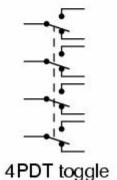
Las resistencias de uso comercial toman valores de forma discreta según la siguiente tabla:


x 1	x 10	x 100	x 1.000 (K)	x 10.000 (10K)	x 100.000 (100K)	x 1.000.000 (M)
1Ω	10 Ω	100 Ω	1 KΩ	10 ΚΩ	100 KΩ	1 M Ω
$1,2 \Omega$	12Ω	120 Ω	$1 \text{K2} \Omega$	$12~\mathrm{K}\Omega$	120 KΩ	$1M2 \Omega$
1,5 Ω	15Ω	150 Ω	1K5 Ω	$15 \text{ K}\Omega$	150 KΩ	$1M5 \Omega$
$1,8 \Omega$	18Ω	180 Ω	$1K8 \Omega$	$18 \text{ K}\Omega$	180 KΩ	1M8 Ω
$2,2 \Omega$	22Ω	220 Ω	2K2 Ω	$22 \text{ K}\Omega$	220 KΩ	$2M2 \Omega$
$2,7 \Omega$	27Ω	270 Ω	2K7 Ω	$27 \text{ K}\Omega$	270 KΩ	$2M7 \Omega$
$3,3 \Omega$	33 Ω	330 Ω	3K3 Ω	$33 \text{ K}\Omega$	330 KΩ	$3M3 \Omega$
$3,9 \Omega$	39 Ω	390 Ω	3K9 Ω	$39 \text{ K}\Omega$	390 KΩ	$3M9 \Omega$
4,7 Ω	47Ω	470 Ω	4K7 Ω	$47 \text{ K}\Omega$	470 KΩ	$4M7 \Omega$
5,1 Ω	51Ω	510 Ω	5K1 Ω	$51 \text{ K}\Omega$	510 KΩ	5M1 Ω
$5,6 \Omega$	56Ω	560 Ω	5K6 Ω	$56 \text{ K}\Omega$	560 KΩ	$5M6 \Omega$
6,8 Ω	68 Ω	680 Ω	6K8 Ω	68 KΩ	680 KΩ	$6M8 \Omega$
8,2 Ω	82 Ω	820 Ω	$8K2 \Omega$	$82 \text{ K}\Omega$	820 KΩ	8M2 Ω
						10M Q


Entradas digitales - Switches (interruptores)

- Selectores de circuito on/off
- Pulsadores no/nc (sin retención)
- Cantidad de polos
- Cantidad de vias
- single-pole, single-throw (SPST)

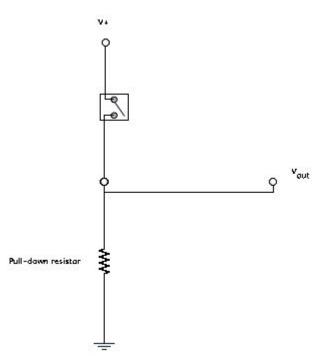



DPDT toggle

SPDT toggle

position of dot on circle indicates joystick direction

Entradas digitales - Resistencias de pull-up y pull-down


- Cómo conmutar de 0V a 5V sin cortocircuito?
- Cómo dimensionar resistencia?
 - Minimizar consumo
 - Tener en cuenta impedancia de entrada

Con señales habalmos de impedancia Z=V/I, en el caso de continua simplificamos a resistencia R.

En Arduino nano

$$R_{in} = 100M\Omega$$

$$R_{pd} = 10k\Omega$$

Referencias

- 1. Programando Música Electrónica en Pd : http://lucarda.com.ar/pd-tutorial/index.html
- 2. http://cargocollective.com/max-pd-tutorial/Introduccion-a-pd
- 3. Stompbox design CCRMA Esteban Maestre Romain Michon https://ccrma.stanford.edu/wiki/Stompbox_2016
- 4. Arduino www.arduino.cc
- 5. Algunas de las imágenes fueron tomadas de wikipedia con fines didácticos

- Implementar en el protoboard el circuito obtenido para la salida con led en el pin D9 del arduino.
- Activar desde PureData

Actividad - Entrada digital

 Dimensionar resistencia de pull-up de forma de que el error en la tensión de entrada sea del orden de 1*10e-4 (epsilon)

$$V_{in} = Vcc(1-\epsilon)$$

 Implementar entrada digital en protoboard utilizando un pulsador con retención con la R obtenida en la parte anterior. Conectar al pin A7. Leeremos el voltaje de entrada desde Pure Data