Cálculo diferencial e integral en varias variables Segundo semestre 2018

Primer parcial.

Nº. Parcial	Apellido y nombre	Firma	Cédula	Asiste a teórico	

PARA USO DOCENTE						
Ej 1	Ej 2	Еј 3	Ej 4	Ej 5	Ej 6	Total

Ejercicios de Múltiple Opción.

Total: 25 puntos.

5 puntos respuesta correcta, -1 puntos respuesta incorrecta.

1. Se considera conjunto $B = \bigcup_{n \in \mathbb{N}^*} \{(x, y) \in \mathbb{R}^2 : xy = 1/n\}$. Determinar la opción correcta:

(A)
$$\partial B \cap B = \emptyset$$
.
(B) B es un conjunto cerrado.
(C) $B' \cap B = \emptyset$.
(D) $A \subset \overline{B}$, donde $A = \{(x, y) \in \mathbb{R}^2 : y = 0\}$.

2. Se considera la sucesión $(a_n)_{n\in\mathbb{N}}$ tal que $a_0=k,\ k\in\mathbb{R},\ y\ a_{n+1}=\sqrt{\frac{a_n}{2+a_n}}$. Indicar la opción correcta:

maicar la opcion correcta.	
(A) Para $k = 1$, (a_n) es monotona creciente y lím $a_n = +\infty$.	
(B) Para $k = \frac{1}{4}$, (a_n) es monotona decreciente y lím $a_n = 0$.	
(C) Para $k=1$, no es monotona decreciente ni monotona creciente y lím $a_n=-1+\sqrt{2}$.	
(D) Para $k = \frac{1}{4}$, (a_n) es monotona creciente y lím $a_n = -1 + \sqrt{2}$.	

tal que $w^3 = -i$ y $\theta \in [\pi, \frac{3\pi}{2}]$. Indicar la opción correcta:	$\operatorname{tar}(arphi))$ tar qu	te $z^s = i $ y $\varphi \in$	$= [\frac{\pi}{2}, \pi]; w =$	$= r(\cos(\theta) + i \operatorname{s})$	$\ln(\theta))$
$(A) z + w = \frac{i}{2}.$					
(B) $z + w = i$.					
(C) $z + w = -\sqrt{3}$.					
(D) $z + w = \sqrt{3} + i$.					
4. Sea $(a_n)_{n\in\mathbb{N}}$ una sucesión de núm	eros reales	positivos cuyos	términos s	atisfacen	
	$1 < \frac{a_{n+1}}{a_n}$	$\frac{1}{n} < 2$			
Indicar la opción correcta:					
(A) $\sum \frac{a_n}{n!}$ diverge y $\sum \frac{a_n}{e^n}$ converge.					
(B) $\sum \frac{a_n}{n!}$ converge y $\sum \frac{a_n}{e^n}$ converge.					
(C) $\sum \frac{a_n}{n!}$ diverge y $\sum \frac{a_n}{e^n}$ diverge.					
(D) $\sum \frac{a_n}{n!}$ converge y $\sum \frac{a_n}{e^n}$ diverge.					
5. Consideramos la siguiente ecuació	n diferencia	al con condición	n inicial:		
	$\begin{cases} x' = x' \\ x(0) = x' \end{cases}$	$\frac{(x-2)^2}{(t+1)^2}$ $= \frac{5}{2}$			
Entonces $x(1)$ vale:					
(A) 4. \Box (B) $\frac{9}{2}$.		(C) 2.		(D) $\frac{8}{3}$.	

Ejercicio de Desarrollo

Total: 15 puntos.

6.

- i. Enunciar y demostrar el criterio integral.
- ii. Clasificar $\sum_{n=2}^{+\infty}\frac{1}{n\ln(n)^{\alpha}},$ discutiendo según $\alpha\in\mathbb{R}.$