

Programa de Cálculo Diferencial e Integral en varias variables.

1. NOMBRE DE LA UNIDAD CURRICULAR

Cálculo Diferencial e Integral en varias variables. Cod. 1062.

2. CRÉDITOS

13 créditos

3. OBJETIVOS DE LA UNIDAD CURRICULAR

El estudiante deberá: consolidar conocimientos previos de cálculo en una variable; comprender y manejar los conceptos básicos de cálculo diferencial e integral en varias variables reales; desarrollar el razonamiento lógico para resolver problemas de cálculo diferencial e integral; fortalecer la capacidad de efectuar razonamientos por analogía a ciertos problemas similares planteados en e curso.

4. METODOLOGÍA DE ENSEÑANZA

Clases teóricas de 4.5 horas semanales y clases prácticas de 3 horas semanales. Se trabajará en forma de exposición por parte de los docentes, dinámicas grupales y exposición por parte de los estudiantes.

5. TEMARIO

Incluye una descripción general de los grandes temas del curso y de los subtemas incluidos en cada uno de ellos.

1. **Número complejo.** Definición, interpretación geométrica, notación binómica y trigonométrica, módulo y argumento, conjugación, raíz n-ésima, exponencial compleja.

- **2. Ecuaciones diferenciales.** Ecuaciones de variables separables, lineales de primer orden, y lineales de segundo orden a coeficientes constantes.
- **3. Sucesiones (en R).** Definición, límite de sucesiones, monotonía y acotación, subsucesiones, sucesiones de Cauchy.
- **4. Series.** Series, convergencia, criterios de convergencia, convergencia condicional y absoluta.
- **5. Integrales Impropias.** Criterios de convergencia. Criterio serie-integral.
- **6. Topología en R**ⁿ**.** Normas en Rⁿ, conjuntos abiertos y cerrados, interior, frontera y puntos de acumulación. Sucesiones en Rⁿ. Caracterización de conjuntos cerrados y compactos a través de sucesiones.
- **7. Continuidad en R**ⁿ. Límites, continuidad, caracterización de funciones continuas por sucesiones.
- **8. Diferenciabilidad.** Derivadas parciales, derivadas direccionales, diferenciabilidad. Interpretación geométrica del diferencial, plano tangente. Diferencial de la función compuesta. Derivadas de orden superior.
- **9. Integrales Múltiples.** Conjuntos medibles Jordan y definición de integral doble y triple. Integrales iteradas, Teorema de Fubini. Teorema de cambio de variables y ejemplos: coordenadas polares, cilíndricas y esféricas.

6. BIBLIOGRAFÍA

Tema	Básica	Complementaria
Numero complejo	(1)	(4)
Ecuaciones diferenciales	(1)	(4)
Sucesiones y Series	(1)	(4)
Integrales Impropias	(1)	(4)
Topología en R ⁿ	(2)	(3,4)
Continuidad en R ⁿ	(2)	(3,4)
Diferenciabilidad	(2)	(3,4)
Integrales Múltiples	(2)	(3,4)

6.1 Básica

- 1. Apostol, T. Cálculus vol 1. Ed. Reverté. Segunda edición. ISBN 968-6708-10-3.
- 2. Apostol, T. Cálculus vol 2. Ed. Reverté. Segunda edición. ISBN 968-6708-11-1.

6.2 Complementaria

- 3. Courant, R. Introducción al Cálculo y al Análisis Matemático. Vol. II. Editorial LIMUSA. ISBN 968-18-0640-9.
- 4. Notas confeccionadas por el IMERL. (ver página del curso).

7. CONOCIMIENTOS PREVIOS EXIGIDOS Y RECOMENDADOS

- **7.1 Conocimientos Previos Exigidos:** Buen dominio del cálculo diferencial e integral en una variable.
- **7.2 Conocimientos Previos Recomendados:** Buen dominio de la geometría y álgebra lineal: rectas y planos en el espacio, matrices y transformaciones lineales.