Comportamiento Social Sistemas de múltiples robots y enjambres

Facundo Benavides

Network Management | Artificial Intelligence Facultad de Ingeniería
Instituto de Computación Universidad de la República
Montevideo, Uruguay

15 de Diciembre de 2021

Outline

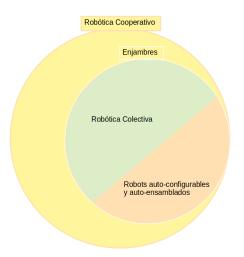
- Introducción
 - Ventajas y Desventajas de los MRS
- 2 Sociedades robóticas
- 3 Taxonomías
- 4 Aspectos estudiados por Arkin

Objetivos de la clase

- Distinguir el comportamiento social del comportamiento de un solo agente
- Entender los beneficios y complejidades de los sistemas robóticos formados por múltiples agentes (MRS).
- Presentar las diferentes dimensiones según las que puede caracterizarse un MRS.

Definiciones previas I

- Agente: Es todo aquello que puede percibir su entorno mediante sensores y responder o actúar en el ambiente por medio de actuadores.
- Sistema Multiagente: Sistemas formados por un grupo de agentes que pueden interactuar entre sí.
- Sistema Cooperativo: Sistema multiagente donde se obra conjuntamente con otros para lograr un mismo objetivo.
- Sistema Competitivo: Sistema multiagente donde los miembros compiten por alcanzar sus objetivos.
- Equipo robótico | Sociedad robótica: Sistema multiagente cuyos miembros son robots.


Definiciones previas II

Comportamiento social

Conducta de los individuos dentro de un patrón de relaciones, posiciones y número que forman una organización social.

Tipos de cooperación

Pregunta disparadora

Es mejor un sistema robótico conformado por múltiples agentes que un único robot?

Respuesta

Es mejor un sistema robótico conformado por múltiples agentes que un único robot?

Dada una tarea especificada por el diseñador, un sistema multirobots demuestra un comportamiento cooperativo si, debido a un mecanismo subyacente, hay un incremento en la utilidad total del sistema*.

*Cao, 1997

Aspectos positivos

- Mejora del desempeño
 Paralelizar las tareas dentro del sistema.
- Habilitador de tareas El MRS podría permitir la realización de una tarea irrealizable por un único robot.
- Sensado Distribuido Obtener/Compartir información sensada más allá del rango de un único robot.
- Acciones distribuidas a distancia
 Un MRS puede realizar la misma tarea simultáneamente en diferentes ubicaciones.
- Tolerancia a fallos
 La redundancia propia de un MRS puede aumentar la confiabilidad del sistema.

Aspectos negativos

- Interferencia Demasiados cocineros estropean la sopa. El volumen de los agentes reduce el espacio de navegación (colisiones, dificulta los planes de movimientos). Interferencia en el sensado.
- Comunicación *La comunicación no es gratis*, requiere:
 - dispositivos adicionales, procesamiento y energía.
 - manejar posibles pérdidas y ruido en el canal
- Incertidumbre sobre las intenciones de los demás La coordinación de acciones requiere intercambio de información.

Interrogantes

- Costo global del sistema Incluye:
 - componentes físicas
 - desarrollo
 - ensamblado y mantenimiento

En general, el costo de un MRS es similar al de un único robot complejo.

- Adaptabilidad Entendida como la capacidad de modificar el comportamiento en función de las circunstancias concretas, suele ser una ventaja de los MRS.
- Complejidad
 Cada unidad del MRS suele ser más simple -particularmente en el enfoque de enjambres, que una única unidad capaz de resolver la tarea.

Outline

- 1 Introducción
- Sociedades robóticas
 - Consideraciones Etológicas
 - Caracterización del comportamiento social
- 3 Taxonomías
- 4 Aspectos estudiados por Arkin

Perspectivas estudiadas

- Etológica Estudia cómo los animales cooperan y se comunican entre sí.
- Organizacional
 Estudian cómo se estructuran las socieades humanas.
- Modelos computacionales
 Estudia el diseño de sistemas paralelos y técnicas de multiprocesamiento.
- Inteligencia Artificial Distribuida
 Analiza el tratamiento dado a la cooperación (negociación y otros mecanismos basados en comunicación).
- Planificación de movimientos
 Aborda los problemas geométricos y cinemáticos de múltiples objetos moviéndose en un espacio.
- Vida Artificial
 Estudia las formas de relacionamiento del equipo multiagente con su entorno.

Tareas paradigmáticas I

Hay tareas que tienen su correlato en la naturaleza y son consideradas estándar en sociedades robóticas.

■ Recolección (Foraging)

Tareas paradigmáticas II

Alimentarse (Consuming)

Tareas paradigmáticas III

■ Pastoreo (Grazing)

Tareas paradigmáticas IV

■ Formaciones (Formation & Flocking)

17/38

Tareas paradigmáticas V

■ Transporte (Transport)

Actividad social en el comportamiento animal

- Comportamientos sociales simples
 - Contagiosos (hacer lo que hacen otros)
 - Recíprocos (responder con reciprocidad)
 - Antagónicos (oposición, conflicto, agresión)
- Comportamientos de apareamiento
 - Persuadir, aquietar, sosegar
 - Orientación, enfoque
- Comportamientos de familia
 - Defensa (ataque, alerta, confusión por agrupamiento)
 - Congregaciones usando olfato o visión
 - Infecciosos (alarma, sueño, alimentación)
- Comportamientos de lucha
 - Reproductivos (evitar que los rivales estén igualmente posicionados)
 - Hostilidad mutua (extender la sociedad sobre una región)
 - Ordenamiento (establecer jerarquías de dominancia)

^{*}Tinbergen,1953

Características de una sociedad de robots

- Confiabilidad
 Probabilidad que el sistema funcione correctamente en una situación dada a lo largo del tiempo.
- Organizacional social: Jack of all trades and master of none.
- Comunicación : Contenido, Modalidad
- Distribución espacial: Tamaño, Solapamiento
- Congregación
 Mecanismos para mantener la sociedad unida a lo largo del tiempo.
- Desempeño Métricas para evaluar el rendimiento de una sociedad respecto al rendimiento individual: $S(i,j) = \frac{P(1,j)i}{P(i,j)}$

Outline

- 1 Introducción
- 2 Sociedades robóticas
- 3 Taxonomías
 - Taxonomía simple
 - Taxonomías complejas
- 4 Aspectos estudiados por Arkin

Taxonomías

Propuesta por Premvuti

- Cooperación activa o pasiva Se comparte o no un objetivo común.
- Nivel de independencia Control centralizado o distribuido.
- Tipos de comunicación
 - Implícita La información se comparte a través del entorno (sonido, colores, sustancias químicas, etc).
 - Explícita La información se comparte a través de una señal entre emisor-receptor[es].

^{*}Premvuti, Yuta, Japón 1990-1993

Propuesta por Dudek

- Tamaño del equipo
 Solo, par, grupos limitados y grupos ilimitados.
- Comunicación
 - Rango: Ninguno, cercano e ilimitado.
 - Topología: Broadcast, directo, árbol y grafo.
 - Ancho de banda: Alto, motion-related, bajo y cero.
- Equipo
 - Capacidad de reconfiguración
 Estáticos, Negociados, Dinámicos.
 - Modelo de procesamiento
 - Composición del equipo Homogeneos, Heterogeneos.

^{*}Dudek y otros - 1993

Propuesta por Cao

- Arquitectura
 El control es centralizado o distribuido.
- Homogeneidad
 La estructura y el sistema de control es idéntica o diferente.
- Comunicación
 - a través del entorno. indirecto.
 - a través del sensado. indirecto.
 - a través de mensajes. directo.
- Modelo de las intenciones, capacidades, estados o creencias de los agentes.

^{*}Cao y otros - 1995

Outline

- Introducción
- 2 Sociedades robóticas
- 3 Taxonomías
- 4 Aspectos estudiados por Arkin
 - Estructura y organización social
 - Comunicación
 - Percepción distribuida
 - Aprendizaje social

The Herd Nerd I

- Extensión de Subsumption para MRS
- Especificación de comportamientos sociales básicos
 - Homing Cada agente se esfuerza por moverse a una zona o ubicación objetivo (home).
 - Dispersion Los agentes se dispersan para cubrir un área. Lo hacen hasta establecer/mantener una distancia mínima entre ellos.
 - Aggregation Los agentes se congregan hasta establecer/mantener una distancia de proximidad entre ellos.
 - Following Los agentes se siguen entre ellos manteniéndose al lado o detrás de otro.
 - Safe wandering Los agentes deambulan evitando colisiones entre sí o con obstáculos

The Herd Nerd II

- Información sensorial basada en predicados
 - crowded, stuck, have-puck, at-home, etc
- Codificación de comportamientos basada en reglas y predicados

```
Aggregate:
```

```
If an agent is outside the aggregation distance turn toward the aggregation centroid and go. else stop
```

- Coordinación de comportamientos
 - Directa: sumas vectoriales (APF)
 - Temporal: secuencias de comportamientos

The Herd Nerd III

- Composición de comportamientos Los comportamientos pueden combinarse para concebir comportamientos sociales más complejos.
 - Flocking: SafeWandering + Aggregation + Dispersion
 - Surrounding: SafeWandering + Following + Aggregation
 - Herding: SafeWandering + Surrounding + Flocking
 - Foraging: SafeWandering + Dispersion + Following + Homing + Flocking
- Los aportes de este enfoque son:
 - Usar modelos biológicos
 - Diseñar comportamientos sociales basándose en HW/SW simple
 - No aporta elementos nuevos a nivel de arquitectura

^{*}Maia Mataric v otros -1994

Alliance

- Puede verse como una capa encima de Subsumption
- Agrega agrupamiento de comportamientos Se activan o hibernan grupos enteros de comportamientos básicos.
- Agrega sistema motivacional
 - Frustración (rendirse, conformarse)
 - Impaciencia
- Comportamientos motivacionales
 - Información sensorial (Subsumption)
 - Inhibición y supresión (*Subsumption*)
 - Agrupamiento de comportamientos
 - Motivación interna
 - Comunicación explícita entre robots

$$m_{i,j}(0) = 0$$

 $m_{i,j}(t) = [m_{i,j}(t-1) + i_{i,j}(t)] * s_- f_{i,j}(t) * a_- s_{i,j}(t) * i_- r_{i,j}(t) * a_{i,j}(t)$

Otros ejemplos

- Army Ant Project*
 - Transporte de carga cooperativo
 - Basado en comportamientos
 - Coordinación basada en APF
- Teoría de la Sociedad de agentes**
 - Sociedad de las mentes (Minsky, 1986)
 - Teoría de Motor Schemas aplicado a MAS
 - Sintaxis simple que permite definir comportamientos, composiciones de comportamientos, agentes y también equipos de agentes.
 - Agentes homogeneos o Heterogeneos, distribuidos o no.
 - MissionLab

^{*}Johnson & Bay, 1995

^{**} MacKenzie, 1996

Necesidad de la comunicación

Identificar roles ayuda a diseñar las estrategias de comunicación.

- Sincronización de acciones
 Algunas tareas requieren secuenciación o simultaneidad.
- Intercambio de información
 La información sobre el mundo que posee cada agente puede variar.
- Negociación
 Tomar decisiones sobre lo que debe hacerse evita duplicación de esfuerzos.

Varios estudios señalan la importancia/utilidad de contar con cierto nivel de comunicación. Otros, también señalan que, para ciertas tareas, no sería imprescindible.

Rango y contenido de la comunicación

Cuanto mayor el rango de la comunicación, mejor responderá el sistema?

- Si envío un mensaje en *voz baja*, prevengo que otros me escuchen. Pero si el mensaje es de ayuda?
- Si envío un mensaje demasiado alto (gritar), podrían responder muchos, entorpeciendo la tarea.

Qué deberían decirse los robots?

- Estado
- Objetivos

Cuándo?

- Ayuda
- Atascamientos

- Clases perceptuales
 - Objetos
 - Objetivos
 - Obstáculos
 - Intenciones
 Relacionado con el tópico Plan recognition estudiado en Distributed AI
- Distinguirse del entorno (kin recognition)
 - Agrega la subclase robot
 - Permite posicionar o identificar a otros
 - Primitivas
 - Encontrar
 - Seguimiento
 - Anticipar
 - Detectar evento
- Aplicaciones
 - Seguir al líder o Convoying
 - Detección de minas
 - Vigilancia
 - Cartografía

Introducción I

- Aprendizaje
 Produce cambios internos en un agente permitiéndole, con el tiempo, desempeñarse más efectivamente en un entorno.
- Adaptación
 Refiere al aprendizaje logrado a través de modificaciones para ajustarse mejor a un entorno.
 - Tipos
 - Comportamental
 - Evolutiva
 - Sensorial
 - Aprendizaje
- Tipos de aprendizaje
 - Aprendizaje por refuerzos
 - Redes neuronales artificiales
 - Aprendizaje evolutivo
 - Aprendizaje inductivo
 - otros

Introducción II

- Métodos de aprendizaje
 - Numérico / Simbólico
 - Inductivo / Deductivo
 - Continuo / Batch
- Las sociedades robóticas representan una nueva oportunidad para el aprendizaje
- El aprendizaje plantea una tensión entre los intereses individuales y el bien colectivo
- Preguntas
 - Qué presiones ecológicas pueden fomentar estrategias que beneficien la sociedad aún en detrimento del individuo?
 - Cómo se pueden desarrollar reglas sociales que trasciendan los objetivos individuales?

Aprendizaje por refuerzos

- Uno de los métodos de adaptación de sistemas de control más utilizados en robótica
- Numérico, Inductivo, Continuo
- Basado en la *Ley del efecto*
- Optimización centrada en:
 - Minimizar la interferencia inter-robot
 - Maximizar la recompensa de la sociedad toda
- Refuerzo proviene de:
 - Directamente de las acciones del agente
 - De la observación de las acciones de otros agentes
 - De la observación del refuerzo obtenido por otros agentes (aprendizaje indirecto)

L-Alliance

- Introduce capacidades de aprendizaje en *Alliance*
- Aprendizaje aplicado a:
 - Ajuste de parámetros
 - Selección de tareas
 - Impaciencia
 - Frustración
 - Mejora del desempeño del equipo y la misión
- Ventana de tiempo *chica* (p.e. 5 intentos)
- Cada agente mantiene una estadística sobre su actuación y la de sus pares
- Una de las tareas a optimizar es la distribución de tareas

Aprendizaje por imitación

- Observación de las acciones de otros agentes
 - Estar motivado para buscar un maestro
 - Encontrar un buen maestro
 - Identificar qué es necesario aprender
 - Percibir correctamente las acciones del maestro
- Codificación de una acción
 - Elegir una codificación adecuada que permita representar la acción observada
 - Capturar una observación particular en el formato elegido
- Reproducción de la acción
 - Estar motivado para actuar en respuesta a una observación
 - Elegir una acción para el contexto actual
 - Adaptar la acción al entorno actual