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What will be covered In this tutorial

(
(
(

({ More advanced topics:

— One-sided communication
— Hybrid programming with shared memory and accelerators

— Non-blocking collectives, topologies, and neighborhood collectives




One-sided Communication

({ The basic idea of one-sided communication models is to
decouple data movement with process synchronization

— Should be able to move data without requiring that the remote
process synchronize

— Each process exposes a part of its memory to other processes
— Other processes can directly read from or write to this memory
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Two-sided Communication Example
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One-sided Communication Example
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« May take advantage of interconnect RDMA,
shared memory (intranode)
« Otherwise can be emulated
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Comparing One-sided and Two-sided Programming
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What we need to know in MPI RMA

(€ How to create remote accessible memory?

({ Reading, Writing and Updating remote memory
({ Data Synchronization

(€ Memory Model




Creating Public Memory

(€ Memory used by proceses is, by default, only locally accessible
— X = malloc(100);

(€ Once the memory is allocated, the user has to make an explicit MPI call to
declare a memory region as remotely accessible

— MPI terminology for remotely accessible memory is a window
— Agroup of processes collectively create a window

(€ Once a memory region is declared as remotely accessible, all processes in
the window can read/write data to this memory without explicitly
synchronizing with the target process
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Window creation models

€ MPl_Win_allocate
— You want to create a buffer and directly make it remotely accessible

(€ MPI_Win_create

— You already have an allocated buffer that you would like to make
remotely accessible

(€ MPI_Win_create_dynamic
— You don’t have a buffer yet, but will have one in the future
— You can add/remove buffers with MPI1_Win_attach/detach

(€ MPI_Win_allocate_shared

— You want multiple processes on the same node to share a buffer with
remote load/store access
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MPI_WIN_ALLOCATE

MPI Win allocate (MPI Aint size, int disp unit,

MPI Info info, MPI Comm comm, void *baseptr,
MPI Win *win)

({ Create a remotely accessible memory region in an RMA window

Only data exposed in a window can be accessed with RMA ops.

(€ Arguments:

Size - size of local data in_bytes (nonnegative integer)

disp_unit - local unit size for displacements, in bytes (positive integer)
info - flags passed to the MPI runtime (may enable optimization)
comm - communicator (handle)

baseptr - pointer to exposed local data

win - window (handle)
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Example with MPI_WIN_ALLOCATE

int main(int argc, char ** argv)

{
int *a; MPI Win win;
MPI Init(&argc, &argv);
/* collectively create remote accessible memory in a window */
MPI Win allocate(1000*sizeof (int), sizeof(int), MPI INFO NULL,
MPI_COMM WORLD, &a, &win);
/* Array ‘a’ is now accessible from all processes in
* MPI_COMM WORLD */
MPI Win free (&win) ;
MPI Finalize(); return O;
}
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MPI_WIN_ CREATE

MPI Win create (void *base, MPI Aint size,
int disp unit, MPI Info info,
MPI Comm comm, MPI Win *win)

({ Expose a region of memory in an RMA window

Only data exposed in a window can be accessed with RMA ops.

(€ Arguments:

base - pointer to local data to expose
Size - size of local data in bytes (nonnegative integer)

disp_unit - local unit size for displacements, in bytes (positive integer)
Info - info argument (handle)

comm - communicator (handle)

win - window (handle)
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Example with MPI_WIN_CREATE
int main(int argc, char ** argv)

{

int *a; MPI Win win;
MPI Init(&argc, &argv);

/* create private memory */

MPI Alloc mem(1000*sizeof (int), MPI_ INFO NULL, é&a);
/* use private memory like you normally would */
a[0] = 1; al[l] = 2;

/* collectively declare memory as remotely accessible */
MPI Win create(a, 1000*sizeof(int), sizeof (int),
MPI_INFO NULL, MPI_COMM WORLD, &win) ;

/* Array ‘a’ is now accessibly by all processes in
* MPI_COMM WORLD */

MPI Win free (&win) ;
MPI Free mem(a) ;
MPI Finalize(); return O;

}
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MPI_WIN_CREATE_DYNAMIC

MPI Win create dynamic (MPI_Info info, MPI Comm comm,
MPI Win *win)

({ Create an RMA window, to which data can later be attached
— Only data exposed in a window can be accessed with RMA ops
(€ Initially “empty”

— Application can dynamically attach/detach memory to this window by
calling MPI_Win_attach/detach

— Application can access data on this window only after a memory
region has been attached

(€ Window origin is MPI_BOTTOM

— Displacements are segment addresses relative to MPI_ BOTTOM
— Must tell others the displacement after calling attach
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Example with MPI_WIN_CREATE_DYNAMIC
int main(int argc, char ** argv)

{

int *a; MPI_Win win;

MPI Init(&argc, &argv);
MPI Win create dynamic (MPI_INFO NULL, MPI COMM WORLD, &win);

/* create private memory */

a = (int *) malloc (1000 * sizeof(int));

/* use private memory like you normally would */
a[0] = 1; al[l] = 2;

/* locally declare memory as remotely accessible */
MPI Win attach(win, a, 1000*sizeof(int));

/* Array ‘a’ is now accessible from all processes */
/* undeclare remotely accessible memory */
MPI Win detach(win, a); free(a);

MPI Win free (&win) ;

MPI Finalize(); return 0;}
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Data movement

(€ MPI provides ability to read, write and atomically modify data
In remotely accessible memory regions
— MPI_PUT
— MPI_GET
— MPI_ACCUMULATE (atomic)
— MPI_GET_ACCUMULATE (atomic)
— MPI_COMPARE_AND_SWAP (atomic)
— MPI_FETCH_AND_OP (atomic)
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Data movement. Put

a )

MPI Put(void *origin addr, int origin count,

MPI Datatype origin dtype, int target rank,
MPI Aint target disp, int target count,

MPI Datatype target dtype, MPI Win win)

o

(€ Move data from origin, to target
({ Separate data description triples for origin and target

J
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Data movement: Get

a )

MPI Get(void *origin addr, int origin count,

MPI Datatype origin dtype, int target rank,
MPI Aint target disp, int target count,

MPI Datatype target dtype, MPI Win win)

o

({ Move data to origin, from target
({ Separate data description triples for origin and target
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Atomic Data Aggregation: Accumulate

~

MPI Accumulate(void *origin addr, int origin_ count,
MPI Datatype origin dtype, int target rank,
MPI Aint target disp, int target count,

MPI Datatype target dtype, MPI Op op, MPI Win win)

N /

(€ Atomic update operation, similar to a put

— Reduces origin and target data into target buffer using op argument as combiner
— Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_ORFP, ...

— Predefined ops only, no user-defined operations

(€ Different data layouts between

o Remotely
target/origin OK Accessible
— Basic type elements must match Memory
(€ Op=MPI REPLACE _
- Private
— Implements f(a,b)=b Memory
— Atomic PUT Origin Target
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Atomic Data Aggregation: Get Accumulate

({

({
({
({

({

/MPI_Get_accumulate (void *origin addr, int origin_count,\
MPI Datatype origin dtype, void *result addr,
int result count, MPI Datatype result dtype,
int target rank, MPI Aint target disp,

int target count, MPI Datatype target dype,
\ , MPI Win win)

Atomic read-modify-write

/

— Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_ORP, ...

— Predefined ops only
Result stored in target buffer
Original data stored in result buf

Different data layouts between
target/origin OK

— Basic type elements must match
Atomic get with MPI_NO_OP
Atomic swap with MPI_REPLACE
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Atomic Data Aggregation: CAS and FOP

MPI Fetch and op(void *origin addr, void *result addr,
MPI Datatype dtype, int target rank,
MPI Aint target disp, , MPI Win win)

MPI Compare and swap (void *origin addr, void *compare addr,
void *result addr, MPI Datatype dtype, int target rank,
MPI Aint target disp, MPI Win win)

(€ FOP: Simpler version of MPI_Get_accumulate
— All buffers share a single predefined datatype
— No count argument (it's always 1)
— Simpler interface allows hardware optimization

(€ CAS: Atomic swap Iif target value = compare value
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Ordering of Operations in MPI RMA

(€ No guaranteed ordering for Put/Get operations
(€ Result of concurrent Puts to the same location undefined

(€ Result of Get concurrent Put/Accumulate to same location undefined
— Can be garbage in both cases

(€ Result of concurrent accumulate operations to the same location are
defined according to the order in which occurred

— Atomic put: Accumulate with op = MPI_REPLACE
— Atomic get: Get_accumulate with op = MPI_NO_OP

(€ Accumulate operations from a process are ordered by default
— User can tell the MPI implementation that ordering in not required as an
optimization hint
— You can ask for only the needed orderings: RAW (read-after-write), WAR,
RAR, or WAW
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Examples with operation ordering

Process 0 Process 1
PUT(x=1, P1) X =0 |
PUT(x=2, P1)— , 1. Concurrent Puts: undefined
=1
PUT(x=2, P1)

x=1 2.Concurrent Get and

GET(y, x, P1) Put/Accumulates: undefined
y=1 X =2
GET_ACC (y, x+=2, P1) X=2

ACC (x+=1, P1) e o 3. Con_current Accumulate |
operations to the same location:
y:2 X+=1

ordering is guaranteed
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RMA Synchronization Models

(€ RMA data access model

— When is a process allowed to read/write remotely accessible memory?
— When is data written by process X available for process Y to read?
— RMA synchronization models define these semantics

(€ Three synchronization models provided by MPI.
— Fence (active target, target process is involved in synchronization)
— Post-start-complete-wait (generalized active target)
— Lock/Unlock (passive target, target process not involved)

({ Data accesses (Get, Put, Accum.) occur within epochs

— Access epochs: a process can use get/put/accum on remote data

— Exposure epochs: a process exposes its mem segment in win to other
processes

— Epochs define ordering and completion semantics

— Synchronization models provide mechanisms define the epochs
+ E.g., starting, ending, and synchronizing epochs
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Fence: Active Target Synchronization

[MPI_Win_fence(int assert, MPI Win win) }

(€ Collective synchronization model

(€ Starts and ends access and exposure
epochs on all processes in the window

_ _ PO P1 P2
1. All processes in group of win do an

MPI_WIN_FENCE to open an epoch

2. Everyone canissue PUT/GET
operations to read/write data

I
3. Everyone does an MPI_WIN_FENCE :—

Fence

to close the epoch

4. All operations complete at the second C—
fence synchronization

Fence
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Implementing Stencil Computation with RMA Fence

RMA window

L

~ Target buffers

PUT r Origin buffers

PUT
1nd \

1Nd
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Code Example

({ stencil_mpi_ddt rma.c

(€ MPI_Put used to move data; explicit receives not needed
({ Data location specified by MPI datatypes

(€ Manual packing of data no longer required
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PSCW: Generalized Active Target Synchronization

(

({

({

({

MPI Win start/post(MPI_Group grp, int assert, MPI Win win)
MPI Win complete/wait (MPI_Win win)

Like FENCE, but origin and target specify Target Origin
who they communicate with

Post
Target: Exposure epoch

— Opened with MPI_Win_post
— Closed by MPI_Win_wait

Origin: Access epoch
— Opened by MPI_Win_start
— Closed by MPI_Win_complete

All synchronization operations may block,
to enforce P-S/C-W ordering

— Processes can be both origins and targets
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Lock/Unlock: Passive Target Synchronization

Active Target Mode Passive Target Mode

Post Lock @

— —

Wait
Complete  Unlock @

Start

(€ Passive mode: One-sided, asynchronous communication
— Target does not participate in communication operation
(€ Shared memory-like model
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Passive Target Synchronization

[MPI_Win_lock(int locktype, int rank, int assert, MPI Win win) }

[MPI_Win_unlock(int rank, MPI Win win) }

[MPI_Win_flush/flush_local (int rank, MPI Win win) }

(€ Lock/Unlock: Begin/end passive mode epoch
— Target process does not make a corresponding MPI call
— Can initiate multiple passive target epochs to different processes
— Concurrent epochs to same process not allowed (affects threads)
(€ Lock type
— SHARED: Other processes using shared can access concurrently
— EXCLUSIVE: No other processes can access concurrently

(€ Flush: Remotely complete RMA operations to the target process
— After completion, data can be read by target process or a different process

(€ Flush_local: Locally complete RMA operations to the target process
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Advanced Passive Target Synchronization

[MPI_Win_lock_all(int assert, MPI Win win) }

[MPI_Win_unlock_all (MPI Win win) }

[MPI_Win_flush_all/flush_local_all (MPI Win win) }

(€ Lock all: Shared lock, passive target epoch to all other procs.
— Expected usage is long-lived: lock_all, put/get, flush, ..., unlock_all

(€ Flush_all — remotely complete RMA operations to all procs.
(€ Flush_local all — locally complete RMA operations to all procs.
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Which synchronization mode should | use, when?

(€ RMA communication has low overheads versus send/recv
— Two-sided: Matching, queuing, buffering, unexpected receives, etc.
— One-sided: No matching, no buffering, always ready to receive
— Utilize RDMA provided by high-speed interconnects (e.g. InfiniBand)
(€ Active mode: bulk synchronization
— E.g. ghost cell (aka halo) exchange
({ Passive mode: asynchronous data movement
— Useful when dataset is large, requiring memory of multiple nodes
— Also, when data access and synchronization pattern is dynamic
— Common use case: distributed, shared arrays
({ Passive target locking mode
— Lock/unlock — Useful when exclusive epochs are needed
— Lock_all/unlock_all — Useful when only shared epochs are needed
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MPI RMA Memory Model

(€ MPI-3 provides two memory models:
separate and unified

(€ MPI-2: Separate Model
— Logical public and private copies

— MPI provides software coherence
between window copies

— Extremely portable, to systems that don't
provide hardware coherence

(€ MPI-3: New Unified Model
— Single copy of the window
— System must provide coherence
— Superset of separate semantics

« E.g. allows concurrent local/remote access

— Provides access to full performance
potential of hardware
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MPlI RMA Memory Model (separate windows)

Same source _
Same epoch Diff. Sources

L N A 1 N \
AR AR

Public \ X/
Copy - - — — -
. T 3 , , x
| | | | | X
\ 4 A 4 A 4 A 4 v v
Private
Copy T T T
load store store

(€ Very portable, compatible with non-coherent memory systems
(€ Limits concurrent accesses to enable software coherence

36



MPI RMA Memory Model (unified windows)

Same source
Same epoch Diff. Sources

A S
iy |

\4 !
— — | m——y T
J / /
load store store

(€ Allows concurrent local/remote accesses

(€ Concurrent, conflicting operations are allowed (not invalid)
— Qutcome is not defined by MPI (defined by the hardware)

(€ Can enable better performance by reducing synchronization
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Thank you!

For further information please contact
marc.jorda@bsc.es, antonio.pena@bsc.es



