WWWw.bsc.es

Barcelona
Supercomputing

Center
Centro Nacional de Supercomputacion

MPI: One-Sided Communication

Marc Jorda, Antonio J. Peha

Montevideo, 21-25 October 2019

What will be covered In this tutorial

(
(
(

({ More advanced topics:

— One-sided communication
— Hybrid programming with shared memory and accelerators

— Non-blocking collectives, topologies, and neighborhood collectives

One-sided Communication

({ The basic idea of one-sided communication models is to
decouple data movement with process synchronization

— Should be able to move data without requiring that the remote
process synchronize

— Each process exposes a part of its memory to other processes
— Other processes can directly read from or write to this memory

Process O Process 1 Process 2 Process 3

Global
Address
Space

Private PV Privaté
Memory . .. 7 - NMemory

AL
Barcelona
Supercomputing
Center 4
Centro Nacional de Supercomputacion

Two-sided Communication Example

Processor Processor
Memory
e 0o
Memory
Segment Memory
Segment

Memory
Segment

MPI implementation

MPI implementation

Barcelona

Supercomputing

Center 5
Centro Nacional de Supercomputacion

One-sided Communication Example

Processor Processor

Memory
Segment

Memory
Segment

Memory
Segment

Memory
Segment

MPI implementation

MPI implementation

« May take advantage of interconnect RDMA,
shared memory (intranode)
« Otherwise can be emulated

Barcelona

Supercomputing

Center 6
Centro Nacional de Supercomputacion

Comparing One-sided and Two-sided Programming

Even the
sending
process is
delayed

=

Delay in
process 1
does not -
affect
process 0

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Process 0

SEND(data

Process 0

[PUT(data) —

Process 1

A
\ $
RECV(data)

Process 1

GET(data)

<> mQ

>

What we need to know in MPI RMA

(€ How to create remote accessible memory?

({ Reading, Writing and Updating remote memory
({ Data Synchronization

(€ Memory Model

Creating Public Memory

(€ Memory used by proceses is, by default, only locally accessible
— X = malloc(100);

(€ Once the memory is allocated, the user has to make an explicit MPI call to
declare a memory region as remotely accessible

— MPI terminology for remotely accessible memory is a window
— Agroup of processes collectively create a window

(€ Once a memory region is declared as remotely accessible, all processes in
the window can read/write data to this memory without explicitly
synchronizing with the target process

Process 0 Process 1 Process 2 Process 3

Private Private Private Private
Memory Memory Memory Memory
Barcelona
Supercomputing
Center 9
Centro Nacional de Supercomputacion

Window l

Window creation models

€ MPl_Win_allocate
— You want to create a buffer and directly make it remotely accessible

(€ MPI_Win_create

— You already have an allocated buffer that you would like to make
remotely accessible

(€ MPI_Win_create_dynamic
— You don’t have a buffer yet, but will have one in the future
— You can add/remove buffers with MPI1_Win_attach/detach

(€ MPI_Win_allocate_shared

— You want multiple processes on the same node to share a buffer with
remote load/store access

Barcelona

Supercomputing

Center 10
Centro Nacional de Supercomputacion

MPI_WIN_ALLOCATE

MPI Win allocate (MPI Aint size, int disp unit,

MPI Info info, MPI Comm comm, void *baseptr,
MPI Win *win)

({ Create a remotely accessible memory region in an RMA window

Only data exposed in a window can be accessed with RMA ops.

(€ Arguments:

Size - size of local data in_bytes (nonnegative integer)

disp_unit - local unit size for displacements, in bytes (positive integer)
info - flags passed to the MPI runtime (may enable optimization)
comm - communicator (handle)

baseptr - pointer to exposed local data

win - window (handle)

Barcelona

Supercomputing

Center 11
Centro Nacional de Supercomputacion

Example with MPI_WIN_ALLOCATE

int main(int argc, char ** argv)

{
int *a; MPI Win win;
MPI Init(&argc, &argv);
/* collectively create remote accessible memory in a window */
MPI Win allocate(1000*sizeof (int), sizeof(int), MPI INFO NULL,
MPI_COMM WORLD, &a, &win);
/* Array ‘a’ is now accessible from all processes in
* MPI_COMM WORLD */
MPI Win free (&win) ;
MPI Finalize(); return O;
}

Barcelona

Supercomputing

Center 12
Centro Nacional de Supercomputacion

MPI_WIN_ CREATE

MPI Win create (void *base, MPI Aint size,
int disp unit, MPI Info info,
MPI Comm comm, MPI Win *win)

({ Expose a region of memory in an RMA window

Only data exposed in a window can be accessed with RMA ops.

(€ Arguments:

base - pointer to local data to expose
Size - size of local data in bytes (nonnegative integer)

disp_unit - local unit size for displacements, in bytes (positive integer)
Info - info argument (handle)

comm - communicator (handle)

win - window (handle)

Barcelona

Supercomputing

Center 13
Centro Nacional de Supercomputacion

Example with MPI_WIN_CREATE
int main(int argc, char ** argv)

{

int *a; MPI Win win;
MPI Init(&argc, &argv);

/* create private memory */

MPI Alloc mem(1000*sizeof (int), MPI_ INFO NULL, é&a);
/* use private memory like you normally would */
a[0] = 1; al[l] = 2;

/* collectively declare memory as remotely accessible */
MPI Win create(a, 1000*sizeof(int), sizeof (int),
MPI_INFO NULL, MPI_COMM WORLD, &win) ;

/* Array ‘a’ is now accessibly by all processes in
* MPI_COMM WORLD */

MPI Win free (&win) ;
MPI Free mem(a) ;
MPI Finalize(); return O;

}

Barcelona

Supercomputing

Center 14
Centro Nacional de Supercomputacion

MPI_WIN_CREATE_DYNAMIC

MPI Win create dynamic (MPI_Info info, MPI Comm comm,
MPI Win *win)

({ Create an RMA window, to which data can later be attached
— Only data exposed in a window can be accessed with RMA ops
(€ Initially “empty”

— Application can dynamically attach/detach memory to this window by
calling MPI_Win_attach/detach

— Application can access data on this window only after a memory
region has been attached

(€ Window origin is MPI_BOTTOM

— Displacements are segment addresses relative to MPI_ BOTTOM
— Must tell others the displacement after calling attach

Barcelona

Supercomputing

Center 15
Centro Nacional de Supercomputacion

Example with MPI_WIN_CREATE_DYNAMIC
int main(int argc, char ** argv)

{

int *a; MPI_Win win;

MPI Init(&argc, &argv);
MPI Win create dynamic (MPI_INFO NULL, MPI COMM WORLD, &win);

/* create private memory */

a = (int *) malloc (1000 * sizeof(int));

/* use private memory like you normally would */
a[0] = 1; al[l] = 2;

/* locally declare memory as remotely accessible */
MPI Win attach(win, a, 1000*sizeof(int));

/* Array ‘a’ is now accessible from all processes */
/* undeclare remotely accessible memory */
MPI Win detach(win, a); free(a);

MPI Win free (&win) ;

MPI Finalize(); return 0;}

Barcelona

Supercomputing

Center 16
Centro Nacional de Supercomputacion

Data movement

(€ MPI provides ability to read, write and atomically modify data
In remotely accessible memory regions
— MPI_PUT
— MPI_GET
— MPI_ACCUMULATE (atomic)
— MPI_GET_ACCUMULATE (atomic)
— MPI_COMPARE_AND_SWAP (atomic)
— MPI_FETCH_AND_OP (atomic)

Barcelona

Supercomputing

Center 17
Centro Nacional de Supercomputacion

Data movement. Put

a)

MPI Put(void *origin addr, int origin count,

MPI Datatype origin dtype, int target rank,
MPI Aint target disp, int target count,

MPI Datatype target dtype, MPI Win win)

o

(€ Move data from origin, to target
({ Separate data description triples for origin and target

J

Remotely
Accessible
Memory

Private
Memory

Origin Target

Barcelona

Supercomputing

Center 18
Centro Nacional de Supercomputacion

Data movement: Get

a)

MPI Get(void *origin addr, int origin count,

MPI Datatype origin dtype, int target rank,
MPI Aint target disp, int target count,

MPI Datatype target dtype, MPI Win win)

o

({ Move data to origin, from target
({ Separate data description triples for origin and target

Remotely
Accessible
Memory

Private
Memory

J

Origin Target

Barcelona

Supercomputing

Center 19
Centro Nacional de Supercomputacion

Atomic Data Aggregation: Accumulate

~

MPI Accumulate(void *origin addr, int origin_ count,
MPI Datatype origin dtype, int target rank,
MPI Aint target disp, int target count,

MPI Datatype target dtype, MPI Op op, MPI Win win)

N /

(€ Atomic update operation, similar to a put

— Reduces origin and target data into target buffer using op argument as combiner
— Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_ORFP, ...

— Predefined ops only, no user-defined operations

(€ Different data layouts between

o Remotely
target/origin OK Accessible
— Basic type elements must match Memory
(€ Op=MPI REPLACE _
- Private
— Implements f(a,b)=b Memory
— Atomic PUT Origin Target

Barcelona

Supercomputing

Center 20
Centro Nacional de Supercomputacion

Atomic Data Aggregation: Get Accumulate

({

({
({
({

({

/MPI_Get_accumulate (void *origin addr, int origin_count,\
MPI Datatype origin dtype, void *result addr,
int result count, MPI Datatype result dtype,
int target rank, MPI Aint target disp,

int target count, MPI Datatype target dype,
\ , MPI Win win)

Atomic read-modify-write

/

— Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_ORP, ...

— Predefined ops only
Result stored in target buffer
Original data stored in result buf

Different data layouts between
target/origin OK

— Basic type elements must match
Atomic get with MPI_NO_OP
Atomic swap with MPI_REPLACE

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Origin Target

Remotely
Accessible
Memory

Private
Memory

21

Atomic Data Aggregation: CAS and FOP

MPI Fetch and op(void *origin addr, void *result addr,
MPI Datatype dtype, int target rank,
MPI Aint target disp, , MPI Win win)

MPI Compare and swap (void *origin addr, void *compare addr,
void *result addr, MPI Datatype dtype, int target rank,
MPI Aint target disp, MPI Win win)

(€ FOP: Simpler version of MPI_Get_accumulate
— All buffers share a single predefined datatype
— No count argument (it's always 1)
— Simpler interface allows hardware optimization

(€ CAS: Atomic swap Iif target value = compare value

Barcelona

Supercomputing

Center 22
Centro Nacional de Supercomputacion

Ordering of Operations in MPI RMA

(€ No guaranteed ordering for Put/Get operations
(€ Result of concurrent Puts to the same location undefined

(€ Result of Get concurrent Put/Accumulate to same location undefined
— Can be garbage in both cases

(€ Result of concurrent accumulate operations to the same location are
defined according to the order in which occurred

— Atomic put: Accumulate with op = MPI_REPLACE
— Atomic get: Get_accumulate with op = MPI_NO_OP

(€ Accumulate operations from a process are ordered by default
— User can tell the MPI implementation that ordering in not required as an
optimization hint
— You can ask for only the needed orderings: RAW (read-after-write), WAR,
RAR, or WAW

Barcelona

Supercomputing

Center 23
Centro Nacional de Supercomputacion

Examples with operation ordering

Process 0 Process 1
PUT(x=1, P1) X =0 |
PUT(x=2, P1)— , 1. Concurrent Puts: undefined
=1
PUT(x=2, P1)

x=1 2.Concurrent Get and

GET(y, x, P1) Put/Accumulates: undefined
y=1 X =2
GET_ACC (y, x+=2, P1) X=2

ACC (x+=1, P1) e o 3. Con_current Accumulate |
operations to the same location:
y:2 X+=1

ordering is guaranteed

Barcelona

Supercomputing

Center 24
Centro Nacional de Supercomputacion

RMA Synchronization Models

(€ RMA data access model

— When is a process allowed to read/write remotely accessible memory?
— When is data written by process X available for process Y to read?
— RMA synchronization models define these semantics

(€ Three synchronization models provided by MPI.
— Fence (active target, target process is involved in synchronization)
— Post-start-complete-wait (generalized active target)
— Lock/Unlock (passive target, target process not involved)

({ Data accesses (Get, Put, Accum.) occur within epochs

— Access epochs: a process can use get/put/accum on remote data

— Exposure epochs: a process exposes its mem segment in win to other
processes

— Epochs define ordering and completion semantics

— Synchronization models provide mechanisms define the epochs
+ E.g., starting, ending, and synchronizing epochs

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

25

Fence: Active Target Synchronization

[MPI_Win_fence(int assert, MPI Win win) }

(€ Collective synchronization model

(€ Starts and ends access and exposure
epochs on all processes in the window

_ _ PO P1 P2
1. All processes in group of win do an

MPI_WIN_FENCE to open an epoch

2. Everyone canissue PUT/GET
operations to read/write data

I
3. Everyone does an MPI_WIN_FENCE :—

Fence

to close the epoch

4. All operations complete at the second C—
fence synchronization

Fence

Barcelona

Supercomputing

Center 26
Centro Nacional de Supercomputacion

Implementing Stencil Computation with RMA Fence

RMA window

L

~ Target buffers

PUT r Origin buffers

PUT
1nd \

1Nd

27

Code Example

({ stencil_mpi_ddt rma.c

(€ MPI_Put used to move data; explicit receives not needed
({ Data location specified by MPI datatypes

(€ Manual packing of data no longer required

28

PSCW: Generalized Active Target Synchronization

(

({

({

({

MPI Win start/post(MPI_Group grp, int assert, MPI Win win)
MPI Win complete/wait (MPI_Win win)

Like FENCE, but origin and target specify Target Origin
who they communicate with

Post
Target: Exposure epoch

— Opened with MPI_Win_post
— Closed by MPI_Win_wait

Origin: Access epoch
— Opened by MPI_Win_start
— Closed by MPI_Win_complete

All synchronization operations may block,
to enforce P-S/C-W ordering

— Processes can be both origins and targets

Barcelona

Supercomputing

Center 29
Centro Nacional de Supercomputacion

Lock/Unlock: Passive Target Synchronization

Active Target Mode Passive Target Mode

Post Lock @

— —

Wait
Complete Unlock @

Start

(€ Passive mode: One-sided, asynchronous communication
— Target does not participate in communication operation
(€ Shared memory-like model

Barcelona

Supercomputing

Center 30
Centro Nacional de Supercomputacion

Passive Target Synchronization

[MPI_Win_lock(int locktype, int rank, int assert, MPI Win win) }

[MPI_Win_unlock(int rank, MPI Win win) }

[MPI_Win_flush/flush_local (int rank, MPI Win win) }

(€ Lock/Unlock: Begin/end passive mode epoch
— Target process does not make a corresponding MPI call
— Can initiate multiple passive target epochs to different processes
— Concurrent epochs to same process not allowed (affects threads)
(€ Lock type
— SHARED: Other processes using shared can access concurrently
— EXCLUSIVE: No other processes can access concurrently

(€ Flush: Remotely complete RMA operations to the target process
— After completion, data can be read by target process or a different process

(€ Flush_local: Locally complete RMA operations to the target process

Barcelona

Supercomputing

Center 31
Centro Nacional de Supercomputacion

Advanced Passive Target Synchronization

[MPI_Win_lock_all(int assert, MPI Win win) }

[MPI_Win_unlock_all (MPI Win win) }

[MPI_Win_flush_all/flush_local_all (MPI Win win) }

(€ Lock all: Shared lock, passive target epoch to all other procs.
— Expected usage is long-lived: lock_all, put/get, flush, ..., unlock_all

(€ Flush_all — remotely complete RMA operations to all procs.
(€ Flush_local all — locally complete RMA operations to all procs.

Barcelona

Supercomputing

Center 32
Centro Nacional de Supercomputacion

Which synchronization mode should | use, when?

(€ RMA communication has low overheads versus send/recv
— Two-sided: Matching, queuing, buffering, unexpected receives, etc.
— One-sided: No matching, no buffering, always ready to receive
— Utilize RDMA provided by high-speed interconnects (e.g. InfiniBand)
(€ Active mode: bulk synchronization
— E.g. ghost cell (aka halo) exchange
({ Passive mode: asynchronous data movement
— Useful when dataset is large, requiring memory of multiple nodes
— Also, when data access and synchronization pattern is dynamic
— Common use case: distributed, shared arrays
({ Passive target locking mode
— Lock/unlock — Useful when exclusive epochs are needed
— Lock_all/unlock_all — Useful when only shared epochs are needed

Barcelona

Supercomputing

Center 34
Centro Nacional de Supercomputacion

MPI RMA Memory Model

(€ MPI-3 provides two memory models:
separate and unified

(€ MPI-2: Separate Model
— Logical public and private copies

— MPI provides software coherence
between window copies

— Extremely portable, to systems that don't
provide hardware coherence

(€ MPI-3: New Unified Model
— Single copy of the window
— System must provide coherence
— Superset of separate semantics

« E.g. allows concurrent local/remote access

— Provides access to full performance
potential of hardware

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Public
Copy

A
I
I
1

v

Private
Copy

Copy

35

MPlI RMA Memory Model (separate windows)

Same source _
Same epoch Diff. Sources

L N A 1 N \
AR AR

Public \ X/
Copy - - — — -
. T 3 , , x
| | | | | X
\ 4 A 4 A 4 A 4 v v
Private
Copy T T T
load store store

(€ Very portable, compatible with non-coherent memory systems
(€ Limits concurrent accesses to enable software coherence

36

MPI RMA Memory Model (unified windows)

Same source
Same epoch Diff. Sources

A S
iy |

\4 !
— — | m——y T
J / /
load store store

(€ Allows concurrent local/remote accesses

(€ Concurrent, conflicting operations are allowed (not invalid)
— Qutcome is not defined by MPI (defined by the hardware)

(€ Can enable better performance by reducing synchronization

Barcelona

Supercomputing

Center 37
Centro Nacional de Supercomputacion

WWWw.bsc.es

Barcelona
Supercomputing

Center
Centro Nacional de Supercomputacion

Thank you!

For further information please contact
marc.jorda@bsc.es, antonio.pena@bsc.es

