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What will be covered in this tutorial 

What is MPI? 

How to write a simple program in MPI 

Running your application with MPICH 

More advanced topics: 

– Non-blocking communication, collective communication, datatypes 

– One-sided communication 

– Hybrid programming with shared memory and accelerators 

– Non-blocking collectives, topologies, and neighborhood collectives 
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Blocking vs. Non-blocking Communication 

MPI_SEND/MPI_RECV are blocking communication calls 
– Return of the routine implies completion 

– When these calls return the memory locations used in the message 

transfer can be safely accessed for reuse 

– For “send” completion implies variable sent can be reused/modified 

• Modifications will not affect data intended for the receiver 

– For “receive” variable received can be read 

MPI_ISEND/MPI_IRECV are nonblocking variants 
– Routine returns immediately – completion has to be separately tested 

– These are primarily used to overlap computation and communication to 

improve performance 
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Blocking Communication 

In blocking communication 

– MPI_SEND does not return until buffer is empty (available for reuse) 

– MPI_RECV does not return until buffer is full (available for use) 

A process sending data will be blocked until data in the send buffer is sent 

A process receiving data will be blocked until the receive buffer is filled 

Exact completion semantics of communication generally depends on the 

message size and the system buffer size 

Blocking communication is simple to use but can be prone to deadlocks:  

     if (rank == 0) { 

   MPI_SEND(..to rank 1..) 

                                MPI_RECV(..from rank 1..) 

  else if (rank == 1) { 

                                MPI_SEND(..to rank 0..)        recv before send fixes it 

                               MPI_RECV(..from rank 0..) 

                } 
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time 

Blocking Send-Receive Diagram 
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Non-Blocking Communication 

Non-blocking (asynchronous) operations return (immediately) ‘‘request 

handles” that can be waited on and queried 

– MPI_ISend(buf, count, datatype, dest, tag, comm, request) 

– MPI_IRecv(buf, count, datatype, src, tag, comm, request) 

– MPI_Wait(request, status) 

 

Non-blocking operations allow overlapping computation and communication 

 

One can also test without waiting using MPI_Test 

– MPI_Test(request, flag, status) 

 

Anywhere you use MPI_Send or  MPI_Recv, you can use the pair of 

MPI_ISend/MPI_Wait or  MPI_IRecv/MPI_Wait 
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Multiple Completions 

It is sometimes desirable to wait on multiple requests: 

– MPI_Waitall(count, array_of_requests, array_of_statuses) 

– MPI_Waitany(count, array_of_requests, &index, &status) 

– MPI_Waitsome(incount, array_of_requests, outcount,     

               array_of_indices, array_of_statuses) 

There are corresponding versions of TEST for each of these 

– MPI_Testall, MPI_Testany and MPI_Testsome. 
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Non-Blocking Send-Receive Diagram  

time 
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Message Completion and Buffering  

For a communication to succeed: 

– Sender must specify a valid destination rank 

– Receiver must specify a valid source rank (including MPI_ANY_SOURCE) 

– The communicator must be the same 

– Tags must match 

– Receiver’s buffer must be large enough 

A send has completed when the user supplied buffer can be reused  

 

 

 

 

Just because the send completes does not mean the receive completed 

– Message may be buffered by the system 

– Message may still be in transit 

 

*buf = 3; 

MPI_Send(buf, 1, MPI_INT …) 

*buf = 4; /* OK, receiver will always  

             receive 3 */ 

*buf = 3; 

MPI_Isend(buf, 1, MPI_INT …) 

*buf = 4; /* Receiver may get 3, 4, or 

             anything else */ 

MPI_Wait(…); 
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A Non-Blocking communication example 

P0 

P1 

Blocking 

Communication 

P0 

P1 

 Non-blocking 

Communication 

11 



int main(int argc, char ** argv) 

{ 

    [...snip...] 

    if (rank == 0) { 

  for (i=0; i< 100; i++) { 

            /* Compute each data element and send it out */ 

            data[i] = compute(i); 

            MPI_Isend(&data[i], 1, MPI_INT, 1, 0, MPI_COMM_WORLD, 

                      &request[i]); 

  } 

         MPI_Waitall(100, request, MPI_STATUSES_IGNORE) 

    } 

    else if (rank == 1){ 

        for (i = 0; i < 100; i++) 

            MPI_Recv(&data[i], 1, MPI_INT, 0, 0, MPI_COMM_WORLD, 

                     MPI_STATUS_IGNORE); 

    } 

    [...snip...] 

} 

A Non-Blocking communication example 
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Regular Mesh Algorithms 

Many scientific applications involve the solution of 

partial differential equations (PDEs) 

Many algorithms for approximating the solution of 

PDEs rely on forming a set of difference equations 

– Finite difference, finite elements, finite volume 

The exact form of the differential equations depends 

on the particular method 

– From the point of view of parallel programming for these 

algorithms, the operations are the same 

Five-point stencil is a popular approximation solution 
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The Global Data Structure 

Each circle is a mesh point 

Difference equation evaluated at 

each point involves the 4 neighbors 

The red “plus” is called the 

method’s stencil 

Good numerical algorithms form a 

matrix equation Au=f; solving this 

requires computing Bv, where B is a 

matrix derived from A. These 

evaluations involve computations 

with the neighbors on the mesh. 
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The Global Data Structure 

Each circle is a mesh point 

Difference equation evaluated at 

each point involves the 4 neighbors 

The red “plus” is called the 

method’s stencil 

Good numerical algorithms form a 

matrix equation Au=f; solving this 

requires computing Bv, where B is a 

matrix derived from A. These 

evaluations involve computations 

with the neighbors on the mesh. 

Decompose mesh into equal sized 

(work) pieces 
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Necessary Data Transfers 
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Necessary Data Transfers 
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The Local Data Structure 

Each process has its local “patch” of the global array 

– “bx” and “by” are the sizes of the local array 

– Always allocate a halo around the patch 

– Array allocated of size (bx+2)x(by+2) 

bx 

by 
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Necessary Data Transfers 

Provide access to remote data through a halo exchange 

(5 point stencil) 
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Understanding Performance: Unexpected Hot Spots 

Basic performance analysis looks at two-party exchanges 

Real applications involve many simultaneous communications 

Performance problems can arise even in common grid 

exchange patterns 

MPI illustrates problems present even in shared memory 

– Blocking operations may cause unavoidable memory stalls 
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Mesh Exchange 

Exchange data on a mesh 

9 10 11 

6 7 8 

3 4 5 

0 1 2 
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Sample Code 

What is wrong with this code? 

for (i = 0; i < n_neighbors; i++) { 

    MPI_Send(edge, len, MPI_DOUBLE, nbr[i], tag, comm); 

} 

for (i = 0; i < n_neighbors; i++) { 

    MPI_Recv(edge, len, MPI_DOUBLE, nbr[i], tag, comm, status); 

} 

22 



Deadlocks! 

All of the sends may block, waiting for a matching receive 

(will for large enough messages) 

The variation of 

 

 if (has up nbr)  
     MPI_Recv( … up … ) 

     … 

 if (has down nbr)  
     MPI_Send( … down … ) 

 

sequentializes (all except the top process block) 
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Fix 1: Use Irecv 

Does not perform well in practice.  Why? 
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for (i = 0; i < n_neighbors; i++) { 

 MPI_Irecv(edge, len, MPI_DOUBLE, nbr[i], tag, 

   comm, requests[i]); 

} 

for (i = 0; i < n_neighbors; i++) { 

 MPI_Send(edge, len, MPI_DOUBLE, nbr[i], tag, comm); 

} 

MPI_Waitall(n_neighbors, requests, statuses); 



Timeline from IB Cluster 
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Fix 2: Use Isend and Irecv 
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for (i = 0; i < n_neighbors; i++) { 

    MPI_Irecv(edge, len, MPI_DOUBLE, nbr[i], tag, 

  comm, requests[i]); 

} 

for (i = 0; i < n_neighbors; i++) { 

    MPI_Isend(edge, len, MPI_DOUBLE, nbr[i], tag, comm, 

  requests[n_neighbors + i]); 

} 

MPI_Waitall(2 * n_neighbors, requests, statuses); 



Timeline from IB Cluster 

Note processes 4 and 7 are the only interior processors; these perform 

more communication than the other processors 
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Lesson: Defer Synchronization 

Send-receive accomplishes two things: 

– Data transfer 

– Synchronization 

In many cases, there is more synchronization than required 

Use non-blocking operations and MPI_Waitall to defer synch. 

Tools can help out with identifying performance issues 

– Tau, HPCToolkit, and Scalasca are popular profiling tools 

34 



Code Example 

stencil_mpi_nonblocking.c 

Non-blocking sends and receives 

Manually packing and unpacking the data 

Additional communication buffers are needed 
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Be careful of heterogeneity 

36 



MPI in Heterogeneous Environments 

MPI does not mandate that your program run in 

homogeneous environments 

But many common algorithms use a homogeneity 

assumption, primarily for simplicity 

– Assuming that all processors compute at the same speed will result in 

your algorithm running at the speed of the slowest processor 
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GPUs vs. Intel Xeon Phi 

GPU 

– No MPI process on a GPU (since there’s no operating system) 

– GPU systems are typically homogeneous 

• Each MPI process has one or more CPU cores + one or more GPUs 

• All MPI processes are “identical” 

Intel Xeon Phi 

– GPU-like mode available (“offload mode”) 

– Also provides a “native mode” where you can have MPI 

processes running on the Intel Xeon Phi (since it has an OS) 

– These systems can be heterogeneous 

• Some MPI processes run on the Xeon and some run on the Xeon Phi 

• Your algorithm might need to take such heterogeneity into account 

38 



What will be covered in this tutorial 

What is MPI? 

How to write a simple program in MPI 

Running your application with MPICH 

More advanced topics: 

– Non-blocking communication, collective communication, datatypes 

– One-sided communication 

– Hybrid programming with shared memory and accelerators 

– Non-blocking collectives, topologies, and neighborhood collectives 
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Introduction to Collective Operations in MPI 

Collective operations are called by all processes in a comm. 

MPI_BCAST distributes data from one process (the root) to all 

others in a communicator 

MPI_REDUCE combines data from all processes in the 

communicator and returns it to one process 

In many numerical algorithms, SEND/RECV can be replaced by 

BCAST/REDUCE, improving both simplicity and efficiency 
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MPI Collective Communication 

Communication and computation is coordinated among a 

group of processes in a communicator 

Tags are not used 

– Different communicators deliver similar functionality 

Non-blocking collective operations in MPI-3 

– Covered later (but conceptually simple) 

Three classes of operations: 

– Synchronization 

– Data movement 

– Collective computation 
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Synchronization 

MPI_Barrier(comm) 

– Blocks until all processes in the group of the communicator comm call it 

– A process cannot get out of the barrier until all other processes have 

reached barrier 
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Collective Data Movement 
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More Collective Data Movement 
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Collective Computation 

P0 

P1 

P2 

P3 

P0 

P1 

P2 

P3 

A 

B 

D 

C 

A 

B 

D 

C 

f(ABCD) 

f(A) 

f(AB) 

f(ABC) 

f(ABCD) 

Reduce 

Scan 

45 



MPI Collective Routines 

Many Routines:  MPI_ALLGATHER, MPI_ALLGATHERV, 
MPI_ALLREDUCE, MPI_ALLTOALL, MPI_ALLTOALLV, MPI_BCAST, 

MPI_GATHER, MPI_GATHERV, MPI_REDUCE, MPI_REDUCESCATTER, 

MPI_SCAN, MPI_SCATTER, MPI_SCATTERV 

 

“All” versions deliver results to all participating processes 

 

“V” versions (i.e.: vector) allow the chunks to have different size for 

each rank 

 

MPI_ALLREDUCE, MPI_REDUCE, MPI_REDUCESCATTER, and MPI_SCAN 

take both built-in and user-defined functions 
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MPI Built-in Collective Computation Operations 

MPI_MAX 

MPI_MIN 

MPI_PROD 

MPI_SUM 

MPI_LAND 

MPI_LOR 

MPI_LXOR 

MPI_BAND 

MPI_BOR 

MPI_BXOR 

MPI_MAXLOC 

MPI_MINLOC 

 

Maximum 

Minimum 

Product 

Sum 

Logical and 

Logical or 

Logical exclusive or 

Bitwise and 

Bitwise or 

Bitwise exclusive or 

Maximum and location 

Minimum and location 
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Defining your own Collective Operations 

Create your own collective computations with: 
MPI_Op_create(user_fn, commutes, &op); 

MPI_Op_free(&op); 

 

user_fn(invec, inoutvec, len, datatype); 
 

The user function should perform: 
inoutvec[i]  =  invec[i]  op  inoutvec[i]; 

for i from 0 to len-1 

 

The user function can be non-commutative, but must be 

associative 
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Example: Calculating Pi 

1 

1 Calculating pi via numerical 

integration 

– Divide interval up into subintervals 

– Assign subintervals to processes 

– Each process calculates partial sum 

– Add all the partial sums together to 

get pi 

“n” segments 

1. Width of each segment (w) will be 1/n 

2. Distance (d(i)) of segment “i” from the origin will be “i * w” 

3. Height of segment “i” will be sqrt(1 – [d(i)]^2) 
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#include <mpi.h> 

#include <math.h> 

int main(int argc, char *argv[]) 

{ 

    [...snip...] 

    /* Tell all processes, the number of segments you want */ 

    MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD); 

    w   = 1.0 / (double) n; 

    mypi = 0.0; 

    for (i = rank + 1; i <= n; i += size) 

        mypi += w * sqrt(1 – (((double) i / n) * ((double) i / n)); 

    MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, 

  MPI_COMM_WORLD); 

    if (rank == 0) 

        printf("pi is approximately %.16f, Error is %.16f\n", 4 * pi, 

               fabs((4 * pi) - PI25DT)); 

    [...snip...] 

} 

Example:  PI in C  
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What will be covered in this tutorial 

What is MPI? 

How to write a simple program in MPI 

Running your application with MPICH 

More advanced topics: 

– Non-blocking communication, collective communication, datatypes 

– One-sided communication 

– Hybrid programming with shared memory and accelerators 

– Non-blocking collectives, topologies, and neighborhood collectives 
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Necessary Data Transfers 

Provide access to remote data through a halo exchange 

(5 point stencil) 
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The Local Data Structure 

Each process has its local “patch” of the global array 

– “bx” and “by” are the sizes of the local array 

– Always allocate a halo around the patch 

– Array allocated of size (bx+2)x(by+2) 

bx 

by 
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Introduction to Datatypes in MPI 

Datatypes allow to (de)serialize arbitrary data layouts into a 

message stream 

– Networks provide serial channels 

– Same for block devices and I/O 

 

Several constructors allow arbitrary layouts 

– Recursive specification possible 

– Declarative specification of data-layout 

• “what” and not “how”, leaves optimization to implementation (many 

unexplored possibilities!) 

– Choosing the right constructors is not always simple 
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Simple/Predefined Datatypes 

Equivalents exist for all C, C++ and Fortran native datatypes 

– C int    MPI_INT 

– C float    MPI_FLOAT 

– C double    MPI_DOUBLE 

– C uint32_t    MPI_UINT32_T 

– Fortran integer    MPI_INTEGER 

MPI provides routines to represent more complex user-

defined datatypes 

– Contiguous 

– Vector/Hvector 

– Indexed/Indexed_block/Hindexed/Hindexed_block 

– Struct 

– Some convenience types (e.g., subarray) 

55 



Derived Datatype Example 
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

contig contig contig 

vector 

indexed 

struct 



MPI_Type_contiguous 

Contiguous array of oldtype 

Should not be used as last type (can be replaced by count) 
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0 1 2 3 4 5 6 7 8 9 10 11 

contig 

18 17 15 0 1 2 3 4 5 6 7 8 9 10 11 12 14 16 

struct struct struct 

contig 

13 

MPI_Type_contiguous(int count, MPI_Datatype oldtype, 

   MPI_Datatype *newtype) 



MPI_Type_vector 

Specify strided blocks of data of oldtype 

Very useful for Cartesian arrays 
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vector 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

struct struct 

vector 

19 20 

struct struct 

0 1 2 3 4 5 6 7 8 9 10 11 

MPI_Type_vector(int count, int blocklen, int stride, 

 MPI_Datatype oldtype, MPI_Datatype *newtype) 



Use Datatype in Halo Exchange 
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bx 

by 

vector (count=by, blocklen=1,  

              stride=bx+2, MPI_DOUBLE, …) 

contig (count=bx, MPI_DOUBLE, …) or  

   count with MPI_DOUBLE 



MPI_Type_create_hvector 

Create non-unit strided vectors, stride is in bytes 

Useful for composition, e.g., vector of structs 
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

struct struct 

hvector 

19 

struct struct 

vector 

stride = 3 oldtypes 

stride = 11 bytes 

MPI_Type_create_hvector(int count, int blocklen, MPI_Aint stride, 

 MPI_Datatype oldtype, MPI_Datatype *newtype) 



MPI_Type_create_indexed_block 

Pulling irregular subsets of data from a single array 

– dynamic codes with index lists, expensive though! 

– blen=2 

– displs={0,5,8,13,18} 
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Indexed_block 

MPI_Type_create_indexed_block(int count, int blocklen, 

 int *array_of_displacements, 

 MPI_Datatype oldtype, MPI_Datatype *newtype) 



MPI_Type_indexed 

Like indexed_block, but can have different block lengths 

– blen={1,1,2,1,2,1} 

– displs={0,3,5,9,13,17} 
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

indexed 

MPI_Type_indexed(int count, int* array_of_blocklens, 

 int *array_of_displacements, 

 MPI_Datatype oldtype, MPI_Datatype *newtype) 



MPI_Type_create_struct 

Most general constructor, allows different types and 

arbitrary arrays (also most costly) 
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0 1 2 3 4 

struct 

MPI_Type_create_struct(int count, 

 int *array_of_blocklens, 

 int *array_of_displacements, 

 MPI_Datatype *array_of_types, 

 MPI_Datatype *newtype) 



MPI_Type_create_subarray 

Convenience function for creating 

datatypes for array segments 

Specify subarray of n-dimensional 

array (sizes) by start (starts) and 

size (subsize) 
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(0,0) (0,1) (0,2) (0,3) 

(1,0) (1,1) (1,2) (1,3) 

(2,0) (2,1) (2,2) (2,3) 

(3,0) (3,1) (3,2) (3,3) 

MPI_Type_create_subarray(int ndims, int* array_of_sizes, 

 int *array_of_subsizes, int *array_of_starts, 

 int order, MPI_Datatype oldtype, MPI_Datatype *newtype) 



MPI_BOTTOM and MPI_Get_address 

Specify absolute addresses instead of offsets from buf ptr 

MPI_BOTTOM is the absolute zero address 

– Portability (e.g., may be non-zero in globally shared memory) 

MPI_Get_address 

– Returns address relative to MPI_BOTTOM 

– Portability (do not use “&” operator in C!) 

Very important to  

– build struct datatypes 

– If data spans multiple arrays 
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int a = 4; 

float b = 9.6; 

MPI_Datatype struct;  

 

MPI_Get_address(&a, &disps[0]); 

MPI_Get_address(&b, &disps[1]); 

... 

MPI_Type_create_struct(count, 

   blocklens, disps, 

   oldtypes, &struct); 

... 

MPI_Recv(MPI_BOTTOM, 1, struct,…); 



Commit, Free, and Dup 

Types must be committed before use 

– Only the ones that are used! 

– MPI_Type_commit may perform heavy optimizations (and will hopefully) 

 

MPI_Type_free 

– Free MPI resources of datatypes 

– Does not affect types built from it 

 

MPI_Type_dup 

– Duplicates a type 

– Library abstraction (composability) 
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Datatype Selection Order 

Simple and effective performance model: 

– More parameters == slower 

predefined < contig < vector < index_block < index < struct 

Some (most) MPIs are inconsistent  

– But this rule is portable 

Advice to users: 

– Try datatype “compression” bottom-up 

W. Gropp et al.: Performance Expectations and Guidelines for MPI Derived Datatypes 
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Code Example 

stencil-mpi-ddt.c 

Non-blocking sends and receives 

Data location specified by MPI datatypes 

Manual packing of data no longer required 
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bx 

by 

vector 



www.bsc.es 

Thank you! 

For further information please contact 

marc.jorda@bsc.es, antonio.pena@bsc.es 
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