
www.bsc.es

Montevideo, 21-25 October 2019

Marc Jordà, Antonio J. Peña

MPI: Non-Blocking Communication,

Collective Communication, Datatypes

What will be covered in this tutorial

What is MPI?

How to write a simple program in MPI

Running your application with MPICH

More advanced topics:

– Non-blocking communication, collective communication, datatypes

– One-sided communication

– Hybrid programming with shared memory and accelerators

– Non-blocking collectives, topologies, and neighborhood collectives

3

Blocking vs. Non-blocking Communication

MPI_SEND/MPI_RECV are blocking communication calls
– Return of the routine implies completion

– When these calls return the memory locations used in the message

transfer can be safely accessed for reuse

– For “send” completion implies variable sent can be reused/modified

• Modifications will not affect data intended for the receiver

– For “receive” variable received can be read

MPI_ISEND/MPI_IRECV are nonblocking variants
– Routine returns immediately – completion has to be separately tested

– These are primarily used to overlap computation and communication to

improve performance

4

Blocking Communication

In blocking communication

– MPI_SEND does not return until buffer is empty (available for reuse)

– MPI_RECV does not return until buffer is full (available for use)

A process sending data will be blocked until data in the send buffer is sent

A process receiving data will be blocked until the receive buffer is filled

Exact completion semantics of communication generally depends on the

message size and the system buffer size

Blocking communication is simple to use but can be prone to deadlocks:

 if (rank == 0) {

 MPI_SEND(..to rank 1..)

 MPI_RECV(..from rank 1..)

 else if (rank == 1) {

 MPI_SEND(..to rank 0..)  recv before send fixes it

 MPI_RECV(..from rank 0..)

 }

5

6

time

Blocking Send-Receive Diagram

6

Non-Blocking Communication

Non-blocking (asynchronous) operations return (immediately) ‘‘request

handles” that can be waited on and queried

– MPI_ISend(buf, count, datatype, dest, tag, comm, request)

– MPI_IRecv(buf, count, datatype, src, tag, comm, request)

– MPI_Wait(request, status)

Non-blocking operations allow overlapping computation and communication

One can also test without waiting using MPI_Test

– MPI_Test(request, flag, status)

Anywhere you use MPI_Send or MPI_Recv, you can use the pair of

MPI_ISend/MPI_Wait or MPI_IRecv/MPI_Wait

7

Multiple Completions

It is sometimes desirable to wait on multiple requests:

– MPI_Waitall(count, array_of_requests, array_of_statuses)

– MPI_Waitany(count, array_of_requests, &index, &status)

– MPI_Waitsome(incount, array_of_requests, outcount,

 array_of_indices, array_of_statuses)

There are corresponding versions of TEST for each of these

– MPI_Testall, MPI_Testany and MPI_Testsome.

8

9

Non-Blocking Send-Receive Diagram

time

9

Message Completion and Buffering

For a communication to succeed:

– Sender must specify a valid destination rank

– Receiver must specify a valid source rank (including MPI_ANY_SOURCE)

– The communicator must be the same

– Tags must match

– Receiver’s buffer must be large enough

A send has completed when the user supplied buffer can be reused

Just because the send completes does not mean the receive completed

– Message may be buffered by the system

– Message may still be in transit

*buf = 3;

MPI_Send(buf, 1, MPI_INT …)

buf = 4; / OK, receiver will always

 receive 3 */

*buf = 3;

MPI_Isend(buf, 1, MPI_INT …)

buf = 4; / Receiver may get 3, 4, or

 anything else */

MPI_Wait(…);

10

A Non-Blocking communication example

P0

P1

Blocking

Communication

P0

P1

 Non-blocking

Communication

11

int main(int argc, char ** argv)

{

 [...snip...]

 if (rank == 0) {

 for (i=0; i< 100; i++) {

 /* Compute each data element and send it out */

 data[i] = compute(i);

 MPI_Isend(&data[i], 1, MPI_INT, 1, 0, MPI_COMM_WORLD,

 &request[i]);

 }

 MPI_Waitall(100, request, MPI_STATUSES_IGNORE)

 }

 else if (rank == 1){

 for (i = 0; i < 100; i++)

 MPI_Recv(&data[i], 1, MPI_INT, 0, 0, MPI_COMM_WORLD,

 MPI_STATUS_IGNORE);

 }

 [...snip...]

}

A Non-Blocking communication example

12

Regular Mesh Algorithms

Many scientific applications involve the solution of

partial differential equations (PDEs)

Many algorithms for approximating the solution of

PDEs rely on forming a set of difference equations

– Finite difference, finite elements, finite volume

The exact form of the differential equations depends

on the particular method

– From the point of view of parallel programming for these

algorithms, the operations are the same

Five-point stencil is a popular approximation solution

13

The Global Data Structure

Each circle is a mesh point

Difference equation evaluated at

each point involves the 4 neighbors

The red “plus” is called the

method’s stencil

Good numerical algorithms form a

matrix equation Au=f; solving this

requires computing Bv, where B is a

matrix derived from A. These

evaluations involve computations

with the neighbors on the mesh.

14

The Global Data Structure

Each circle is a mesh point

Difference equation evaluated at

each point involves the 4 neighbors

The red “plus” is called the

method’s stencil

Good numerical algorithms form a

matrix equation Au=f; solving this

requires computing Bv, where B is a

matrix derived from A. These

evaluations involve computations

with the neighbors on the mesh.

Decompose mesh into equal sized

(work) pieces

15

Necessary Data Transfers

16

Necessary Data Transfers

17

The Local Data Structure

Each process has its local “patch” of the global array

– “bx” and “by” are the sizes of the local array

– Always allocate a halo around the patch

– Array allocated of size (bx+2)x(by+2)

bx

by

18

Necessary Data Transfers

Provide access to remote data through a halo exchange

(5 point stencil)

19

Understanding Performance: Unexpected Hot Spots

Basic performance analysis looks at two-party exchanges

Real applications involve many simultaneous communications

Performance problems can arise even in common grid

exchange patterns

MPI illustrates problems present even in shared memory

– Blocking operations may cause unavoidable memory stalls

20

Mesh Exchange

Exchange data on a mesh

9 10 11

6 7 8

3 4 5

0 1 2

21

Sample Code

What is wrong with this code?

for (i = 0; i < n_neighbors; i++) {

 MPI_Send(edge, len, MPI_DOUBLE, nbr[i], tag, comm);

}

for (i = 0; i < n_neighbors; i++) {

 MPI_Recv(edge, len, MPI_DOUBLE, nbr[i], tag, comm, status);

}

22

Deadlocks!

All of the sends may block, waiting for a matching receive

(will for large enough messages)

The variation of

 if (has up nbr)
 MPI_Recv(… up …)

 …

 if (has down nbr)
 MPI_Send(… down …)

sequentializes (all except the top process block)

23

Fix 1: Use Irecv

Does not perform well in practice. Why?

24

for (i = 0; i < n_neighbors; i++) {

 MPI_Irecv(edge, len, MPI_DOUBLE, nbr[i], tag,

 comm, requests[i]);

}

for (i = 0; i < n_neighbors; i++) {

 MPI_Send(edge, len, MPI_DOUBLE, nbr[i], tag, comm);

}

MPI_Waitall(n_neighbors, requests, statuses);

Timeline from IB Cluster

31

Fix 2: Use Isend and Irecv

32

for (i = 0; i < n_neighbors; i++) {

 MPI_Irecv(edge, len, MPI_DOUBLE, nbr[i], tag,

 comm, requests[i]);

}

for (i = 0; i < n_neighbors; i++) {

 MPI_Isend(edge, len, MPI_DOUBLE, nbr[i], tag, comm,

 requests[n_neighbors + i]);

}

MPI_Waitall(2 * n_neighbors, requests, statuses);

Timeline from IB Cluster

Note processes 4 and 7 are the only interior processors; these perform

more communication than the other processors

33

Lesson: Defer Synchronization

Send-receive accomplishes two things:

– Data transfer

– Synchronization

In many cases, there is more synchronization than required

Use non-blocking operations and MPI_Waitall to defer synch.

Tools can help out with identifying performance issues

– Tau, HPCToolkit, and Scalasca are popular profiling tools

34

Code Example

stencil_mpi_nonblocking.c

Non-blocking sends and receives

Manually packing and unpacking the data

Additional communication buffers are needed

35

Be careful of heterogeneity

36

MPI in Heterogeneous Environments

MPI does not mandate that your program run in

homogeneous environments

But many common algorithms use a homogeneity

assumption, primarily for simplicity

– Assuming that all processors compute at the same speed will result in

your algorithm running at the speed of the slowest processor

37

GPUs vs. Intel Xeon Phi

GPU

– No MPI process on a GPU (since there’s no operating system)

– GPU systems are typically homogeneous

• Each MPI process has one or more CPU cores + one or more GPUs

• All MPI processes are “identical”

Intel Xeon Phi

– GPU-like mode available (“offload mode”)

– Also provides a “native mode” where you can have MPI

processes running on the Intel Xeon Phi (since it has an OS)

– These systems can be heterogeneous

• Some MPI processes run on the Xeon and some run on the Xeon Phi

• Your algorithm might need to take such heterogeneity into account

38

What will be covered in this tutorial

What is MPI?

How to write a simple program in MPI

Running your application with MPICH

More advanced topics:

– Non-blocking communication, collective communication, datatypes

– One-sided communication

– Hybrid programming with shared memory and accelerators

– Non-blocking collectives, topologies, and neighborhood collectives

39

Introduction to Collective Operations in MPI

Collective operations are called by all processes in a comm.

MPI_BCAST distributes data from one process (the root) to all

others in a communicator

MPI_REDUCE combines data from all processes in the

communicator and returns it to one process

In many numerical algorithms, SEND/RECV can be replaced by

BCAST/REDUCE, improving both simplicity and efficiency

40

MPI Collective Communication

Communication and computation is coordinated among a

group of processes in a communicator

Tags are not used

– Different communicators deliver similar functionality

Non-blocking collective operations in MPI-3

– Covered later (but conceptually simple)

Three classes of operations:

– Synchronization

– Data movement

– Collective computation

41

Synchronization

MPI_Barrier(comm)

– Blocks until all processes in the group of the communicator comm call it

– A process cannot get out of the barrier until all other processes have

reached barrier

42

Collective Data Movement

A

B

D

C

B C D

A

A

A

A

Broadcast

Scatter

Gather

A

A

P0

P1

P2

P3

P0

P1

P2

P3

43

More Collective Data Movement

A

B

D

C

A0 B0 C0 D0

A1 B1 C1 D1

A3 B3 C3 D3

A2 B2 C2 D2

A0 A1 A2 A3

B0 B1 B2 B3

D0 D1 D2 D3

C0 C1 C2 C3

A B C D

A B C D

A B C D

A B C D

Allgather

Alltoall

P0

P1

P2

P3

P0

P1

P2

P3

44

Collective Computation

P0

P1

P2

P3

P0

P1

P2

P3

A

B

D

C

A

B

D

C

f(ABCD)

f(A)

f(AB)

f(ABC)

f(ABCD)

Reduce

Scan

45

MPI Collective Routines

Many Routines: MPI_ALLGATHER, MPI_ALLGATHERV,
MPI_ALLREDUCE, MPI_ALLTOALL, MPI_ALLTOALLV, MPI_BCAST,

MPI_GATHER, MPI_GATHERV, MPI_REDUCE, MPI_REDUCESCATTER,

MPI_SCAN, MPI_SCATTER, MPI_SCATTERV

“All” versions deliver results to all participating processes

“V” versions (i.e.: vector) allow the chunks to have different size for

each rank

MPI_ALLREDUCE, MPI_REDUCE, MPI_REDUCESCATTER, and MPI_SCAN

take both built-in and user-defined functions

46

MPI Built-in Collective Computation Operations

MPI_MAX

MPI_MIN

MPI_PROD

MPI_SUM

MPI_LAND

MPI_LOR

MPI_LXOR

MPI_BAND

MPI_BOR

MPI_BXOR

MPI_MAXLOC

MPI_MINLOC

Maximum

Minimum

Product

Sum

Logical and

Logical or

Logical exclusive or

Bitwise and

Bitwise or

Bitwise exclusive or

Maximum and location

Minimum and location

47

Defining your own Collective Operations

Create your own collective computations with:
MPI_Op_create(user_fn, commutes, &op);

MPI_Op_free(&op);

user_fn(invec, inoutvec, len, datatype);

The user function should perform:
inoutvec[i] = invec[i] op inoutvec[i];

for i from 0 to len-1

The user function can be non-commutative, but must be

associative

48

Example: Calculating Pi

1

1 Calculating pi via numerical

integration

– Divide interval up into subintervals

– Assign subintervals to processes

– Each process calculates partial sum

– Add all the partial sums together to

get pi

“n” segments

1. Width of each segment (w) will be 1/n

2. Distance (d(i)) of segment “i” from the origin will be “i * w”

3. Height of segment “i” will be sqrt(1 – [d(i)]^2)

49

#include <mpi.h>

#include <math.h>

int main(int argc, char *argv[])

{

 [...snip...]

 /* Tell all processes, the number of segments you want */

 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

 w = 1.0 / (double) n;

 mypi = 0.0;

 for (i = rank + 1; i <= n; i += size)

 mypi += w * sqrt(1 – (((double) i / n) * ((double) i / n));

 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

 MPI_COMM_WORLD);

 if (rank == 0)

 printf("pi is approximately %.16f, Error is %.16f\n", 4 * pi,

 fabs((4 * pi) - PI25DT));

 [...snip...]

}

Example: PI in C

50

What will be covered in this tutorial

What is MPI?

How to write a simple program in MPI

Running your application with MPICH

More advanced topics:

– Non-blocking communication, collective communication, datatypes

– One-sided communication

– Hybrid programming with shared memory and accelerators

– Non-blocking collectives, topologies, and neighborhood collectives

51

Necessary Data Transfers

Provide access to remote data through a halo exchange

(5 point stencil)

52

The Local Data Structure

Each process has its local “patch” of the global array

– “bx” and “by” are the sizes of the local array

– Always allocate a halo around the patch

– Array allocated of size (bx+2)x(by+2)

bx

by

53

Introduction to Datatypes in MPI

Datatypes allow to (de)serialize arbitrary data layouts into a

message stream

– Networks provide serial channels

– Same for block devices and I/O

Several constructors allow arbitrary layouts

– Recursive specification possible

– Declarative specification of data-layout

• “what” and not “how”, leaves optimization to implementation (many

unexplored possibilities!)

– Choosing the right constructors is not always simple

54

Simple/Predefined Datatypes

Equivalents exist for all C, C++ and Fortran native datatypes

– C int  MPI_INT

– C float  MPI_FLOAT

– C double  MPI_DOUBLE

– C uint32_t  MPI_UINT32_T

– Fortran integer  MPI_INTEGER

MPI provides routines to represent more complex user-

defined datatypes

– Contiguous

– Vector/Hvector

– Indexed/Indexed_block/Hindexed/Hindexed_block

– Struct

– Some convenience types (e.g., subarray)

55

Derived Datatype Example

56

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

contig contig contig

vector

indexed

struct

MPI_Type_contiguous

Contiguous array of oldtype

Should not be used as last type (can be replaced by count)

57

0 1 2 3 4 5 6 7 8 9 10 11

contig

18 17 15 0 1 2 3 4 5 6 7 8 9 10 11 12 14 16

struct struct struct

contig

13

MPI_Type_contiguous(int count, MPI_Datatype oldtype,

 MPI_Datatype *newtype)

MPI_Type_vector

Specify strided blocks of data of oldtype

Very useful for Cartesian arrays

58

vector
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

struct struct

vector

19 20

struct struct

0 1 2 3 4 5 6 7 8 9 10 11

MPI_Type_vector(int count, int blocklen, int stride,

 MPI_Datatype oldtype, MPI_Datatype *newtype)

Use Datatype in Halo Exchange

59

bx

by

vector (count=by, blocklen=1,

 stride=bx+2, MPI_DOUBLE, …)

contig (count=bx, MPI_DOUBLE, …) or

 count with MPI_DOUBLE

MPI_Type_create_hvector

Create non-unit strided vectors, stride is in bytes

Useful for composition, e.g., vector of structs

60

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

struct struct

hvector

19

struct struct

vector

stride = 3 oldtypes

stride = 11 bytes

MPI_Type_create_hvector(int count, int blocklen, MPI_Aint stride,

 MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_Type_create_indexed_block

Pulling irregular subsets of data from a single array

– dynamic codes with index lists, expensive though!

– blen=2

– displs={0,5,8,13,18}

61

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Indexed_block

MPI_Type_create_indexed_block(int count, int blocklen,

 int *array_of_displacements,

 MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_Type_indexed

Like indexed_block, but can have different block lengths

– blen={1,1,2,1,2,1}

– displs={0,3,5,9,13,17}

62

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

indexed

MPI_Type_indexed(int count, int* array_of_blocklens,

 int *array_of_displacements,

 MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_Type_create_struct

Most general constructor, allows different types and

arbitrary arrays (also most costly)

63

0 1 2 3 4

struct

MPI_Type_create_struct(int count,

 int *array_of_blocklens,

 int *array_of_displacements,

 MPI_Datatype *array_of_types,

 MPI_Datatype *newtype)

MPI_Type_create_subarray

Convenience function for creating

datatypes for array segments

Specify subarray of n-dimensional

array (sizes) by start (starts) and

size (subsize)

64

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

MPI_Type_create_subarray(int ndims, int* array_of_sizes,

 int *array_of_subsizes, int *array_of_starts,

 int order, MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_BOTTOM and MPI_Get_address

Specify absolute addresses instead of offsets from buf ptr

MPI_BOTTOM is the absolute zero address

– Portability (e.g., may be non-zero in globally shared memory)

MPI_Get_address

– Returns address relative to MPI_BOTTOM

– Portability (do not use “&” operator in C!)

Very important to

– build struct datatypes

– If data spans multiple arrays

65

int a = 4;

float b = 9.6;

MPI_Datatype struct;

MPI_Get_address(&a, &disps[0]);

MPI_Get_address(&b, &disps[1]);

...

MPI_Type_create_struct(count,

 blocklens, disps,

 oldtypes, &struct);

...

MPI_Recv(MPI_BOTTOM, 1, struct,…);

Commit, Free, and Dup

Types must be committed before use

– Only the ones that are used!

– MPI_Type_commit may perform heavy optimizations (and will hopefully)

MPI_Type_free

– Free MPI resources of datatypes

– Does not affect types built from it

MPI_Type_dup

– Duplicates a type

– Library abstraction (composability)

66

Datatype Selection Order

Simple and effective performance model:

– More parameters == slower

predefined < contig < vector < index_block < index < struct

Some (most) MPIs are inconsistent

– But this rule is portable

Advice to users:

– Try datatype “compression” bottom-up

W. Gropp et al.: Performance Expectations and Guidelines for MPI Derived Datatypes

68

Code Example

stencil-mpi-ddt.c

Non-blocking sends and receives

Data location specified by MPI datatypes

Manual packing of data no longer required

69

bx

by

vector

www.bsc.es

Thank you!

For further information please contact

marc.jorda@bsc.es, antonio.pena@bsc.es

70

