
www.bsc.es

Montevideo, 21-25 October 2019

Marc Jordà, Antonio J. Peña

Introduction to the MPI Programming

Model

What will be covered in this tutorial

What is MPI?

How to write a simple program in MPI

Running your application

More advanced topics:

– Non-blocking communication, collective communication, datatypes

– One-sided communication

– Hybrid programming with shared memory and accelerators

– Non-blocking collectives, topologies, and neighborhood collectives

4

The switch from sequential to parallel computing

Moore’s law continues to be true, but…

– Processor speeds no longer double every 18-24 months

– Number of processing units double, instead

• Multi-core chips (dual-core, quad-core, hex-core)

– No more automatic increase in speed for software

Parallelism is the norm

– Lots of processors connected over a network and coordinating to

solve large problems

– Used everywhere!

• By messaging companies for tracking and minimizing fuel routes

• By automobile companies for car crash simulations

• By airline industry to build newer models of flights

5

Sample Parallel Programming Models

Shared Memory Programming

– Processes share memory address space (threads model)

– Application programmer ensures no data races/corruption

(Lock/Unlock)

Transparent Parallelization

– Compiler works magic on sequential programs

Directive-based Parallelization

– Compiler needs help (e.g., OpenMP, OmpSs)

Message Passing

– Explicit communication between processes

• Like sending and receiving emails

– MPI falls in this category

6

The Message-Passing Model

Process (traditionally): program counter + address space

Processes may have multiple threads (program counters

and associated stacks) sharing a single address space

MPI is for communication among processes, which have

separate address spaces

– No inter-process load/store possible (in principle)

Inter-process communication consists of

– synchronization

– movement of data from one process’s address space to another’s

Process Process

MPI

MPI

7

The Message-Passing Model (an example)

Each process has to send/receive data to/from other processes

Example: Sorting Integers

8 23 19 67 45 35 1 24 13 30 3 5

 8 19 23 35 45 67 1 3 5 13 24 30

Process1 Process2

 1 3 5 8 67 13 19 23 24 30 35 45

O(N/2 log N/2) O(N/2 log N/2)

O(N log N)

O(N)

Process1

Process1
8

8 23 19 67 45 35 1 24 13 30 3 5

P1 sends, P2 receives

P2 sends, P1 receives

Standardizing Message-Passing Models with MPI

Early vendor systems (Intel’s NX, IBM’s EUI, TMC’s CMMD)

were not portable (or very capable)

Early portable systems (PVM, p4, TCGMSG, Chameleon)

were mainly research efforts

– Did not address the full spectrum of message-passing issues

– Lacked vendor support

– Were not implemented at the most efficient level

The MPI Forum was a collection of vendors, portability writers

and users that wanted to standardize all these efforts

9

What is MPI?

MPI: Message Passing Interface

– The MPI Forum organized in 1992 with broad participation by:

• Vendors: IBM, Intel, TMC, SGI, Convex, Meiko

• Portability library writers: PVM, p4

• Users: application scientists and library writers

• MPI-1 finished in 18 months

– Incorporates the best ideas in a “standard” way

• Each function takes fixed arguments

• Each function has fixed semantics

– Standardizes what the MPI implementation provides and what the

application can and cannot expect

– Each system can implement it differently as long as the semantics match

MPI is a library API (defines functions and their semantics)

– Is not a language or compiler specification

– Is not a specific implementation or product

10

MPI-1

MPI-1 supports the classical message-passing

programming model: basic point-to-point communication,

collectives, datatypes, etc

MPI-1 was defined (1994) by a broadly based group of

parallel computer vendors, computer scientists, and

applications developers.

– 2-year intensive process

Implementations appeared quickly. Now MPI is taken for

granted as vendor-supported software on parallel machines

Free, portable implementations exist for clusters and other

environments (MPICH, Open MPI)

11
11

Following MPI Standards

MPI-2 was released in 1997

– Several additional features including MPI + threads, MPI-I/O, remote

memory access functionality and many others

MPI-2.1 (2008) and MPI-2.2 (2009) were released with some

corrections to the standard and small features

MPI-3 (2012) added several new features to MPI

MPI-3.1 (2015) is the latest version of the standard with minor

corrections and features

The Standard itself:

– at http://www.mpi-forum.org

– All MPI official releases, in both postscript and HTML

Other information on Web:

– at http://www.mcs.anl.gov/mpi

– pointers to lots of material including tutorials, a FAQ, other MPI pages

12

http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mcs.anl.gov/mpi
http://www.mcs.anl.gov/mpi

MPI-2

Same process of definition by MPI Forum

MPI-2 is an extension of MPI

– Extends the message-passing model.

• Parallel I/O

• Remote memory operations (one-sided)

• Dynamic process management

– Adds other functionality

• C++ and Fortran 90 bindings

– similar to original C and Fortran-77 bindings

• External interfaces

• Language interoperability

• MPI interaction with threads

13
13

Overview of New Features in MPI-3
Major new features

– Nonblocking collectives

– Neighborhood collectives

– Improved one-sided communication interface

– Tools interface

– Fortran 2008 bindings

Other new features

– Matching Probe and Recv for thread-safe probe and receive

– Noncollective communicator creation function

– “const” correct C bindings

– Comm_split_type function

– Nonblocking Comm_dup

– Type_create_hindexed_block function

C++ bindings removed

Previously deprecated functions removed

MPI 3.1 added nonblocking collective I/O functions

14

Status of MPI-3.1 Implementations

15

Web Pointers

MPI Standard : http://www.mpi-forum.org/docs/docs.html

MPI Forum : http://www.mpi-forum.org/

MPI implementations:

– MPICH : http://www.mpich.org

– MVAPICH : http://mvapich.cse.ohio-state.edu/

– Intel MPI: http://software.intel.com/en-us/intel-mpi-library/

– Microsoft MPI: www.microsoft.com/en-us/download/details.aspx?id=39961

– Open MPI : http://www.open-mpi.org/

– IBM MPI, Cray MPI, HP MPI, TH MPI, …

Several MPI tutorials can be found on the web

16

http://www.mpi-forum.org/docs/docs.html
http://www.mpi-forum.org/docs/docs.html
http://www.mpi-forum.org/docs/docs.html
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpich.org/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://software.intel.com/en-us/intel-mpi-library/
http://software.intel.com/en-us/intel-mpi-library/
http://software.intel.com/en-us/intel-mpi-library/
http://software.intel.com/en-us/intel-mpi-library/
http://software.intel.com/en-us/intel-mpi-library/
http://software.intel.com/en-us/intel-mpi-library/
http://software.intel.com/en-us/intel-mpi-library/
http://www.microsoft.com/en-us/download/details.aspx?id=39961
http://www.microsoft.com/en-us/download/details.aspx?id=39961
http://www.microsoft.com/en-us/download/details.aspx?id=39961
http://www.microsoft.com/en-us/download/details.aspx?id=39961
http://www.microsoft.com/en-us/download/details.aspx?id=39961
http://www.open-mpi.org/
http://www.open-mpi.org/
http://www.open-mpi.org/

Latest MPI 3.1 Standard in Book Form

Available from amazon.com

http://www.amazon.com/dp/B015CJ42CU/

Targeted to implementors of MPI libraries,

not so much for MPI users.

17

http://www.amazon.com/dp/B015CJ42CU/

New Tutorial Books on MPI

18

Basic MPI Advanced MPI, including MPI-3

New Book on Parallel Programming Models

Edited by Pavan Balaji

• MPI: W. Gropp and R. Thakur

• GASNet: P. Hargrove

• OpenSHMEM: J. Kuehn and S. Poole

• UPC: K. Yelick and Y. Zheng

• Global Arrays: S. Krishnamoorthy, J. Daily, A.

Vishnu, and B. Palmer

• Chapel: B. Chamberlain

• Charm++: L. Kale, N. Jain, and J. Lifflander

• ADLB: E. Lusk, R. Butler, and S. Pieper

• Scioto: J. Dinan

• SWIFT: T. Armstrong, J. M. Wozniak, M. Wilde,

and I. Foster

• CnC: K. Knobe, M. Burke, and F. Schlimbach

• OpenMP: B. Chapman, D. Eachempati, and S.

Chandrasekaran

• Cilk Plus: A. Robison and C. Leiserson

• Intel TBB: A. Kukanov

• CUDA: W. Hwu and D. Kirk

• OpenCL: T. Mattson

19

Applications (Science and Engineering)

MPI is widely used in large scale parallel applications in

science and engineering

– Atmosphere, Earth, Environment

– Physics - applied, nuclear, particle, condensed matter, high

pressure, fusion, photonics

– Bioscience, Biotechnology, Genetics

– Chemistry, Molecular Sciences

– Geology, Seismology

– Mechanical Engineering - from prosthetics to spacecraft

– Electrical Engineering, Circuit Design, Microelectronics

– Computer Science, Mathematics

20

21

Turbo machinery (Gas turbine/compressor)

Drilling application

Biology (heart murmur simulation)

Astrophysics application

Transportation & traffic

application

21

Reasons for Using MPI

Standardization - The only message passing library which can be

considered a standard. It is supported on virtually all HPC platforms.

Practically, it has replaced all previous message passing libraries

Portability - There is no need to modify your source code when you

port your application to a different platform that supports (and is

compliant with) the MPI standard

Performance Opportunities - Vendor implementations should be

able to exploit native hardware features to optimize performance

Functionality – Rich set of features

Availability - A variety of implementations are available, both vendor

and public domain

22

Important considerations while using MPI

All parallelism is explicit: the programmer is responsible for

correctly identifying parallelism and implementing parallel

algorithms using MPI constructs

23

What will be covered in this tutorial

What is MPI?

How to write a simple program in MPI

Running your application

More advanced topics (tomorrow):

– Non-blocking communication, collective communication, datatypes

– One-sided communication

– Hybrid programming with shared memory and accelerators

– Non-blocking collectives, topologies, and neighborhood collectives

25

Compiling and Running MPI applications (more details
later)

MPI is a library

– Applications can be written in C, C++ or Fortran and appropriate

calls to MPI can be added where required

Compilation:

– Regular applications:

• gcc test.c -o test

– MPI applications

• mpicc test.c -o test

Execution:

– Regular applications

• ./test

– MPI applications (running with 16 processes)

• mpiexec –n 16 ./test

28

Process Identification

MPI processes are grouped

– When an MPI application starts, the group of all processes is initially
given a predefined name called MPI_COMM_WORLD

– The same group can have many names

• But simple programs do not have to worry about multiple names

A process is identified by a unique number within each

communicator, called rank

– For different communicators, the same process can have different

ranks

• So the meaning of a “rank” is only defined when you specify the comm.

29

Communicators

31

Can be thought of as

independent communication

layers over a group of processes

Messages in one layer will not

affect messages in another

#include <mpi.h>

#include <stdio.h>

int main(int argc, char ** argv)

{

 int rank, size;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 MPI_Comm_size(MPI_COMM_WORLD, &size);

 printf("I am %d of %d\n", rank + 1, size);

 MPI_Finalize();

 return 0;

}

Simple MPI Program Identifying Processes

32

Basic

requirements

for an MPI

program

Code Example

intro-hello.c

33

Data Communication

Data communication in MPI is like email exchange

– One process sends a copy of the data to another process (or a

group of processes), and the other process receives it

Communication requires the following information:

– Sender has to know:

• Whom to send the data to (receiver’s process rank)

• What kind of data to send (100 integers or 200 characters, etc.)

• A user-defined “tag” for the message (think of it as an email subject;

allows the receiver to understand what type of data is being received)

– Receiver “might” have to know:

• Who is sending the data (OK if the receiver does not know; in this case

sender rank will be MPI_ANY_SOURCE, meaning anyone can send)

• What kind of data is being received (partial information is OK: I might

receive up to 1000 integers)

• What the user-defined “tag” of the message is (OK if the receiver does

not know; in this case tag will be MPI_ANY_TAG)

34

More Details on Describing Data for Communication

MPI Datatype is very similar to a C or Fortran datatype

– int  MPI_INT

– double  MPI_DOUBLE

– char  MPI_CHAR

More complex datatypes are also possible:

– E.g., you can create a structure datatype that comprises other

datatypes  a char, an int and a double.

– Or, a vector datatype for the columns of a matrix

The “count” in MPI_SEND and MPI_RECV refers to how many

datatype elements should be communicated

35

MPI Basic (Blocking) Send

The message buffer is described by (buf, count, datatype)

The target process is specified by dest and comm

– dest: rank of the target process in the comm communicator

tag is a user-defined “type” for the message

When this function returns, the data has been delivered to

the system and the buffer can be reused

– The message may not have been received by the target process

36

MPI_Send(void *buf, int count, MPI_Datatype datatype,

 int dest, int tag, MPI_Comm comm)

MPI Basic (Blocking) Receive

Waits until a matching (on source, tag, comm) message is received

from the system, and the buffer can be used.

source is rank in communicator comm, or MPI_ANY_SOURCE.

Receiving fewer than count occurrences of datatype is OK, but

receiving more is an error.

status contains further information:

– Who sent the message (can be used if you used MPI_ANY_SOURCE)

– How much data was actually received

– What tag was used with the message (can be used if you used MPI_ANY_TAG)

– MPI_STATUS_IGNORE can be used if we don’t need any additional information

37

MPI_Recv(void *buf, int count, MPI_Datatype datatype,

 int source, int tag, MPI_Comm comm, MPI_Status *status)

#include <mpi.h>

#include <stdio.h>

int main(int argc, char ** argv)

{

 int rank, data[100];

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 if (rank == 0)

 MPI_Send(data, 100, MPI_INT, 1, 0, MPI_COMM_WORLD);

 else if (rank == 1)

 MPI_Recv(data, 100, MPI_INT, 0, 0, MPI_COMM_WORLD,

 MPI_STATUS_IGNORE);

 MPI_Finalize();

 return 0;

}

Simple Communication in MPI

38

Code Example

intro-sendrecv.c

39

Parallel Sort using MPI Send/Recv

8 23 19 67 45 35 1 24 13 30 3 5

 8 19 23 35 45 67 1 3 5 13 24 30

Rank 0 Rank 1

 8 19 23 35 30 45 67 1 3 5 13 24

O(N log N)

 1 3 5 8 67 13 19 23 24 30 35 45

Rank 0

Rank 0

Rank 0

40

O(N/2 log N/2)

O(N)

#include <mpi.h>

#include <stdio.h>

int main(int argc, char ** argv)

{

 int rank, a[1000], b[500];

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 if (rank == 0) {

 MPI_Send(&a[500], 500, MPI_INT, 1, 0, MPI_COMM_WORLD);

 sort(a, 500);

 MPI_Recv(b, 500, MPI_INT, 1, 0, MPI_COMM_WORLD,

 MPI_STATUS_IGNORE);

 /* Serial: Merge array b and sorted part of array a */

 }

 else if (rank == 1) {

 MPI_Recv(b, 500, MPI_INT, 0, 0, MPI_COMM_WORLD,

 MPI_STATUS_IGNORE);

 sort(b, 500);

 MPI_Send(b, 500, MPI_INT, 0, 0, MPI_COMM_WORLD);

 }

 MPI_Finalize(); return 0;

}

Parallel Sort using MPI Send/Recv (contd.)

41

Status Object
The status object is used after completion of a receive to find the

actual length, source, and tag of a message

Status object is MPI-defined type and provides information about:
– The source process for the message (status.MPI_SOURCE)

– The message tag (status.MPI_TAG)

– Error status (status.MPI_ERROR)

The number of elements received is given by:

MPI_Get_count(MPI_Status *status, MPI_Datatype datatype, int *count)

status return status of receive operation (status)

datatype datatype of each receive buffer element (handle)

count number of received elements (integer) (OUT)

42

Using the “status” field

Each “worker process” computes some task (maximum
100 elements) and sends it to the “master” process
together with its group number

The “tag” field can be used to represent the task

Data count is not fixed (maximum 100 elements)

Order in which workers send output to master is not fixed
(different workers = different source ranks, and different
tasks = different tags)

Task 1 Task 2

43

#include <mpi.h>

#include <stdio.h>

int main(int argc, char ** argv)

{

 [...snip...]

 if (rank != 0) /* worker process */

 MPI_Send(data, /*0..100*/, MPI_INT, 0, task_id,

 MPI_COMM_WORLD);

 else { /* master process */

 for (i = 0; i < size – 1; i++) {

 MPI_Recv(data, 100, MPI_INT, MPI_ANY_SOURCE,

 MPI_ANY_TAG, MPI_COMM_WORLD, &status);

 MPI_Get_count(&status, MPI_INT, &count);

 printf(“worker ID: %d; task ID: %d; count: %d\n”,

 status.MPI_SOURCE, status.MPI_TAG, count);

 }

 }

 [...snip...]

}

Using the “status” field (contd.)

44

MPI is Simple

Many parallel programs can be written using just these six functions,

only two of which are non-trivial:

– MPI_Init – initialize the MPI library (must be the

first routine called)

– MPI_Comm_size - get the size of a communicator

– MPI_Comm_rank – get the rank of the calling process

in the communicator

– MPI_Send – send a message to another process

– MPI_Recv – send a message to another process

– MPI_Finalize – clean up all MPI state (must be the

last MPI function called by a process)

For better performance, however, you need to use other MPI

features

45

What will be covered in this tutorial

What is MPI?

How to write a simple program in MPI

Running your application

More advanced topics:

– Non-blocking communication, collective communication, datatypes

– One-sided communication

– Hybrid programming with shared memory and accelerators

– Non-blocking collectives, topologies, and neighborhood collectives

46

Compiling MPI programs

Compilation Wrappers

– For C programs: mpicc test.c –o test

– For C++ programs: mpicxx test.cpp –o test

– For Fortran programs: mpifort test.f90 –o test

You can link other libraries are required too

– To link to a math library: mpicc test.c –o test -lm

You can just assume that “mpicc” and friends have replaced

your regular compilers (gcc, gfortran, etc.)

47

Running MPI programs (no resource manager)

Launch 16 processes on the local node:

– mpiexec –n 16 ./test

Launch 16 processes on 4 nodes (each has 4 cores)

– mpiexec –hosts h1:4,h2:4,h3:4,h4:4 –n 16 ./test

• Runs the first four processes on h1, the next four on h2, etc.

– mpiexec –hosts h1,h2,h3,h4 –n 16 ./test

• Runs the first process on h1, the second on h2, etc., and wraps around

• So, h1 will have the 1st, 5th, 9th and 13th processes

If there are many nodes, it might be easier to create a host file

– cat hf

 h1:4

 h2:2

– mpiexec –hostfile hf –n 16 ./test

48

Interaction with Resource Managers

Resource managers such as SGE, PBS, SLURM or

Loadleveler are common in many managed clusters

For example with SLURM, you can create a script such

as:

 #! /bin/bash

 #SBATCH --ntasks=4

 #SBATCH --tasks-per-node=2

 #SBATCH --cpus-per-task=1

 srun ./test

Job can be submitted as: sbatch test.sh

– “srun” will automatically get from SLURM the info of tasks, nodes

and CPUs and will start the appropriate number of MPI ranks.

The usage is similar for other resource managers

49

Debugging MPI programs

Parallel debugging is trickier than debugging serial codes

– Many processes computing; getting the state of one failed process is

usually hard

– Commercial parallel debuggers such as Totalview and DDT

E.g., with totalview:
– totalview –args mpiexec –n 6 ./test

With gdb on one process:
– mpiexec –n 4 ./test : -n 1 gdb ./test : -n 1 ./test

– Launches the 5th process under “gdb” and all other processes normally

50

www.bsc.es

Thank you!

For further information please contact

marc.jorda@bsc.es, antonio.pena@bsc.es

51

