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Generative Modeling

Goal: Given a distribution of data, take input training samples from it and 
learn a model that represents that distribution

• Density estimation

• Understand better the data distribution

• Compress the data representation

• Generate samples 
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Generative Modeling

Goal: Given a distribution of data, take input training samples from it and 
learn a model that represents that distribution

• Density estimation

• Synthetic samples generation
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Training samples Synthetic samples



Models
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Autoencoders and Variational 
Autoencoders (VAEs)

Generative Adversarial 
Networks (GANs)
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Generative Adversarial 
Networks
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Generating synthetic samples
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Generating synthetic samples

Global idea: Generating new synthetic samples without modeling the 
density estimation (for “complex” distributions)  

Solution: Sampling from something simple (noise) and learning a 
transformation to the real (training) distribution

Main components of the Generative Model:

• Generator Neural Network → G

• Noise (latent space) → Z

• Fake sample from the training distribution → X’
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How Generator Learn?
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GZ X'

Using another model that gives information 
about how close/far are the samples from 
real data → Discriminator



Generative Adversarial Networks

Generative Adversarial Networks: Construct a generative model  by raising 
an arms race between two neural networks, a generator and a discriminator
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• Discriminator (D) tries to distinguish between 
real data (X) from the real data distribution and 
fake data (X’) from the generator (G)

• Generator (G) learns how to create 
synthetic/fake data samples (X') by sampling 
random noise (Z) to fool the discriminator (D)
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GAN Training. Mathematical Model
Discriminator is trained to correctly classify the input data as either real or fake

• maximize the probability that any real data input x is classified as real →maximize D(x)

• minimize the probability that any fake sample x’ is classified as real →minimize D(G(z))
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In practice, the logarithm of the probability (e.g. log D(…)) is used in the loss 
functions

GAN training as a minmax optimization problem

Generator is trained to fool the Discriminator by generating realistic data

• maximize the probability that any fake sample is classified as real                

→maximize D(G(z))



Generative Adversarial Networks

Generative Adversarial Networks: Construct a generative model  by raising 
an arms race between two neural networks, a generator and a discriminator
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Goodfellow et al. 2014. Generative Adversarial Nets



GAN Training. General Algorithm
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Steps of the main training loop:

1. Train discriminator
1.1. Train discriminator on real data

1.1.1 Sample a batch of data from real dataset (x)

1.1.2 Get loss from the discriminator output with input x

1.2 Train the discriminator on data produced by the generator

1.2.1 Sample a batch of data from random latent space (z)

1.2.2 Get samples (x’) from the generator with input z 

1.2.3 Get loss from the discriminator output with input x’

1.3 Update discriminator weights according to the losses

2. Train the generator
2.1 Sample a batch of data from random latent space (z)

2.2 Get samples (x’) from the generator with input z 

2.3 Get loss from the discriminator output with input x’

2.4 Update generator weights according to the losses
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Applications: Generate New Samples of Image Datasets 
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Applications: Image-to-Image Translation
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Applications: Text-to-Image Translation
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Applications: Semantic-Image-to-Photo Translation
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http://nvidia-research-mingyuliu.com/gaugan

http://nvidia-research-mingyuliu.com/gaugan


Not all is good news 
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• Non-convergence: the model parameters oscillate, 
destabilize and never converge

• Mode collapse: the generator collapses which produces 
limited varieties of samples

• Diminished gradient: the discriminator gets too successful 
that the generator gradient vanishes and learns nothing



Lipizzaner

14-Nov-21



From GANs to Deep Neuroevolution
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• GAN training can be seen as a two-player minmax game 

(generators 𝐺(𝑧) vs discriminators 𝐷(𝑥))

• Evolutionary computing community has already addressed similar 

issues in two-player minmax optimization

• Focusing, relativism or loss of gradient

• Competitive Coevolution, two different populations 

(adds diversity → robustness)



Introduction to Evolutionary Computing
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Darwinism:
"I have called this principle, by which, each slight variation, if useful, is preserved, by the 
term of Natural Selection. … The expression often used by Mr. Herbert Spencer of the 
Survival of the Fittest is more accurate, and is sometimes equally convenient.“

Charles Darwin
On the Origin of Species by means of Natural Selection, 1859

Evolution of species through a gradual process of natural selection



Introduction to Evolutionary Computing
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Evolutionary Computing comprises a set of computational methods 
(metaheuristics) that mimics biological evolution

• They apply a mechanism analogous to natural evolutionary 
processes, to solve search and optimization problems 

• They work with a population (of representations) of solutions

• Principles: natural selection (fitness), reproduction
(recombination and mutation) and genetic diversity

• They follow the idea of survival of the fittest individuals, 
evaluating the fitness according to the problem to be solved, 
through a fitness function



Introduction to Evolutionary Computing
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Evolutionary Algorithm

1. generation = 0
2. population(0) = Create initial population
3. while not stop criteria do

1. evaluate(population(generation)) 
2. parents = selection(population(generation)) 
3. offspring = recombine(parents, recombination_probability)
4. offspring = mutate(parents, mutation_probability)
5. new_population = replace(offspring, population(generation))
6. generation++ 
7. population(generation) = new_population

Initialization

Evaluation

Selection

Recombination

Termination

Mutation



Example: One-Max problem
• Maximizing the number of 1s of a bitstring of length n (i.e., composed by 1s and 0s)

• They work with a population (of representations) of solutions

• Fitness

Introduction to Evolutionary Computing
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Example: One-Max problem
• Maximizing the number of 1s of a bitstring of length n (i.e., composed by 1s and 0s)

• They work with a population (of representations) of solutions

• Recombination

• Mutation

Introduction to Evolutionary Computing
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Introduction to Evolutionary Computing
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1. Initialization

2. Evaluation

fit (s0)=3

fit (s1)=1

fit (s2)=4

fit (s3)=1

fit (s4)=2

3. Selection (tournament selection) Parents

0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0vs

1 0 1 1 0 0 0 0 0 1 0 0 1 0 1 1 0 0vs p1 =

p2 =

Population

average fitness=2.2

Initialization

Evaluation

Selection

Recombination

Termination

Mutation



Introduction to Evolutionary Computing
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4. Recombination (two-point cx)

0 0 1 1 1 0 0 0 1 1 1 1
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5. Mutation (bit-flip)
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Offspring

Parents
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Initialization

Evaluation
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Recombination

Termination

Mutation



Introduction to Evolutionary Computing
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6. Replacement (remove the less fit)



Introduction to Evolutionary Computing
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Initialization

Evaluation

Selection

Recombination

Termination
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0 0 1 1 1 1
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Population

6. Replacement (remove the less fit)

fit (s0)=3

fit (s1)=1

fit (s2)=4

fit (s3)=1

fit (s4)=2

fit (s5)=1

fit (s6)=4

average fitness=2.8



Introduction to Evolutionary Computing
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fit (s4)=2

Population

average fitness=2.8

2. Evaluation



Example: One-Max problem (n=100, 1000 generations, 10 offspring)

Introduction to Evolutionary Computing
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2100 possible solutions = 1.23 x 1030

Random search Evolutionary Algorithm 

Population size 100
1000 generations
Offspring size 10
Tournament selection
Two-point cx (0.5)
Bit-flip mutation (0.1)



Example: One-Max problem (n=100, 1000 generations, 10 offspring)

Introduction to Evolutionary Computing
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cx probability = 0.5

cx probability = 0.9

mut probability = 0.2 mut probability = 0.1 mut probability = 0.01



Example: Neuroevolution→ Train networks using EA
• Compute the weights to minimize the error (loss) of the network

• Representation:

• Fitness: fitness(s) = loss(s, inputs, outputs)

Introduction to Evolutionary Computing
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Example: Neuroevolution→ Train networks using EA
• Compute the weights to minimize the error (loss) of the network

• They work with a population (of representations) of solutions

• Recombination:

• Mutation:

Introduction to Evolutionary Computing
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p1 =

p2 =

One-point crossover BLX-α crossover

o1 =

o2 =

Swap mutation swaps to gens in the chromosome
Random mutation changes a chromosome by a random value between Є [min_value, max_value] 
Gaussian mutation adds a value given by a gaussian distribution

0.21 4.13 -1.57 8.62 -9.02 6.84

2.14 -1.03 7.68 -0.98 -4.12 8.75

0.21 4.13 -1.57 -0.98 -4.12 8.75

2.14 -1.03 7.68 8.62 -9.02 6.84 1.13 -2. 11 1.26 2.81 -6.62 5.14

α is a constant between (0, 1), generally α=0.5
For two genes of two parents cp1 and cp2 (cp1 < cp2)
BLX-α selects a random value for chromosomes of offspring 
co1 and co2 in the range [cp1- α(cp2-cp1), cp1+ α(cp2-cp1)]

cp1 cp2

α(cp2-cp1) α(cp2-cp1)



Example: Neuroevolution→ Find the best network architecture

A. Camero, J. Toutouh, D.H. Stolfi, E. Alba Evolutionary Deep Learning for Car Park Occupancy Prediction in 
Smart Cities International Conference on Learning and Intelligent Optimization, LION 12, pp. 1-15, 2018.

A. Camero, J. Toutouh, J. Ferrer, E. Alba. Waste generation prediction under uncertainty in smart cities 
through deep neuroevolution. Revista de Ingeniería, Universidad de Antioquia, No.93, pp. 128-138, 2019.

Introduction to Evolutionary Computing
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In biology, coevolution occurs when two or more species reciprocally affect 
each other's evolution through the process of natural selection.

Competitive Coevolution
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Red Population
Candidate 

actions/strategies

Red Population
Candidate 

actions/strategies

Selection

High-performing
candidates retained

Selection

High-performing
candidates retained

Variation
• Crossover
• Mutation

Variation
• Crossover
• Mutation

Variation
• Crossover
• Mutation

Variation
• Crossover
• Mutation

New Blue Generation

New Red Generation

Evaluation

Candidates scored and ranked
according to fitness function

depending on the other population

Evaluation

Candidates scored and ranked
according to fitness function

depending on the other population

Blue Population
Candidate 

actions/strategies

Blue Population
Candidate 

actions/strategies

Selection

High-performing
candidates retained

Selection

High-performing
candidates retained



In biology, coevolution occurs when two or more species reciprocally affect 
each other's evolution through the process of natural selection.

• Video games AI 

• Cybersecurity

Competitive Coevolution
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U. O’Reilly, J. Toutouh, M. Pertierra, D. Prado-Sanchez, D. Garcia, A. Erb-Luogo, J. Kelly, E Hemberg (2019). 
Adversarial Genetic Programming for Cyber Security: A Rising Application Domain Where GP 
Matters. Genetic Programming and Evolvable Machines (In Press).



Lipizzaner: Gradient-based Coevolution
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• Non-convergence

• Mode collapse

• Diminished gradient

Lipizzaner



A distributed, coevolutionary framework to train GANs with 

gradient-based optimizers

Lipizzaner: Gradient-based Coevolution
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Lipizzaner: Gradient-based Coevolution
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• Lipizzaner is a distributed, coevolutionary framework to train GANs with 

gradient-based optimizers

• Fast convergence due to gradient-based steps

• Improved convergence due to hyperparameter evolution

• Robustness and resilience due to coevolution

• Diverse solutions due to mixture evolution

• Scalability due to spatial distribution topology and 

asynchronous parallelism



Fast and improved convergence
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• Lipizzaner→ communication and performance-based selection pressure 

converge faster and avoids continuous fluctuations

• SPaGAN – no selection/replacement

• PaGAN – no communication

FID→Accuracy

Lower is better

Epoch: 25 Epoch: 50 Epoch: 75 Epoch: 100

Lipizzaner

SPaGAN



Fast and improved convergence
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• As the grid size increase (larger populations), the Lipizzaner converges to 

better generative models

Final results (FID)

FID→Accuracy

Lower is better



Robustness and resilience
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• Competitive coevolution allows the cells to escape from local optima and 

addresses vanishing gradient issues

Lipizzaner Lipizzaner

Gi Di

Weak Strong



Ensembles: Robustness
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• Mixture of generators overcomes mode collapse 

w1

w2
w3

w4

g1

g2 g3

g4
…



Loss Diversity: Robustness
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• Mustangs: For each training epoch, each cell randomly picks a loss 

function to optimize the networks’ weights

Gi Di

Update weights

Gi Gi

3x3 grid

5x5 grid



Ensembles: Better results
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• The use of evolved ensembles improves quality of the samples

Uniformly distributed weights

Evolved weights



Ensembles: Re-purpose models
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• Given a set of heterogeneous generators that were optimized for one 

objective (e.g., FID), create ensembles for optimizing a different objective

Ensemble size TVD - Diversity
(new objective)

FID - Accuracy
(old objective)

1 0.113 36.393 

3 0.046 27.576 

4 0.043 27.890 

5 0.046 28.225 

6 0.045 27.077 

<8 0.033 27.342

High quality

Low diversity

High quality

High diversity



Improvements: Data Dieting

• As we have communication between cells, do we need to replicate whole 

data among all the cells? Data diversity



Improvements: Data Dieting

• Spatial distribution in a 2D grid addressees 
the quadratic computational complexity 

• Asynchronous communication 

• Deployed over workstations, cloud based, 
and HPC environments

• OpenStack, Google Cloud, AWS, Summit, 
MIT Satori, etc.



Some implemented approaches

• Conditional GAN

• Wasserstein GAN

• Deep Convolutional GAN

• Semi-supervised learning

• Temporal (LSTM) based generative models



Publications
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Thanks!
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