
JAMAL TOUTOUH

Lipizzaner:

Gradient-based Coevolution GAN Training

14-Nov-21 JAMAL TOUTOUH

JAMAL TOUTOUH

jamal@lcc.uma.es

jamal.es

@jamtou

mailto:jamal@lcc.uma.es

Generative
Models

14-Nov-21

Generative Modeling

Goal: Given a distribution of data, take input training samples from it and
learn a model that represents that distribution

• Density estimation

• Understand better the data distribution

• Compress the data representation

• Generate samples

14-Nov-21

Generative Modeling

Goal: Given a distribution of data, take input training samples from it and
learn a model that represents that distribution

• Density estimation

• Synthetic samples generation

14-Nov-21

Training samples Synthetic samples

Models

14-Nov-21

Autoencoders and Variational
Autoencoders (VAEs)

Generative Adversarial
Networks (GANs)

E D

G

D
x x'z

z

x

x'

y

Generative Adversarial
Networks

14-Nov-21

Generating synthetic samples

14-Nov-21

x x x

y y y

Generating synthetic samples

Global idea: Generating new synthetic samples without modeling the
density estimation (for “complex” distributions)

Solution: Sampling from something simple (noise) and learning a
transformation to the real (training) distribution

Main components of the Generative Model:

• Generator Neural Network → G

• Noise (latent space) → Z

• Fake sample from the training distribution → X’

14-Nov-21

GZ X'

How Generator Learn?

14-Nov-21

GZ X'

Using another model that gives information
about how close/far are the samples from
real data → Discriminator

Generative Adversarial Networks

Generative Adversarial Networks: Construct a generative model by raising
an arms race between two neural networks, a generator and a discriminator

14-Nov-21

• Discriminator (D) tries to distinguish between
real data (X) from the real data distribution and
fake data (X’) from the generator (G)

• Generator (G) learns how to create
synthetic/fake data samples (X') by sampling
random noise (Z) to fool the discriminator (D)

G

D

z

x

x'

y

GAN Training. Mathematical Model
Discriminator is trained to correctly classify the input data as either real or fake

• maximize the probability that any real data input x is classified as real →maximize D(x)

• minimize the probability that any fake sample x’ is classified as real →minimize D(G(z))

14-Nov-21

G

D

z

x

x'

y
In practice, the logarithm of the probability (e.g. log D(…)) is used in the loss
functions

GAN training as a minmax optimization problem

Generator is trained to fool the Discriminator by generating realistic data

• maximize the probability that any fake sample is classified as real

→maximize D(G(z))

Generative Adversarial Networks

Generative Adversarial Networks: Construct a generative model by raising
an arms race between two neural networks, a generator and a discriminator

14-Nov-21

G

D

z

yfake sample

real data

noise

this is real or this is fake

Goodfellow et al. 2014. Generative Adversarial Nets

GAN Training. General Algorithm

14-Nov-21

Steps of the main training loop:

1. Train discriminator
1.1. Train discriminator on real data

1.1.1 Sample a batch of data from real dataset (x)

1.1.2 Get loss from the discriminator output with input x

1.2 Train the discriminator on data produced by the generator

1.2.1 Sample a batch of data from random latent space (z)

1.2.2 Get samples (x’) from the generator with input z

1.2.3 Get loss from the discriminator output with input x’

1.3 Update discriminator weights according to the losses

2. Train the generator
2.1 Sample a batch of data from random latent space (z)

2.2 Get samples (x’) from the generator with input z

2.3 Get loss from the discriminator output with input x’

2.4 Update generator weights according to the losses

G

D

z

x

x'

y

Applications: Generate New Samples of Image Datasets

14-Nov-21

Applications: Image-to-Image Translation

14-Nov-21

Applications: Text-to-Image Translation

14-Nov-21

Applications: Semantic-Image-to-Photo Translation

14-Nov-21

http://nvidia-research-mingyuliu.com/gaugan

http://nvidia-research-mingyuliu.com/gaugan

Not all is good news

14-Nov-21

• Non-convergence: the model parameters oscillate,
destabilize and never converge

• Mode collapse: the generator collapses which produces
limited varieties of samples

• Diminished gradient: the discriminator gets too successful
that the generator gradient vanishes and learns nothing

Lipizzaner

14-Nov-21

From GANs to Deep Neuroevolution

14-Nov-21

• GAN training can be seen as a two-player minmax game

(generators 𝐺(𝑧) vs discriminators 𝐷(𝑥))

• Evolutionary computing community has already addressed similar

issues in two-player minmax optimization

• Focusing, relativism or loss of gradient

• Competitive Coevolution, two different populations

(adds diversity → robustness)

Introduction to Evolutionary Computing

14-Nov-21

Darwinism:
"I have called this principle, by which, each slight variation, if useful, is preserved, by the
term of Natural Selection. … The expression often used by Mr. Herbert Spencer of the
Survival of the Fittest is more accurate, and is sometimes equally convenient.“

Charles Darwin
On the Origin of Species by means of Natural Selection, 1859

Evolution of species through a gradual process of natural selection

Introduction to Evolutionary Computing

14-Nov-21

Evolutionary Computing comprises a set of computational methods
(metaheuristics) that mimics biological evolution

• They apply a mechanism analogous to natural evolutionary
processes, to solve search and optimization problems

• They work with a population (of representations) of solutions

• Principles: natural selection (fitness), reproduction
(recombination and mutation) and genetic diversity

• They follow the idea of survival of the fittest individuals,
evaluating the fitness according to the problem to be solved,
through a fitness function

Introduction to Evolutionary Computing

14-Nov-21

Evolutionary Algorithm

1. generation = 0
2. population(0) = Create initial population
3. while not stop criteria do

1. evaluate(population(generation))
2. parents = selection(population(generation))
3. offspring = recombine(parents, recombination_probability)
4. offspring = mutate(parents, mutation_probability)
5. new_population = replace(offspring, population(generation))
6. generation++
7. population(generation) = new_population

Initialization

Evaluation

Selection

Recombination

Termination

Mutation

Example: One-Max problem
• Maximizing the number of 1s of a bitstring of length n (i.e., composed by 1s and 0s)

• They work with a population (of representations) of solutions

• Fitness

Introduction to Evolutionary Computing

14-Nov-21

1 0 1 1 0 0

0 0 1 0 1 0

1 1 1 1 0 0

0 0 0 1 0 0

fitness(x) =σ𝑖=0
𝑛−1 𝑥𝑖

chromosome

gene

population

1 1 1 1 1 1Optimum

Example: One-Max problem
• Maximizing the number of 1s of a bitstring of length n (i.e., composed by 1s and 0s)

• They work with a population (of representations) of solutions

• Recombination

• Mutation

Introduction to Evolutionary Computing

14-Nov-21

1 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 0 1 0 0

1 0 1 1 0 0

0 0 1 0 1 0

p1 =

p2 =

One-point crossover

1 0 1 0 1 0

0 0 1 1 0 0

o1 =

o2 =

1 0 1 1 0 0

0 0 1 0 1 0

p1 =

p2 =

Two-point crossover

1 0 1 0 0 0

0 0 1 1 1 0

o1 =

o2 =

0 0 1 0 1 0o1 = 0 0 0 0 1 0o2 = 0 0 1 0 1 0o1 = 0 0 0 0 1 1o2 =

Bit flip mutation Swap mutation

Introduction to Evolutionary Computing

14-Nov-21

1 0 1 1 0 0

0 0 1 0 0 0

1 1 1 1 0 0

0 0 0 1 0 0

0 0 1 0 1 0

1. Initialization

2. Evaluation

fit (s0)=3

fit (s1)=1

fit (s2)=4

fit (s3)=1

fit (s4)=2

3. Selection (tournament selection) Parents

0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0vs

1 0 1 1 0 0 0 0 0 1 0 0 1 0 1 1 0 0vs p1 =

p2 =

Population

average fitness=2.2

Initialization

Evaluation

Selection

Recombination

Termination

Mutation

Introduction to Evolutionary Computing

14-Nov-21

4. Recombination (two-point cx)

0 0 1 1 1 0 0 0 1 1 1 1

1 0 1 1 0 0

0 0 1 0 1 0

p1 =

p2 =

1 0 1 0 0 0

0 0 1 1 1 0

o1 =

o2 =

1 0 1 0 0 0 1 0 0 0 0 0

5. Mutation (bit-flip)

o1 =

o2 =

o1 =

o2 =

Offspring

Parents

0 0 1 0 1 0

1 0 1 1 0 0p1 =

p2 =

Initialization

Evaluation

Selection

Recombination

Termination

Mutation

Introduction to Evolutionary Computing

14-Nov-21

1 0 1 1 0 0

0 0 1 0 0 0

1 1 1 1 0 0

0 0 0 1 0 0

0 0 1 0 1 0

Initialization

Evaluation

Selection

Recombination

Termination

Mutation

0 0 1 1 1 1

1 0 0 0 0 0o1 =

o2 =

Offspring

Population

6. Replacement (remove the less fit)

Introduction to Evolutionary Computing

14-Nov-21

1 0 1 1 0 0

0 0 1 0 0 0

1 1 1 1 0 0

0 0 0 1 0 0

0 0 1 0 1 0

Initialization

Evaluation

Selection

Recombination

Termination

Mutation

0 0 1 1 1 1

1 0 0 0 0 0

Population

6. Replacement (remove the less fit)

fit (s0)=3

fit (s1)=1

fit (s2)=4

fit (s3)=1

fit (s4)=2

fit (s5)=1

fit (s6)=4

average fitness=2.8

Introduction to Evolutionary Computing

14-Nov-21

1 0 1 1 0 0

1 0 0 0 0 0

1 1 1 1 0 0

0 0 1 1 1 1

0 0 1 0 1 0

Initialization

Evaluation

Selection

Recombination

Termination

Mutationfit (s0)=3

fit (s1)=1

fit (s2)=4

fit (s3)=4

fit (s4)=2

Population

average fitness=2.8

2. Evaluation

Example: One-Max problem (n=100, 1000 generations, 10 offspring)

Introduction to Evolutionary Computing

14-Nov-21

2100 possible solutions = 1.23 x 1030

Random search Evolutionary Algorithm

Population size 100
1000 generations
Offspring size 10
Tournament selection
Two-point cx (0.5)
Bit-flip mutation (0.1)

Example: One-Max problem (n=100, 1000 generations, 10 offspring)

Introduction to Evolutionary Computing

14-Nov-21

cx probability = 0.5

cx probability = 0.9

mut probability = 0.2 mut probability = 0.1 mut probability = 0.01

Example: Neuroevolution→ Train networks using EA
• Compute the weights to minimize the error (loss) of the network

• Representation:

• Fitness: fitness(s) = loss(s, inputs, outputs)

Introduction to Evolutionary Computing

14-Nov-21

w12

w11
w21

w22w13

w14

w11 w12 w13 w14 w21 w22 0.21 4.13 -1.57 8.62 -9.02 6.84 si Є [min_value, max_value]

Example: Neuroevolution→ Train networks using EA
• Compute the weights to minimize the error (loss) of the network

• They work with a population (of representations) of solutions

• Recombination:

• Mutation:

Introduction to Evolutionary Computing

14-Nov-21

p1 =

p2 =

One-point crossover BLX-α crossover

o1 =

o2 =

Swap mutation swaps to gens in the chromosome
Random mutation changes a chromosome by a random value between Є [min_value, max_value]
Gaussian mutation adds a value given by a gaussian distribution

0.21 4.13 -1.57 8.62 -9.02 6.84

2.14 -1.03 7.68 -0.98 -4.12 8.75

0.21 4.13 -1.57 -0.98 -4.12 8.75

2.14 -1.03 7.68 8.62 -9.02 6.84 1.13 -2. 11 1.26 2.81 -6.62 5.14

α is a constant between (0, 1), generally α=0.5
For two genes of two parents cp1 and cp2 (cp1 < cp2)
BLX-α selects a random value for chromosomes of offspring
co1 and co2 in the range [cp1- α(cp2-cp1), cp1+ α(cp2-cp1)]

cp1 cp2

α(cp2-cp1) α(cp2-cp1)

Example: Neuroevolution→ Find the best network architecture

A. Camero, J. Toutouh, D.H. Stolfi, E. Alba Evolutionary Deep Learning for Car Park Occupancy Prediction in
Smart Cities International Conference on Learning and Intelligent Optimization, LION 12, pp. 1-15, 2018.

A. Camero, J. Toutouh, J. Ferrer, E. Alba. Waste generation prediction under uncertainty in smart cities
through deep neuroevolution. Revista de Ingeniería, Universidad de Antioquia, No.93, pp. 128-138, 2019.

Introduction to Evolutionary Computing

14-Nov-21

In biology, coevolution occurs when two or more species reciprocally affect
each other's evolution through the process of natural selection.

Competitive Coevolution

14-Nov-21

Red Population
Candidate

actions/strategies

Red Population
Candidate

actions/strategies

Selection

High-performing
candidates retained

Selection

High-performing
candidates retained

Variation
• Crossover
• Mutation

Variation
• Crossover
• Mutation

Variation
• Crossover
• Mutation

Variation
• Crossover
• Mutation

New Blue Generation

New Red Generation

Evaluation

Candidates scored and ranked
according to fitness function

depending on the other population

Evaluation

Candidates scored and ranked
according to fitness function

depending on the other population

Blue Population
Candidate

actions/strategies

Blue Population
Candidate

actions/strategies

Selection

High-performing
candidates retained

Selection

High-performing
candidates retained

In biology, coevolution occurs when two or more species reciprocally affect
each other's evolution through the process of natural selection.

• Video games AI

• Cybersecurity

Competitive Coevolution

14-Nov-21

U. O’Reilly, J. Toutouh, M. Pertierra, D. Prado-Sanchez, D. Garcia, A. Erb-Luogo, J. Kelly, E Hemberg (2019).
Adversarial Genetic Programming for Cyber Security: A Rising Application Domain Where GP
Matters. Genetic Programming and Evolvable Machines (In Press).

Lipizzaner: Gradient-based Coevolution

14-Nov-21

• Non-convergence

• Mode collapse

• Diminished gradient

Lipizzaner

A distributed, coevolutionary framework to train GANs with

gradient-based optimizers

Lipizzaner: Gradient-based Coevolution

14-Nov-21

Gi Di

wi

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

Mixture weight

Neighborhood examples

Generatorsi Discriminatorsi

Evaluation: All-vs-all

Gi Di

Select the best pair
(e.g., tournament)

Gi Di

N N

W W E E

S S

C C

N N

W

E
S

C
W

E S

C
N N

W

E
S

C
W

E S

C

N N

W

E
S

C
W

E S

C
G D

C C

N N

W W E E

S S

Parents

Offspring

Training: Update the weights
(mutation)

Lipizzaner: Gradient-based Coevolution

14-Nov-21

• Lipizzaner is a distributed, coevolutionary framework to train GANs with

gradient-based optimizers

• Fast convergence due to gradient-based steps

• Improved convergence due to hyperparameter evolution

• Robustness and resilience due to coevolution

• Diverse solutions due to mixture evolution

• Scalability due to spatial distribution topology and

asynchronous parallelism

Fast and improved convergence

14-Nov-21

• Lipizzaner→ communication and performance-based selection pressure

converge faster and avoids continuous fluctuations

• SPaGAN – no selection/replacement

• PaGAN – no communication

FID→Accuracy

Lower is better

Epoch: 25 Epoch: 50 Epoch: 75 Epoch: 100

Lipizzaner

SPaGAN

Fast and improved convergence

14-Nov-21

• As the grid size increase (larger populations), the Lipizzaner converges to

better generative models

Final results (FID)

FID→Accuracy

Lower is better

Robustness and resilience

14-Nov-21

• Competitive coevolution allows the cells to escape from local optima and

addresses vanishing gradient issues

Lipizzaner Lipizzaner

Gi Di

Weak Strong

Ensembles: Robustness

14-Nov-21

• Mixture of generators overcomes mode collapse

w1

w2
w3

w4

g1

g2 g3

g4
…

Loss Diversity: Robustness

14-Nov-21

• Mustangs: For each training epoch, each cell randomly picks a loss

function to optimize the networks’ weights

Gi Di

Update weights

Gi Gi

3x3 grid

5x5 grid

Ensembles: Better results

14-Nov-21

• The use of evolved ensembles improves quality of the samples

Uniformly distributed weights

Evolved weights

Ensembles: Re-purpose models

14-Nov-21

• Given a set of heterogeneous generators that were optimized for one

objective (e.g., FID), create ensembles for optimizing a different objective

Ensemble size TVD - Diversity
(new objective)

FID - Accuracy
(old objective)

1 0.113 36.393

3 0.046 27.576

4 0.043 27.890

5 0.046 28.225

6 0.045 27.077

<8 0.033 27.342

High quality

Low diversity

High quality

High diversity

Improvements: Data Dieting

• As we have communication between cells, do we need to replicate whole

data among all the cells? Data diversity

Improvements: Data Dieting

• Spatial distribution in a 2D grid addressees
the quadratic computational complexity

• Asynchronous communication

• Deployed over workstations, cloud based,
and HPC environments

• OpenStack, Google Cloud, AWS, Summit,
MIT Satori, etc.

Some implemented approaches

• Conditional GAN

• Wasserstein GAN

• Deep Convolutional GAN

• Semi-supervised learning

• Temporal (LSTM) based generative models

Publications

14-Nov-21

Lipizzaner: A System That Scales Robust Generative Adversarial Network Training. E. Hemberg, A. Al-Dujaili, T.
Schmiedlechner, U. O'Reilly. Systems for Machine Learning workshop@ NeurIPS 2018.

An Artificial Coevolutionary Framework for Adversarial AI. Una-May O’Reilly, Erik Hemberg. AAAI Fall Symposia, 2018.

Towards Distributed Coevolutionary GANs. Abdullah Al-Dujaili, Tom Schmiedlechner, Erik Hemberg, Una-May O'Reilly.
AAAI Fall Symposia, 2018.

Spatial Evolutionary Generative Adversarial Networks. Jamal Toutouh, Erik Hemberg, Una-May O'Reilly. GECCO, 2019.

Data Dieting in GAN Training. Jamal Toutouh, Erik Hemberg, Una-May O'Reilly. Deep Neural Evolution: Deep Learning
with Evolutionary Computation (2020).

Re-purposing Heterogeneous Generative Ensembles with Evolutionary Computation. Jamal Toutouh, Erik Hemberg,
Una-May O'Reilly. GECCO, 2020.

Parallel/distributed implementation of cellular training for generative adversarial neural networks. E. Perez, S.
Nesmachnow, J. Toutouh, E. Hemberg, U. O'Reilly. PDCO 2020

Selection Pressure and Communication in Evolutionary GAN Training. Jamal Toutouh, Erik Hemberg, Una-May O'Reilly.
PPSN 2020 (Under review).

Spatial Coevolution for the Robust and Scalable Training of Generative Adversarial Networks. Erik Hemberg, Jamal
Toutouh, Una-May O'Reilly. ACM Transactions on Evolutionary Computing (Under review).

JAMAL TOUTOUH

Thanks!

14-Nov-21 52JAMAL TOUTOUH

Comments?
JAMAL TOUTOUH
jamal@lcc.uma.es

jamal.es

@jamtou

mailto:jamal@lcc.uma.es

