
GAN Training Pathologies



Summary

Diminished gradient: the discriminator gets too successful 
that the generator gradient vanishes and learns nothing.

Mode collapse: the generator collapses which produces 
limited varieties of samples.

Non-convergence: the model parameters oscillate, 
destabilize, and never converge.



Summary

Most of this lecture is motivated by:

● From GAN to WGAN 
○ https://arxiv.org/abs/1904.08994

● Improved Techniques for Training GANs
○ https://arxiv.org/abs/1606.03498

https://arxiv.org/abs/1904.08994
https://arxiv.org/abs/1606.03498


Generative models training

Many generative models create a model θ that maximizes the Maximum Likelihood 
Estimation MLE. i.e. finding the best model parameters that fit the training data the most.

This is the same as minimizing the  KL-divergence KL(p,q) which measures how the 
probability distribution q (estimated distribution) diverges from the expected probability 
distribution p (the real-life distribution).



Kullback-Leibler divergence. Main issues
KL(x) drops to 0 for area where p(x) → 0. For example, in the figure on the right below, the red curve corresponds to 
D(p, q). It drops to zero when x>2 where p approaches 0.

The KL-divergence DL(p, q) penalizes the generator if it misses some modes of images: the penalty is high where p(x) 
> 0 but q(x) → 0. Nevertheless, it is acceptable that some images do not look real. The penalty is low when p(x) → 0 but 
q(x)>0. (Poorer quality but more diverse samples)

The reverse KL-divergence DL(q, p) penalizes the generator if the images do not look real: high penalty if p(x) → 0 but 
q(x) > 0. But it explores less variety: low penalty if q(x) → 0 but p(x) > 0. (Better quality but less diverse samples)



Jensen-Shannon divergence

Training GANs has treated as optimizing the generator model is treated as minimizing the 
JS-divergence.

JS-divergence is symmetrical. It will penalize poor images badly. (when p(x)→ 0 and q(x) > 0) 

If the discriminator is optimal (performing well in distinguishing images), the generator’s objective 
function becomes



Vanishing gradient

What happens to the JS-divergence gradient when the data distribution q of the generator’s images 
does not match with the ground truth p for the real images?

Let’s consider an example in which p and q are Gaussian distributed and the mean of p is zero. Let’s 
consider q with different means to study the gradient of JS(p, q).

The gradient for the JS-divergence vanishes from q1 to q3. The GAN generator will learn extremely 
slow to nothing when the cost is saturated in those regions. In particular, in early training, p and q 
are very different and the generator learns very slow.

JS-divergence JS(p, q) 
between p and q with 
means of q ranging from 0 
to 30. 



Vanishing gradient

Attempts to remedy:

● Wasserstein loss: The Wasserstein loss is designed to prevent vanishing 
gradients even when you train the discriminator to optimality.

● Modified minimax loss: The original GAN paper proposed a modification to 
minimax loss to deal with vanishing gradients.
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Mode collapse

The objective of the GAN generator is to create images that can fool the discriminator D the 
most.

Extreme case: G is trained extensively without updates to D. The generated images will 
converge to find the optimal image x* that deceives D the most, the most realistic image 
from the discriminator perspective. In this extreme, x* will be independent of z.



Mode collapse

This is bad news. The mode collapses to a single point. The gradient associated with z 
approaches zero.

Restart the training in the discriminator: the most effective way to detect generated images is 
to detect this single mode. Since the generator has minimized the impact of z already in the 
generated samples, the gradient from the discriminator will likely push the single point 
around for the next most vulnerable mode. This is not hard to find. The generator produces 
such an imbalance of modes in training that it deteriorates its capability to detect others. 

Now, both networks are overfitted to exploit short-term opponent weakness. 



Mode collapse



Mode collapse

Attempts to remedy:

● Wasserstein loss: The Wasserstein loss alleviates mode collapse by letting you train 
the discriminator to optimality without worrying about vanishing gradients. If the 
discriminator doesn't get stuck in local minima, it learns to reject the outputs that the 
generator stabilizes on. So the generator has to try something new.

● Unrolled GANs: Unrolled GANs use a generator loss function that incorporates not 
only the current discriminator's classifications, but also the outputs of future 
discriminator versions. So the generator can't over-optimize for a single discriminator.



Oscillation 

GAN is based on the zero-sum non-cooperative game (if one wins the other loses) also called 
minimax. Your opponent wants to maximize its actions and your actions are to minimize 
them. 

In game theory, the GAN model converges when the discriminator and the generator reach a 
Nash equilibrium. Nash equilibrium happens when one player will not change its action 
regardless of what the opponent may do.

Consider two player A and B which control the value of x and y respectively. Player A wants 
to maximize the value xy while B wants to minimize it.

The Nash equilibrium is x=y=0. 



Oscillation 

Let’s see whether we can find the Nash equilibrium easily using the gradient descent. We 
update the parameter x and y based on the gradient of the value function V. 

When we plot x, y, and xy against the training iterations, we realize our solution does not 
converge.

where α is the learning rate

It is an excellent showcase that some cost 
functions will not converge with gradient 
descent, in particular for a non-convex 
game.



Oscillation 

Attempts to remedy:

Researchers have tried to use various forms of regularization to improve GAN convergence, 
including:

● Adding noise to discriminator inputs
● Penalizing discriminator weights



Improving GAN training

https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b

https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html

https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html

