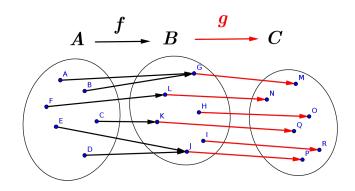


Práctico 7: Composición e Inversa de funciones

Ejercicio 1 Sean $f: A \to B$ y $g: B \to C$ funciones dadas por el siguiente diagrama



Determinar $g \circ f$.

Ejercicio 2 Para los siguientes pares de funciones definidas en \mathbb{R} calcular $f \circ g y g \circ f$.

1. a)
$$f(x) = 2x + 1$$
,

$$g(x) = x^3 - x^2 - 4$$

b)
$$f(x) = x^2 + x + 4$$
, $g(x) = \cos(x)$
c) $f(x) = x^3$, $g(x) = \frac{x}{x^4 + 5}$

$$g(x) = \cos(x)$$

c)
$$f(x) = x^3$$

$$g(x) = \frac{x}{x^4 + 5}$$

2. a)
$$f(x) = |x+1|$$
,

$$g(x) = |2x|$$

b)
$$f(x) = x + 1$$
,

$$g(x) = \max\{1, x - 1\}$$

b)
$$f(x) = x + 1$$
, $g(x) = máx\{1, x - 1\}$
c) $f(x) =\begin{cases} -1 & si & x \le 0 \\ 0 & si & x > 0 \end{cases}$, $g(x) =\begin{cases} -x^2 & si & x < 2 \\ x + 2 & si & x > 2 \end{cases}$

$$g(x) = \begin{cases} -x^2 & si \quad x < 2\\ x + 2 & si \quad x > 2 \end{cases}$$

Ejercicio 3 Para los siguientes pares de funciones calcular $f \circ g y g \circ f$. En caso de que no esté bien definida la composición modificar los dominios para que resulte bien definida.

1.
$$f: \mathbb{R} \setminus \{-3, 3\} \to \mathbb{R}$$
 tal que $f(x) = \frac{x}{x^2 - 9}$ $g: \mathbb{R} \to \mathbb{R}$ tal que $g(x) = 2x + 1$.

$$2. \ \ f:(0,+\infty) \rightarrow \mathbb{R} \ tal \ que \ f(x) = \log(x) \ y \ g:\mathbb{R} \rightarrow \mathbb{R} \ tal \ que \ g(x) = 2x-1.$$

3.
$$f: \mathbb{R} \to \mathbb{R}$$
 tal que $f(x) = |x|$ y $g: [1, \infty) \to \mathbb{R}$ tal que $g(x) = \sqrt{x^2 - 1}$.

Ejercicio 4 Para las funciones f, g y $g \circ f$, del Ejercicio 2 determinar cuáles son inyectivas, sobreyectivas y biyectivas.

Ejercicio 5 *Consideremos las siguientes funciones:*

1.
$$f: \mathbb{R} \to \mathbb{R}$$
 tal que $f(x) = x^2$

3.
$$h: \mathbb{R}^+ \cup \{0\} \rightarrow \mathbb{R}$$
 tal que $h(x) = x^2$.

2.
$$g: \mathbb{R} \to \mathbb{R}^+ \cup \{0\}$$
 tal que $g(x) = x^2$.

4.
$$i: \mathbb{R}^+ \cup \{0\} \to \mathbb{R}^+ \cup \{0\} \ tal \ que \ i(x) = x^2$$
.

- a) ¿Son todas las funciones iguales? Justificar.
- b) Estudiar inyectividad, sobreyectividad y biyectividad.

Ejercicio 6 Determinar para las siguientes funciones $f:A\to B$ cuáles son inyectivas, sobreyectivas y biyectivas:

1.
$$A = \mathbb{N}$$
, $B = \mathbb{N}$, $f(x) = x + 5$

3.
$$A = \mathbb{R}$$
, $B = \mathbb{R}$, $f(x) = x + 5$

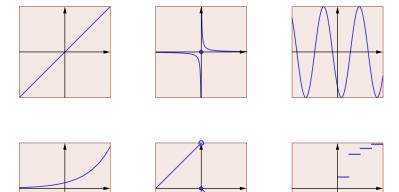
2. $A = \mathbb{Z}$, $B = \mathbb{Z}$, f(x) = x + 5

4.
$$A = \mathbb{N}, B = \mathbb{N}, f(x) = 2x$$

5.
$$A = \mathbb{Z}$$
, $B = \mathbb{Z}$, $f(x) = 2x$

6.
$$A = \mathbb{R}$$
, $B = \mathbb{R}$, $f(x) = 2x$

Ejercicio 7 Determinar para los siguientes bosquejos de funciones cuáles son inyectivas, sobreyectivas y bivectivas:



Ejercicio 8 Sean $f: X \to Y \ y \ g: Y \to Z \ dos \ funciones.$

- 1. Probar que si f y g son inyectivas entonces también lo es $g \circ f$.
- 2. Probar que si f y g son sobreyectivas entonces también lo es $g \circ f$.
- 3. a) Enunciar el recíproco de 1.
 - b) ¿Es verdadero el enunciado anterior? Discutir en detalle.
- 4. a) Enunciar el recíproco de 2.
 - b) ¿Es verdadero el enunciado anterior? Discutir en detalle.

Ejercicio 9 ¿Verdadero o falso?

- 1. Si $f : \mathbb{R} \to \mathbb{R}$ es estrictamente creciente (resp. decreciente) entonces f es inyectiva (si es verdadero pruébelo, si es falso dé contraejemplo).
- 2. Si f es invectiva, ¿debe ser estrictamente creciente?
- 3. La función $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = x^3 + x$ es biyectiva.

Ejercicio 10 Verificar que los pares de funciones dadas corresponden a una función y su inversa. Salvo que se indique lo contrario el dominio es el más grande posible.

1.
$$\begin{cases} f(x) = 2x - 1 \\ g(x) = \frac{x+1}{2} \end{cases}$$
 2.
$$\begin{cases} f(x) = x^{1/3} \\ g(x) = x^3 \end{cases}$$

Práctico 7: Composición e Inversa de funciones

3.
$$\begin{cases} f(x) = \log_2(x+1) & con \ dominio \ (0, \infty) \\ g(x) = 2^x - 1 & con \ dominio \ \mathbb{R} \end{cases}$$

4.
$$\begin{cases} f(x) = 2 + e^{x-1} & con \ dominio \ \mathbb{R} \\ g(x) = \ln(x-2) + 1 & con \ dominio \ (2, \infty) \end{cases}$$

Graficar ambas funciones en cada caso en un mismo sistema de ejes. ¿Puedes observar alguna característica entre el gráfico de f y de g?

Ejercicio 11 Se consideran las funciones trigonométricas:

•
$$f: [-\frac{\pi}{2}, \frac{\pi}{2}] \to [-1, 1]$$
 tal que $f(x) = \sin(x)$.

•
$$g:[0,\pi] \to [-1,1]$$
 tal que $g(x) = \cos(x)$.

•
$$h: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$$
 tal que $h(x) = \tan(x)$.

1. Graficar cada función.

2. Notar con la ayuda del gráfico cada una de ellas es biyectiva y por tanto se define

•
$$f^{-1}: [-1,1] \to [-\frac{\pi}{2},\frac{\pi}{2}]$$
 como $f^{-1}(x) = \arcsin(x)$.

•
$$g^{-1}:[-1,1] \to [0,\pi] \ como \ g^{-1}(x) = arc \cos(x)$$
.

•
$$h^{-1}: \mathbb{R} \to (-\frac{\pi}{2}, \frac{\pi}{2}) \ como \ h^{-1}(x) = \arctan(x)$$
.

Realizar un bosquejo del gráfico de las inversas.

Ejercicio 12 Verificar que las siguientes funciones son bivectivas y hallar una fórmula para la función inversa.

1.
$$f: \mathbb{R} \to \mathbb{R}$$
 tal que $f(x) = x + 7$.

3.
$$f: \mathbb{R} \setminus \{5/2\} \to \mathbb{R} \setminus \{3/2\}$$
 tal que $f(x) = \frac{3x+2}{2x-5}$.

2.
$$f: \mathbb{R} \to \mathbb{R}$$
 tal que $f(x) = 2 - 3x^3$.

4.
$$f: \left[\frac{-4}{3}, \infty\right) \rightarrow [0, +\infty) \ con \ f(x) = \sqrt{3x+4}$$
.

Graficar f^{-1} . Utilizar GeoGebra.

Ejercicio 13 Demostrar que las siguientes funciones son bivectivas y hallar una fórmula para la función inversa.

1.
$$f: \mathbb{R} \to \mathbb{R}$$
 tal que $f(x) = \sqrt[3]{x} + 1$.

3.
$$f:(1,\infty)\to\mathbb{R}$$
 tal que $f(x)=2\ln(x-1)$.

2.
$$f:[0,4] \to [0,32]$$
 tal que $f(x) = -x^2 - 4x + 32$. 4. $f:[-\frac{1}{2},\frac{1}{2}] \to \mathbb{R}$ tal que $f(x) = e^x$.

4.
$$f: [-\frac{1}{2}, \frac{1}{2}] \to \mathbb{R}$$
 tal que $f(x) = e^x$.

Graficar f^{-1} . Utilizar GeoGebra.

Ejercicio 14 Sean $f: \mathbb{R} \setminus \{1\} \to \mathbb{R}$ tal que $f(x) = \frac{1}{1-x}$ y $g: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ tal que $g(x) = e^{-x/2}$. Consideramos *la composición:* $h = f \circ g : \mathbb{R} \setminus \{0\} \to Im(h)$. Indicar la opción correcta:

1.
$$h$$
 es invertible y $h^{-1}(x) = 2 \ln(\frac{x}{x-1})$.

3. *h* es invertible y
$$h^{-1}(x) = \ln(\frac{2x}{x-1})$$
.

2. h no es invertible.

4. h es invertible y $h^{-1}(x) = 2\ln(\frac{1}{x}) + 1$.

Ejercicio 15 (Ejercicios de pruebas anteriores) Indicar si la siguiente afirmación es verdadera o falsa. La función $f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [0, 2]$ dada por $f(x) = \cos(x) + 1$ es biyectiva.