Some GAN
Applications

Generate New Samples of Image Datasets

> © o - ip
- > - BN v -l T) {
A s ; . = s TN
Redes neuronales generativas

Image-to-Image Translation

Redes neuronales generativas

Text-to-Image Translation

This bird is This bird has A white bird

Text blue with white wings that are with a black
description and hasavery ~ brownand has crown and

short beak a yellow belly yellow beak

images D, |

Stage-II
images

Redes neuronales generativas

This bird is
white, black,
and brown in
color, with a
brown beak

Semantic-Image-to-Photo Translation

Multi-modal results

http://nvidia-research-mingyuliu.com/gaug
an

Redes neuronales generativas

http://nvidia-research-mingyuliu.com/gaugan
http://nvidia-research-mingyuliu.com/gaugan

Generative Adversarial
Networks

Generating synthetic samples

Qo O
..:...
y 00 ® y y °
(]
0 @ (X
22e® °
X

Generating synthetic samples

Global idea: Generating new synthetic samples without modeling the
density estimation (for “complex” distributions)

Solution: Sampling from something simple (noise) and learning a
transformation to the real (trammg?dlstrlbutlon

Main components of the Generative Model:
* Generator Neural Network [] G

* Noise (latent space) [] Z . G
* Fake sample from the training distribution [J X’

Redes neuronales generativas

How Generator Learn?

l gg, . Feed newdata
- WA 4N Y_pred
o @0
Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer Error
Using another model that gives information el
about how close/far are the samples from v
real data [] Discriminator

Redes neuronales generativas

Generative Adversarial Networks

Generative Adversarial Networks: Construct a generative model by raising
an arms race between two neural networks, a generator and a discriminator

* Discriminator (D) tries to distinguish between
real data (X) from the real data distribution and
fake data (X°) from the generator (G)

* Generator (G) learns how to create . G
synthetic/fake data samples (X') by sampling
random noise (Z) to fool the discriminator (D)

Redes neuronales generativas

Generative Adversarial Networks

Generative Adversarial Networks: Build a generative model by raising an
arms race between two neural networks, a generator and a discriminator

real

Goodfellow et al. 2014. Generative Adversarial
Nets

J

this is real or this is fake

Redes neuronales generativas

GAN Training

GAN training intuition

Real data
distribution

000 >

Redes neuronales generativas

GAN Training

Step 1:

Generator samples from the noise to create data samples to imitate real data

(’7 i\\ (Eheal- A

\\‘Y

k(-.-. .._)j C

Generator Discriminator
Q@ Q@

fake real

Redes neuronales generativas

GAN Training

Step 2:

Discriminator gets fake samples from the generator and real samples from the
real data distribution

(\ G_(_re_al:____________\
1
AL & —0— -00—000—0—0—
\ J \ iy,
Generator Discriminator
() ()
fake real

Redes neuronales generativas

GAN Training

Step 3:

Discriminator learn how to distinguish between real and fake data (supervised learning)

(’7 i\\ (Eheal- A

k(—“ .._)) \M—.—.H—.—))

Generator Discriminator
Q@ Q@

fake real

Redes neuronales generativas

GAN Training

Step 3:

Discriminator learn how to distinguish between real and fake data (supervised learning)

(’7 i\\ (Eheal- A

k(—“ .._)) \M—.—.H—.—))

Generator Discriminator
Q@ Q@

fake real

Redes neuronales generativas

GAN Training

Step 3:

Discriminator learn how to distinguish between real and fake data (supervised learning)

(’7 i\\ (Eheal- A

k(—“ .._)) \(-“_._._._._._))

Generator Discriminator
Q@ Q@

fake real

Redes neuronales generativas

GAN Training

Step 4:

Generator get discriminator feedback and updates its parameters (weights) to improve
the synthetic data

(’7 i\\ (Eheal- A

-

k(—“ .._)) \(-“_._._._._._))

Generator Discriminator
Q@ Q@

fake real

Redes neuronales generativas

GAN Training

Step 4:

Generator get discriminator feedback and updates its parameters (weights) to improve
the synthetic data

(’7 i\\ (Eheal- A

\—_*° o) \Joo—o o)

Generator Discriminator
Q@ Q@

fake real

Redes neuronales generativas

GAN Training

Step 5:

Discriminator gets samples (real and fake) and learns how to distinguish
between real and fake data (supervised learning)

(\ G_(_re_al:____________\
1
< o-0 o 0— -— 00000 00—
\ J \ iy,
Generator Discriminator
() ()
fake real

Redes neuronales generativas

GAN Training

Step 5:

Generator get discriminator feedback and updates its parameters (weights) to improve the synthetic data

(\ [P_(_real = \

-

\—_*° o) \—_°o e

Generator Discriminator
Q@ Q@

fake real

Redes neuronales generativas

GAN Training

This steps are repeated until the generator is able to fool the discriminator by
generating fake data samples that are indistinguishable from the real ones

(’7 <‘\\ /:;;eal = 4‘\\

N

Generator Discriminator
Q@ Q@

fake real

Redes neuronales generativas

\—_°>°*°° ~J

\\‘Y

GAN Training

This steps are repeated until the generator is able to fool the discriminator by generating fake data samples that are
indistinguishable from the real ones

* Discriminator is not able to distinguish between real and fake (random output)

4)

\—_°>°*°° ~J

Generator Discriminator
Q@ Q@

fake real

Redes neuronales generativas

GAN Training

After finishing the training process, the generator network can be used to
create samples

(\ G_(_re_al:___________]._
1
—O—0O000 > — 00000 ©® >
\ J \ iy,
Generator Discriminator
() ()
fake real

Redes neuronales generativas

GAN Training. Mathematical Model

Discriminator is trained to correctly classify the input data as either real or fake
* maximize the probability that any real data input x is classified as real [| maximize D(x)
* minimize the probability that any fake sample x’ is classified as real [minimize D(G(z))

Generator is trained to fool the Discriminator by generating realistic data
* maximize the probability that any fake sample is classified as real
] maximize D(G(z))

In practice, the logarithm of the probability (e.g. log D(...)) is used in the loss

functions
GAN training as a minmax optimization problem
minmax V(D, G) = Eqnpyp ()10 D(@)] + Eonp () log(1 — D(G(2)))]

Redes neuronales generativas

GAN Training. General Algorithm

Steps of the main training loop:

1. Train discriminator
1.1. Train discriminator on real data

1.1.1 Sample a batch of data from real dataset (x)
1.1.2 Get loss from the discriminator output with input x

1.2 Train the discriminator on data produced by the generator
1.2.1 Sample a batch of data from random latent space (z)
1.2.2 Get samples (x’) from the generator with input z
1.2.3 Get loss from the discriminator output with input x’ . G

1.3 Update discriminator weights according to the losses

2. Train the generator
2.1 Sample a batch of data from random latent space (z)

2.2 Get samples (x’) from the generator with input z
2.3 Get loss from the discriminator output with input x’

Redes neuronales generativas

GAN Training. General Algorithm

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k steps do

e Sample minibatch of 7 noise samples {z(!), ..., 2(™)} from noise prior p,(z).
e Sample minibatch of m examples {z"),...,2("™} from data generating distribution
pdala(w)-

e Update the discriminator by ascending its stochastic gradient:

Vo 3= os 1 (39) +108 (12 (6 (=))].

end for
e Sample minibatch of 1 noise samples {z(!), ..., z("™)} from noise prior Pg(2).
e Update the generator by descending its stochastic gradient:

Vo, 2 3 1og (1- D (6 (=),
i=1
end for

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Redes neuronales generativas

GAN Training. General Code

0. Create ANNs

class Generator(nn.Module): class Discriminator(nn.Module):
Class that defines the the Generator Neural Network Class that defines the the Discriminator Neural Network
def _ init_ (self, input_size, hidden_size, output_size): def __init_ (self, input_size, hidden_size, output_size):
super(Generator, self)._ init_ () super(Discriminator, self)._ init_ ()
self.net = nn.Sequential(self.net = nn.Sequential(
nn.Linear(input_size, hidden_size), nn.Linear(input_size, hidden_size),
nn.SELU(), nn.ELU(),
nn.Linear(hidden_size, hidden_size), nn.Linear(hidden_size, hidden_size),
nn.SELU(), nn.ELU(),
nn.Linear(hidden_size, output_size), nn.Linear(hidden_size, output_size),
nn.SELU(), nn.Sigmoid()
))
def forward(self, x): def forward(self, x):
X = self.net(x) x = self.net(x)
return x return X

Redes neuronales generativas

GAN Training. General Code

1. Train discriminator

1. Train the discriminator

discriminator.zero_grad()

1.1 Train discriminator on real data

input_real = get_data_samples(batch_size)

discriminator_real_out = discriminator(input_real.reshape(batch_size, 2))

discriminator_real_loss = discriminator_loss(discriminator_real out, real_data_target(batch_size))
discriminator_real_loss.backward()

1.2 Train the discriminator on data produced by the generator

input_fake = read_latent_space(batch_size)

generator_fake_out = generator(input_fake).detach()

discriminator_fake_out = discriminator(generator_fake_out)

discriminator_fake_loss = discriminator_loss(discriminator_fake out, fake_data_target(batch_size))
discriminator_fake_loss.backward()

1.3 Optimizing the discriminator weights

discriminator_optimizer.step()

Redes neuronales generativas

GAN Training. General Code

2. Train discriminator

2. Train the generator
if batch_number % freeze_generator_steps ==
generator.zero_grad()
2.1 Create fake data
input_fake = read_latent_space(batch_size)
generator_fake_out = generator(input_fake)
2.2 Try to fool the discriminator with fake data
discriminator_out_to_train_generator = discriminator(generator_fake_out)
discriminator_loss_to_train_generator = generator_loss(discriminator_out_to_train_generator,
real data_target(batch_size))
discriminator_loss_to_train_generator.backward()
2.3 Optimizing the generator weights
generator_optimizer.step()

Redes neuronales generativas

GAN Training. Source Code Example 1

Example: Train a generator to create vectors of a given size that contains float numbers that
follow a normal distribution given the mean and the standard deviation

* Real dataset samples: Vectors of real numbers that follow a normal distribution

* Source code:
https://colab.research.google.com/drive/1gbTlefMoY6eQDIZXpCU9PVINo55Yb3ly

14
Fit results: mu = 4.71, std = 0.71 Fit results: mu = 4.06, std = 0.28 Fit results: mu = 4.02, std = 0.20
25

13 — Fake data — Fake data —— Fake data
2 — Real data — Real data — Real data

12

11
—— Discriminator loss

10 +++ Generator loss

0.9

084

0 [N SRR . S

Redes neuronales generativas

https://colab.research.google.com/drive/1gbTlefMoY6eQDlZXpCU9PVINo55Yb3ly

GAN Training. Source Code Example 2

Example: Train a generator to create 2D points (x, y) that belong to a line in the 2D space
* Real dataset samples: Points (x, y) that belong to the line
* Source code: https://colab.research.qgoogle.com/drive/1kV4RQIM2yrlohjvnfmatFh_vqgY4L-k4s

1.6 1

1.4 .

N

124
—— Discriminator loss

----- Generator loss

1.0 4

084

3
0 2 3 s s
2 - ' :: -,.‘ 10
0.6 - g .
0.0 25 5.0 7.5 10.0 125 15.0 17.5 .
o
2 -,

the generator and increasing the number of epochs

N\

e Test freezing

Redes neuronales generativas

https://colab.research.google.com/drive/1kV4RQ9M2yrIohjvnfmqtFh_vgY4L-k4s

GAN Training. Source Code Example 3

Example: Train a generator to create samples of handwritten digits of MNIST dataset.

The MNIST dataset is one of the most common datasets used for image classification and
generation. It contains 60,000 training images and 10,000 testing images of handwritten digits
(from 0 to 9)

* Real dataset samples: Digits from MNIST dataset

* Source code:
https://cola

om/drive/1FVdtHIK3vertgUVIM

e
/
O
1
3
q
\
2
7
&

O~ DAY
&SROy G &

N ARCOND —W e
RO MDY &N

VO NRND QL ~ %o
- BN QW E WO

Generated data during

Redes neuronales generativas

https://colab.research.google.com/drive/1FVdtHJK3vertgUVIMlfoM4E7tg0YWuIg

Not all is good news

* Non-convergence: the model parameters oscillate,
destabilize and never converge = i A

* Mode collapse: the generator collapses which produces
limited varieties of samples

* Diminished gradient: the discriminator gets too
successful that the generator gradient vanishes and learns
nothing

Redes neuronales generativas

