SyC - Hoja 6 - Ej. 1

1) Dado el sistema de la figura, determinar los valores de $k > k_h$ de modo que:

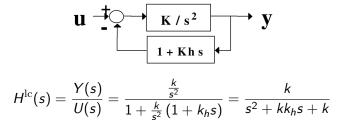
Caso 1) La relación de amortiguación de los polos dominantes sea $\xi = 0.5$.

Caso 2) La constante de aceleración Ka = 50 seg-2



Para que valores de k, ambos polos tienen parte real menor que -10?

Función de transferencia de lazo cerrado



Caso 1: Relación de amortiguación de los polos dominantes igual a $\zeta=0.5$

Requerimiento sobre la respuesta transitoria

$$\mathbf{u} \xrightarrow{\mathbf{1} + \mathbf{K} h \, \mathbf{s}} \mathbf{y}$$

$$H^{lc}(s) = \frac{k}{s^2 + k k_h s + k}$$

$$H^{lc}(s) = \frac{k}{s^2 + k k_h s + k} = \frac{G \omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}$$

$$\begin{cases} G \omega_n^2 = k \\ 2\zeta \omega_n = k k_h \\ \omega_n^2 = k \end{cases}$$

$$\begin{cases} G = 1 \\ \zeta = \frac{k k_h}{2\sqrt{k}} = \frac{\sqrt{k} k_h}{2} \\ \omega_n = \sqrt{k} \end{cases}$$

Para tener $\zeta = 0.5$, se debe cumplir:

$$\sqrt{k}k_h = 1$$

Caso 2: Constante de aceleración igual a $K_a = 50 \,\mathrm{s}^{-2}$

Obsérvese que no es lo mismo el "error" (entrada menos salida):

$$e(t) := u(t) - y(t)$$

que la señal de comparación:

$$d(t) := u(t) - y(t) - k_h \frac{\mathrm{d}y(t)}{\mathrm{d}t}$$

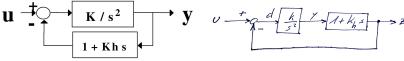
a la que denominaremos "diferencia de retorno".

Vamos a analizar el comportamiento asintótico, $t \to \infty$ en ambos casos, es decir para d(t) y para e(t).

Caso 2.a: comportamiento asintótico de la señal de diferencia de retorno.

Caso 2.b: comportamiento asintótico de la señal de error.

Caso 2.a: Comportamiento asintótico de la señal de diferencia de retorno



La diferencia de retorno es:

$$d(t) := u(t) - (y(t) + k_h \dot{y}(t)).$$

Sea $H(s) := \frac{k}{s^2} (1 + k_h s)$. En este caso,

$$K_a = \lim_{s \to 0} s^2 H(s) = k$$

Para tener $K_a=50\,\mathrm{s}^{-2}$, se debe cumplir: $k=50\,\mathrm{s}^{-2}$. En estas condiciones, para $u(t)=\frac{t^2}{2}$, la diferencia de retorno, $d(t)=u(t)-(y(t)+k_h\dot{y}(t))$, tiende a $\frac{1}{K_a}$ para $t\to\infty$.

Caso 2.b: Comportamiento asintótico de la señal de <u>error</u>

Para poder aplicar lo visto en el teórico al *error*, e := u(t) - y(t), debemos encontrar una H(s) "ficticia" tal que $H^{lc}(s) = \frac{H(s)}{1+H(s)}$. Es decir, sea ahora:

$$H(s) := \frac{H^{\mathrm{lc}}(s)}{1 - H^{\mathrm{lc}}(s)} = \frac{k}{s(s + kk_h)}$$

$$V = \frac{t}{s} = \frac{k}{s}$$

$$\mathbf{u} \xrightarrow{\mathbf{K}/\mathbf{s}^2} \mathbf{y} \qquad \xrightarrow{\mathbf{k}} \overset{\mathbf{k}}{\underbrace{\mathsf{s}(s+kk_k)}}$$

En este caso,

$$K_a = \lim_{s \to 0} s^2 H(s) = 0, \quad K_v = \lim_{s \to 0} s H(s) = \frac{1}{k_h}.$$

El sistema (de entrada u y salida y) puede seguir con error asintótico $\frac{1}{k_h}$ una entrada en forma de rampa con pendiente unitaria, pero no puede seguir con error asintótico finito una entrada en forma de rampa cuadrática.

¿Para qué valores de k, ambos polos tienen parte real menor que -10?

Polos de $H^{lc}(s)$: $-\zeta \omega_n \pm \sqrt{\zeta^2 - 1} \omega_n$, donde $\zeta = \frac{\sqrt{k} k_h}{2}$ y $\omega_n = \sqrt{k}$.

▶ Si $0 < \zeta \le 1$, es decir si

$$0<\frac{\sqrt{k}k_h}{2}\leq 1,\tag{1}$$

los polos son: $-\zeta \omega_n \pm \jmath \sqrt{1-\zeta^2}\omega_n$. Debe cumplirse $\zeta \omega_n > 10$, es decir:

$$k > \frac{20}{k_h}. (2)$$

De (1) y (2):

$$\left\lceil \frac{20}{k_h} < k \le \frac{4}{k_h^2} \right\rceil. \tag{3}$$

Debe verificarse $k_h \leq \frac{1}{5}$, para que exista k tal que (3).

¿Para qué valores de k, ambos polos tienen parte real menor que -10?

Polos de $H^{lc}(s)$: $-\zeta \omega_n \pm \sqrt{\zeta^2 - 1} \omega_n$, donde $\zeta = \frac{\sqrt{k}k_h}{2}$ y $\omega_n = \sqrt{k}$.

▶ Si $\zeta > 1$, es decir si

$$\frac{\sqrt{k}k_h}{2} > 1,\tag{4}$$

los polos son: $-\zeta \omega_n \pm \sqrt{\zeta^2 - 1} \omega_n$.

Debe cumplirse $\omega_n\left(-\zeta+\sqrt{\zeta^2-1}\right)<-10$, es decir:

$$\omega_n\left(\zeta-\sqrt{\zeta^2-1}\right) > 10. \tag{5}$$

(6)

De (4) y (5):

$$\left| \left\{ rac{\sqrt{k} k_h}{2} - \sqrt{rac{k k_h^2}{4} - 1}
ight\} > 10 \ \left| rac{\sqrt{k} k_h}{2} > 1
ight.$$