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The Discrete Universal DEnoiser (DUDE)

Summary

Given an input sequence z = z1, z2, . . . , zn, run two
passes on zn.
Pass 1: For each i, determine the context Sz

i of zi in z.
Collect the empirical conditional distribution P̂z(zi | Sz

i ).
Pass 2: For each i,

• estimate the PMF P̂x(xi |Sz
i ), based on

P̂x( · |Sz
i ) = Π−T ·P̂z( · | Sz

i ) (as col vectors).

�� ��
“channel inversion”

����

Same P̂x( · | Sz
j ) for all j with Sz

j = Sz
i .

• Given P̂x( · |Sz
i ), the observed zi = α, and the cost

function Λ , compute a cost-weighted MAP estimate
x̂i of xi:

x̂i = argmin
x̂∈A

λT
x̂ ·

((
Π−T m[zn,bi, ci]

)
⊙ πα

)

Contexts Szi
1-dimensional
(string)t ����9

zi

@@I
context

2-dimensional
(image)

t ����9
zi

@@I
context

generally non-causal
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The basic DUDE works in practice (sometimes)

The basic scheme has been shown to work well for a variety of data
types, including text and binary images.
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The basic DUDE does not work in practice (sometimes)

Things get complicated when alphabets are large, e.g. grayscale images
with |A| = 256.

Even with a simple 3×3 template, the number of possible
context patterns is >1.8 · 1019: for images of practical size,
contexts will seldom repeat, empirical distributions will be
trivial, DUDE will do nothing.*

* “almost hopeless” [Buades, Coll, Morel: “A review of image denoising algorithms,

with a new one,” 2005].

many names for one problem: statistics dilution, “curse of
dimensionality,” sparse contexts, model cost, rate of convergence (to best
performance).

Lessons from lossless image compression:

• Don’t ask the algorithm to learn what you already know : use prior
knowledge, be as universal as necessary, but not more

• Aggregate statistics from contexts that are “close” and produce
“similar” conditional distributions: context quantization
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Assumptions and tools for clean image modeling

▶ Smoothness: Contexts that are close as vectors (e.g., in L2) tend to
produce similar conditional distributions and can be merged

▶ Symmetries: Contexts that are similar up to spatial and black/white
symmetries can be merged

=⇒ bring contexts to canonical representations modulo these
symmetries
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Assumptions and tools for clean image modeling

▶ Prediction: If x̃i = x̃(Sxi ) is a good predictor of the center sample of Sxi ,
then P ( · |Sxi ) concentrates around x̃i =⇒ model prediction errors:
P (xi − x̃i | Sxi )

▶ DC invariance: Contexts that are similar up to a constant shift in
brightness will have similar conditional distributions, up to a shift in the
support (goes well with previous item)

=⇒ use differential, DC-invariant, representations for contexts (e.g.,
based on gradients)
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Noisy complications

Assumptions break for noisy images, especially with impulse channels,
e.g., the S&P channel.

Smoothness
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Noisy complications

Assumptions break for noisy images, especially with impulse channels,
e.g., the S&P channel.

Smoothness

S&P channel:

a�
��3

0 (δ/2)

- a (1−δ)Q
QQs M−1 (δ/2)

contexts that were close in the clean image are not so in the noisy one
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Noisy complications

Assumptions break for noisy images, especially with impulse channels,
e.g., the S&P channel.

Prediction, DC-Invariance

Applying channel
inversion to shifts
of this distribution
will not give good
estimates of either
clean distribution
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Noisy complications (cont.)

▶ Impulse channels:

• Noisy samples do not satisfy smoothness or DC-invariance
• Noisy samples can throw predictor off

▶ Another type of impulse channel: M-ary symmetric channel (MSC)

0

1

i

M-1

i

M-1

0

1
P (b|a) =

{
1− δ a = b,
δ/(M − 1) a ̸= b

▶ “Continuous” channels such as the Gaussian channel tend to preserve the
assumptions better.

x→
[
x+N (0, σ2)

]
(with saturation at 0, M−1)

in general, we need a second look at our image assumptions and model
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A formal model for clean images

▶ x̃ : A|S| → A predictor for xi: x̃i = x̃(Sxi )
▶ Q : A|S| → {Q1, Q2, . . . , QK } context quantization function: maps

contexts S to clusters (or conditioning classes) Q(S)
• DC-invariant: Q(S) = Q(S ′) whenever S = S ′ up to DC shift
• Number of clusters K controls model cost/performance trade-off

▶ A set of cluster-conditioned distributions PE(e | Qκ), 1 ≤ κ ≤ K,

of prediction error values e ∈ AE
∆
= {−M+1,−M+2, . . . ,M−1}
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A formal model for clean images

▶ The model assumes that image samples are generated as follows:

• ei is drawn independently with probability PE(ei | Q(Sxi ))
• xi =

[
ei+ x̃(Sxi )

]
0..M−1

([x]0..M−1 denotes clamping to [0..M−1] )

PE(e | Q(Sxi ))

what we’ll estimate
shift by x̃i, clamp

Px(xi | Sxi )

what we’ll use
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Sampling and estimation

▶ Represent x ∈ A by an indicator M -vector ux
M = [ 0 0 . . . 0︸ ︷︷ ︸

x

1 0 . . . 0 ]T

▶ Represent e ∈ AE by an indicator (2M−1)-vector
ue
2M−1 = [ 0 0 . . . 0︸ ︷︷ ︸

e+M−1

1 0 . . . 0 ]T (with some notation abuse)

▶ For a ∈ A, define the M×(2M−1) shift and clamp matrix

C(a) =


�M−1−a -
1 1 · · · 1
0 0 · · · 0
...

...
...

0 0 · · · 0

∣∣∣∣∣∣∣∣∣ IM×M

∣∣∣∣∣∣∣∣∣
0 0 · · · 0
...

...
...

0 0 · · · 0

� -a

identity

−M+1 −M+2 · · · −a−1 −a · · · M−1−a M−a · · · M−1

1 1 · · · 1

 ,

ei

-C(a)

[a+ei]M−1

▶ xi =
[
ei + x̃i

]
0..M−1

⇐⇒ uxi

M = C(x̃i)·uei
2M−1

▶ Given x̃i(Sxi ) and Qκ = Q(Sxi ), observing xi informs us about a window
of length M in the support of PE(· | Qκ)
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Estimation of PE(· | Qκ)

To estimate PE(· | Qκ), we maintain a (2M−1)–vector statistic eκ,
initialized to 0. Upon observing xi, we perform the update

eκ ← eκ +M(x̃i)·uxi

M

where M(x̃i) is a (2M−1)×M estimation matrix.
At this point, the obvious choice is

M(x̃i) =
[
0M×(M−1−x̃i) | IM | 0M×x̃i

]T
,

equivalent to incrementing the location corresponding to ei = xi − x̃i,
but other choices are possible.

=

Theorem

P̂E(Qκ) =

( ∑
i:Qx

i =Qκ

M(x̃i)C(x̃i)

)−1

·
( ∑

i:Qx
i =Qκ

M(x̃i)u
xi
M

)

≜ R ·
( ∑

i:Qx
i =Qκ

M(x̃i)u
xi
M

)

is an unbiased estimator of PE(· | Qκ) (R is a normalization matrix).
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Model estimation for clean images

noisy

1 Initialization. Initialize to zero a histogram, eκ, of prediction error residual
occurrences for each context cluster Qκ, 1 ≤ κ ≤ K.

2 Statistics collection. For each index i ∈ Vm×n:

a Set x̃i = x̃(Sx
i ), the predicted value for xi.

b Set S̄x
i = D(Sx

i ), the differential representation of Sx
i .

c Set Cxi = C(S̄x
i ), the canonical representation of S̄x

i .
d Set Qx

i = Q(Cxi ), the conditioning class of Sx
i .

e Set eκ ← eκ +M(x̃i)u
xi
M for κ such that Qκ = Qx

i .

3 Normalization. For each κ, normalize eκ to obtain P̂E(·|Qκ).

4 Conditional distributions for individual contexts. For each index
i ∈ Vm×n:

a Set x̃i, Sx
i , and Qx

i as in Step 2 above.

b Set P̂X(·|Sx
i ) = C(x̃i) P̂E(·|Qx

i ) . definition of C
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How to deal with noise: avoid it (if you can!)

Try to carry out modeling operations in a cleaner domain, if possible

▶ Get contexts from a prefiltered version
y = F(z) of the noisy image

• Contexts Syi , predictions x̃i = x̃(Syi )
• Prefilter F : a simple denoiser (e.g.,
median filter), or a previous application
of the DUDE (iterative DUDE).
Counts for stats are still taken from the
original noisy image z.

▶ Model prediction errors in the clean image.
Estimate P̂x( · | ·) directly, without going
first through P̂z( · | ·) and then inverting the
channel.

• Assumption: x̃i = x̃(Syi ) is a good
predictor of xi.

rough
denoiser

iDUDE

noisy prefiltered

denoised

first
iteration

later
iterations
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Channel inversion: a different view

Say the sequence observed in a given context b • c is

an = a1, a2, a3, . . . , an,

and let m be the histogram of occurrence of symbols in an, We have

m = ua1

M + ua2

M + ua3

M + · · ·+ uan

M

and

Π−Tm = Π−Tua1

M +Π−Tua2

M +Π−Tua3

M + · · ·+Π−Tuan

M

= π−T
a1

+ π−T
a2

+ π−T
a3

+ · · ·+ π−T
an

where π−T
i is the i-th column of Π−T (transpose of the i-th row of Π−1).

We can interpret this as computing the channel inversion symbol by
symbol.
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How to deal with noise (cont.)

▶ Estimation of PE(· | Qκ) (dist. of prediction errors ei = xi − x̃i):
Upon observing zi, update the statistic eκ with

eκ → eκ +M(x̃i)Π
−T

︸ ︷︷ ︸
M′(x̃i)

uzi
M

H
HY

observations
from the noisy
imageestimation matrix M ��1

=

M(x̃i) uzi
M

PPPi shifted row of Π−1

(transposed)

• channel inversion done on a sample-by-sample basis (in practice, can
still be done with scalar increments and some post-processing).

• P̂x( · | Syi ) recovered from P̂E(·|Qκ) by shifting and clamping, using
the observable prediction x̃i.
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Model estimation for noisy images

The image x from the clean image procedure decouples into three
images: x (unknown), z (noisy), y (prefiltered). clean

1 Initialization. Initialize to zero a histogram, eκ, of prediction error residual
occurrences for each context cluster Qκ, 1 ≤ κ ≤ K.

2 Statistics collection. For each index i ∈ Vm×n:

a Set x̃i = x̃(Sy
i ), the predicted value for xi.

b Set S̄y
i = D(Sy

i ), the differential representation of Sy
i .

c Set Cyi = C(S̄y
i ), the canonical representation of S̄y

i .
d Set Qy

i = Q(Cyi ), the conditioning class of Sy
i .

e Set eκ ← eκ +M′(x̃i)u
zi
M for κ such that Qκ = Qy

i .

3 Normalization. For each κ, normalize eκ to obtain P̂E(·|Qκ).

4 Conditional distributions for individual contexts. For each index
i ∈ Vm×n:

a Set x̃i, Sy
i , and Q

y
i as in Step 2 above.

b Set P̂X(·|Sy
i ) = C(x̃i) P̂E(·|Qy

i ) .
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Iteration monitoring

▶ Prefiltering and iteration may violate some of the DUDE’s basic
independence assumptions.
• the reason: the center sample zi may have participated in the
prefiltering of its neighbors.

This can cause performance deterioration and severe instability over
iterations.

▶ Solution approach:

• Estimate the fraction of corrupted sample values
that occur in each cluster Qκ.
• For each possible noisy value c, count the

fraction of times c occurs in Qκ when the
corresponding prediction is far from c (e.g., black
pixel in light background).

• If the estimated noise fraction differs significantly
from what’s expected from the channel
parameters, stop iterations for samples in Qκ

(i.e.: retain the last prefiltered value before the
violation).

predicts

finds

bets noisy!
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Iteration monitoring (cont.)

Example of iteration monitoring for a grayscale image affected by S&P
noise (10%).
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Additional details, features, tricks

▶ Bias cancelation. As in lossless compression, we add an adaptive
component to the predictor to neutralize context-dependent biases in the
fixed predictor.

• Contexts are first classified into N prediction classes (or clusters)
R1,R2, . . . ,RN .

• Bias statistics are collected in each prediction class Rr, and a bias
correction ϵr is computed for the class after the first DUDE pass.
Bias is measured relative to the prefiltered value yi.

• Prediction classes are then re-clustered into the conditioning classes
Qκ, 1 ≤ κ ≤ K.

• If Syi ∈ Rr, then the final prediction value for xi is

x̂i = x̃i + ϵr,

which is used to compute the prediction error ei used for the
statistics of the corresponding Qκ.
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Additional details, features, tricks (cont.)

▶ Prediction and context classification.

• In the current implementation of iDUDE, prediction and
context classification are based on the 5× 5 window
surrounding a sample.

• Both use wing gradients (8 directions), from which some edge
detection capability and a measure of context activity (or
energy) are derived. In addition, a signature of the context
texture is used in context classification.

N E S WN wing

N E S W

NE wing

N
E

S
W

E wing

N
E

S
W

SE wing

NESW

S wing

▶ Channel inversion.
• For the S&P and M -ary symmetric channel, the matrices Π are invertible

and well conditioned. The inverse Π−1 is used as described so far.
• For the Gaussian channel, the matrix Π is invertible but very badly

conditioned—for practical purposed, we can consider it singular. Various
approaches can be used to approximate channel inversion
• Find a solution Px that minimizes ||P̂z −ΠP̂x|| under some

numerical constraints.
• Use parametric representations for Px and Pz (e.g., Laplacian and

Gaussian/Laplacian convolution, respectively), and estimate the
parameters of Px.
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iDUDE: a framework for grayscale image denoising

▶ Why “framework”? iDUDE is a general architecture for a denoising
system incorporating the basic DUDE principles
• estimation of context-conditioned clean sample probability

distributions
• an optimal Bayes denoising rule based on the estimated distributions

and the given loss function

together with a set of basic assumptions on grayscale images.

▶ The framework is instantiated for different noise types or image
characteristics, by choosing specific embodiments for different
algorithmic components
• knowledge about the noisy channel, in the form of the channel

transition matrix, drives the choice of an appropriate channel
inversion method

• it also dictates the choice of an appropriate prefilter
• knowledge about the noise, the image type, and their interaction,

drives the design of the context model, including
• context classification and aggregation strategies
• choice of conventional image predictors
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Denoising examples and results

▶ iDUDE was instantiated for three types of noise
• S&P
• M-ary symmetric
• Zero-mean additive white Gaussian (AWGN): zi = xi + ηi, where

ηi ∼ fσ(u) =
1√
2πσ

exp
(
−u2/(2σ2)

) probability density
function

▶ Loss function: Peak Signal to Noise Ratio (PSNR):

MSE =
1

m · n
∑
i

(x̂DUDE
i − xi)

2, RMSE =
√
MSE

PSNR = 20 log10
M − 1

RMSE
(in dB)

MSE=Mean
Squared Error,

RMSE=Root
MSE

Bottom line: iDUDE significantly surpasses the published state of the art
for impulse channels. It is competitive with very respectable schemes,
but loses to the best, on the Gaussian channel—work in progress.
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Gaussian channel

▶ Prefiltering and iteration have little effect (at most 2 iterations)

▶ Two types of context classification schemes

• one based on gradients/texture as used for S&P and MSC (fast)
• one based on vector quantization using LBG (Linde-Buzo-Gray),

better for low SNR, but slower

▶ channel inversion done through an approximate ML estimation of a
TSGD for the clean prediction errors

▶ needs improvement!
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Denoising example: M-ary symmetric channel

Clean image
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Denoising example: M-ary symmetric channel

Noisy: M-ary symmetric 30% RMSE = 48.2 PSNR = 8.6dB
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Denoising example: M-ary symmetric channel

Denoised: M-ary symmetric 30% RMSE = 14.5 PSNR = 29.5dB
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Denoising example: Salt and Pepper noise

Clean image
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Denoising example: Salt and Pepper noise

Noisy: S&P 50% RMSE = 107.6 PSNR = 6.6dB
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Denoising example: Salt and Pepper noise

Denoised: RMSE = 7.5 PSNR = 31.8dB
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Denoising example: Salt and Pepper noise

Clean image
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Image set

classical
images
512×512

very small
images (24)
384×256

larger images
1524×1200 to
2048×2560
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Sample of denoiser parameters
17

Gaussian
S&P M -ary symmetric LBG WGT

v. small small large small large small large all
δ R K T R K T R K T δ R K T R K T σ R K N K N K T

10% 10 4 8 10 4 14 15 32 16 10% 15 4 14 15 8 16 5 1 32 256 96 256 32 6
30% 10 4 8 10 4 14 15 32 16 20% 15 4 14 20 2 32 192 32 192
50% 10 4 8 10 4 14 20 32 16 30% 15 4 10 15 8 16
70% 20 4 8 20 4 14 20 32 14 40% 20 4 9

50% 20 4 8 20 16 8

TABLE II
PARAMETERS USED IN THE EXPERIMENTS. R: NUMBER OF iDUDE ITERATIONS; K, T : MODEL SIZE PARAMETERS (CF. SEC. IV-A); N : NUMBER OF

LBG CLUSTERS (SEC. IV-F2).

δ = 10% δ = 30% δ = 50% δ = 70%
image MSM IMSM iDUDE MSM IMSM iDUDE MSM IMSM iDUDE MSM IMSM iDUDE
Lena 40.1 40.4 45.2 34.1 35.2 39.7 27.4 32.0 36.3 16.7 29.1 32.8
Boat 36.3 36.5 41.0 30.6 31.2 35.3 25.5 28.3 32.0 16.4 25.7 28.9
Barbara 32.6 33.0 38.7 27.4 28.3 31.7 23.4 26.0 27.7 15.8 24.2 24.7
Tools 25.6 25.2 31.8 22.1 22.2 26.9 19.2 20.1 23.5 14.1 18.5 20.6
Toolsk 27.1 26.8 31.0 23.6 23.8 26.4 20.0 21.7 23.6 12.9 20.2 21.2
Womank 34.0 33.9 40.7 30.0 30.3 34.9 24.6 27.9 31.2 14.3 26.1 28.1
Bike 31.2 31.3 39.4 26.5 27.4 33.1 22.4 24.7 29.0 15.0 22.1 25.1

image/
δ MSM IMSM CHN05 iDUDE

Set24
10% 36.3 36.5 40.4 40.9
30% 30.6 31.4 34.5 35.1
50% 25.0 28.4 31.1 31.6
70% 15.8 25.9 28.1 28.6

Lena*
10% 38.9 39.2 42.3 44.8
30% 32.9 33.9 35.6 38.8
50% 26.4 30.8 32.3 35.4
70% 16.1 28.0 29.3 31.7

TABLE III
RESULTS FOR S&P NOISE. MSM: MODIFIED SELECTIVE MEDIAN (CF. SECTION IV-D1); IMSM: ITERATED MSM; CHN05: THE DENOISER OF [28].

COMPARISON WITH CHN05 DISPLAYED SEPARATELY.

In the second variant, contexts Syi are first brought to differential canonical form C(Syi ) (see Figure 3). Taking the C(Syi )
as 24-dimensional real vectors, the contexts are initially classified into N clusters V1, V2, . . . , VN by means of the Linde-
Buzo-Gray (LBG) vector quantization algorithm [38], with the L2 metric used to measure distance between contexts. The
activity level of a context Syi is defined in this case as log σ̂2

i , where σ̂2
i is the empirical variance of samples in the context.

Conditioning classes Q1,Q2, . . . ,QK are defined by uniformly quantizing the activity level. The set of prediction classes is
then defined as {Qi ∩ Vj | 1 ≤ i ≤ K, 1 ≤ j ≤ N }, namely, a total of J = K ·N classes. The LBG variant of the context
model is slower, but performs better, and is the preferred mode of operation, at lower SNR.

3) Model estimation: We follow the parametric approach outlined in Subsection III-F, but with a simpler estimation procedure
for the cluster-dependent parameters θ and µ of the (discrete) Laplacian component of the LG model for Px( · | Syi ). First,
denoting the variance of the Laplacian by τ2, we observe that by the definition of the LG model, its variance ν2 is given by
ν2 = τ2 + σ2(1 + k−1). Given the parameters of the Laplacian, τ2 takes the form

τ2 =
2θ

(1− θ)2 + r(1− r) (22)

where r denotes the fractional part of µ. In the first pass of the iDUDE we compute the empirical mean, µ̂κ, and variance, ν̂2κ,
of the differences zi − x̂(Syi ) observed in each class Qκ. Next, we estimate the variance τ2κ of the Laplacian component for
Qκ as

τ̂2κ = max
(
r̂κ(1− r̂κ), ν̂2κ − σ2(1 + k−1)

)
(23)

where r̂κ denotes the fractional part of µ̂κ and we recall that k is a parameter that accounts for the number of samples
participating in the weighted average in the WGT predictor (we use k = 5). The maximum in (23) accounts for the fact that
an estimate ν̂2κ−σ2(1 + k−1) for the variance could be smaller than the minimum possible variance r̂κ(1− r̂κ) of the discrete
Laplacian (obtained for θ = 0, see (22)), due to statistical fluctuations or an inaccurate choice of the parameter k. Finally,
given µ̂κ and τ̂2κ , we use (22) to solve for an estimate θ̂κ.

V. RESULTS

In this section, we present results obtained with the iDUDE on images corrupted by simulated S&P, M -ary, and Gaussian
noise. For each type of noise, we compare our results with those of a sample of recent denoising algorithms from the literature
for which an objective basis for comparison was available, and including in all cases the schemes with the best available
published results as of the writing of this paper. Our iDUDE experiments are based on a research prototype implementation
written in C++, and run on a vintage 2007 Intel-based personal computer.10 For a very rough complexity reference, we measured

10Specifically, Intel(R) Xeon(R) 5160 CPU, 3 GHz clock speed, 3 GB RAM, running Linux.

K · 2T = number of prediction classes, K = number of conditioning classes,
R = number of iterations

K · 2T or K ·N = number of prediction classes,
K = number of conditioning classes,

R = number of iterations
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Results for the S&P channel: Comparisons

17

Gaussian
S&P M -ary symmetric LBG WGT

v. small small large small large small large all
δ R K T R K T R K T δ R K T R K T σ R K N K N K T

10% 10 4 8 10 4 14 15 32 16 10% 15 4 14 15 8 16 5 1 32 256 96 256 32 6
30% 10 4 8 10 4 14 15 32 16 20% 15 4 14 20 2 32 192 32 192
50% 10 4 8 10 4 14 20 32 16 30% 15 4 10 15 8 16
70% 20 4 8 20 4 14 20 32 14 40% 20 4 9

50% 20 4 8 20 16 8

TABLE II
PARAMETERS USED IN THE EXPERIMENTS. R: NUMBER OF iDUDE ITERATIONS; K, T : MODEL SIZE PARAMETERS (CF. SEC. IV-A); N : NUMBER OF

LBG CLUSTERS (SEC. IV-F2).

δ = 10% δ = 30% δ = 50% δ = 70%
image MSM IMSM iDUDE MSM IMSM iDUDE MSM IMSM iDUDE MSM IMSM iDUDE
Lena 40.1 40.4 45.2 34.1 35.2 39.7 27.4 32.0 36.3 16.7 29.1 32.8
Boat 36.3 36.5 41.0 30.6 31.2 35.3 25.5 28.3 32.0 16.4 25.7 28.9
Barbara 32.6 33.0 38.7 27.4 28.3 31.7 23.4 26.0 27.7 15.8 24.2 24.7
Tools 25.6 25.2 31.8 22.1 22.2 26.9 19.2 20.1 23.5 14.1 18.5 20.6
Toolsk 27.1 26.8 31.0 23.6 23.8 26.4 20.0 21.7 23.6 12.9 20.2 21.2
Womank 34.0 33.9 40.7 30.0 30.3 34.9 24.6 27.9 31.2 14.3 26.1 28.1
Bike 31.2 31.3 39.4 26.5 27.4 33.1 22.4 24.7 29.0 15.0 22.1 25.1

image/
δ MSM IMSM CHN05 iDUDE

Set24
10% 36.3 36.5 40.4 40.9
30% 30.6 31.4 34.5 35.1
50% 25.0 28.4 31.1 31.6
70% 15.8 25.9 28.1 28.6

Lena*
10% 38.9 39.2 42.3 44.8
30% 32.9 33.9 35.6 38.8
50% 26.4 30.8 32.3 35.4
70% 16.1 28.0 29.3 31.7

TABLE III
RESULTS FOR S&P NOISE. MSM: MODIFIED SELECTIVE MEDIAN (CF. SECTION IV-D1); IMSM: ITERATED MSM; CHN05: THE DENOISER OF [28].

COMPARISON WITH CHN05 DISPLAYED SEPARATELY.

In the second variant, contexts Syi are first brought to differential canonical form C(Syi ) (see Figure 3). Taking the C(Syi )
as 24-dimensional real vectors, the contexts are initially classified into N clusters V1, V2, . . . , VN by means of the Linde-
Buzo-Gray (LBG) vector quantization algorithm [38], with the L2 metric used to measure distance between contexts. The
activity level of a context Syi is defined in this case as log σ̂2

i , where σ̂2
i is the empirical variance of samples in the context.

Conditioning classes Q1,Q2, . . . ,QK are defined by uniformly quantizing the activity level. The set of prediction classes is
then defined as {Qi ∩ Vj | 1 ≤ i ≤ K, 1 ≤ j ≤ N }, namely, a total of J = K ·N classes. The LBG variant of the context
model is slower, but performs better, and is the preferred mode of operation, at lower SNR.

3) Model estimation: We follow the parametric approach outlined in Subsection III-F, but with a simpler estimation procedure
for the cluster-dependent parameters θ and µ of the (discrete) Laplacian component of the LG model for Px( · | Syi ). First,
denoting the variance of the Laplacian by τ2, we observe that by the definition of the LG model, its variance ν2 is given by
ν2 = τ2 + σ2(1 + k−1). Given the parameters of the Laplacian, τ2 takes the form

τ2 =
2θ

(1− θ)2 + r(1− r) (22)

where r denotes the fractional part of µ. In the first pass of the iDUDE we compute the empirical mean, µ̂κ, and variance, ν̂2κ,
of the differences zi − x̂(Syi ) observed in each class Qκ. Next, we estimate the variance τ2κ of the Laplacian component for
Qκ as

τ̂2κ = max
(
r̂κ(1− r̂κ), ν̂2κ − σ2(1 + k−1)

)
(23)

where r̂κ denotes the fractional part of µ̂κ and we recall that k is a parameter that accounts for the number of samples
participating in the weighted average in the WGT predictor (we use k = 5). The maximum in (23) accounts for the fact that
an estimate ν̂2κ−σ2(1 + k−1) for the variance could be smaller than the minimum possible variance r̂κ(1− r̂κ) of the discrete
Laplacian (obtained for θ = 0, see (22)), due to statistical fluctuations or an inaccurate choice of the parameter k. Finally,
given µ̂κ and τ̂2κ , we use (22) to solve for an estimate θ̂κ.

V. RESULTS

In this section, we present results obtained with the iDUDE on images corrupted by simulated S&P, M -ary, and Gaussian
noise. For each type of noise, we compare our results with those of a sample of recent denoising algorithms from the literature
for which an objective basis for comparison was available, and including in all cases the schemes with the best available
published results as of the writing of this paper. Our iDUDE experiments are based on a research prototype implementation
written in C++, and run on a vintage 2007 Intel-based personal computer.10 For a very rough complexity reference, we measured

10Specifically, Intel(R) Xeon(R) 5160 CPU, 3 GHz clock speed, 3 GB RAM, running Linux.

17

Gaussian
S&P M -ary symmetric LBG WGT

v. small small large small large small large all
δ R K T R K T R K T δ R K T R K T σ R K N K N K T

10% 10 4 8 10 4 14 15 32 16 10% 15 4 14 15 8 16 5 1 32 256 96 256 32 6
30% 10 4 8 10 4 14 15 32 16 20% 15 4 14 20 2 32 192 32 192
50% 10 4 8 10 4 14 20 32 16 30% 15 4 10 15 8 16
70% 20 4 8 20 4 14 20 32 14 40% 20 4 9

50% 20 4 8 20 16 8

TABLE II
PARAMETERS USED IN THE EXPERIMENTS. R: NUMBER OF iDUDE ITERATIONS; K, T : MODEL SIZE PARAMETERS (CF. SEC. IV-A); N : NUMBER OF

LBG CLUSTERS (SEC. IV-F2).

δ = 10% δ = 30% δ = 50% δ = 70%
image MSM IMSM iDUDE MSM IMSM iDUDE MSM IMSM iDUDE MSM IMSM iDUDE
Lena 40.1 40.4 45.2 34.1 35.2 39.7 27.4 32.0 36.3 16.7 29.1 32.8
Boat 36.3 36.5 41.0 30.6 31.2 35.3 25.5 28.3 32.0 16.4 25.7 28.9
Barbara 32.6 33.0 38.7 27.4 28.3 31.7 23.4 26.0 27.7 15.8 24.2 24.7
Tools 25.6 25.2 31.8 22.1 22.2 26.9 19.2 20.1 23.5 14.1 18.5 20.6
Toolsk 27.1 26.8 31.0 23.6 23.8 26.4 20.0 21.7 23.6 12.9 20.2 21.2
Womank 34.0 33.9 40.7 30.0 30.3 34.9 24.6 27.9 31.2 14.3 26.1 28.1
Bike 31.2 31.3 39.4 26.5 27.4 33.1 22.4 24.7 29.0 15.0 22.1 25.1

image/
δ MSM IMSM CHN05 iDUDE

Set24
10% 36.3 36.5 40.4 40.9
30% 30.6 31.4 34.5 35.1
50% 25.0 28.4 31.1 31.6
70% 15.8 25.9 28.1 28.6

Lena*
10% 38.9 39.2 42.3 44.8
30% 32.9 33.9 35.6 38.8
50% 26.4 30.8 32.3 35.4
70% 16.1 28.0 29.3 31.7

TABLE III
RESULTS FOR S&P NOISE. MSM: MODIFIED SELECTIVE MEDIAN (CF. SECTION IV-D1); IMSM: ITERATED MSM; CHN05: THE DENOISER OF [28].

COMPARISON WITH CHN05 DISPLAYED SEPARATELY.

In the second variant, contexts Syi are first brought to differential canonical form C(Syi ) (see Figure 3). Taking the C(Syi )
as 24-dimensional real vectors, the contexts are initially classified into N clusters V1, V2, . . . , VN by means of the Linde-
Buzo-Gray (LBG) vector quantization algorithm [38], with the L2 metric used to measure distance between contexts. The
activity level of a context Syi is defined in this case as log σ̂2

i , where σ̂2
i is the empirical variance of samples in the context.

Conditioning classes Q1,Q2, . . . ,QK are defined by uniformly quantizing the activity level. The set of prediction classes is
then defined as {Qi ∩ Vj | 1 ≤ i ≤ K, 1 ≤ j ≤ N }, namely, a total of J = K ·N classes. The LBG variant of the context
model is slower, but performs better, and is the preferred mode of operation, at lower SNR.

3) Model estimation: We follow the parametric approach outlined in Subsection III-F, but with a simpler estimation procedure
for the cluster-dependent parameters θ and µ of the (discrete) Laplacian component of the LG model for Px( · | Syi ). First,
denoting the variance of the Laplacian by τ2, we observe that by the definition of the LG model, its variance ν2 is given by
ν2 = τ2 + σ2(1 + k−1). Given the parameters of the Laplacian, τ2 takes the form

τ2 =
2θ

(1− θ)2 + r(1− r) (22)

where r denotes the fractional part of µ. In the first pass of the iDUDE we compute the empirical mean, µ̂κ, and variance, ν̂2κ,
of the differences zi − x̂(Syi ) observed in each class Qκ. Next, we estimate the variance τ2κ of the Laplacian component for
Qκ as

τ̂2κ = max
(
r̂κ(1− r̂κ), ν̂2κ − σ2(1 + k−1)

)
(23)

where r̂κ denotes the fractional part of µ̂κ and we recall that k is a parameter that accounts for the number of samples
participating in the weighted average in the WGT predictor (we use k = 5). The maximum in (23) accounts for the fact that
an estimate ν̂2κ−σ2(1 + k−1) for the variance could be smaller than the minimum possible variance r̂κ(1− r̂κ) of the discrete
Laplacian (obtained for θ = 0, see (22)), due to statistical fluctuations or an inaccurate choice of the parameter k. Finally,
given µ̂κ and τ̂2κ , we use (22) to solve for an estimate θ̂κ.

V. RESULTS

In this section, we present results obtained with the iDUDE on images corrupted by simulated S&P, M -ary, and Gaussian
noise. For each type of noise, we compare our results with those of a sample of recent denoising algorithms from the literature
for which an objective basis for comparison was available, and including in all cases the schemes with the best available
published results as of the writing of this paper. Our iDUDE experiments are based on a research prototype implementation
written in C++, and run on a vintage 2007 Intel-based personal computer.10 For a very rough complexity reference, we measured

10Specifically, Intel(R) Xeon(R) 5160 CPU, 3 GHz clock speed, 3 GB RAM, running Linux.
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Results for the S&P channel: Visuals

19

δ = 10% δ = 30% δ = 50%
image MED iDUDE MED iDUDE MED iDUDE
Boat 26.9 33.9 25.8 29.6 23.5 26.6
Barbara 23.1 29.9 22.7 25.4 21.2 23.5
Tools 18.9 26.9 18.4 22.3 17.1 19.2
Bike 23.4 31.1 22.4 26.0 19.9 22.2

image: Lena
δ MED ROAD iDUDE

10% 30.0 – 39.8
20% 30.1 35.0 36.9
30% 29.3 33.2 34.4
40% 27.8 31.4 32.8
50% 25.5 29.4 30.4

TABLE IV
RESULTS FOR M -ARY SYMMETRIC NOISE. MED: MEDIAN OF A 5×5 WINDOW; ROAD: RANK-ORDERED ABSOLUTE DIFFERENCES [23]. COMPARISON

WITH ROAD FOR THE LENA IMAGE DISPLAYED SEPARATELY.

(a) Noisy, δ = 30% (b) MSM (30.6dB) (c) IMSM (31.2dB) (d) iDUDE (35.3dB)

(e) Noisy, δ = 70% (f) MSM (16.4dB) (g) IMSM (25.7dB) (h) iDUDE (28.9dB)

Fig. 9. Denoising of Boat affected by S&P noise (a 100×100 image segment is shown).

(a) Noisy, δ = 20% (16.2dB) (b) MED (30.1dB) (c) iDUDE (36.9dB)

Fig. 10. Denoising of Lena affected by M -ary symmetric noise with δ = 20% (a 160×160 image segment is shown). MED: median of a 5×5 window.
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Results for the MSC: Comparisons and Visuals
19

δ = 10% δ = 30% δ = 50%
image MED iDUDE MED iDUDE MED iDUDE
Boat 26.9 33.9 25.8 29.6 23.5 26.6
Barbara 23.1 29.9 22.7 25.4 21.2 23.5
Tools 18.9 26.9 18.4 22.3 17.1 19.2
Bike 23.4 31.1 22.4 26.0 19.9 22.2

image: Lena
δ MED ROAD iDUDE

10% 30.0 – 39.8
20% 30.1 35.0 36.9
30% 29.3 33.2 34.4
40% 27.8 31.4 32.8
50% 25.5 29.4 30.4

TABLE IV
RESULTS FOR M -ARY SYMMETRIC NOISE. MED: MEDIAN OF A 5×5 WINDOW; ROAD: RANK-ORDERED ABSOLUTE DIFFERENCES [23]. COMPARISON

WITH ROAD FOR THE LENA IMAGE DISPLAYED SEPARATELY.

(a) Noisy, δ = 30% (b) MSM (30.6dB) (c) IMSM (31.2dB) (d) iDUDE (35.3dB)

(e) Noisy, δ = 70% (f) MSM (16.4dB) (g) IMSM (25.7dB) (h) iDUDE (28.9dB)

Fig. 9. Denoising of Boat affected by S&P noise (a 100×100 image segment is shown).

(a) Noisy, δ = 20% (16.2dB) (b) MED (30.1dB) (c) iDUDE (36.9dB)

Fig. 10. Denoising of Lena affected by M -ary symmetric noise with δ = 20% (a 160×160 image segment is shown). MED: median of a 5×5 window.
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(e) Noisy, δ = 70% (f) MSM (16.4dB) (g) IMSM (25.7dB) (h) iDUDE (28.9dB)

Fig. 9. Denoising of Boat affected by S&P noise (a 100×100 image segment is shown).

(a) Noisy, δ = 20% (16.2dB) (b) MED (30.1dB) (c) iDUDE (36.9dB)

Fig. 10. Denoising of Lena affected by M -ary symmetric noise with δ = 20% (a 160×160 image segment is shown). MED: median of a 5×5 window.
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Results for the Gaussian channel: comparisons and visuals

20

(a) Clean (b) BM3D (33.8 dB) (c) NLM (32.9 dB) (d) iDUDE (32.9 dB)

Fig. 11. Denoising of Boat affected by Gaussian noise with σ=10. A 128 × 128 portion of the denoising error image is shown for each denoiser. The
grayscale value in location i of each error image shown is [8 · (χi − xi) + 128], where the values χi and xi correspond, respectively, to the denoised and
the clean sample in location i, and the square brackets denote clamping to the range [0, 255] (multiplication by 8 enhances visibility of the predominant
small-magnitude error values).

C. Gaussian noise

Table V summarizes our results for the Gaussian channel, comparing with the state of the art Block Matching 3D (BM3D) [12],
and with the Non Local Means (NML) scheme of [4].12

We report results for the high SNR regime (σ=5), and the low SNR regime (σ=20). For the high SNR regime, we include
results for the two variants of iDUDE discussed in Section IV-F2, namely, one based on LBG clustering, and one based on the
WGT model (referred to as iDUDEF). The iDUDEF variant is competitive at this noise level, and achieves the speeds mentioned
above. In the low SNR regime, the LBG-based scheme has a more significant performance advantage, and we report only on
this variant. This work has focused on demonstrating the wide applicability of the iDUDE framework for various types of noise
and images, rather than optimizing performance specifically for the Gaussian channel, which is work in progress. Although
our results for this channel do not reach the performance of [12], they are competitive with those obtained with the denoiser
of [4], comparing favorably at σ=5, and somewhat below at σ=20. Figure 11 shows denoising error images (i.e., images of
differences between denoised and clean samples, re-centered at brightness level 128) for a portion of the Boat image at σ=10.
The figure shows that iDUDE and NLM achieve the same PSNR, with iDUDE showing better recovery of edges (which are
less marked in the corresponding image) and NLM better performance on smoother areas. BM3D does well on both types of
image region, and has better performance overall.

image σ = 5 σ = 20
BM3D NLM iDUDE iDUDEF BM3D NLM iDUDE

Lena 38.7 37.7 38.0 37.8 33.0 31.3 31.3
Boat 37.2 36.1 36.6 36.3 30.9 29.6 29.4
Barbara 38.3 37.1 36.9 36.2 31.7 30.1 28.6
Tools 36.3 35.5 35.9 35.7 28.5 27.2 27.0
Bike 38.8 37.6 37.7 37.4 32.1 30.8 29.8

TABLE V
RESULTS FOR GAUSSIAN NOISE. BM3D: BLOCK MATCHING 3D [12]; NLM: NON LOCAL MEANS [4]; iDUDE: iDUDE USING LBG CONTEXT

CLUSTERING; iDUDEF : FAST VARIANT USING WGT CONTEXT CLUSTERING.

VI. CONCLUSION

We have presented a framework for grayscale image denoising based on the discrete universal denoiser (DUDE) of [2].
The framework overcomes the practical limitations, stemming from the model cost issues associated with large alphabets and
limited sizes of image data, by exploiting prior knowledge on the structure of images, as previously done in lossless image
compression, and confirms an important principle in the practical use of universal schemes: Algorithms should be as universal
as necessary for the application at hand but not more—they should not be expected to learn what is already known in advance.
In that sense, the full universality of the basic DUDE in the class of stationary sources is excessive for grayscale images.
Instantiations of the enhanced iDUDE framework were shown to be effective on a variety of image and noise types, achieving
state of the art denoising performance for impulse channels (S&P and M -ary-symmetric), and performance competitive with
modern denoising schemes for the Gaussian channel. Further improvements in performance for the latter is a subject of ongoing
research.

12Results for the NLM algorithm were obtained, for σ=5, using the algorithm described in [4], and for σ=20, using the slightly different version of the
algorithm made available in Matlab by the authors [40]. These versions were found to give the best PSNRs for the respective values of σ. In all cases, the
averaging window was set to 21x21, the similarity window to 7x7, and the parameter h was optimized for each image and σ. Results for BM3D were obtained
with the Matlab code available at [41].

20

(a) Clean (b) BM3D (33.8 dB) (c) NLM (32.9 dB) (d) iDUDE (32.9 dB)

Fig. 11. Denoising of Boat affected by Gaussian noise with σ=10. A 128 × 128 portion of the denoising error image is shown for each denoiser. The
grayscale value in location i of each error image shown is [8 · (χi − xi) + 128], where the values χi and xi correspond, respectively, to the denoised and
the clean sample in location i, and the square brackets denote clamping to the range [0, 255] (multiplication by 8 enhances visibility of the predominant
small-magnitude error values).

C. Gaussian noise

Table V summarizes our results for the Gaussian channel, comparing with the state of the art Block Matching 3D (BM3D) [12],
and with the Non Local Means (NML) scheme of [4].12

We report results for the high SNR regime (σ=5), and the low SNR regime (σ=20). For the high SNR regime, we include
results for the two variants of iDUDE discussed in Section IV-F2, namely, one based on LBG clustering, and one based on the
WGT model (referred to as iDUDEF). The iDUDEF variant is competitive at this noise level, and achieves the speeds mentioned
above. In the low SNR regime, the LBG-based scheme has a more significant performance advantage, and we report only on
this variant. This work has focused on demonstrating the wide applicability of the iDUDE framework for various types of noise
and images, rather than optimizing performance specifically for the Gaussian channel, which is work in progress. Although
our results for this channel do not reach the performance of [12], they are competitive with those obtained with the denoiser
of [4], comparing favorably at σ=5, and somewhat below at σ=20. Figure 11 shows denoising error images (i.e., images of
differences between denoised and clean samples, re-centered at brightness level 128) for a portion of the Boat image at σ=10.
The figure shows that iDUDE and NLM achieve the same PSNR, with iDUDE showing better recovery of edges (which are
less marked in the corresponding image) and NLM better performance on smoother areas. BM3D does well on both types of
image region, and has better performance overall.

image σ = 5 σ = 20
BM3D NLM iDUDE iDUDEF BM3D NLM iDUDE

Lena 38.7 37.7 38.0 37.8 33.0 31.3 31.3
Boat 37.2 36.1 36.6 36.3 30.9 29.6 29.4
Barbara 38.3 37.1 36.9 36.2 31.7 30.1 28.6
Tools 36.3 35.5 35.9 35.7 28.5 27.2 27.0
Bike 38.8 37.6 37.7 37.4 32.1 30.8 29.8

TABLE V
RESULTS FOR GAUSSIAN NOISE. BM3D: BLOCK MATCHING 3D [12]; NLM: NON LOCAL MEANS [4]; iDUDE: iDUDE USING LBG CONTEXT

CLUSTERING; iDUDEF : FAST VARIANT USING WGT CONTEXT CLUSTERING.

VI. CONCLUSION

We have presented a framework for grayscale image denoising based on the discrete universal denoiser (DUDE) of [2].
The framework overcomes the practical limitations, stemming from the model cost issues associated with large alphabets and
limited sizes of image data, by exploiting prior knowledge on the structure of images, as previously done in lossless image
compression, and confirms an important principle in the practical use of universal schemes: Algorithms should be as universal
as necessary for the application at hand but not more—they should not be expected to learn what is already known in advance.
In that sense, the full universality of the basic DUDE in the class of stationary sources is excessive for grayscale images.
Instantiations of the enhanced iDUDE framework were shown to be effective on a variety of image and noise types, achieving
state of the art denoising performance for impulse channels (S&P and M -ary-symmetric), and performance competitive with
modern denoising schemes for the Gaussian channel. Further improvements in performance for the latter is a subject of ongoing
research.

12Results for the NLM algorithm were obtained, for σ=5, using the algorithm described in [4], and for σ=20, using the slightly different version of the
algorithm made available in Matlab by the authors [40]. These versions were found to give the best PSNRs for the respective values of σ. In all cases, the
averaging window was set to 21x21, the similarity window to 7x7, and the parameter h was optimized for each image and σ. Results for BM3D were obtained
with the Matlab code available at [41].

error images (σ = 10; zero error = gray level 128)
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