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iDUDE: A DUDE-based Framework for Grayscale
Image Denoising
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The Discrete Universal DEnoiser (DUDE)

Given an input sequence z = 21, 22, ..., Zn, run two 1-dimensional

passes on z". (string)
Pass 1: For each i, determine the context 8§ of z; in z.

. 2
Collect the empirical conditional distribution P,(z; | 7). D:‘EE’_‘]/ !

Pass 2: For each i, | “channel inversion” |
® estimate the PMF P, (z; |S? )fbased on context

@( 182) = I TRy (- |8@ (as col vectors). 2-dimensional

Same Py (- | S%) for all j with 5% = SZ. (image)

® Given Py(-|S?), the observed z; = a, and the cost
function A, compute a cost-weighted MAP estimate | o ]
:i‘i of T
diy = argmiﬂ AL ( (HfT m[z", b, c,]) ® Tl'a) — context

de
generally non-causal )

Zi
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The basic DUDE works in practice (sometimes)

The basic scheme has been shown to work well for a variety of data
types, including text and binary images.
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The basic scheme has been shown to work well for a variety of data
types, including text and binary images.
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The basic DUDE does not work in practice (sometimes)

Things get complicated when alphabets are large, e.g. grayscale images

with |A| = 256.
Even with a simple 3x3 template, the number of possible
L context patterns is >1.8 - 10': for images of practical size,

contexts will seldom repeat, empirical distributions will be
trivial, DUDE will do nothing.*

* “almost hopeless” [Buades, Coll, Morel: “A review of image denoising algorithms,
with a new one,” 2005].

many names for one problem: statistics dilution, “curse of
dimensionality,” sparse contexts, model cost, rate of convergence (to best
performance).

Lessons from lossless image compression:

® Don't ask the algorithm to learn what you already know: use prior
knowledge, be as universal as necessary, but not more

® Aggregate statistics from contexts that are “close” and produce
“similar” conditional distributions: context quantization
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Assumptions and tools for clean image modeling

» Smoothness: Contexts that are close as vectors (e.g., in Ls) tend to
produce similar conditional distributions and can be merged

» Symmetries: Contexts that are similar up to spatial and black/white
symmetries can be merged

I
[ I
I [

= bring contexts to canonical representations modulo these
symmetries
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Assumptions and tools for clean image modeling

» Prediction: If &; = (S)) is a good predictor of the center sample of S¥,
then P(-|S¥) concentrates around &; = model prediction errors:
P(x; — ;| S)

» DC invariance: Contexts that are similar up to a constant shift in
brightness will have similar conditional distributions, up to a shift in the
support (goes well with previous item)

P(z-%|m) P(z|@)  P(ui|™)

DC-shifted

0

ol

—
P
Zi

= use differential, DC-invariant, representations for contexts (e.g.,
based on gradients)

8/41



Noisy complications

Assumptions break for noisy images, especially with impulse channels,
e.g., the S&P channel.

Smoothness
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Noisy complications

Assumptions break for noisy images, especially with impulse channels,
e.g., the S&P channel.

Smoothness

S&P channel:
0 (6/2)
a{a (1-9)
M-1 (6/2)

contexts that were close in the clean image are not so in the noisy one
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Noisy complications

Assumptions break for noisy images, especially with impulse channels,
e.g., the S&P channel.

Prediction, DC-Invariance

clean noisy merged

\ noisy

0 a Mi1 0 a M1
/ Applying channel
0 inversion to shifts
of this distribution
5 b M1 b T Mh1 WI.//. not give gpod
estimates of either
clean distribution
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Noisy complications (cont.)

» Impulse channels:

® Noisy samples do not satisfy smoothness or DC-invariance
® Noisy samples can throw predictor off

» Another type of impulse channel: M-ary symmetric channel (MSC)

1-96 a=Db,
P(bm):{ 5/(M—=1) a#b

» “Continuous” channels such as the Gaussian channel tend to preserve the
assumptions better.
z — [z 4+ N(0,0%)] (with saturation at 0, M —1)

in general, we need a second look at our image assumptions and model
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A formal model for clean images

» i AlSI— A predictor for z;: 7; = #(S¥)
> Q: Al 5 {9, Oy, ..., Qx'} context quantization function: maps
contexts S to clusters (or conditioning classes) Q(S)
® DC-invariant: Q(S) = Q(S’) whenever § = &’ up to DC shift
® Number of clusters K controls model cost/performance trade-off
» A set of cluster-conditioned distributions Pgr(e| Q,), 1 <k < K,
of prediction error values e € A 2 {-M+1,-M+2,... M-1}
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A formal model for clean images

» The model assumes that image samples are generated as follows:
® ¢, is drawn independently with probability Pg(e; | Q(S)))
o i =[ei+3(SF)], o, ([zlo.ar—1 denotes clamping to [0..M —1])

Pp(e| Q(S)) Py(z;] S7)
shift by Z;, clamp

what we’ll estimate what we’ll use

;
—Mtl 0 M-1 0 T M-l
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Sampling and estimation

» Represent € A by an indicator M-vector u%, =[00...010 ... 0]
——
» Represent e € A by an indicator (2M —1)-vector
uS,;_;=1[00...010... 0]7 (with some notation abuse)
e+M—1
» For a € A, define the M x(2M —1) shift and clamp matrix

M—1—a a
1 1 - 1 00 --- 0
00 --- 0
Cla)=| . . : Larsnr 0 0 ol |lc@
Co : identit — )
o0 --- 0 Y 1 1 1 Ue, l[atei]nr—1
—M+1 —M+2+++—a—1 —a +++ M—1—a M—a M—
> ;= [ei Jr“%i]o..M—l = uj; =C(z;)ugy, I

» Given 7;(S¥) and Q,, = Q(S¥), observing x; informs us about a window
of length M in the support of Pg(-| Q)

[ I 0000 ]

—M+1 —T; M—1—-%; M-—1
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Estimation of Pg(-| Q)

To estimate Pg(-| Q. ), we maintain a (2M —1)-vector statistic e,,
initialized to 0. Upon observing x;, we perform the update H

e, < e, + M(z;)-uy;

where M(Z;) is a (2M —1)Xx M estimation matrix. =
At this point, the obvious choice is

- T
M(Z;) = [Onrscmr—1-z:) |Inr] Onrxa, |
equivalent to incrementing the location corresponding to e; = x; — &5,
but other choices are possible.

)

M(@)C(fn))-l( > M)

=Qx 1:Q¥=Q,

R-( > M(ii)uf\})

QF=04

Pr(Q.) = (Q

lI>

is an unbiased estimator of Pg(-| Q) (R is a normalization matrix).
v
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Model estimation for clean images

@ /nitialization. Initialize to zero a histogram, e, of prediction error residual
occurrences for each context cluster Q,., 1 <k < K.

@® Statistics collection. For each index i € Vixn:
® Set ; = #(S°), the predicted value for x;.

O Set S* = D(SY), the differential representation of S¥.

® Set C* = C(SY), the canonical representation of SX.
® Set OQF = Q(CY), the conditioning class of S;.
® Set e, + e, + M(Z;) uj: for k such that Q.. = Q.

© Normalization. For each k, normalize e, to obtain Px(|Q,).

@ Conditional distributions for individual contexts. For each index
7 S Vm><n:
® Set 7;, S, and OF as in Step 2 above.
0 Set Px(:|S¥) = C(&) Pr(-|QY).
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How to deal with noise: avoid it (if you can!)

Try to carry out modeling operations in a cleaner domain, if possible

» Get contexts from a prefiltered version
y = F(z) of the noisy image

® Contexts S, predictions z; = Z(S})

® Prefilter F: a simple denoiser (e.g.,
median filter), or a previous application
of the DUDE (iterative DUDE).
Counts for stats are still taken from the
original noisy image z.

» Model prediction errors in the clean image.
Estimate Py(-|-) directly, without going
first through P,(-|-) and then inverting the
channel.

® Assumption: &; = £(SY) is a good
predictor of z;.

first later

’

/
/
/ FL
/
rough ,/ _

denoiser [ ¥ /

denoised

iteration iterations
7 h
/
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Channel inversion: a different view

Say the sequence observed in a given context b e c is
a” =ay,a9,a3,...,0y,,
and let m be the histogram of occurrence of symbols in a", We have
m = uy; +uid +uld 4+ ulp
and

H—Tm:HTa1+HTa2+HTa3 +HTL‘L,,
+7r +ﬂ' +"'+7"an

where 77 is the i-th column of TI=7 (transpose of the i-th row of TT~1).

We can interpret this as computing the channel inversion symbol by
symbol.
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How to deal with noise (cont.)

» Estimation of Pg(-| Q) (dist. of prediction errors e; = x; — Z;):
Upon observing z;, update the statistic e,; with

observations

™| from the noisy
‘/ M(z:) image

e, — e+ M(:T:i)H*T uy;
| —

estimation matrix
- 2
M(%;) uy;

|
_ |~ shifted row of II~!
(transposed)

® channel inversion done on a sample-by-sample basis (in practice, can
still be done with scalar increments and some post-processing).

o P(-|SY) recovered from Py (-|Q,) by shifting and clamping, using
the observable prediction Z;.
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Model estimation for noisy images

The image x from the clean image procedure decouples into three
images: x (unknown), z (noisy), y (prefiltered).

@ /nitialization. Initialize to zero a histogram, e, of prediction error residual
occurrences for each context cluster Q,., 1 <k < K.
@® Statistics collection. For each index i € Vixn:
O Set &; = ©(SY), the predicted value for ;.
O Set SY = D(SY), the differential representation of SY.

® Set CY = C(SY), the canonical representation of S7.
O Set QY = Q(CY), the conditioning class of S;'.

O Set e, + e, + M'(Z;) uy, for k such that Q,, = QY.
©® Normalization. For each k, normalize e, to obtain f’E(ﬂQ,ﬁ).

@ Conditional distributions for individual contexts. For each index

i E men:
® Set #;, S, and QY as in Step 2 above.

P

O Set Px(-|SY) = C(z:) Pu(|QY).
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lteration monitoring

» Prefiltering and iteration may violate some of the DUDE's basic
independence assumptions.
® the reason: the center sample z; may have participated in the
prefiltering of its neighbors.
This can cause performance deterioration and severe instability over
iterations.

» Solution approach:

® Estimate the fraction of corrupted sample values
that occur in each cluster Q,.
® For each possible noisy value ¢, count the -
fraction of times c occurs in Q, when the
corresponding prediction is far from ¢ (e.g., black

pixel in light background).
. . ) . L predicts D
® |f the estimated noise fraction differs significantly .
from what's expected from the channel finds .
parameters, stop iterations for samples in Q,, ‘

(i.e.: retain the last prefiltered value before the

. . bets noisy!
violation).
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lteration monitoring (cont.)

Example of iteration monitoring for a grayscale image affected by S&P
noise (10%).

PSNR (dB)

41 5 With monitoring\
40 A —
39 - \\\/\
38 1 /\ /
371 withoug

36 monitoring

35 A
34 A
33 1
32 4
31

iteration
10 11 12 13 14 15

N 4
w4
N
o
o4
~ A
o 4
© 4
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Additional details, features, tricks

» Bias cancelation. As in lossless compression, we add an adaptive
component to the predictor to neutralize context-dependent biases in the
fixed predictor.

® Contexts are first classified into N prediction classes (or clusters)
Ri,Ra,...,RN-

® Bias statistics are collected in each prediction class R, and a bias
correction ¢, is computed for the class after the first DUDE pass.
Bias is measured relative to the prefiltered value y;.

® Prediction classes are then re-clustered into the conditioning classes
Q.. 1<k <K.

® If 8 € R,, then the final prediction value for z; is

Ty = T + €,

which is used to compute the prediction error e; used for the
statistics of the corresponding Q.
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Additional details, features, tricks (cont.)

» Prediction and context classification.

® |n the current implementation of iDUDE, prediction and
context classification are based on the 5 x 5 window

surrounding a sample. —
|
® Both use wing gradients (8 directions), from which some edge v
detection capability and a measure of context activity (or

energy) are derived. In addition, a signature of the context
texture is used in context classification.

» Channel inversion.
® For the S&P and M-ary symmetric channel, the matrices IT are invertible
and well conditioned. The inverse TI ! is used as described so far.
® For the Gaussian channel, the matrix IT is invertible but very badly
conditioned—for practical purposed, we can consider it singular. Various
approaches can be used to approximate channel inversion
® Find a solution P, that minimizes ||P, — ITP,|| under some
numerical constraints.
® Use parametric representations for Px and P, (e.g., Laplacian and
Gaussian/Laplacian convolution, respectively), and estimate the

parameters of Px.
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IDUDE: a framework for grayscale image denoising

» Why “framework”? iDUDE is a general architecture for a denoising
system incorporating the basic DUDE principles
® estimation of context-conditioned clean sample probability
distributions
® an optimal Bayes denoising rule based on the estimated distributions
and the given loss function
together with a set of basic assumptions on grayscale images.

» The framework is instantiated for different noise types or image
characteristics, by choosing specific embodiments for different
algorithmic components

® knowledge about the noisy channel, in the form of the channel
transition matrix, drives the choice of an appropriate channel
inversion method
® it also dictates the choice of an appropriate prefilter
® knowledge about the noise, the image type, and their interaction,
drives the design of the context model, including
® context classification and aggregation strategies

® choice of conventional image predictors
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Denoising examples and results

» iDUDE was instantiated for three types of noise
® S&P
® M-ary symmetric
® Zero-mean additive white Gaussian (AWGN): z; = x; + 7;, where

1 2 /6.2 probability density
i fo(u) V21o exp (~u*/(207)) function
» Loss function: Peak Signal to Noise Ratio (PSNR):
MSE=Mean
Squared Error,
_ 1 . DUDE N2 _ RMSE=Root
MSE = —— Z(m —z;)°, RMSE = vMSE MSE

PSNR = 201log,, ]F\Q/IT_SI; (in dB)

Bottom line: iDUDE significantly surpasses the published state of the art
for impulse channels. It is competitive with very respectable schemes,
but loses to the best, on the Gaussian channel—work in progress.
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Gaussian channel

» Prefiltering and iteration have little effect (at most 2 iterations)

» Two types of context classification schemes

® one based on gradients/texture as used for S&P and MSC (fast)
® one based on vector quantization using LBG (Linde-Buzo-Gray),
better for low SNR, but slower

» channel inversion done through an approximate ML estimation of a
TSGD for the clean prediction errors

» needs improvement!
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Denoising example: M-ary symmetric channel

Clean image




Denoising example: M-ary symmetric channel

Noisy: M-ary symmetric 30% RMSE = 48.2 PSNR = 8.6dB
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Denoising example: M-ary symmetric channel

Denoised: M-ary symmetric 30% RMSE = 14.5 PSNR = 29.5dB




Denoising example: Salt and Pepper noise

Clean image
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Denoising example: Salt and Pepper noise

Noisy: S&P 50% RMSE = 107.6 PSNR




Denoising example: Salt and Pepper noise

Denoised: RMSE = 7.5 PSNR = 31.8dB
® - 1 \\’
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Denoising example: Salt and Pepper noise

Clean image
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classical
images
512x512

very small
images (24)
384 %256

larger images
1524 %1200 to
20482560
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Sample of denoiser parameters

S&P M-ary symmetric
v. small small large small large
0 R K T|R K T|R K T o R K T |R K T
10% | 10 4 8 | 10 4 14115 32 16 10% | 15 4 14 | 15 8 16
30% | 10 4 8§ |10 4 1415 32 16 || 20% | 15 4 14
50% | 10 4 8§ |10 4 14 120 32 16| 30% | 15 4 10 | 15 8 16
0% | 20 4 8 |20 4 14 120 32 14| 40% | 20 4 9
50% | 20 4 8 |20 16 8

K - 27 = number of prediction classes, K = number of conditioning classes,
R = number of iterations

Gaussian
LBG WGT
small large all
c | R| K N [ K N K T
5 1 |32 25 | 9 256 || 32 6
20| 2 |32 192 | 32 192

K -2T or K - N = number of prediction classes,
K = number of conditioning classes,
R = number of iterations
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Results for the S&P channel: Comparisons

0 =10% 0 = 30% 0 = 50% 0 =T70%

image MSM IMSM iDUDE MSM IMSM iDUDE MSM IMSM iDUDE MSM IMSM iDUDE
Lena 40.1 404 452 34.1 352 39.7 274 32.0 363 16.7 29.1 328
Boat 36.3 36.5 41.0 30.6 312 353 255 283 320 16.4 257 289
Barbara | 32.6 33.0 38.7 27.4 283 31.7 234 260 27.7 15.8 242 247
Tools 256 252 318 22.1 222 269 19.2 20.1 235 14.1 185 20.6
Toolsk 27.1 268 31.0 23.6 238 264 20.0 21.7 23.6 129 202 21.2
Womank| 34.0 339 40.7 30.0 30.3 349 246 279 312 143 26.1 28.1

Bike 31.2 313 394 26.5 274 33.1 22.4 247 29.0 15.0 22.1 25.1

image/

4 MSM IMSM CHNO5 iDUDE
Setoy

10% 36.3 365 404 409
30% 30.6 314 345 35.1
50% 25.0 284 31.1 31.6
70% 158 259 28.1 28.6
Lena*

10% 389 392 423 448
30% 329 339 356 388
50% 264 308 323 354
70% 16.1 28.0 293 31.7

38/41



Results for the S&P channel: Visuals

gt

70% (f) MSM (16.4dB) (g) IMSM (25.7dB) (h) iDUDE (28.9dB)
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Results for the MSC: Comparisons and Visuals

image: Lena
§=10% | 6 =30% | o6 =50% 6 |MED ROAD iDUDE
image |MED iDUDE|MED iDUDE|MED iDUDE| [10%|30.0 - 39.8

Boat 269 339 |258 29.6 |235 26.6 20%|30.1 35.0 36.9
Barbara|23.1 299 [22.7 254 (212 235 30%(29.3 332 344
Tools [18.9 269 [184 223 |17.1 192 40%|27.8 31.4 328
Bike 234 31.1 |224 26.0 |199 222 50%(25.5 294 304

(a) Noisy, § = 20% (16.2dB) (b) MED (30.1dB) (c) iDUDE (36.9dB)
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Results for the Gaussian channel: comparisons and visuals

image o=35 o =20

BM3D NLM iDUDE iDUDEF| BM3D NLM iDUDE
Lena 3877 377 380 37.8 330 313 313
Boat 372 36.1 36.6 36.3 309 296 294
Barbara| 38.3  37.1 36.9 36.2 31.7 301  28.6
Tools 363 355 359 35.7 285 272 270
Bike 38.8 376 377 374 32.1 30.8  29.8

(a) Clean (b) BM3D (33.8 dB) (c) NLM (32.9 dB) (d) iDUDE (32.9 dB)

error images (o = 10; zero error = gray level 128)
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