Applications of Information Theory
in Image Processing

Image Denoising

Gadiel Seroussi

March 21, 2023

1/49



1. DUDE: Discrete Universal DEnoising

Basic algorithm
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Discrete denoising

X, | Discrete |7 7 ) X1, X
> Memoryless Denoiser ———»

Channel

Discrete |X1;---
Source

Y

o X, Z;, Xi take values from finite alphabets.

® Goal: Choose Xl, ..., Xy on the basis of Zi,...,Z, to minimize

a fidelity criterion (some notion of distortion of X1,...,X, relative
to X1,...,X,, which we may not be able to measure!).
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Applications

® Image Denoising

® Text Correction

® Reception of Uncoded Data

® Hidden Markov Model State Estimation
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Example (non-universal)

Source: Channel:
Binary Markov Chain BSC

1 0 1-96

SOOI AN
1 1

1-p 1-6

...0001111100001111100. .. ...0001000001000001010...=-...0000111101001110110. ..

T T T

® Objective: Minimize bit error rate given the observation of an
n-block, knowing the parameters p, .

® Solution: Backward-Forward Dynamic Programming.

® Fundamental Limit: lim,_,(Min Error Probability) = f(d, p) still
open.
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Example (universal)

® Source: Binary, nothing known about the distribution

Channel: BSC

I

1-6

Objective: Minimize bit error rate given the observation of an
n-block, knowing the parameter §.

Solution: 777
® Fundamental Limit: lim,, ., (Min Error Probability) = 777
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Universal Setting: Basic Assumptions

® Unknown source distribution.

® Discrete Memoryless Channel (DMC) over alphabet
A=1{0,1,...,M — 1}, with a known transition probability matrix.

0 0
1 1
J
?
M—-1e ~Z) M1

II(,j) = Prob(j received | i sent)
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Previous Approaches to Universal Discrete Denoising

® Occam filter [Natarajan 1993, 1995]

® Lossy compression of the noisy signal, tuning the desired SNR to the
expected noise level of the channel.

® Experiments with specific lossy data compression algorithms

® Shortcoming: No implementable universal optimal lossy compression
is known.
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Previous Approaches to Universal Discrete Denoising

® Kolmogorov Sampler [(Donoho 2002]

® For all typical noise realizations, list the corresponding source
realizations that explain the data. Then, do lossless compression of
the source realizations and select the shortest one.

® Shortcoming: Not implementable.

® |t does not attain the theoretically optimum distribution-dependent
performance. (It can be off by a factor of 2.)

® Example: Bernoulli(p) source corrupted by a BSC(4). Trivial
schemes “say what you see” (optimal for p > §) and “say all zeros”
(optimal for p < ) each outperform the Kolmogorov sampler on
more than half of the parameter space.

® Does this mean it is suboptimal in the universal setting? Is the
distribution-dependent performance attainable at all in this setting?

10/49



Notation and Additional Assumptions

® Alphabet: Same finite alphabet A for clean and noisy signals;
wlog, A={0,1,2,....,.M-1} (|A] = M).
® Channel: Nonsingular transition probability matrix:

L both assumptions
IT= {H(Z7J)}i7j€./4 = [7"0 ‘ e 7TM—1] above can be
4 R 4 relaxed
columns

® Sequence notation:
L4 ZEZ = Tiy Titly «oey Tj
® " =uxt =21, 22, ..., Tn

applies to symbols (e.g. ™) or random variables (e.g. X™)
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Notation and Additional Assumptions (cont.)

e n-block denoiser: X™ : A" — A"
on input 2", returns output z'; no sequentiality assumed.

® Loss (or Cost) Function: A : A% — [0, 00), represented by the matrix

A= {A(ivj)}i,jG.A = [)\0 | s | )\M71] . cost of guessing

j when clean

Examples. Hamming loss: A(i,j) = 1if i # j, 0 otherwise. signal is ¢
Quadratic (Euclidean) loss: A(3,5) = (i — j)2.

* Normalized cumulative loss of the denoiser X™ when the observed
sequence is z" € A™ and the channel input is 2™ € A™:

n

=1 4 Denoiser

output for
i-th
coordinate

12/ 49



Performance Benchmark

Optimum performance for a denoiser when the input distribution is
known:

lim min ELg,(X",Z")

n—o0 Xn €D,

where D,, is the class of all n-block denoisers, and expectation is with
respect to the input distribution and the channel.

Notes
® Since A is finite, so is D,, for a given n.
® |t would take a pretty powerful genie to compute this benchmark!

® Nevertheless, it is well defined (maybe with mild assumptions on the
distributions).
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The DUDE Algorithm: General Idea

® Fix context length k. For each symbol to be denoised, do:
® Find left k-context ({1,...,0x) and right k-context (r1,...,7%)

(o] [bfelmr] ]|
® Count all occurrences of symbols with left k-context (¢1,...,¢x) and
right k-context (r1,...,7r%). This gives a conditional empirical
distribution of the noisy symbol given the noisy contexts (¢1,...,¢x)
and (71,...,7k).

® Use channel transition probability to estimate the conditional
empirical distribution of the clean symbol given the noisy contexts
(1y...,0k) and (11,...,7%).

® Make decision on reconstructed symbol using
® the loss function,
® the channel transition probability,
® the conditional empirical distribution
® the observed symbol to be denoised.
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Noiseless Text

We might place the restriction on allowable sequences that no spaces follow each

other. .- effect of statistical knowledge about the source in reducing the
required capacity of the channel --- the relative frequency of the digram ¢ j.
The letter frequencies p(i), the transition probabilities --. The resemblance to

ordinary English text increases quite noticeably at each of the above steps.

This theorem, and the assumptions required for its proof, are in no way necessary
for the present theory. --- The real justification of these definitions, however,
will reside in their implications. --. H is then, for example, the H in
Boltzmann’s famous H theorem. We shall call H = — ) p;logp; the entropy of the
set of probabilities pi,...,pn. --- The theorem says that for large N this will
be independent of ¢ and equal to H. --- The next two theorems show that H and
H' can be determined by limiting operations directly from the statistics of the
message sequences, without reference to the states and transition probabilities
between states. -:- The Fundamental Theorem for a Noiseless Channel --: The
converse part of the theorem, that %% cannot be exceeded, may be proved by noting
that the entropy --- The first part of the theorem will be proved in two different
ways. --- Another method of performing this coding and thereby proving the
theorem can be described as follows: --- The content of Theorem 9 is that,
although an exact match is --- With a good code the logarithm of the reciprocal

probability of a long message must be proportional to the duration of -
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Noisy text

Wz right peace the restiction on alksoable sequbole thgt wo spices fokiow eadh

otxer. .- egfbct of sraaistfcal keowleuge apolt tje souwce in recucilg the
requihed clpagity ofythe clabbel --- the relatrte pweqiency ofpthe digram ¢ j.
The setter fregbwncles p(i), ghe rrahsibion probtbilities --: The resemglahca to

ordwnard Engdish tzxt ircreakes quitq noliceabcy at vach oftthe hbove steps.

Thus theorev, andlthe aszumptjona requiyed ffr its croof, arv il no wsy necgssrry
forptfe prwwent theorz. --- jhe reap juptifocation of dhese defikjtmons, doweyer,
bill rehide inytheir imjlycajijes. --. H is them, fol eskmqle, tle H in
Bolgnmann’s falous H themreg. We vhall cbll H = — ) p;logp; the wntgopz rf thb
set jf prwbabjlities pi,...,pn. --- The theorem sahs tyat fsr lawge N mhis gill
we hndependest of g aed vqunl tj H. --- The neht txo theiremf scow tyat H and
H' can be degereined jy likitkng operatiofs digectlt fgom the stgtissics of thk
mfssagj siqufnves, bithout referenge ty the htates and trankituon krobabilitnes
bejwekn ltates. --- The Fundkmendal Theorem kor a Soiselesd Chjnnen --- Lhe
ronvegse jaht jf tke theorem, thlt %% calnot be excweded, may ke xroved ey hotijg
tyat the enyropy --- The first pajt if the theqrem will be ptoved in two kifferent
wjys. --- Another methjd of plrfolming shis goding ald thmreby proking toe
oheorem can bexdescrined as folfows: --- The contemt ov The rem 9 if thst,
ajthorgh an ezacr mawwh is --- Wotf a goul code therlogaretym of the rehitrocpl
prossbilfly of a lylg mwgsage lust be priporyiopal to tha rurafirn of ---
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Noisy text: Denoising 'm’

Wz right peace the rest iction on alksoable sequbole thgt wo spices fokiow eadh

otxer. .- egfbct of sraaistfcal keowleuge apolt tje souwce in recucilg the
requihed clpagity ofythe clabbel --- the relatrte pweqiency ofpthe digram ¢ j.
The setter fregbwncles p(i), ghe rrahsibion probtbilities --. The resemglahca to

ordwnard Engdish tzxt ircreakes quitq noliceabcy at vach oftthe hbove steps.

Thus theorev, andlthe aszumptjona requiyed ffr its croof, arv il no wsy necqgssrry
forptfe prwwent theorz. --- jhe reap juptifocation of dhese defikjtmons, doweyer,
bill rehide inytheir imjlycajijes. -.- H is them, fol eskmqgle, tle H in
Bolgnmann’s falous H themreg. We vhall cbll H = — > p;logp; the wntgopz rf thb
set jf prwbabjlities pi,...,pn. --- The theorem sahs tyat fsr lawge N mhis gill
we hndependest of g aed vqunl tj H. --- The neht txo theiremf scow tyat H and
H' can be degereined jy likitkng operatiofs digectlt fgom the stgtissics of thk
mfssagj siqufnves, bithout referenge ty the htates and trankituon krobabilitnes
bejwekn ltates. --- The Fundkmendal Theorem kor a Soiselesd Chjnnen --- Lhe
ronvegse jaht jf tke theorem, thlt %% calnot be excweded, may ke xroved ey hotijg
tyat the enyropy --- The first pajt if the theqrem will be ptoved in two kifferent
wjys. --- Another methjd of plrfolming shis goding ald thmreby proking toe
oheorem can bexdescrined as folfows: --- The contemt ov The rem 9 if thst,
ajthorgh an ezacr mawwh is --- Wotf a goul code therlogaretym of the rehitrocpl
prossbilfly of a lylg mwgsage lust be priporyiopal to tha rurafirn of .-
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Context search

Wz right peace the rest iction on alksoable sequbole thgt wo spices fokiow eadh

otxer. .- egfbct of sraaistfcal keowleuge apolt tje souwce in recucilg the
requihed clpagity ofythe clabbel --- the relatrte pweqiency ofpthe digram ¢ j.
The setter fregbwncles p(i), ghe rrahsibion probtbilities --. The resemglahca to

ordwnard Engdish tzxt ircreakes quitq noliceabcy at vach oftthe hbove steps.

Thus theorev, andlthe aszumptjona requiyed ffr its croof, arv il no wsy necgssrry
forptfe prwwent theorz. --- jhe reap juptifocation of dhese defikjtmons, doweyer,
bill rehide inytheir imjlycajijes. -.- H is them, fol eskmqle, tle H in
Bolgnmann’s falous H themreg. We vhall cbll H = — ) p;logp; the wntgopz rf thb
set jf prwbabjlities pi,...,pn. --- The theorem sahs tyat fsr lawge N mhis gill
we hndependest of g aed vqunl tj H. --- The neht txo theiremf scow tyat H and
H' can be degereined jy likitkng operatiofs digectlt fgom the stgtissics of thk
mfssagj siqufnves, bithout referenge ty the htates and trankituon krobabilitnes
bejwekn ltates. --- The Fundkmendal Theorem kor a Soiselesd Chjnnen --- Lhe
ronvegse jaht jf tke theorem, thlt %% calnot be excweded, may ke xroved ey hotijg
tyat the enyropy --- The first pajt if the theqrem will be ptoved in two kifferent
wjys. --- Another methjd of plrfolming shis goding ald thmreby proking toe
oheorem can bexdescrined as folfows: --- The contemt ov The rem 9 if thst,
ajthorgh an ezacr mawwh is --- Wotf a goul code therlogaretym of the rehitrocpl
prossbilfly of a lylg mwgsage lust be priporyiopal to tha rurafirn of .-
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Context search kK =1 eer counts

®er:8
® ecor: 6
® eir: 2
® emr: 1

® eqr: 1
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Context search

Wz right peace the rest iction on alksoable sequbole thgt wo spices fokiow eadh

otxer. .- egfbct of sraaistfcal keowleuge apolt tje souwce in recucilg the
requihed clpagity ofythe clabbel --- the relatrte pweqiency ofpthe digram ¢ j.
The setter fregbwncles p(i), ghe rrahsibion probtbilities --: The resemglahca to

ordwnard Engdish tzxt ircreakes quitq noliceabcy at vach oftthe hbove steps.

Thus theorev, andlthe aszumptjona requiyed ffr its croof, arv il no wsy necgssrry
forptfe prwwent theorz. --- jhe reap juptifocation of dhese defikjtmons, doweyer,
bill rehide inytheir imjlycajijes. -.- H is them, fol eskmqgle, tle H in
Bolgnmann’s falous H themreg. We vhall cbll H = — Y p;logp; the wntgopz rf thb
set jf prwbabjlities pi,...,pn. --- The theorem sahs tyat fsr lawge N mhis gill
we hndependest of g aed vqunl tj H. --- The neht txo theiremf scow tyat H and
H' can be degereined jy likitkng operatiofs digectlt fgom the stgtissics of thk
mfssagj siqufnves, bithout referenge ty the htates and trankituon krobabilitnes
bejwekn ltates. --- The Fundkmendal Theorem kor a Soiselesd Chjnnen --- Lhe
ronvegse jaht jf tke theorem, thlt %% calnot be excweded, may ke xroved ey hotijg
tyat the enyropy --- The first pajt if the theqrem will be ptoved in two kifferent
wjys. --- Another methjd of plrfolming shis goding ald thmreby proking toe
oheorem can bexdescrined as folfows: --- The contemt ov The rem 9 if thst,
ajthorgh an ezacr mawwh is --- Wotf a goul code therlogaretym of the rehitrocpl
prossbilfly of a lylg mwgsage lust be priporyiopal to tha rurafirn of .-
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Context search £k = 2 heere counts

® here: 7
® heore: 5
® heire: 1

® hemre : 1

heqre : 1
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Notation for Context Counts

® a=qa} € A", whole data sequence

b € AF, left k-context string

e c c A*, right k-context string

a € A, arbitrary symbol, 0 < a < M —1

A .
mla, b, c] = M-vector (column) with a-th component equal to the
number of occurrences of the pattern [ b [ a [ c | ina:

mla,b,clo =[{k+1<i<n—k:a_; =b,a =a, ii’f_cH
® Example:
m[Shannon text,he,re] = [00000000100010501000000000ﬂT
L N 1)

% m o q sp
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The Discrete Universal Denoiser (DUDE)

Fix k. Initialize m[2", b, c] = O for all b,c € A*.
® Pass 1 For every k 4+ 1 < i <n — k: increment the count of z; in
i—1 itk
m[z", 27y, 2 1]
(build the count vectors m[z", z/~}, zfj_'f])

® Pass 2 Reconstruct according to:

Denoiser ) 5k i i .
output for ith [~ XTF (") = gk (274, 2, 5(1Y), k+1<i<n—k.
where
gi(b,a,c) = argmin (m”[a,b,c]II™") - (A\; © m,) (el
a ) Loy Fed y My e
I = {l(,5)}ijea=[mo| -~ [mrr—1]
A = {AG,J)} gea=[Xol - [Am—a].
(vow);, = wvw; Schur product
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DUDE Intuition

® Say you want to guess the value of a random variable Y ~ Py over
A. Guessing Y = 8 € A incurs an expected loss

> Py(a) =PL . N,
ac A

—

[-th column of
cost matrix A

where PL = [Py (0) Py (1) ... Py(M —1)].
® Expected loss is minimized with the estimate

Y = argmin PT .\
gﬁeA Y "B

® We will apply this MAP rule to guess the value of a clean symbol x
with an estimate of its distribution Px (a guess based on another
guess)
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DUDE Intuition (cont.)

® Given an input r.v. X ~ Px going through the channel II, the

output Z ~ Py satisfies a-th column of
channel matrix IT

—

M-—1
Pz(a) = Y Px(b)I(b,a) =P% 7, H a=0,1,2,...,M—1
b=0

= PL=PiII = PL=PLI! :’::D

® Let bj=z/"}, c;=2.17. We take m[z", b;,c;] as an (unnormalized)
estimate of P4 (z; | b; e c;)
7 . Notation:
® Then, we take II"* m|[z", b;, ¢;] as an estimate of -7 ()7

Px($1| bi.Cj, ),
N—_——

noisy context

incorporates ‘context’
and ‘what we see’ in-

and (H—Tm[zmbi,ci]) ® 7, as an estimate of formatié@ '@Hm
e

. relies o channel
Px(zi|biecizi=a), being memoryless and
noisy noisy independent of input

context  symbol
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DUDE Intuition - justification for last step of rule

Why if II""m|z" b, c;] is an estimate of Px(:|b; e c;), we can take
(I~ "m[z", by, c;]) ® 7, as an estimate of Px(-|b; e c;, 2 = ).

All estimates unnormalized.

We have

P(X:xi,bioci,zi :Oé)
P(b;ec;,zi =)
P(X =z;,bieci,zi =a) P(X =x;,b; e ¢;) P(b; ec;)
P(X:a:i,bioci) P(biOCi) P(bioci,ziza)
_ mp(m — a|X = 21, b; 8 ¢;)P(X = a:[b; e ¢;)
_ 1
o P(Zi = Oc|bl o Ci)

P(X = CE’zlbl ®C;,z; — a) =

(zs, ) P(X = x;|b; @ ¢;)

® Given X = x;, z; is independent of b; e ¢;, so
P(z; = alX = x;,b; 0 ¢;) = II(xs, ).

® P(z; = alb; ec;) is a constant in the arg max iteration over x;.
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DUDE Intuition (cont

® Now, we use the MAP rule to guess the clean symbol x; as

arggéiﬁ AT ( (HfT mz", by, Cz]) © 7‘-0‘) £}<< nﬂl)@"@

A

argmin (m”[2",b;, ¢;]TI7) - (As © ) (é )( ®H>

xTEe
e N (7T ouT)-A
- (-0 | R
=25 (|loll) = = llo
=u” . (Aow)
® [ssues:
® |ots of estimates and ‘estimates on estimates’

contexts are noisy, things that are in the same context in the clean
data may be in different contexts in the noisy data (aside from being
noisy themselves)

will all this work?
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Example: Binary Symmetric Channel (BSC)

® BSC(0), cost measured by Hamming distance (bit errors)

156 o
1-96 1) 0 1
ST e )
15! 1 1-6 =6 1
= ( -5 176)1—26'
DUDE rule: argmingze 4 (mT[z”,bi,Ci] Hfl) Az O )
® Say we have m[z", b;, ¢;] = (no, nl)T, and z; = 0.
ulmim! = [no(1 —6) —n1d, ni(l—6)—nod
=0 C()éu~(>\0®ﬂ'0):(5(711(1—6)—7105)
i=1 : Ci2u- A om) = (1-10)(no(l—0)—nid)
With z; = 0, we choose &; = 0 iff Cy < C4, or

no 25(1 — (5) n=no+ni MNg
— > e = >9§(1-
ny — (1—0)2+ 62 n o1 -9)
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Example: BSC (cont.)

® In general, if z; = b, we leave z; alone if

np
LN —-9).
- 20(1—19)

Otherwise, we flip z;.

26(1 — 8) os

0.1 0.2 0.3 0.4

0.5
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Example: Salt and Pepper (S&P) Channel, Euclidean Cost

A={0,1,...,M—1}. Sample goes to 0 or M —1 (uniformly)
with probability d, or stays intact with prob. (1—0), 0 < § < 1.

_s _s
1-2 0 0o 4 =3 0 0 =3
§ 19 0 3 5
_3 1 -~ 0
1 1 2
M= Sl n'=_— .
oo 1-6 : _ s
30 -..1-5 3 : : '
S 0 .0 1_2é _§ U 1 _%
2 2 -2 0 -~ 0 1-3%
T
Ap = [aﬁ, (e—1)2, (@—2)2, ..., (:c—M+1)2] (Azs = 0)
Say m = [ng,n1,...,nam—1)". If zi = a ¢ {0, M—1}, we have

(H_Tm) O, = [0,...,O,ua,O,...,O}T7 ug >0
=T ((HfT m)©® ﬂ'a) =0 if z = a, otherwise positive

= rule is: choose &; = z; if z; ¢ {0, M—1}
30,49



Salt and Pepper (S&P) Channel, Euclidean Cost (cont.)

When z; =0
no—nd/2 1-6/2 wo
ni 5/2 w1

(I "m)om = | Of : = vy , Zwi =1
nar—2 0/2 W2 ‘
na—1—nd/2 6/2 WM —1

with v = ng.

Az - W = Z(m —i)*w;, minimized at & = Zzwl
i i

The rule for z; = 0:

) 5 iy né
et (5]

where [z ] = round x to nearest integer in A.
Symmetric rule for z; = M —1.
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Salt and Pepper (S&P) Channel, Euclidean Cost — proofs

no—nd/2 1-6/2
ni 6/2
1
ué(niTm)@ﬂ'Ozm : ®
na—2 9/2
nar—1—no/2 6/2

T e o 24 Sttt ()
u; = —— |[(no — =n)(1 — = —(n1+n et npo)— (=) n
s 1—6 | % 2 2/ Tt M2
2
= ﬁ {(no — gn)(lf g)Jrg(nfno)f (g) n} =mnp = U= now.
M-—1 2
1 5 5 5 5
jw; = Shi42omg 4+ (M=—Dinpyq— (=) (M—1
i=0 " (1 —=98)no g gt *( )an ! (2) ( )n}
M—1
:5{ inié(Ml)n].
2(1 - d)no | = 2
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DUDE Optimality: Stochastic Setting

Define

with k, — oo as k,M?*» =o(n/logn)

Theorem (universality in stochastic setting)

For every stationary ergodic input process,

lim ELg, (X", Z") = lim min ELg, (X", 2Z")

n—o00 univ n—00 xnep,

where D,, is the class of all n-block denoisers.
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DUDE Optimality: Semi-stochastic Setting

X0 = Xk with k, = oo as k,M?* = o(n/logn)

univ

Minimum k-sliding-window loss of (z™, z"):

n—k
Dy(2™,2") =  min [n —12k Z Az, f(z:JrZ))]

cA2k+1
A —A i—htl

For any input sequence, a.s.

limsup | L ¢n (fc”,Z")—Dkn(fUnvzn)} <0

n—oo univ

Note: Among the competitors for each k, we have the function
f: A%+ 5 A that minimizes the cost given the sequences z™, 2".
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Choosing the Context Length k

® Tradeoff:
® too short — suboptimum performance;
® too long (& too short n) — counts are unreliable
® k=k, st k,M?* =o(n/logn) guarantees asymptotic optimality
(e.g.. kn = [clogy, n], ¢ < %): not very meaningful in practice
® DUDE optimality result has a “redundancy-like” term (convergence
to optimal performance): model cost

2 k[ k+1 2k+2 k+1
\/;CAIIVHM ook T CanmMTT Iy
where Ca 11, Vi1 depend on the channel and cost function

® "“Best k" for given sequence: open problem

® Qutput compressibility heuristic \WM/WW
® Dynamic, asymmetric context lengths

(tree-like)

. :x\[oss of denoised signal (unobservable) -
® Using an estimator of the DUDE loss ) }
derived from observables 2 3 4 5 6 7 8k
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Computational Complexity

Time: O(n) register level operations
Space: o(n) working storage (linear if storage for buffering
sequence is counted)
® Preprocessing: O(M?) operations

e Computation of counts: O(n) operations (finite state automaton
with M?2F states)

® Pre-computations for the second pass: O(M2*) operations
® Denoising: O(n) operations
With k < 1log,, n, we have M?* = o(n).
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Denoising: Binary Markov Chain over BSC

Sequence length: n = 10° bits

3=0.01 o 1-5 0
0.012 p v
& 0.010 T
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© 0.004 1-p T lp .
0.002 15

0.000 Source: Binary Markov ~ Channel: BSC(8)
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[+4 8'833 Bpube 0160 | o ouoe
W Joeo | |OFowBack 0.140 L
m O 0120 | DOForwBack
& 0050 0.100
o 0040 0.080

0.030 0.060

0.020 1 0.040
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Non-causal 2D Contexts

Example: K = 12 (taking closest samples in Euclidean distance)
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Examples: Binary images + BSC + Hamming distance

A Mathematical Theory of Communication
By C. E. SHANNON

InTRODUCTION

HE i P
Tmul PPM which exchange bandwidth for signal-to-noise ratio has in-
tensified the interest in a general theory of communication. A basis for
such a theory is contained in the important papers of Nyquist! and Hartley?
on this subject. In the present paper we will extend the theory to include &
‘number of new factors, in particular the effect of noise in the channel, and
e original message

one point cither exactly or approximately a message sclected at another
point. Frequently the messages have meaning; that is they refer 10 or are
correlated according to some system with certain physical o conceptual
entities. These semantic aspects of communication are irrelevant to the
engineering problem. The significant aspect is that the actual message is
one selected from @ set of possible messages. The system must be designed
to operate for each possible selection, not just the one which will actually

.

be chosen since this is unknown at the time of design. :
If the number of messages in the set is finite then this number or any - 2 N
‘monotonic function of this number can be regarded as a measure of the in- S . -
formation produced when one message is chosen from the set, all choices 5 o i
it » .

being equally likely. As was pointed out by Hartley the most natural .
choice is the logarithmic function. Although this definition must be gen- . R
eralized considerably when we consider the influence of the statistics of the .
‘message and when we have a continuous range of messages, we will in all
se an essentially logarithmic measure.
The logarithmic measure is more convenient for various reasons:
1. Tt is practically more useful. Parameters of engineering importance

R

Fuctors Mctng Tlsragh e, Bl Sdon TciclJur
e ‘ansmission Theory, " 4. 1. E. E.

o, i Topics in Telegraph

& fansmission of Information,” Bell Sysdem Techmical Journal, July .
frcnmica. Joumwas MONOGRAPH B-15 -
i oo Rebaci Decomber, 1957 -

Frited in D, 5. 4.

image: 1800x2104 scan

R

L

image: 896x1160 half-tone
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The Importance of Universality

Scanned text through Binary Symmetric Channel (BSC)

al Theory of (

y C. E. SHANNO

INTRODUCTION

of various methoc

seva handwidth faq

some simple denoising filters work well for some types of input data
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The Importance of Universality

Halftone image through Binary Symmetric Channel (BSC)

but are catastrophic for others!
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Binary image: original (i)

A Mathematical Theory of Communication
By C. E. SHANNON

INTRODUCTION

HE recent development of various methods of modulation such as PCM|
and PPM which exchange bandwidth for signal-to-noise ratio has in
tensified the interest in a general theory of communication. A basis for
such a theory is contained in the important papers of Nyquist! and Hartley
on this subject. In the present paper we will extend the theory to include a

image: 1800x2104 scan  (1296x496 segment shown)
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Binary image: corrupted by BSC (i)

random bit error rate: 5.0%
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Binary image: denoised by DUDE (i)

A Mathematicai Theory of Communication

By C. E. SHANNON

INTRODUCTION

HE recent development of various methods of modulation such as PCM
and PPM which exchange bandwidth for signal-to-noise ratio has in
tensified the interest in a general theary of communication. A basis fox
such a theory is contained in the important papers of Nyquist' and Hartley’
on this subject. In the present paper we will extend the theory to include 2

denoised bit error rate: 0.4%
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image: 896x1160 half-tone (600x350 segment shown)
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corrupted by BSC (ii)
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Comparison with some known algorithms

Channel parameter ¢

Image Scheme 0.01 0.02 0.05 0.10
Shannon DUDE 0.00096 | 0.0018 | 0.0041 | 0.0091
1800x 2160 K=11 | K=12 | K=12 | K=12

median | 0.00483 | 0.0057 | 0.0082 | 0.0141
morpho. | 0.00270 | 0.0039 | 0.0081 | 0.0161
Einstein DUDE 0.0035 | 0.0075 | 0.0181 | 0.0391
896 x 1160 K=18 | K=14 | K=12 | K=12
median 0.156 0.158 0.164 | 0.180
morpho. 0.149 0.151 0.163 0.193

Shannon text Einstein

0.018
0016
0.014

8 0012

3

£ o001

s

g 0008

$ 0.006
0.004
0.002

BDUDE
B Median

TDUDE
02 | | EMedian

OMorpho OMorpho

0.15

residual noise
)
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Text Denoising: Don Quixote de La Mancha

Noisy Text (21 errors, 5% error rate):

"Whar giants?” said Sancho Panza. " Those thou seest theee,” snswered yis
master, "with the long arms, and spne have tgem ndarly two leagues long.”
"Look, ylur worship,” sair Sancho; "what we see there zre not gianrs but
windmills, and what seem to be their arms are the sails that turned by the wind
make rhe millstpne go.” " Kt is easy to see,” replied Don Quixote, "that thou
art not used to this business of adventures; fhose are giantz; and if thou arf
wfraod, away with thee out of this and betake thysepf to prayer while | engage
them in fierce and unequal combat.”

DUDE output, k =2 (7 errors):

"What giants?" said Sancho Panza. " Those thou seest there,” answered his
master, "with the long arms, and spne have them nearly two leagues long.”

" Look, your worship,” said Sancho; "what we see there are not giants but
windmills, and what seem to be their arms are the sails that turned by the wind
make the millstone go.” "It is easy to see,” replied Don Quixote, "that thou art
not used to this business of adventures; fhose are giantz; and if thou arf
wfraod, away with thee out of this and betake thyself to prayer while | engage
them in fierce and unequal combat.”
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