Applications of Information Theory in Image Processing

4. The LOCO-I lossless image compression algorithm and the JPEG-LS standard

The LOCO-I algorithm

JPEG-LS is based on the LOCO-I algorithm:

<u>LOw</u> <u>CO</u>mplexity <u>LO</u>ssless <u>CO</u>mpression of <u>I</u>mages

- Guiding principles
 - Apply basic principles of continuous tone image modeling.
 - Approach state of the art performance at *lowest possible complexity*.

Basic components:

- Fixed + Adaptive prediction
- Conditioning contexts based on quantized gradients
- Two-parameter conditional probability model (TSGD)
- Low complexity adaptive coding matched to the model (variants of Golomb codes)
- Run length coding in flat areas to address drawback of symbol-by-symbol coding

Reference:

M. Weinberger, G. Seroussi, G. Sapiro, "The LOCO-I Image compression algorithm: principles and standardization into JPEG-LS", *IEEE Trans. Image Processing*, vol. 9, No. 8, August 2000.

JPEG-LS (LOCO-I Algorithm): Block Diagram

Fixed Predictor: MED

Causal template for prediction and conditioning

Predictor:

$$\hat{x}_{i+1} = \begin{cases} \min(a,b) & \text{if } c \ge \max(a,b) \\ \max(a,b) & \text{if } c \le \min(a,b) \\ a+b-c & \text{otherwise} \end{cases}$$

Alternative interpretation: median of three linear predictors (MED)

- $f_1(a, b, c) = a$
- $f_2(a,b,c) = b$

•
$$f_3(a, b, c) = a + b - c$$

 $f_{\text{med}}(a, b, c) = \text{median}(f_1, f_2, f_3)$

MED Predictor Properties

□ Nonlinear, has some *edge detection* capability:

• Predicts *b* in "vertical edge"

- Predicts *a* in "horizontal edge"
- Predicts a + b c in "smooth region"

5

planar extrapolation

Parameter Reduction and Adaptivity

Statistical model = context set + probability model for prediction residuals

- each pixel classified into a *context class*
- prediction error encoded based on a probability distribution conditioned on the context class
- Two factors determine the total number of statistical parameters:
 - number of context classes
 - parametrization of probability distribution for prediction residuals
- Goal: capture high order dependencies without excessive model cost
- Adaptive coding is desired, but arithmetic coding ruled out (if possible...) due to complexity constraints

Parameter Reduction and Adaptivity

Probabilistic model: Model prediction residuals with a two-sided geometric distribution (TSGD)

 $P(e) = c_0 \theta^{|e+s|}, \qquad \theta \in (0,1), \qquad s \in [0,1), \quad c_0 = \frac{1-\theta}{\theta^s + \theta^{1-s}}$

- "discrete Laplacian"
- only two parameters per context class
 - θ: "sharpness" (rate of decay, variance, etc.)
 - s: "shift" (often non-zero in a context-dependent scheme)
- shift *s* constrained to [0,1) by integer-valued adaptive correction (*bias cancellation*) on a fixed predictor
- allows for relatively large number of context classes (365 in JPEG-LS)
- suited to low complexity adaptive coding

Context Class Determination

Gradients $g_1 = (d - b), g_2 = (b - c), g_3 = (c - a)$

- $[g_1, g_2, g_3]$: triplet of *raw gradients*
- gradients capture the level of activity (smoothness, edginess) surrounding a pixel
- each of g_1, g_2, g_3 quantized into 9 regions determined by 4 thresholds $1, S_1, S_2, S_3$

- Regions 0, 1, 2, 3, 4 (resp.): $\{0\}$, $1 \le g < S_1$, $S_1 \le g < S_2$, $S_2 \le g < S_3$, $g \ge S_3$
 - Symmetrically on the negative side for regions -1, -2, -3, -4
- defaults in JPEG-LS: $S_1 = 3$, $S_2 = 7$, $S_3 = 21$
- $g_i \rightarrow q_i \in \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$
- $[g_1, g_2, g_3] \rightarrow [q_1, q_2, q_3]$ a triplet of *quantized gradients*

one more step ...

Context Class Determination

[g₁, g₂, g₃] → [q₁, q₂, q₃] a triplet of quantized gradients
 Symmetric contexts (with respect to B/W) merged:

 $P(e | [q_1, q_2, q_3]) \leftrightarrow P(-e | [-q_1, -q_2, -q_3])$

Canonical form: change the sign of the vector as needed so that the first nonzero in [q₁, q₂, q₃] (if any) is *positive*. Remember if sign was flipped.
 Result of context class determination:

 $[q_1, q_2, q_3, \text{ sign}]$

- How is this used? Say the prediction error is $e = x_{i+1} \hat{x}_{i+1}$.
 - If sign < 0, add a count of -e to the stats, else add a count of e. Encode the value that
 was added to the stats.
 - On the decoder size, after decoding e, add it to the stats. If sign < 0, flip the sign of e, then reconstruct $x_{i+1} = \hat{x}_{i+1} + e$.
- Fixed number of contexts: $(9^3 + 1)/2 = 365$
 - addresses the problem of context dilution

Context Class Determination -- Examples

same context class (keeping track of sign)

Encoding of TSGDs: Golomb codes

Optimal prefix codes for TSGDs are built out of the *Golomb codes*.

- Family of prefix-free codes for *geometric distributions* over nonnegative integers described by Golomb in 1966 (motivated by sequences of Bernoulli trials)
- Consider an integer $m \ge 1$. The *m*th order *Golomb code* G_m encodes an integer $j \ge 0$ as follows:

 $G_m(j) = \text{binary}_m(j \mod m) \cdot \text{unary}(j \dim m)$

 $j \mod m$, $j \dim m =$ remainder and quotient in integer division j/m (resp.)

binary_m(i) = (shortest) binary representation of i, $\lfloor \log m \rfloor$ or $\lceil \log m \rceil$ bits unary(i) = $\overbrace{00...0}^{i} 1$ unary representation of i.

Given m and $G_m(j)$, a decoder uniquely reconstructs j.

Golomb codes Examples									
	m = 5			<i>m</i> =	$= 2^k = 4$, k	k = 2		
i	$G_m(i)$	$\ell(i)$		i	i (binary)	$G_m(i)$	$\ell(i)$		
0	00 1	3		0	00	00 1	3		
1	011	3	-3	1	01	011	3		
2	10 1	3	J	2	10	10 1	3		
3	110 1	4		3	11	11 1	3		
4	111 1	4		4	1 00	00 01	4		
5	00 01	4	- 5	5	101	01 01	4		
6	01 01	4		6	1 10	10 01	4		
7	10 01	4		7	1 11	11 01	4		
8	110 01	5		8	10 00	00 001	5		
9	111 01	5		9	10 01	01 001	5		
10	00 001	5	- 5	10	10 10	10 001	5		
11	01 001	5		11	10 11	11 001	5		
12	10 001	5		12	11 00	00 0001	6		
13	110 001	6		13	11 01	01 0001	6		
14	111 001	6	:	14	11 10	10 0001	6		
:	:	:		:		:	:		

- 4

- 4

-4

:

Golomb PO2 codes

- □ When $m = 2^k$, we call G_m a *Golomb power of two* (PO2) code and use k as the defining parameter: $G_k^* \triangleq G_{2^k}$.
- PO2 codes are especially simple to implement!
 Example: Golomb PO2 encoder

C/C++:			
$b \mod 2^k$:	b	&	((1< <k)-1)< td=""></k)-1)<>
$b \operatorname{div} 2^k$:	b	>>	k

Optimality of Golomb codes for GDs

Theorem [Gallager, Van Voorhis 1975] Let $P_{\theta}(i) = (1 - \theta)\theta^i$ be a geometric distribution on the nonnegative integers, with $0 < \theta < 1$, and let m be the unique (positive) integer satisfying

```
\theta^m + \theta^{m+1} \le 1 < \theta^m + \theta^{m-1}.
```

Then, the Golomb code G_m is optimal for P_{θ} .

Golomb (1966) had proved optimality for $\theta = 2^{-\frac{1}{m}}$, i.e. $\theta^m = \frac{1}{2}$.

How about TSGDs?

 $P_{\theta,s}(e) = c_0 \theta^{|e+s|}, \quad 0 < \theta < 1, \quad 0 \le s < 1.$

This had been traditionally studied for s = 0. People used one of two approaches to encode e :

1. Encode |e| with the optimal G_m for θ and send a sign bit if $e \neq 0$ (symmetric).

How about TSGDs?

 $P_{\theta,s}(e) = c_0 \theta^{|e+s|}, \quad 0 < \theta < 1, \quad 0 \le s < 1.$

This had been traditionally studied for s = 0.
 People used one of two approaches to encode e :

1. Encode |e| with the optimal G_m for θ and send a sign bit if $e \neq 0$ (symmetric).

How about TSGDs?

 $P_{\theta,s}(e) = c_0 \theta^{|e+s|}, \quad 0 < \theta < 1, \quad 0 \le s < 1.$

However, the characterization of *optimal codes* for these distributions (analogous to Golomb codes for one-sided geometric distributions) was an *open question*, even for the simpler case s = 0.

Optimal codes for TSGDs (with $s \in [0,1)$) were first characterized in

N. Merhav, G. Seroussi and M.J. Weinberger, "Optimal prefix codes for sources with two-sided geometric distributions," *IEEE Trans. on Information Theory*, 46,, 2000, pp. 121–135.

Optimal Code Regions for TSG Distributions

 $P_{\theta,s}(e) = c_0 \theta^{|e+s|}, \quad 0 < \theta < 1, \quad 0 \le s \le 1/2.$

Relative redundancy of codes for TSGD

Penalty for use of PO2 codes vs. optimal for TSGD

LOCO-I components

loop:

- Get context pixels *a*, *b*, *c*, *d*, next pixel *x*
- □ Compute gradients d b, b c, c a and quantize $\Rightarrow [q_1, q_2, q_3, \text{ sign}]$
- $\Box [q_1, q_2, q_3] = 0$? YES: Go to run state NO: proceed
- $\square x_{\text{pred}} = \text{predict}(a, b, c)$
- **C** Retrieve bias correction value for context, adjust sign if needed. Correct x_{pred}
- $\Box \ \epsilon = x x_{\text{pred}}$. If sign < 0 then $\epsilon = -\epsilon$. Map $\epsilon \mod \alpha$ to range $\left[-\frac{\alpha}{2}, \frac{\alpha}{2}\right]$
- Estimate Golomb PO2 parameter k for the context
- Update stats for coding and bias correction
- **Remap** $\epsilon \to M(\epsilon)$ or $\epsilon \to M(-1-\epsilon)$
- **\Box** Encode *M* with Golomb-PO2(*k*)
- Back to loop

run state:

- □ Count run of *a* until $x \neq a \Rightarrow$ run length ℓ
- **\Box** Encode ℓ using block-MELCODE
- Update MELCODE state
- Back to regular loop

 $\begin{array}{ccc} c & b & d \\ a & x \end{array}$

Adaptive Coding of TSGD's in JPEG-LS

- Optimal prefix codes for TSGD's are approximated in JPEG-LS by applying the Golomb-PO2 subfamily to a mapped error value
 - two mappings are used in JPEG-LS
 - $\epsilon \to M(\epsilon)$, 0, -1, +1, -2, +2, ... \to 0, 1, 2, 3, 4, ... (most cases)

 $\epsilon \to M(-1-\epsilon), -1, 0, -2, +1, -3, ... \to 0, 1, 2, 3, 4, ...$ (only with $k = 0, s > \frac{1}{2}$)

- Assumption s ∈ [0,1) satisfied through the use of *adaptive correction* of the predictor, using, per context:
 - B = accumulated sum of error values
 - N = total number of samples

□ For *adaptive coding*, we use (p/context):

- A = accumulated sum of error magnitudes
- N_{-} = number of negative samples

Bias Correction

In principle, $\mu = \lfloor B/N \rfloor$ gives the integer part of the bias

- but we don't want to use division! (low complexity constraint)
- instead, we implement the following procedure, which computes a correction value *C* for the fixed predictor \hat{x}_{med} . Starting with N = 1, B = C = 0, for each sample, with prediction error ϵ , we do

this is the correction computation for the *next* pixel, done *after* ϵ has been encoded

- only additions/subtractions
- *B* is kept in the range $-N < B \le 0$
- *C* tracks [B/N]; full predictor is $\hat{x} = \hat{x}_{med} + C \cdot sign$ (clipped)

Effect of bias correction

Grayscale image 720x576

Distributions of prediction errors before and after bias correction

Seroussi -- ATIPI

Effect of bias correction

Grayscale image 720x576

Distributions of prediction errors before and after bias correction

Seroussi -- ATIPI

Prediction Errors Alphabet

In principle, a prediction error $e = x_i - \hat{x}_i$ can assume values in the range $-\alpha + 1 \le e \le \alpha - 1 \Rightarrow$ alphabet for *e* is larger (1 bit longer)?

• However, given \hat{x}_i , e can assume only α different values, $-\hat{x}_i \le e \le \alpha - 1 - \hat{x}_i \implies$ a larger alphabet should not be needed

• Indeed, if we carry out all operations modulo α , reconstruction will be correct

 $e = x_i - \hat{x}_i \mod \alpha$ (encoder side) $x_i = \hat{x}_i + e \mod \alpha$ (decoder side)

ignoring the extra (leftmost) bit cannot affect the result !

 \Rightarrow map the prediction error modulo α to a range of size α

Prediction Errors Alphabet

Map the prediction error to a range of size α . What range?

- Take residues in the range $-\left[\frac{\alpha-1}{2}\right] \le e \le \left\lfloor\frac{\alpha-1}{2}\right\rfloor$ to preserve TSGD assumption
- the algorithm: if $e < -\left[\frac{\alpha-1}{2}\right]$: $e = e + \alpha$ else if $e > \left| \frac{\alpha - 1}{2} \right|$: $e = e - \alpha$
 - "folds" large prediction errors into small values, can help in edge regions; overall effect on compression is not large
 - practical advantage: all numbers (and registers) are of the same length
- On decoder side, reduce $(\hat{x} + e) \mod \alpha$ to range $0 \leq x < \alpha$.
- Example: $\alpha = 256, -128 \le e \le 127$

Adaptive Coding of TSGD's in JPEG-LS (cont.)

 $P_{\theta,s}(e) = c_0 \theta^{|e+s|}, \quad 0 < \theta < 1, \quad 0 \le s < 1, \quad c_0 = \frac{1-\theta}{\theta^{1-s} + \theta^s}$

Given a sequence of prediction errors $e_1^t = e_1 e_2 e_3 \dots e_t$, let

 $A_t = \sum_i |e_i| =$ accumulated sum of error magnitudes

 $N_t^- = \sum_i 1_{e_i < 0}$ = number of negative samples

Then,

$$P_{\theta,s}(e_1^t) = (c_0)^t \prod_{e_i \ge 0} \theta^{|e_i|+s} \prod_{e_i < 0} \theta^{|e_i|-s}$$
$$= (c_0)^t \prod_i \theta^{|e_i|} \prod_{e_i \ge 0} \theta^s \prod_{e_i < 0} \theta^{-s} = (c_0)^t \theta^{A_t} \theta^{(t-N_t^-)s} \theta^{-N_t^-s}$$
$$= (c_0)^t \theta^{A_t + (t-2N_t^-)s}$$

 $\Rightarrow A_t, N_t^- \text{ are sufficient statistics for } \theta, s \text{ (every sequence with the same values of } t, A_t, N_t^- \text{ has the same probability)}$

Adaptive Coding of TSGD's in JPEG-LS (cont.)

Adaptive coding: choosing k

For the Golomb code with parameter 2^k , k > 0, and mapping $M(\cdot)$:

 $0, -1, 1, -2, 2, -3 \dots \rightarrow 0, 1, 2, 3, 4, 5, \dots$

the average code length under $P_{\theta,s}(e)$ is

$$L_{k} = k + 1 + \frac{\theta^{2^{k-1}}}{1 - \theta^{2^{k-1}}} \triangleq k + 1 + \frac{z}{1 - z} \qquad z \triangleq \theta^{2^{k-1}}$$

Independent of *s* or ρ ! Why?

□ The code G_{2^k}, k ≥ 1, applied to integers mapped with M(·), assigns the same code length to integers in pairs i, -(i + 1). Example: k = 1

On the other hand,

 $P(i) + P(-(i+1)) = \frac{1-\theta}{\theta^s + \theta^{1-s}} \left(\theta^{i+s} + \theta^{i+1-s} \right) = (1-\theta)\theta^i \quad \text{independent of } s.$

Adaptive coding: choosing k

Adaptive coding: choosing k (cont.)

Adaptive coding: the solution

 $\hat{S}_t = (A_t - N_t^-)/t \Rightarrow A_t = t\hat{S}_t + N_t^- \approx t\hat{S}_t + t/2 = t(\hat{S}_t + 1/2)$ \Rightarrow transition points near A_t/t = power of 2

k	θ	<i>S</i> + 1/2
0	0.4142	1.2
1	0.6180	2.1
2	0.7862	4.2
3	0.8867	8.3
4	0.9416	16.6
5	0.9704	33.3
6	0.9851	66.5
7	0.9925	133.0
8	0.9962	266.0
9	0.9981	532.0
10	0.9991	1064.0
11	0.9995	2128.0

Summary of code selection in JPEG-LS Using context statistics N, A, N^- , estimate $k \cong \left[\log_2 \frac{A}{N}\right]$ or, simply, for (k=0; (N<<k)< A; k++); If k = 0, use N^-/N to estimate ρ and determine if $s > \frac{1}{2}$, then select a mapping: $\begin{cases} M(e), & \text{if } 2N^- \le N\\ M(-e-1), & \text{otherwise } (\hat{\rho} > \frac{1}{2}, s > \frac{1}{2}) \end{cases}$

Embedded Run-length Coding

- Aimed at overcoming the basic limitation of 1 bit/pixel inherent to pixelwise prefix codes, most damaging in flat, low-entropy regions
- □ Creates super-symbols representing runs of the same pixel value in the "flat region" $a = b = c = d \Rightarrow$ special context $[q_1, q_2, q_3] = [0, 0, 0].$

c b d a x

What we're betting on:

- □ A run of a is counted and the count ℓ (which could be 0) is encoded using *block-MELCODE*, a variation of Golomb codes with fast adaptation.
 - Decoder sees the same special context and goes into "run mode" without need for additional signaling.
 - Run samples following the first *a* need not be in the special context.

LOCO-I in one page

loop:

- Get context pixels a, b, c, d, next pixel x
- □ Compute gradients d b, b c, c a and quantize $\Rightarrow [q_1, q_2, q_3, \text{ sign}]$
- $\Box [q_1, q_2, q_3] = 0$? YES: Go to run state NO: proceed
- $\square x_{\text{pred}} = \text{predict}(a, b, c)$
- **Q** Retrieve bias correction value for context, adjust sign if needed. Correct x_{pred}
- $\Box \ \epsilon = x x_{\text{pred}}$. If sign < 0 then $\epsilon = -\epsilon$. Map $\epsilon \mod \alpha$ to range $\left[-\frac{\alpha}{2}, \frac{\alpha}{2}\right]$
- \Box Estimate Golomb PO2 parameter k for the context
- Update stats for coding and bias correction
- **Remap** $\epsilon \to M(\epsilon)$ or $\epsilon \to M(-1-\epsilon)$
- **Encode** M with Golomb-PO2(k)
- Back to loop

run state:

- □ Count run of *a* until $x \neq a \Rightarrow$ run length ℓ
- □ Encode *ℓ* using block-MELCODE
- Update MELCODE state
- Back to regular loop

d

b

X

С

a

Compression/Complexity trade-off

Average bits/symbol on benchmark image set

Mars Image Compressed on NASA "Curiosity" Rover with LOCO-I (August 8, 2012)

Near-Lossless compression

□ Near-lossless compression: reconstructed sample differs from original by up to a preset (small) magnitude δ

• Traditional DPCM/quantization loop, with prediction error quantized into bins of size $2\delta + 1$

$$\epsilon \to Q(\epsilon) = \left\lfloor \frac{\epsilon + \delta}{2\delta + 1} \right\rfloor, \quad \epsilon \ge 0 \quad (\text{symmetric for } \epsilon < 0)$$

 $Q(\epsilon) \rightarrow \epsilon' = (2\delta + 1)Q(\epsilon)$ Reconstruction

- Lossless $\Leftrightarrow \delta = 0$
- Run mode test relaxed to |c a|, |b c|, $|d b| \le \delta$ (causal template built of reconstructed samples)
- Often outperforms lossy JPEG in the low-distortion region of the R-D curve

More Comparisons

- Lossless compression on JPEG-LS benchmark set (8 bps)
 - rich set including natural and aerial photographs, compound documents, scanned, medical and computer-generated images

	JPEG-LS	Lossless JPEG (H)	Lossless JPEG (A)	FELICS	PNG	CALIC	LOCO-A	-	extension of JPEG-LS with arithmetic coding
Avg. CR (bps)	3.19	4.08	3.40	3.76	3.46	3.06	3.06		
Δ /JPEG-LS	0%	+28%	+7%	+18%	+8%	-4%	-4%		

Near-lossless: JPEG-LS outperforms JPEG at high bit-rates

	JPEG-LS RMSE	JPEG RMSE
<i>δ</i> =1	0.82	1.50
$\delta = 3$	1.93	2.30

Typical RMSE at similar bit-rate, on original JPEG benchmark images

• JPEG-LS also outperforms JPEG2000 at $\delta \leq 1$ (but not at $\delta > 2$)

JPEG-LS Features: Color Images

Color images: 3 basic modes for color planes

non-interleaved	line-interleaved	sample-interleaved

- Statistics are shared among components in interleaved modes
- Lossless color decorrelation transforms specified in Part 2 of the standard. Very effective as pre-processing to JPEG-LS in some color spaces. Example:

 $R \rightarrow R - G$ $G \rightarrow G$ $B \rightarrow B - G$

as with prediction errors, use subtraction mod α and remapping to $\left[-\frac{\alpha}{2}, \frac{\alpha}{2}\right)$ to preserve alphabet size

JPEG-LS Features: Color Images

Palletized images: JPEG-LS syntax allows for description of palette tables and coding in index space

index	R	G	В
0	0	0	0
1	12	17	23
2	32	123	100
3	150	200	30
:			:
254	130	77	90
255	255	255	255

• Same feature useful for remapping images with "sparse histograms"