
Applications of Information
Theory in Image Processing

4. The LOCO-I lossless image compression algorithm
and the JPEG-LS standard

16-Mar-23 1Seroussi -- ATIPI

The LOCO-I algorithm
q JPEG-LS is based on the LOCO-I algorithm:

LOw COmplexity LOssless COmpression of Images
q Guiding principles

● Apply basic principles of continuous tone image modeling.
● Approach state of the art performance at lowest possible complexity.

q Basic components:
● Fixed + Adaptive prediction
● Conditioning contexts based on quantized gradients
● Two-parameter conditional probability model (TSGD)
● Low complexity adaptive coding matched to the model (variants of Golomb

codes)
● Run length coding in flat areas to address drawback of symbol-by-symbol coding

q Reference:
M. Weinberger, G. Seroussi, G. Sapiro, “The LOCO-I Image compression algorithm: principles
and standardization into JPEG-LS”, IEEE Trans. Image Processing, vol. 9, No. 8, August 2000.

16-Mar-23 2Seroussi -- ATIPI

16-Mar-23 3Seroussi -- ATIPI

c
a

b d
x

Predictor

Modeler

Gradients

Flat
Region?

Fixed
Predictor

Adaptive
Correction

Run
Counter

Run
Coder

Context
Modeler

Golomb
Coder

image
samples

image
samples

context
image
samples

pred.
errors

pred.
errors,
code spec.

run lengths,
code spec.

compressed
bit-stream

Coder

mode run

regular regular

run

predicted
values

JPEG-LS (LOCO-I Algorithm): Block Diagram

Fixed Predictor: MED

q Causal template for prediction and conditioning

q Alternative interpretation: median of three linear predictors (MED)
● 𝑓!(𝑎, 𝑏, 𝑐) = 𝑎
● 𝑓"(𝑎, 𝑏, 𝑐) = 𝑏
● 𝑓#(𝑎, 𝑏, 𝑐) = 𝑎 + 𝑏 − 𝑐

𝑓$%& 𝑎, 𝑏, 𝑐 = median(𝑓!, 𝑓", 𝑓#)

16-Mar-23 Seroussi -- ATIPI 4

𝑐 𝑏 𝑑

𝑎

Past sequence

next pixel𝑥'(!

!𝑥!"# = $
min(𝑎, 𝑏) if 𝑐 ≥ max(𝑎, 𝑏)
max(𝑎, 𝑏) if 𝑐 ≤ min(𝑎, 𝑏)
𝑎 + 𝑏 − 𝑐 otherwise

Predictor:

MED Predictor Properties

q Nonlinear, has some edge detection capability:

● Predicts 𝑏 in ‘‘vertical edge’’

● Predicts 𝑎 in ‘‘horizontal edge’’

● Predicts 𝑎 + 𝑏 − 𝑐 in ‘‘smooth region’’

𝑐 𝑏
𝑎

𝑐 𝑏
𝑎

16-Mar-23 Seroussi -- ATIPI 5

planar extrapolation

𝑐

𝑏
𝑎

𝑎 + 𝑏 − 𝑐

−1
0−1

0

Parameter Reduction and Adaptivity

q Statistical model = context set + probability model for prediction residuals
● each pixel classified into a context class
● prediction error encoded based on a probability distribution conditioned on

the context class
q Two factors determine the total number of statistical parameters:

● number of context classes
● parametrization of probability distribution for prediction residuals

q Goal: capture high order dependencies without excessive model cost
q Adaptive coding is desired, but arithmetic coding ruled out (if possible…)

due to complexity constraints

16-Mar-23 Seroussi -- ATIPI 6

Parameter Reduction and Adaptivity

q Probabilistic model: Model prediction residuals with a
two-sided geometric distribution (TSGD)

𝑃 𝑒 = 𝑐)𝜃 *(+ , 𝜃 ∈ 0,1 , 𝑠 ∈ 0,1 , 𝑐)=
1 − 𝜃

𝜃+ + 𝜃!,+
● “discrete Laplacian”
● only two parameters per context class

§ 𝜃: “sharpness” (rate of decay, variance, etc.)
§ 𝑠: “shift” (often non-zero in a context-dependent scheme)

● shift s constrained to [0,1) by integer-valued adaptive
correction (bias cancellation) on a fixed predictor

● allows for relatively large number of context classes
(365 in JPEG-LS)

● suited to low complexity adaptive coding

s

e

P(e)

–s

TSGD

–1

16-Mar-23 Seroussi -- ATIPI 7

Context Class Determination

q Gradients 𝑔1 = (𝑑 − 𝑏), 𝑔2 = (𝑏 − 𝑐), 𝑔3 = (𝑐 − 𝑎)
● [𝑔!, 𝑔", 𝑔#]: triplet of raw gradients
● gradients capture the level of activity (smoothness, edginess) surrounding a pixel
● each of 𝑔1, 𝑔2, 𝑔3 quantized into 9 regions determined by 4 thresholds 1, 𝑆1, 𝑆2, 𝑆3

● Regions 0, 1, 2, 3, 4 (resp.): {0}, 1 ≤ 𝑔 < 𝑆!, 𝑆! ≤ 𝑔 < 𝑆", 𝑆" ≤ 𝑔 < 𝑆#, 𝑔 ≥ 𝑆#
§ Symmetrically on the negative side for regions −1,−2,−3,−4

● defaults in JPEG-LS: 𝑆! = 3, 𝑆"= 7, 𝑆#= 21
● 𝑔' → 𝑞' ∈ −4,−3, −2, −1, 0, 1, 2, 3, 4
● 𝑔!, 𝑔", 𝑔# → [𝑞1, 𝑞2, 𝑞3] a triplet of quantized gradients

c b d

a x

Causal template:

next pixel

16-Mar-23 Seroussi -- ATIPI 8

-S1 S1 S2 S3-S2-S3 0

0 1 2 3 4-1-2-3-4

-1 1
((()))

𝑞! ∶

𝑔! ∶

one more step ...

Context Class Determination

q 𝑔", 𝑔#, 𝑔$ → [𝑞1, 𝑞2, 𝑞3] a triplet of quantized gradients
q Symmetric contexts (with respect to B/W) merged:

𝑃(𝑒 | [𝑞1, 𝑞2, 𝑞3]) ↔ 𝑃(−𝑒 | [−𝑞1, −𝑞2, −𝑞3])

● Canonical form: change the sign of the vector as needed so that the first nonzero
in [𝑞", 𝑞#, 𝑞$] (if any) is positive. Remember if sign was flipped.
Result of context class determination:

[𝑞!, 𝑞", 𝑞#, sign]
● How is this used? Say the prediction error is 𝑒 = 𝑥'(! − P𝑥'(!.

§ If sign < 0 , add a count of −𝑒 to the stats, else add a count of 𝑒. Encode the value that
was added to the stats.

§ On the decoder size, after decoding 𝑒, add it to the stats. If sign < 0, flip the sign of 𝑒,
then reconstruct 𝑥!"# = !𝑥!"# + 𝑒 .

q Fixed number of contexts: (93 + 1)/2 = 365
● addresses the problem of context dilution

16-Mar-23 Seroussi -- ATIPI 9

Context Class Determination -- Examples

40 40 120
45

800

-5

[𝑔1, 𝑔2, 𝑔3] = [80, 0, −5]

[𝑞1, 𝑞2, 𝑞3] = [4, 0, −2]

75 75 20
71

-550

4

[𝑔1, 𝑔2, 𝑔3] = [−55, 0, 4]

[𝑞1, 𝑞2, 𝑞3] = [−4, 0, 2]

same context class (keeping track of sign)

16-Mar-23 Seroussi -- ATIPI 10

-3 3 7 21-7-21 0

0 1 2 3 4-1-2-3-4Regions:

Thresholds: 1-1
)))(((

Encoding of TSGDs: Golomb codes

q Optimal prefix codes for TSGDs are built out of the Golomb codes.
● Family of prefix-free codes for geometric distributions over nonnegative integers

described by Golomb in 1966 (motivated by sequences of Bernoulli trials)
q Consider an integer 𝑚 ≥ 1. The 𝑚th order Golomb code 𝐺% encodes an

integer 𝑗 ≥ 0 as follows:

𝐺% 𝑗 = binary% 𝑗 mod 𝑚 G unary 𝑗 div 𝑚

𝑗 mod 𝑚, 𝑗 div 𝑚 = remainder and quotient in integer division 𝑗/𝑚 (resp.)

binary% 𝑖 = (shortest) binary representation of 𝑖, log𝑚 or log𝑚 bits

unary 𝑖 = 00…01
!

unary representation of 𝑖.

q Given 𝑚 and 𝐺%(𝑗) , a decoder uniquely reconstructs 𝑗.

16-Mar-23 11Seroussi -- CDSP

Golomb codes -- Examples

16-Mar-23 12Seroussi -- CDSP

𝒊 𝑮𝒎(𝒊) ℓ(𝒊)

0 00 1 3

1 01 1 3

2 10 1 3

3 110 1 4

4 111 1 4

5 00 01 4

6 01 01 4

7 10 01 4

8 110 01 5

9 111 01 5

10 00 001 5

11 01 001 5

12 10 001 5

13 110 001 6

14 111 001 6

⋮ ⋮ ⋮

𝒊 𝒊 (binary) 𝑮𝒎(𝒊) ℓ(𝒊)

0 00 00 1 3

1 01 01 1 3

2 10 10 1 3

3 11 11 1 3

4 1 00 00 01 4

5 1 01 01 01 4

6 1 10 10 01 4

7 1 11 11 01 4

8 10 00 00 001 5

9 10 01 01 001 5

10 10 10 10 001 5

11 10 11 11 001 5

12 11 00 00 0001 6

13 11 01 01 0001 6

14 11 10 10 0001 6

⋮ ⋮ ⋮

𝑚 = 5 𝑚 = 2& = 4, 𝑘 = 2

⋮

3

5

5

4

4

4

⋮

Golomb PO2 codes

q When 𝑚 = 2&, we call 𝐺% a Golomb power of two (PO2) code and use 𝑘
as the defining parameter: 𝐺&∗ ≜ 𝐺#' .

q PO2 codes are especially simple to implement!
Example: Golomb PO2 encoder

13 Gadiel Seroussi - Lossless Data Compression - 2021

𝑏(𝑏()#⋯𝑏* 𝑏*)#𝑏*)+⋯𝑏#𝑏,
input: integer
𝑏 in binary

representation

𝑘 LS bitsMS bits

𝑏 div 2* 𝑏 mod 2*

counter

unary part binary part

C/C++:
𝑏 mod 2* : b & ((1<<k)-1)

𝑏 div 2* : b >> k

𝐺# 𝐺+ 𝐺-

𝐺. 𝐺/⋯
Solution of 𝜃% + 𝜃%(" = 1
𝑚 𝜃%
1 0.6180339887
2 0.7548776662
3 0.8191725134
4 0.8566748839
5 0.8812714616
6 0.8986537126
7 0.9115923535
8 0.9215993196

Golomb (1966) had proved optimality for 𝜃 = 2,
!
", i.e. 𝜃0 = !

"
.

Optimality of Golomb codes for GDs

Theorem [Gallager, Van Voorhis 1975] Let 𝑃)(𝑖) = 1 − 𝜃 𝜃! be a geometric
distribution on the nonnegative integers, with 0 < 𝜃 < 1, and let 𝑚 be the
unique (positive) integer satisfying

𝜃% + 𝜃%(" ≤ 1 < 𝜃% + 𝜃%*".

Then, the Golomb code 𝐺% is optimal for 𝑃).

16-Mar-23 14Seroussi -- CDSP

How about TSGDs?

𝑃),, 𝑒 = 𝑐-𝜃|/(,|, 0 < 𝜃 < 1, 0 ≤ 𝑠 < 1.
q This had been traditionally studied for 𝑠 = 0.

People used one of two approaches to encode 𝑒 :
1. Encode |𝑒| with the optimal 𝐺0 for 𝜃 and send a sign bit if 𝑒 ≠ 0 (symmetric).

16-Mar-23 21Seroussi -- ATIPI

TSGD with
𝜃 = 0.75, 𝑠 = 0.15

How about TSGDs?

𝑃),, 𝑒 = 𝑐-𝜃|/(,|, 0 < 𝜃 < 1, 0 ≤ 𝑠 < 1.
q This had been traditionally studied for 𝑠 = 0.

People used one of two approaches to encode 𝑒 :
1. Encode |𝑒| with the optimal 𝐺0 for 𝜃 and send a sign bit if 𝑒 ≠ 0 (symmetric).

2. Define 𝑀 𝑒 ≝ V 2𝑒 𝑒 ≥ 0
2|𝑒| − 1 𝑒 < 0

Encode 𝑒 with 𝐺0(𝑀 𝑒) (asymmetric).

16-Mar-23 22Seroussi -- ATIPI

Rice mapping

𝑒 𝑀 𝑒
0 0

−1 1
1 2

−2 3
2 4
⋮ ⋮

Mapped TSGD with
𝜃 = 0.75, 𝑠 = 0.15

How about TSGDs?

𝑃),, 𝑒 = 𝑐-𝜃|/(,|, 0 < 𝜃 < 1, 0 ≤ 𝑠 < 1.

q However, the characterization of optimal codes for these distributions
(analogous to Golomb codes for one-sided geometric distributions) was an
open question, even for the simpler case 𝑠 = 0.

q Optimal codes for TSGDs (with 𝑠 ∈ [0,1)) were first characterized in

N. Merhav, G. Seroussi and M.J. Weinberger, “Optimal prefix codes for sources
with two-sided geometric distributions,” IEEE Trans. on Information Theory, 46,,
2000, pp. 121–135.

16-Mar-23 23Seroussi -- ATIPI

Optimal Code Regions for TSG Distributions

Golomb-PO2 code

𝑃0,2 𝑒 = 𝑐,𝜃|4"2|, 0 < 𝜃 < 1, 0 ≤ 𝑠 ≤ 1/2.

𝑠

Regions characterized by an
integer parameter ℓ and a
label I, II, III, or IV.
For each region, an optimal
code is characterized.

Region I: 𝐺+ℓ)# 𝑀 𝑥

Region III: 𝐺+ℓ 𝑀 𝑥

Regions II, IV: symmetric
codes (Region II is equiv.
to sign+magnitude when
ℓ is PO2).

16-Mar-23 Seroussi -- ATIPI 24

Relative redundancy of codes for TSGD

16-Mar-23 26Seroussi -- ATIPI

relative redundancy measured as 678494:;(<)4:(=7>?4:(=7>? , for TSGD with 𝑠 = 0
re

la
tiv

e
re

du
nd

an
cy

𝜃

best PO2 code with Rice map

optimal TSGD code

Penalty for use of PO2 codes vs. optimal for TSGD

16-Mar-23 27Seroussi -- ATIPI

relative penalty measured as 678494:;(<(AB+))678494:;(<(7>(!DE9)678494:;(<(7>(!DE9) , for TSGD with 𝑠 = 0
re

la
tiv

e
pe

na
lty

𝜃

LOCO-I components
loop:
q Get context pixels 𝑎, 𝑏, 𝑐, 𝑑, next pixel 𝑥
q Compute gradients 𝑑 − 𝑏, 𝑏 − 𝑐, 𝑐 − 𝑎 and quantize Þ [𝑞1, 𝑞2, 𝑞3, sign]
q 𝑞1, 𝑞2, 𝑞3 = 0 ? YES: Go to run state NO: proceed
q 𝑥pred = predict(𝑎, 𝑏, 𝑐)
q Retrieve bias correction value for context, adjust sign if needed. Correct 𝑥pred
q 𝜖 = 𝑥 − 𝑥pred . If sign < 0 then 𝜖 = −𝜖. Map 𝜖 mod 𝛼 to range [− 1

"
, 1
"
)

q Estimate Golomb PO2 parameter 𝑘 for the context
q Update stats for coding and bias correction
q Remap 𝜖 → 𝑀 𝜖 or 𝜖 → 𝑀 −1 − 𝜖
q Encode 𝑀 with Golomb-PO2(𝑘)
q Back to loop
run state:
q Count run of 𝑎 until 𝑥 ≠ 𝑎 Þ run length ℓ
q Encode ℓ using block-MELCODE
q Update MELCODE state
q Back to regular loop

16-Mar-23 Seroussi -- ATIPI 28

𝑐

𝑎
𝑏 𝑑
𝑥

Adaptive Coding of TSGD’s in JPEG-LS

16-Mar-23 29Seroussi -- ATIPI

q Optimal prefix codes for TSGD’s are approximated in JPEG-LS by applying the
Golomb-PO2 subfamily to a mapped error value

● two mappings are used in JPEG-LS
𝜖 → 𝑀 𝜖 , 0, −1, +1, −2, +2,… → 0, 1, 2, 3, 4, … (most cases)

𝜖 → 𝑀 −1 − 𝜖 , −1, 0, −2, +1, −3,… → 0, 1, 2, 3, 4, … (only with 𝑘 = 0, 𝑠 > !
"
)

q Assumption s Î [0,1) satisfied through the
use of adaptive correction of the predictor,
using, per context:
𝐵 = accumulated sum of error values
𝑁 = total number of samples

q For adaptive coding, we use (p/context):
𝐴 = accumulated sum of error magnitudes
𝑁_ = number of negative samples

𝑠 𝑃0,2(𝑒)

𝑒… −3 −2 −1 −𝑠 0 1 2 …

Bias Correction
q In principle, 𝜇 = 𝐵/𝑁 gives the integer part of the bias

● but we don’t want to use division! (low complexity constraint)
● instead, we implement the following procedure, which computes a correction

value 𝐶 for the fixed predictor P𝑥$%&. Starting with
𝑁 = 1, 𝐵 = 𝐶 = 0, for each sample, with prediction error 𝜖, we do

● only additions/subtractions
● 𝐵 is kept in the range −𝑁 < 𝐵 ≤ 0
● 𝐶 tracks 𝐵/𝑁 ; full predictor is P𝑥 = P𝑥$%& + 𝐶 ⋅ sign (clipped)

16-Mar-23 30Seroussi -- ATIPI

-1 0

this is the correction
computation for the
next pixel, done after
𝜖 has been encoded

0.00

0.01

0.02

0.03

0.04

0.05

0.06

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50

Effect of bias correction

10-Oct-10 31Seroussi -- ATIPI

Distributions of prediction errors before and after
bias correction

Grayscale image 720x576

U𝑃(𝑒|𝑠#)

𝑒

context 260
before:
mean ≈ −1.73
Y𝐻 = 3.59 bpp

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50

context 137
before:
mean ≈ 0.95
Y𝐻 = 3.51 bpp

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50

0.00

0.01

0.02

0.03

0.04

0.05

0.06

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50
0.00

0.01

0.02

0.03

0.04

0.05

0.06

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50

Effect of bias correction

10-Oct-10 32Seroussi -- ATIPI

Grayscale image 720x576

U𝑃(𝑒|𝑠#)

𝑒

context 260
before:
mean ≈ −1.73
Y𝐻 = 3.59 bpp

after:
mean ≈ −0.25
Y𝐻 = 3.37 bpp

Distributions of prediction errors before and after
bias correction

context 137
before:
mean ≈ 0.95
Y𝐻 = 3.51 bpp

U𝑃(𝑒|𝑠#)
after:
mean ≈ −0.27
Y𝐻 = 3.69 bpp

q In principle, a prediction error 𝑒 = 𝑥! − \𝑥! can assume values in the range
− 𝛼 + 1 ≤ 𝑒 ≤ 𝛼 − 1 Þ alphabet for 𝑒 is larger (1 bit longer)?

● However, given P𝑥' , 𝑒 can assume only 𝛼 different values,
−P𝑥'≤ 𝑒 ≤ 𝛼 − 1 − P𝑥' ⇒ a larger alphabet should not be needed

● Indeed, if we carry out all operations modulo 𝛼, reconstruction will be correct
𝑒 = 𝑥' − P𝑥' mod 𝛼 (encoder side)
𝑥' = P𝑥' + 𝑒 mod 𝛼 (decoder side)

⇒ map the prediction error modulo 𝛼 to a range of size 𝛼

Prediction Errors Alphabet

16-Mar-23 33Seroussi -- ATIPI

𝑥!

#𝑥!
𝑒

decoder

+𝑥!
#𝑥!

𝑒

encoder

−
ignoring the extra
(leftmost) bit cannot
affect the result !

Encoder Decoder

P𝑥' = 240
𝑥' = 1

𝑒 = 1 − 240 = −239
("23

17

P𝑥' = 240
𝑒 = 17

𝑥' = 240 + 17 = 257
$4& "23

1

q Map the prediction error to a range of size 𝛼. What range?

● Take residues in the range − 1,!
"

≤ 𝑒 ≤ 1,!
"

to preserve TSGD assumption

● the algorithm: if 𝑒 < − 1,!
"

: 𝑒 = 𝑒 + 𝛼

else if 𝑒 > 1,!
"

: 𝑒 = 𝑒 − 𝛼
§ “folds” large prediction errors into small values, can

help in edge regions; overall effect on compression
is not large

§ practical advantage: all numbers (and registers) are
of the same length

● On decoder side, reduce (P𝑥 + 𝑒) mod 𝛼 to
range 0 ≤ 𝑥 < 𝛼 .

● Example: 𝛼 = 256, −128 ≤ 𝑒 ≤ 127

Prediction Errors Alphabet

16-Mar-23 34Seroussi -- ATIPI

−(𝛼 −1) −
𝛼 −1
2 −

𝛼 −1
2

(𝛼 − 1)

Adaptive Coding of TSGD’s in JPEG-LS (cont.)

q Given a sequence of prediction errors 𝑒"0 = 𝑒"𝑒#𝑒$…𝑒0, let
𝐴5 = ∑' 𝑒' = accumulated sum of error magnitudes
𝑁5, = ∑' 1*)6) = number of negative samples

Then,

𝑃7,+ 𝑒!5 = 𝑐) 5l
*)9)

𝜃|*)|(+l
*)6)

𝜃 *) ,+

= 𝑐) 5l
'

𝜃 *) l
*)9)

𝜃+l
*)6)

𝜃,+ = 𝑐) 5𝜃;*𝜃 5,<*
+ +𝜃,<*++

= 𝑐) 5𝜃;*(5,"<*+ +

Þ 𝐴0, 𝑁0* are sufficient statistics for 𝜃, 𝑠 (every sequence with the
same values of 𝑡, 𝐴0, 𝑁0* has the same probability)

16-Mar-23 Seroussi -- ATIPI 35

𝑃7,+ 𝑒 = 𝑐)𝜃 *(+ , 0 < 𝜃 < 1, 0 ≤ 𝑠 < 1, 𝑐)=
1 − 𝜃

𝜃!,+ + 𝜃+

Adaptive Coding of TSGD’s in JPEG-LS (cont.)

𝐴0 = ∑! 𝑒! = accumulated sum of error magnitudes
𝑁0* = ∑! 1/N1- = number of negative samples
q Define

𝑆 =
𝜃

1 − 𝜃
, 𝜌 =

𝜃"*,

𝜃"*, + 𝜃,
● We’ll use the parameter pair (𝑆, 𝜌) instead of
(𝜃, 𝑠) (it’s clear that the pairs are in 1-1 correspondence).

q The ML estimators of 𝑆, 𝜌 are given by
n𝑆5 = (𝐴0 − 𝑁0*) /𝑡
�̂�0 = ⁄𝑁0* 𝑡

● Also, the ML estimator for 𝜃 is n𝜃5 = n𝑆5/(n𝑆5 + 1)
(much harder to get a “nice” one for 𝑠, that’s why we reparametrized!)

Our adaptation strategy will approximate one where n𝑆5 , P𝜌5 are computed
and the corresponding best code from the sub-family is selected.

16-Mar-23 Seroussi -- ATIPI 36

𝑃7,+ 𝑒 = 𝑐)𝜃 *(+ , 0 < 𝜃 < 1, 0 ≤ 𝑠 < 1, 𝑐)=
1 − 𝜃

𝜃!,+ + 𝜃+

easy to show that
𝜌 = 𝑃%,'(𝑒 < 0)

𝑃!,# 𝑒 = R
1 − 𝜌 1 − 𝜃 𝜃$, 𝑒 ≥ 0,
𝜌 1 − 𝜃 𝜃%&%$, 𝑒 < 0 .

U𝜃(=
𝐴(− 𝑁()

𝐴(− 𝑁() + 𝑡

Adaptive coding: choosing 𝑘

q For the Golomb code with parameter 2=, 𝑘 > 0, and mapping 𝑀(⋅):
0, −1, 1, −2, 2, −3… → 0, 1, 2, 3, 4,5, …

the average code length under 𝑃7,+(𝑒) is

𝐿= = 𝑘 + 1 +
𝜃",+!

1 − 𝜃",+!
≜ 𝑘 + 1 +

𝑧
1 − 𝑧

Independent of 𝑠 or 𝜌! Why?

q The code 𝐺", , 𝑘 ≥ 1, applied to integers mapped with 𝑀(⋅), assigns the same
code length to integers in pairs 𝑖, −(𝑖 + 1).
Example: 𝑘 = 1

q On the other hand,
𝑃 𝑖 + 𝑃 −(𝑖 + 1) = #)0

0("0)*(𝜃!"2 + 𝜃!"#)2 = 1 − 𝜃 𝜃! independent of 𝑠.

16-Mar-23 37Seroussi -- ATIPI

𝑧 ≜ 𝜃++*)

0, −1, 1, −2, 2, −3, 3, −4, 4, −5, 5, …

length 2 3 4 5 6 …

Adaptive coding: choosing 𝑘

q Transition points for 𝑘 > 0:

● 𝐿= = 𝑘 + 1 + >
!,>

, 𝑧 ≜ 𝜃",+!

● 𝐿= = 𝐿=(! ⇔ 𝑘 + 1 + >
!,>

= 𝑘 + 2 + >-

!,>-

⇔ 𝑧" + 𝑧 − 1 = 0

positive root is at 𝑧 = 𝜙 = !
"

5 − 1 ≈ 0.618

Þ transition points at 𝜃",+! = 𝜙 Þ 𝜃 = 𝜙"+,.!

● observe: 𝜃,! = 𝜙,"+,.! = 𝑒,"+,.! ?@ A ≈ 1 − 2,=(! ln𝜙 ,
− ln𝜙 ≈ 0.48 ≈ !

"

𝑆 = !
7+!,!

≈ !
,"+,.! ?@ A

≈ 2= power of 2!

code transitions occur when 𝑆 is near a power of 2
● in fact, this is true even for small 𝑘 if we take 𝑆 + 1/2

16-Mar-23 38Seroussi -- ATIPI

𝐿=

𝜃

𝑘 𝜽 𝑆 + 1/2

1 0.6180 2.1

2 0.7862 4.2

3 0.8867 8.3

4 0.9416 16.6

5 0.9704 33.3

6 0.9851 66.5

7 0.9925 133.0

8 0.9962 266.0

9 0.9981 532.0

10 0.9991 1064.0

11 0.9995 2128.0

Taylor 𝑒%' ≈ 1 − 𝑥

𝑠 𝑃0,2(𝑒)

𝑒… −3 −2 −1 −𝑠 0 1 2 …

Adaptive coding: choosing 𝑘 (cont.)
q The case 𝑘 = 0. Here 𝐿) depends on 𝑠:

𝐿- =
#

"*) −
)Z

)Z()[\Z

q Transition 𝑘 = 0 → 𝑘 = 1 with 𝑠 = 0: 𝐿) =
!(#7
!,7 - , 𝐿! = 2 + 7

!,7

𝐿) = 𝐿! ⇒ 𝜃 = 2 − 1 ⇒ 𝑆 = 7
!,7

= "
"
≈ 0.7 ⇒ 𝑆 + !

"
≈ 1.2

q If 𝑠 > !
"

, then 𝑃7,+ −1 > 𝑃7,+(0), and all

codelengths are different. We want to give the
shortest code to −1 ⇒ use mapping 𝑀(−𝑒 − 1):

−1, 0, −2, 1, −3, 2, … → 0, 1, 2, 3, 4, 5, …
16-Mar-23 39Seroussi -- ATIPI

recall 𝜌 = %!"#

%#3%!"#
, so 𝑠 > 4

5
⇔ 𝜌 > 4

5

𝑠

𝑆 +
1
2

The approximation
is even better for 𝑠 > 0
(solved numerically)

again close
to power of 2

Adaptive coding: the solution

16-Mar-23 40Seroussi -- ATIPI

g𝑆0 = 𝐴0 − 𝑁0* /𝑡 ⇒ 𝐴0 = 𝑡 g𝑆0 + 𝑁0* ≈ 𝑡 g𝑆0 + ⁄𝑡 2 = 𝑡(g𝑆0 + ⁄1 2)
⇒ transition points near ⁄𝐴0 𝑡 = power of 2

Summary of code selection in JPEG-LS
q Using context statistics 𝑁, 𝐴, 𝑁*, estimate

𝑘 ≅ log#
𝐴
𝑁

or, simply,

for (k=0; (N<<k)< A; k++);

q If 𝑘 = 0, use ⁄𝑁* 𝑁 to estimate 𝜌 and
determine if 𝑠 > "

#
, then select a mapping:

k
𝑀 𝑒 , if 2𝑁* ≤ 𝑁

𝑀 −𝑒 − 1 , otherwise (\𝜌 > "
#

, 𝑠 > "
#
)

𝑘 𝜽 𝑆 + 1/2

0 0.4142 1.2

1 0.6180 2.1

2 0.7862 4.2

3 0.8867 8.3

4 0.9416 16.6

5 0.9704 33.3

6 0.9851 66.5

7 0.9925 133.0

8 0.9962 266.0

9 0.9981 532.0

10 0.9991 1064.0

11 0.9995 2128.0

Embedded Run-length Coding

q Aimed at overcoming the basic limitation of 1 bit/pixel inherent to pixel-
wise prefix codes, most damaging in flat, low-entropy regions

q Creates super-symbols representing runs of the same pixel
value in the “flat region” 𝑎 = 𝑏 = 𝑐 = 𝑑Þ special context
𝑞", 𝑞#, 𝑞$ = [0,0,0].

What we’re betting on:

q A run of 𝑎 is counted and the count ℓ (which could be 0) is encoded
using block-MELCODE, a variation of Golomb codes with fast adaptation.

● Decoder sees the same special context and goes into “run mode” without
need for additional signaling.

● Run samples following the first 𝑎 need not be in the special context.

𝑐

𝑎
𝑏 𝑑
𝑥

16-Mar-23 Seroussi -- ATIPI 41

𝑎
𝑎

𝑎 𝑎
𝑎 𝑎 𝑎 𝑎⋯⋯

run of length ℓ

LOCO-I in one page
loop:
q Get context pixels 𝑎, 𝑏, 𝑐, 𝑑, next pixel 𝑥
q Compute gradients 𝑑 − 𝑏, 𝑏 − 𝑐, 𝑐 − 𝑎 and quantize Þ [𝑞1, 𝑞2, 𝑞3, sign]
q 𝑞1, 𝑞2, 𝑞3 = 0 ? YES: Go to run state NO: proceed
q 𝑥pred = predict(𝑎, 𝑏, 𝑐)
q Retrieve bias correction value for context, adjust sign if needed. Correct 𝑥pred
q 𝜖 = 𝑥 − 𝑥pred . If sign < 0 then 𝜖 = −𝜖. Map 𝜖 mod 𝛼 to range [− 1

"
, 1
"
)

q Estimate Golomb PO2 parameter 𝑘 for the context
q Update stats for coding and bias correction
q Remap 𝜖 → 𝑀 𝜖 or 𝜖 → 𝑀 −1 − 𝜖
q Encode 𝑀 with Golomb-PO2(𝑘)
q Back to loop
run state:
q Count run of 𝑎 until 𝑥 ≠ 𝑎 Þ run length ℓ
q Encode ℓ using block-MELCODE
q Update MELCODE state
q Back to regular loop

16-Mar-23 Seroussi -- ATIPI 42

𝑐

𝑎
𝑏 𝑑
𝑥

JPEG-H
LOCO-I

CALIC-H
ALCM

JPEG-A

JSLUG

CALIC-A

FELICS

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

8
8.5

3.00 3.25 3.50 3.75 4.00 4.25
Average bits/symbol on benchmark image set

R
el

at
iv

e
ru

nn
in

g
tim

e
(a

pp
ro

x.
) .

Compression/Complexity trade-off

16-Mar-23 44Seroussi -- ATIPI

+67%

+38%

0%

-27%

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

Raw PNG LOCO JPEG*

Mars Image Compressed on NASA “Curiosity” Rover

with LOCO-I (August 8, 2012)

Lossy, as provided
in NASA’s web.

Near-Lossless compression

q Near-lossless compression: reconstructed sample differs from
original by up to a preset (small) magnitude 𝛿

● Traditional DPCM/quantization loop, with prediction error quantized
into bins of size 2𝛿 + 1

𝜖 → 𝑄 𝜖 = G(H
"H(!

, 𝜖 ≥ 0 (symmetric for 𝜖 < 0)

𝑄 𝜖 → 𝜖I = 2𝛿 + 1 𝑄(𝜖) Reconstruction

● Lossless Û 𝛿 = 0
● Run mode test relaxed to 𝑐 − 𝑎 , 𝑏 − 𝑐 , 𝑑 − 𝑏 ≤ 𝛿 (causal template

built of reconstructed samples)
● Often outperforms lossy JPEG in the low-distortion region of the R-D

curve

16-Mar-23 Seroussi -- ATIPI 45

More Comparisons

q Lossless compression on JPEG-LS benchmark set (8 bps)
● rich set including natural and aerial photographs, compound documents,

scanned, medical and computer-generated images

q Near-lossless: JPEG-LS outperforms JPEG at high bit-rates

● JPEG-LS also outperforms JPEG2000 at d £ 1
(but not at d > 2)

16-Mar-23 46Seroussi -- ATIPI

 JPEG-LS Lossless
JPEG (H)

Lossless
JPEG (A)

FELICS PNG CALIC LOCO-A

Avg. CR (bps) 3.19 4.08 3.40 3.76 3.46 3.06 3.06
D/JPEG-LS 0% +28% +7% +18% +8% -4% -4%

 JPEG-LS
RMSE

JPEG
RMSE

d = 1 0.82 1.50
d = 3 1.93 2.30

Typical RMSE at similar bit-rate, on
original JPEG benchmark images

extension of
JPEG-LS with
arithmetic coding

JPEG-LS Features: Color Images

q Color images: 3 basic modes for color planes

q Statistics are shared among components in interleaved modes
q Lossless color decorrelation transforms specified in Part 2 of the standard.

Very effective as pre-processing to JPEG-LS in some color spaces.
Example:

R ® R - G
G ® G
B ® B – G

16-Mar-23 Seroussi -- ATIPI 47

non-interleaved line-interleaved sample-interleaved

as with prediction errors, use subtraction mod 𝛼 and
remapping to −]

+ ,
]
+ to preserve alphabet size

JPEG-LS Features: Color Images

q Palletized images: JPEG-LS syntax allows for description of palette tables
and coding in index space

● Same feature useful for remapping images with “sparse histograms’’

16-Mar-23 Seroussi -- ATIPI 48

index R G B

0 0 0 0

1 12 17 23

2 32 123 100

3 150 200 30

⁞ ⁞ ⁞ ⁞

254 130 77 90

255 255 255 255

