
Applications of  Information 
Theory in Image Processing

4. The  LOCO-I  lossless image compression algorithm 
and the JPEG-LS standard
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The LOCO-I algorithm
q JPEG-LS is based on the LOCO-I algorithm:

LOw COmplexity LOssless COmpression of Images
q Guiding principles

● Apply basic principles of continuous tone image modeling.
● Approach state of the art performance at lowest possible complexity.

q Basic components:
● Fixed + Adaptive prediction
● Conditioning contexts based on quantized gradients
● Two-parameter conditional probability model (TSGD)
● Low complexity adaptive coding matched to the model (variants of Golomb

codes)
● Run length coding in flat areas to address drawback of symbol-by-symbol coding

q Reference:
M. Weinberger, G. Seroussi, G. Sapiro, “The LOCO-I Image compression algorithm: principles 
and standardization into JPEG-LS”, IEEE Trans. Image Processing, vol. 9, No. 8, August 2000.
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Fixed Predictor: MED

q Causal template  for prediction and conditioning

q Alternative interpretation: median of three linear predictors (MED)
● 𝑓!(𝑎, 𝑏, 𝑐) = 𝑎
● 𝑓"(𝑎, 𝑏, 𝑐) = 𝑏
● 𝑓#(𝑎, 𝑏, 𝑐) = 𝑎 + 𝑏 − 𝑐

𝑓$%& 𝑎, 𝑏, 𝑐 = median(𝑓!, 𝑓", 𝑓#)
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𝑐 𝑏 𝑑

𝑎

Past sequence

next pixel𝑥'(!

!𝑥!"# = $
min(𝑎, 𝑏) if 𝑐 ≥ max(𝑎, 𝑏)
max(𝑎, 𝑏) if 𝑐 ≤ min(𝑎, 𝑏)
𝑎 + 𝑏 − 𝑐 otherwise

Predictor:



MED  Predictor Properties

q Nonlinear, has some edge detection capability:

● Predicts 𝑏 in ‘‘vertical edge’’

● Predicts 𝑎 in ‘‘horizontal edge’’

● Predicts 𝑎 + 𝑏 − 𝑐 in ‘‘smooth region’’

𝑐 𝑏
𝑎

𝑐 𝑏
𝑎
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Parameter Reduction and Adaptivity

q Statistical model = context set + probability model for prediction residuals
● each pixel classified into a context class
● prediction error encoded based on a probability distribution conditioned on 

the context class
q Two factors determine the total number of statistical parameters:

● number of context classes
● parametrization of probability distribution for prediction residuals

q Goal: capture high order dependencies without excessive model cost
q Adaptive coding is desired, but arithmetic coding ruled out (if possible…) 

due to complexity constraints
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Parameter Reduction and Adaptivity

q Probabilistic model:  Model prediction residuals with a 
two-sided geometric distribution (TSGD)

𝑃 𝑒 = 𝑐)𝜃 *(+ , 𝜃 ∈ 0,1 , 𝑠 ∈ 0,1 , 𝑐)=
1 − 𝜃

𝜃+ + 𝜃!,+
● “discrete Laplacian”
● only two parameters per context class

§ 𝜃: “sharpness” (rate of decay, variance, etc.)
§ 𝑠: “shift” (often non-zero in a context-dependent scheme)

● shift s constrained to [0,1) by integer-valued adaptive
correction (bias cancellation) on a fixed predictor

● allows for relatively large number of context classes 
(365 in JPEG-LS)

● suited to low complexity adaptive coding

s

e

P(e)

–s

TSGD

–1
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Context Class Determination

q Gradients 𝑔1 = (𝑑 − 𝑏), 𝑔2 = (𝑏 − 𝑐), 𝑔3 = (𝑐 − 𝑎)
● [𝑔!, 𝑔", 𝑔#]: triplet of raw gradients
● gradients capture the level of activity (smoothness, edginess) surrounding a pixel
● each of 𝑔1, 𝑔2, 𝑔3 quantized into 9 regions determined by 4 thresholds  1, 𝑆1, 𝑆2, 𝑆3

● Regions 0, 1, 2, 3, 4 (resp.): {0}, 1 ≤ 𝑔 < 𝑆!, 𝑆! ≤ 𝑔 < 𝑆", 𝑆" ≤ 𝑔 < 𝑆#, 𝑔 ≥ 𝑆#
§ Symmetrically on the negative side for regions −1,−2,−3,−4

● defaults in JPEG-LS: 𝑆! = 3, 𝑆"= 7, 𝑆#= 21
● 𝑔' → 𝑞' ∈ −4,−3, −2, −1, 0, 1, 2, 3, 4
● 𝑔!, 𝑔", 𝑔# → [𝑞1, 𝑞2, 𝑞3] a triplet of quantized gradients

c b d

a x

Causal template:

next pixel
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Context Class Determination

q 𝑔", 𝑔#, 𝑔$ → [𝑞1, 𝑞2, 𝑞3] a triplet of quantized gradients
q Symmetric contexts (with respect to B/W) merged: 

𝑃( 𝑒 | [𝑞1, 𝑞2, 𝑞3] ) ↔ 𝑃( −𝑒 | [−𝑞1, −𝑞2, −𝑞3] )

● Canonical form: change the sign of the vector as needed so that the first nonzero 
in [𝑞", 𝑞#, 𝑞$] (if any) is positive. Remember if sign was flipped.
Result of context class determination:

[𝑞!, 𝑞", 𝑞#, sign]
● How is this used? Say the prediction error is  𝑒 = 𝑥'(! − P𝑥'(!.

§ If sign < 0 , add a count of −𝑒 to the stats, else add a count of 𝑒. Encode the value that 
was added to the stats.

§ On the decoder size, after decoding 𝑒, add it to the stats. If sign < 0, flip the sign of 𝑒, 
then reconstruct  𝑥!"# = !𝑥!"# + 𝑒 .

q Fixed number of contexts:  (93 + 1)/2 = 365
● addresses the problem of context dilution
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Context Class Determination -- Examples

40 40 120
45

800

-5

[𝑔1, 𝑔2, 𝑔3] = [ 80, 0, −5]

[𝑞1, 𝑞2, 𝑞3] = [ 4, 0, −2]

75 75 20
71

-550

4

[𝑔1, 𝑔2, 𝑔3] = [ −55, 0, 4]

[𝑞1, 𝑞2, 𝑞3] = [ −4, 0, 2]

same context class (keeping track of sign)
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Encoding of  TSGDs: Golomb codes

q Optimal prefix codes for TSGDs are built out of the Golomb codes.
● Family of prefix-free codes for geometric distributions over nonnegative integers 

described by Golomb in 1966  (motivated by sequences of Bernoulli trials)
q Consider an integer 𝑚 ≥ 1. The 𝑚th order Golomb code 𝐺% encodes an 

integer 𝑗 ≥ 0 as follows:

𝐺% 𝑗 = binary% 𝑗 mod 𝑚 G unary 𝑗 div 𝑚

𝑗 mod 𝑚, 𝑗 div 𝑚 = remainder and quotient in integer division 𝑗/𝑚 (resp.)

binary% 𝑖 = (shortest) binary representation of 𝑖, log𝑚 or log𝑚 bits

unary 𝑖 = 00…01
!

unary representation of 𝑖.

q Given 𝑚 and 𝐺%(𝑗) , a decoder uniquely reconstructs 𝑗.
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Golomb codes -- Examples

16-Mar-23 12Seroussi -- CDSP                                             

𝒊 𝑮𝒎(𝒊) ℓ(𝒊)

0 00 1 3

1 01 1 3

2 10 1 3

3 110 1 4

4 111 1 4

5 00 01 4

6 01 01 4

7 10 01 4

8 110 01 5

9 111 01 5

10 00 001 5

11 01 001 5

12 10 001 5

13 110 001 6

14 111 001 6

⋮ ⋮ ⋮

𝒊 𝒊 (binary) 𝑮𝒎(𝒊) ℓ(𝒊)

0 00 00 1 3

1 01 01 1 3

2 10 10 1 3

3 11 11 1 3

4 1 00 00 01 4

5 1 01 01 01 4

6 1 10 10 01 4

7 1 11 11 01 4

8 10 00 00 001 5

9 10 01 01 001 5

10 10 10 10 001 5

11 10 11 11 001 5

12 11 00 00 0001 6

13 11 01 01 0001 6

14 11 10 10 0001 6

⋮ ⋮ ⋮

𝑚 = 5 𝑚 = 2& = 4, 𝑘 = 2

⋮

3

5

5

4

4

4

⋮



Golomb PO2 codes

q When 𝑚 = 2&, we call 𝐺% a Golomb power of two (PO2) code and use 𝑘
as the defining parameter: 𝐺&∗ ≜ 𝐺#' .

q PO2 codes are especially simple to implement!
Example: Golomb PO2 encoder

13 Gadiel Seroussi - Lossless Data Compression - 2021

𝑏(𝑏()#⋯𝑏* 𝑏*)#𝑏*)+⋯𝑏#𝑏,
input: integer
𝑏 in binary 

representation

𝑘 LS bitsMS bits

𝑏 div 2* 𝑏 mod 2*

counter

unary part binary part

C/C++:
𝑏 mod 2* : b & ((1<<k)-1)

𝑏 div 2* : b >> k



𝐺# 𝐺+ 𝐺-

𝐺. 𝐺/⋯
Solution of  𝜃% + 𝜃%(" = 1
𝑚 𝜃%
1 0.6180339887
2 0.7548776662
3 0.8191725134
4 0.8566748839
5 0.8812714616
6 0.8986537126
7 0.9115923535
8 0.9215993196

Golomb (1966) had proved optimality for 𝜃 = 2,
!
", i.e. 𝜃0 = !

"
. 

Optimality of  Golomb codes for GDs

Theorem [Gallager, Van Voorhis 1975] Let 𝑃)(𝑖) = 1 − 𝜃 𝜃! be a geometric 
distribution on the nonnegative integers, with 0 < 𝜃 < 1, and let 𝑚 be the 
unique (positive) integer satisfying

𝜃% + 𝜃%(" ≤ 1 < 𝜃% + 𝜃%*".

Then, the Golomb code 𝐺% is optimal for 𝑃).
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How about TSGDs?

𝑃),, 𝑒 = 𝑐-𝜃|/(,|, 0 < 𝜃 < 1, 0 ≤ 𝑠 < 1.
q This had been traditionally studied for 𝑠 = 0.

People used one of two approaches to encode 𝑒 :
1. Encode |𝑒| with the optimal 𝐺0 for 𝜃 and send a sign bit if 𝑒 ≠ 0 (symmetric).
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TSGD with
𝜃 = 0.75, 𝑠 = 0.15



How about TSGDs?

𝑃),, 𝑒 = 𝑐-𝜃|/(,|, 0 < 𝜃 < 1, 0 ≤ 𝑠 < 1.
q This had been traditionally studied for 𝑠 = 0.

People used one of two approaches to encode 𝑒 :
1. Encode |𝑒| with the optimal 𝐺0 for 𝜃 and send a sign bit if 𝑒 ≠ 0 (symmetric).

2. Define   𝑀 𝑒 ≝ V 2𝑒 𝑒 ≥ 0
2|𝑒| − 1 𝑒 < 0

Encode 𝑒 with 𝐺0(𝑀 𝑒 ) (asymmetric).
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Rice mapping

𝑒 𝑀 𝑒
0 0

−1 1
1 2

−2 3
2 4
⋮ ⋮

Mapped TSGD with
𝜃 = 0.75, 𝑠 = 0.15



How about TSGDs?

𝑃),, 𝑒 = 𝑐-𝜃|/(,|, 0 < 𝜃 < 1, 0 ≤ 𝑠 < 1.

q However,  the characterization of optimal codes for these distributions 
(analogous to Golomb codes for one-sided geometric distributions) was an 
open question, even for the simpler case 𝑠 = 0.

q Optimal codes for TSGDs (with 𝑠 ∈ [0,1)) were first characterized in

N. Merhav, G. Seroussi and M.J. Weinberger, “Optimal prefix codes for sources 
with two-sided geometric distributions,” IEEE Trans. on Information Theory, 46,, 
2000, pp. 121–135.
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Optimal Code Regions for TSG Distributions

Golomb-PO2 code

𝑃0,2 𝑒 = 𝑐,𝜃|4"2|, 0 < 𝜃 < 1, 0 ≤ 𝑠 ≤ 1/2.

𝑠

Regions characterized by an
integer parameter ℓ and a
label I, II, III, or IV.
For each region, an optimal 
code is characterized.

Region I:   𝐺+ℓ)# 𝑀 𝑥

Region III: 𝐺+ℓ 𝑀 𝑥

Regions II, IV: symmetric
codes (Region II is equiv.
to sign+magnitude when 
ℓ is PO2).  
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Relative redundancy of  codes for TSGD
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relative redundancy measured as   678494:;(< )4:(=7>?4:(=7>? , for TSGD with 𝑠 = 0
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best PO2 code with Rice map

optimal TSGD code



Penalty for use of  PO2 codes vs. optimal for TSGD
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relative penalty measured as   678494:;(<(AB+) )678494:;(<(7>(!DE9)678494:;(<(7>(!DE9) , for TSGD with 𝑠 = 0
re

la
tiv

e 
pe

na
lty

𝜃



LOCO-I components
loop:
q Get context pixels 𝑎, 𝑏, 𝑐, 𝑑, next pixel 𝑥
q Compute gradients 𝑑 − 𝑏, 𝑏 − 𝑐, 𝑐 − 𝑎 and quantize Þ [𝑞1, 𝑞2, 𝑞3, sign]
q 𝑞1, 𝑞2, 𝑞3 = 0 ? YES: Go to run state NO:   proceed
q 𝑥pred = predict(𝑎, 𝑏, 𝑐)
q Retrieve bias correction value for context, adjust sign if needed. Correct  𝑥pred
q 𝜖 = 𝑥 − 𝑥pred . If  sign < 0 then 𝜖 = −𝜖.  Map 𝜖 mod 𝛼 to range [− 1

"
, 1
"
)

q Estimate Golomb PO2 parameter 𝑘 for the context
q Update stats for coding and bias correction
q Remap 𝜖 → 𝑀 𝜖 or 𝜖 → 𝑀 −1 − 𝜖
q Encode 𝑀 with Golomb-PO2(𝑘) 
q Back to loop
run state:
q Count run of 𝑎 until 𝑥 ≠ 𝑎 Þ run length ℓ
q Encode ℓ using block-MELCODE
q Update MELCODE state
q Back to regular loop

16-Mar-23 Seroussi -- ATIPI                                             28

𝑐

𝑎
𝑏 𝑑
𝑥



Adaptive Coding of  TSGD’s in JPEG-LS
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q Optimal prefix codes for TSGD’s are approximated in JPEG-LS by applying the 
Golomb-PO2 subfamily to a mapped error value

● two mappings are used in JPEG-LS
𝜖 → 𝑀 𝜖 , 0, −1, +1, −2, +2,… → 0, 1, 2, 3, 4, … (most cases)

𝜖 → 𝑀 −1 − 𝜖 , −1, 0, −2, +1, −3,… → 0, 1, 2, 3, 4, … (only with 𝑘 = 0, 𝑠 > !
"
)

q Assumption s Î [0,1) satisfied through the 
use of adaptive correction of the predictor, 
using, per context:
𝐵 = accumulated sum of error values
𝑁 = total number of samples

q For adaptive coding, we use (p/context):
𝐴 = accumulated sum of error magnitudes
𝑁_ = number of negative samples

𝑠 𝑃0,2(𝑒)

𝑒… −3 −2 −1 −𝑠 0 1 2 …



Bias Correction
q In principle, 𝜇 = 𝐵/𝑁 gives the integer part of the bias

● but we don’t want to use division! (low complexity constraint)
● instead, we implement the following procedure, which computes a correction 

value 𝐶 for the fixed predictor P𝑥$%&.  Starting with
𝑁 = 1, 𝐵 = 𝐶 = 0,  for each sample, with prediction error 𝜖, we do

● only additions/subtractions 
● 𝐵 is kept in the range −𝑁 < 𝐵 ≤ 0
● 𝐶 tracks 𝐵/𝑁 ; full predictor is P𝑥 = P𝑥$%& + 𝐶 ⋅ sign (clipped)
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-1 0

this is the correction
computation for the
next pixel, done after
𝜖 has been encoded
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Distributions of prediction errors before and after
bias correction

Grayscale image 720x576

U𝑃(𝑒|𝑠#)

𝑒

context 260
before:
mean ≈ −1.73
Y𝐻 = 3.59 bpp
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mean ≈ 0.95
Y𝐻 = 3.51 bpp
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Grayscale image 720x576

U𝑃(𝑒|𝑠#)

𝑒

context 260
before:
mean ≈ −1.73
Y𝐻 = 3.59 bpp

after:
mean ≈ −0.25
Y𝐻 = 3.37 bpp

Distributions of prediction errors before and after
bias correction

context 137
before:
mean ≈ 0.95
Y𝐻 = 3.51 bpp

U𝑃(𝑒|𝑠#)
after:
mean ≈ −0.27
Y𝐻 = 3.69 bpp



q In principle, a prediction error 𝑒 = 𝑥! − \𝑥! can assume values in the range 
− 𝛼 + 1 ≤ 𝑒 ≤ 𝛼 − 1 Þ alphabet for 𝑒 is larger (1 bit longer)?

● However, given P𝑥' , 𝑒 can assume only 𝛼 different values,
−P𝑥'≤ 𝑒 ≤ 𝛼 − 1 − P𝑥' ⇒ a larger alphabet should not be needed

● Indeed, if we carry out all operations modulo 𝛼, reconstruction will be correct
𝑒 = 𝑥' − P𝑥' mod 𝛼 (encoder side)
𝑥' = P𝑥' + 𝑒 mod 𝛼 (decoder side)

⇒ map the prediction error modulo 𝛼 to a range of size 𝛼

Prediction Errors Alphabet
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𝑥!

#𝑥!
𝑒

decoder

+𝑥!
#𝑥!

𝑒

encoder

−
ignoring the extra 
(leftmost) bit cannot 
affect the result !



Encoder Decoder

P𝑥' = 240
𝑥' = 1

𝑒 = 1 − 240 = −239
("23

17

P𝑥' = 240
𝑒 = 17

𝑥' = 240 + 17 = 257
$4& "23

1

q Map the prediction error to a range of size 𝛼. What range?

● Take residues in the range  − 1,!
"

≤ 𝑒 ≤ 1,!
"

to preserve TSGD assumption

● the algorithm:   if 𝑒 < − 1,!
"

: 𝑒 = 𝑒 + 𝛼

else if 𝑒 > 1,!
"

: 𝑒 = 𝑒 − 𝛼
§ “folds” large prediction errors into small values, can 

help in edge regions; overall effect on compression 
is not large

§ practical advantage: all numbers (and registers) are 
of the same length

● On decoder side, reduce (P𝑥 + 𝑒) mod 𝛼 to
range 0 ≤ 𝑥 < 𝛼 .

● Example:  𝛼 = 256, −128 ≤ 𝑒 ≤ 127

Prediction Errors Alphabet
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−(𝛼 −1) −
𝛼 −1
2 −

𝛼 −1
2

(𝛼 − 1)



Adaptive Coding of  TSGD’s in JPEG-LS (cont.)

q Given a sequence of prediction errors 𝑒"0 = 𝑒"𝑒#𝑒$…𝑒0, let
𝐴5 = ∑' 𝑒' = accumulated sum of error magnitudes
𝑁5, = ∑' 1*)6) = number of negative samples

Then,

𝑃7,+ 𝑒!5 = 𝑐) 5l
*)9)

𝜃|*)|(+l
*)6)

𝜃 *) ,+

= 𝑐) 5l
'

𝜃 *) l
*)9)

𝜃+l
*)6)

𝜃,+ = 𝑐) 5𝜃;*𝜃 5,<*
+ +𝜃,<*++

= 𝑐) 5𝜃;*( 5,"<*+ +

Þ 𝐴0, 𝑁0* are sufficient statistics for 𝜃, 𝑠 (every sequence with the  
same values of 𝑡, 𝐴0, 𝑁0* has the same probability)
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𝑃7,+ 𝑒 = 𝑐)𝜃 *(+ , 0 < 𝜃 < 1, 0 ≤ 𝑠 < 1, 𝑐)=
1 − 𝜃

𝜃!,+ + 𝜃+



Adaptive Coding of  TSGD’s in JPEG-LS (cont.)

𝐴0 = ∑! 𝑒! = accumulated sum of error magnitudes
𝑁0* = ∑! 1/N1- = number of negative samples
q Define  

𝑆 =
𝜃

1 − 𝜃
, 𝜌 =

𝜃"*,

𝜃"*, + 𝜃,
● We’ll use the parameter pair (𝑆, 𝜌) instead of 
(𝜃, 𝑠) (it’s clear that the pairs are in 1-1 correspondence).

q The ML estimators of 𝑆, 𝜌 are given by
n𝑆5 = (𝐴0 − 𝑁0*) /𝑡
�̂�0 = ⁄𝑁0* 𝑡

● Also, the ML estimator for 𝜃 is n𝜃5 = n𝑆5/( n𝑆5 + 1)
(much harder to get a “nice” one for 𝑠, that’s why we reparametrized!)

Our adaptation strategy will approximate one where  n𝑆5 , P𝜌5 are computed 
and the corresponding best code from the sub-family is selected.
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𝑃7,+ 𝑒 = 𝑐)𝜃 *(+ , 0 < 𝜃 < 1, 0 ≤ 𝑠 < 1, 𝑐)=
1 − 𝜃

𝜃!,+ + 𝜃+

easy to show that 
𝜌 = 𝑃%,'(𝑒 < 0)

𝑃!,# 𝑒 = R
1 − 𝜌 1 − 𝜃 𝜃$, 𝑒 ≥ 0,
𝜌 1 − 𝜃 𝜃%&%$, 𝑒 < 0 .

U𝜃( =
𝐴( − 𝑁()

𝐴( − 𝑁() + 𝑡



Adaptive coding: choosing 𝑘

q For the Golomb code with  parameter 2=,  𝑘 > 0, and mapping 𝑀(⋅): 
0, −1, 1, −2, 2, −3… → 0, 1, 2, 3, 4,5, …

the average code length under 𝑃7,+(𝑒) is

𝐿= = 𝑘 + 1 +
𝜃",+!

1 − 𝜃",+!
≜ 𝑘 + 1 +

𝑧
1 − 𝑧

Independent of 𝑠 or 𝜌!  Why?

q The code 𝐺", , 𝑘 ≥ 1, applied to integers mapped with 𝑀(⋅), assigns the same 
code length to integers in pairs 𝑖, −(𝑖 + 1).
Example: 𝑘 = 1

q On the other hand,
𝑃 𝑖 + 𝑃 −(𝑖 + 1) = #)0

0("0)*( 𝜃!"2 + 𝜃!"#)2 = 1 − 𝜃 𝜃! independent of 𝑠.
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𝑧 ≜ 𝜃++*)

0, −1, 1, −2, 2, −3, 3, −4, 4, −5, 5, …

length 2 3 4 5 6 …



Adaptive coding: choosing 𝑘

q Transition points for 𝑘 > 0:

● 𝐿= = 𝑘 + 1 + >
!,>

,     𝑧 ≜ 𝜃",+!

● 𝐿= = 𝐿=(! ⇔ 𝑘 + 1 + >
!,>

= 𝑘 + 2 + >-

!,>-

⇔ 𝑧" + 𝑧 − 1 = 0

positive root is at  𝑧 = 𝜙 = !
"

5 − 1 ≈ 0.618

Þ transition points at 𝜃",+! = 𝜙 Þ 𝜃 = 𝜙"+,.!

● observe: 𝜃,! = 𝜙,"+,.! = 𝑒,"+,.! ?@ A ≈ 1 − 2,=(! ln𝜙 , 
− ln𝜙 ≈ 0.48 ≈ !

"

𝑆 = !
7+!,!

≈ !
,"+,.! ?@ A

≈ 2= power of 2!

code transitions  occur  when 𝑆 is near a power of 2
● in fact, this is true even for small 𝑘 if we take  𝑆 + 1/2
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𝐿=

𝜃

𝑘 𝜽 𝑆 + 1/2

1 0.6180 2.1

2 0.7862 4.2

3 0.8867 8.3

4 0.9416 16.6

5 0.9704 33.3

6 0.9851 66.5

7 0.9925 133.0

8 0.9962 266.0

9 0.9981 532.0

10 0.9991 1064.0

11 0.9995 2128.0

Taylor 𝑒%' ≈ 1 − 𝑥



𝑠 𝑃0,2(𝑒)

𝑒… −3 −2 −1 −𝑠 0 1 2 …

Adaptive coding: choosing 𝑘 (cont.)
q The case 𝑘 = 0. Here 𝐿) depends on 𝑠:

𝐿- =
#

"*) −
)Z

)Z()[\Z

q Transition 𝑘 = 0 → 𝑘 = 1 with 𝑠 = 0:   𝐿) =
!(#7
!,7 - , 𝐿! = 2 + 7

!,7

𝐿) = 𝐿! ⇒ 𝜃 = 2 − 1 ⇒ 𝑆 = 7
!,7

= "
"
≈ 0.7 ⇒ 𝑆 + !

"
≈ 1.2

q If 𝑠 > !
"

, then 𝑃7,+ −1 > 𝑃7,+(0), and all 

codelengths are different. We want to give the 
shortest code to −1 ⇒ use mapping 𝑀(−𝑒 − 1):

−1, 0, −2, 1, −3, 2, … → 0, 1, 2, 3, 4, 5, …
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recall 𝜌 = %!"#

%#3%!"#
, so 𝑠 > 4

5
⇔ 𝜌 > 4

5

𝑠

𝑆 +
1
2

The approximation
is even better for 𝑠 > 0
(solved numerically)

again close
to power of 2



Adaptive coding: the solution
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g𝑆0 = 𝐴0 − 𝑁0* /𝑡 ⇒ 𝐴0 = 𝑡 g𝑆0 + 𝑁0* ≈ 𝑡 g𝑆0 + ⁄𝑡 2 = 𝑡( g𝑆0 + ⁄1 2)
⇒ transition points near ⁄𝐴0 𝑡 = power of 2

Summary of code selection in JPEG-LS
q Using context statistics 𝑁, 𝐴, 𝑁*, estimate

𝑘 ≅ log#
𝐴
𝑁

or, simply,

for ( k=0; (N<<k)< A; k++ );

q If 𝑘 = 0, use ⁄𝑁* 𝑁 to estimate 𝜌 and 
determine if 𝑠 > "

#
, then select a mapping:

k
𝑀 𝑒 , if 2𝑁* ≤ 𝑁

𝑀 −𝑒 − 1 , otherwise ( \𝜌 > "
#

, 𝑠 > "
#
)

𝑘 𝜽 𝑆 + 1/2

0 0.4142 1.2

1 0.6180 2.1

2 0.7862 4.2

3 0.8867 8.3

4 0.9416 16.6

5 0.9704 33.3

6 0.9851 66.5

7 0.9925 133.0

8 0.9962 266.0

9 0.9981 532.0

10 0.9991 1064.0

11 0.9995 2128.0



Embedded Run-length Coding

q Aimed at overcoming the basic limitation of 1 bit/pixel inherent to pixel-
wise prefix codes, most damaging in flat, low-entropy regions

q Creates super-symbols representing runs of the same pixel 
value in the “flat region” 𝑎 = 𝑏 = 𝑐 = 𝑑Þ special context
𝑞", 𝑞#, 𝑞$ = [0,0,0]. 

What we’re betting on:

q A run of 𝑎 is counted and the count ℓ (which could be 0) is encoded 
using block-MELCODE, a variation of Golomb codes with fast adaptation.

● Decoder sees the same special context and goes into “run mode” without 
need for additional signaling.

● Run samples following the first 𝑎 need not be in the special context.

𝑐

𝑎
𝑏 𝑑
𝑥
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𝑎
𝑎

𝑎 𝑎
𝑎 𝑎 𝑎 𝑎⋯⋯

run of length ℓ



LOCO-I in one page
loop:
q Get context pixels 𝑎, 𝑏, 𝑐, 𝑑, next pixel 𝑥
q Compute gradients 𝑑 − 𝑏, 𝑏 − 𝑐, 𝑐 − 𝑎 and quantize Þ [𝑞1, 𝑞2, 𝑞3, sign]
q 𝑞1, 𝑞2, 𝑞3 = 0 ? YES: Go to run state NO:   proceed
q 𝑥pred = predict(𝑎, 𝑏, 𝑐)
q Retrieve bias correction value for context, adjust sign if needed. Correct  𝑥pred
q 𝜖 = 𝑥 − 𝑥pred . If  sign < 0 then 𝜖 = −𝜖.  Map 𝜖 mod 𝛼 to range [− 1

"
, 1
"
)

q Estimate Golomb PO2 parameter 𝑘 for the context
q Update stats for coding and bias correction
q Remap 𝜖 → 𝑀 𝜖 or 𝜖 → 𝑀 −1 − 𝜖
q Encode 𝑀 with Golomb-PO2(𝑘) 
q Back to loop
run state:
q Count run of 𝑎 until 𝑥 ≠ 𝑎 Þ run length ℓ
q Encode ℓ using block-MELCODE
q Update MELCODE state
q Back to regular loop
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𝑐

𝑎
𝑏 𝑑
𝑥
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16-Mar-23 44Seroussi -- ATIPI                                             

+67%

+38%

0%

-27%

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

Raw PNG LOCO JPEG*

Mars Image Compressed on NASA “Curiosity” Rover

with LOCO-I  (August 8, 2012)

Lossy, as provided 
in NASA’s web.



Near-Lossless compression

q Near-lossless compression: reconstructed sample differs from 
original by up to a preset (small) magnitude 𝛿

● Traditional DPCM/quantization loop, with prediction error quantized 
into bins of size 2𝛿 + 1

𝜖 → 𝑄 𝜖 = G(H
"H(!

, 𝜖 ≥ 0 (symmetric for 𝜖 < 0)

𝑄 𝜖 → 𝜖I = 2𝛿 + 1 𝑄(𝜖) Reconstruction

● Lossless Û 𝛿 = 0
● Run mode test relaxed to 𝑐 − 𝑎 , 𝑏 − 𝑐 , 𝑑 − 𝑏 ≤ 𝛿 (causal template 

built of reconstructed samples)
● Often outperforms lossy JPEG in the low-distortion region of the R-D 

curve
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More Comparisons

q Lossless compression on JPEG-LS benchmark set  (8 bps)
● rich set including natural and aerial photographs, compound documents, 

scanned, medical and computer-generated images

q Near-lossless: JPEG-LS outperforms JPEG at high bit-rates

● JPEG-LS also outperforms JPEG2000 at d £ 1
(but not at d > 2)
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 JPEG-LS Lossless  
JPEG (H) 

Lossless  
JPEG (A) 

FELICS PNG CALIC LOCO-A 

Avg. CR (bps) 3.19 4.08 3.40 3.76 3.46 3.06 3.06 
D/JPEG-LS  0% +28% +7% +18% +8% -4% -4% 

 

 

 JPEG-LS 
RMSE 

JPEG 
RMSE 

d = 1 0.82 1.50 
d = 3 1.93 2.30 

 

 

Typical RMSE at similar bit-rate, on 
original JPEG benchmark images

extension of
JPEG-LS with 
arithmetic coding



JPEG-LS Features: Color Images

q Color images: 3 basic modes for color planes

q Statistics are shared among components in interleaved modes
q Lossless color decorrelation transforms specified in Part 2 of the standard. 

Very effective as pre-processing to JPEG-LS in some color spaces.
Example:

R ® R - G
G ® G
B ® B – G
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non-interleaved line-interleaved sample-interleaved

as with prediction errors, use subtraction mod 𝛼 and 
remapping to − ]

+ ,
]
+ to preserve alphabet size



JPEG-LS Features: Color Images

q Palletized images: JPEG-LS syntax allows for description of palette tables 
and coding in index space

● Same feature useful for remapping images with “sparse histograms’’
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index R G B

0 0 0 0

1 12 17 23

2 32 123 100

3 150 200 30

⁞ ⁞ ⁞ ⁞

254 130 77 90

255 255 255 255


