
Applications of Information
Theory in Image Processing

1. Review of Information Theory and Lossless Source Coding (part B)

11-Aug-21 1Seroussi -- ATIPI

Notation
• 𝐴 : discrete (usually finite) alphabet; a = | A	| : size of A (when finite)
• 𝐴! : set of strings of length 𝑛 over 𝐴; 𝐴∗ : set of finite strings over 𝐴
• 𝜆 : empty string
• 𝑥#! = 𝑥! = 𝑥#𝑥$ …𝑥! ∶ finite sequence over A
• 𝑥#% = 𝑥% = 𝑥#𝑥$ …𝑥& … : infinite sequence over A
• 𝑥'

(= 𝑥'𝑥')#…𝑥(: sub-sequence (𝑖 sometimes omitted if = 1)
• 𝑝* 𝑥 or 𝑃*(𝑥) : Prob 𝑋 = 𝑥 probability mass function (PMF) on A	

(subscript 𝑋 dropped if clear from context)
• 𝑋 ~ 𝑝 𝑥 : 𝑋 obeys PMF 𝑝 𝑥
• 𝐸+ 𝐹 : expectation of F w.r.t. PMF p (subscript and [] may be dropped)

• 𝑝̂,! 𝑥 : empirical distribution obtained from 𝑥!

• log 𝑥 : logarithm to base 2 of x, unless base otherwise specified
• ln 𝑥 : natural logarithm of x
• 𝐻(𝑋), 𝐻(𝑝) : entropy of a r.v. 𝑋 or PMF 𝑝, in bits (usually per-symbol)
• 𝐇 𝑋! : joint entropy of 𝑋#, 𝑋$, … , 𝑋! (unnormalized)
• 𝐻$ 𝑝 = − 𝑝 log 𝑝 − 1 − 𝑝 log 1 − 𝑝 , 0 ≤ 𝑝 ≤ 1 : binary entropy function
• 𝐷(𝑝||𝑞) : relative entropy (information divergence) between PMFs 𝑝 and q

11-Aug-21 2Seroussi -- ATIPI

Source Codes
q A source code 𝐶 for a random variable 𝑋 defined on an alphabet 𝐴 is

a mapping 𝐶 ∶ 𝐴 → 𝐷∗, where 𝐷 is a finite coding alphabet of size 𝑑,
and 𝐷∗ is the set of finite strings over 𝐷 (often, 𝑑 = 2, 𝐷 = 0, 1).

● 𝐶(𝑥) = codeword corresponding to 𝑥 ∈ 𝐴 (finite string over 𝐷)
● ℓ 𝑥 = 𝐶 𝑥 code length

q Let 𝑋~𝑝(𝑥). The expected length of 𝐶 𝑋 is

𝐿 𝐶 = 𝐸" ℓ 𝑋 = ∑# 𝑝 𝑥 ℓ(𝑥)
Examples:

11-Aug-21 3Seroussi -- ATIPI

𝐴 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝐷 = {0, 1}

𝑝(𝑎) = 1/2 𝐶(𝑎) = 0
𝑝(𝑏) = 1/4 𝐶(𝑏) = 10
𝑝(𝑐) = 1/8 𝐶(𝑐) = 110
𝑝(𝑑) = 1/8 𝐶(𝑑) = 111

𝐻(𝑋) = 1.75 bits 𝐿(𝐶) = 1.75 bits
in fact, we have ℓ(𝑥) = − log 𝑝(𝑥)
for all 𝑥 ∈ 𝐴 in this case

𝐴 = {𝑎, 𝑏, 𝑐}, 𝐷 = {0, 1}

𝑝(𝑎) = 1/3 𝐶(𝑎) = 0
𝑝(𝑏) = 1/3 𝐶(𝑏) = 10
𝑝(𝑐) = 1/3 𝐶(𝑐) = 11

𝐻(𝑋) = log 3 ≈ 1.58 bits
𝐿(𝐶) = 5/3 ≈ 1.66 bits

Source Codes (cont.)

q A code 𝐶: 𝐴 → 𝐷∗ extends naturally to a code 𝐶∗: 𝐴∗ → 𝐷∗ defined by
𝐶∗ 𝜆 = 𝜆, 𝐶∗ 𝑥#𝑥$…𝑥! = 𝐶 𝑥# 𝐶 𝑥$ …𝐶 𝑥! .

q 𝐶 is called uniquely decodable (UD) if its extension 𝐶∗ is injective (1-1).
q 𝐶 is called a prefix (or instantaneous) code if no codeword of 𝐶 is a

prefix of any other codeword
● a prefix code is uniquely decodable
● prefix codes are “self-punctuating”

11-Aug-21 4

all
codes

UD
codes
prefix
codes

𝑥 not UD UD, not prefix prefix code
a 0 10 0
b 010 00 10
c 01 11 110
d 10 110 111
sample
string

010 ad
b

1000110001110 ...
a b d b c a ...

1000110001110 ...
b aa c aa d a ...

Code examples

0

a 0

1

b 0

1

c

1

d
a prefix code can always
be described by a tree with
codewords at the leaves

Seroussi -- ATIPI

Prefix Codes

11-Aug-21 5

q Kraft’s inequality
l The codeword lengths ℓ!, ℓ", … , ℓ# of any 𝑑-ary prefix code satisfy

%
$%!

#

𝑑&ℓ! ≤ 1.

Conversely, given a set of lengths that satisfy this inequality,
there exists a prefix code with these word lengths.

u in fact, the theorem holds for any UD code (McMillan)
u ⇒ no advantage in using UD codes that are not prefix codes
u codes with Kraft sum < 1 are always sub-optimal

Seroussi -- ATIPI

Code tree embedded
in full 𝑑-ary tree
of depth ℓ()*

inner nodes
leaves
outside code

ℓ$ ℓ()*

%
$

𝑑ℓ"#$&ℓ! ≤ 𝑑ℓ"#$

𝑑ℓ"#$&ℓ!

𝑑ℓ"#$

The Entropy Lower Bound

q The expected code length 𝐿 of any prefix code for a PMF 𝑝
with probabilities 𝑝1, 𝑝2 , … , 𝑝𝑚 satisfies

𝐿 𝐶 ≥ 𝐻$ 𝑝 =
𝐻(𝑝)
log 𝑑

with equality iff ℓ% = − log$ 𝑝% , 1 ≤ 𝑖 ≤ 𝑚.
● Proof: Let 𝑐 = ∑' 𝑑0ℓ" (Kraft), 𝑞' = 𝑐0#𝑑0ℓ" (normalized distribution).

𝐿 − 𝐻2 𝑝 =[
'

𝑝'ℓ' +[
'

𝑝' log2 𝑝'

= −[
'

𝑝' log2 𝑑0ℓ" +[
'

𝑝' log2 𝑝'

=[
'

𝑝' log2
𝑝'
𝑞'
+ log2

1
𝑐
= 𝐷(𝑝| 𝑞 + log2

1
𝑐
≥ 0

11-Aug-21 6

d-ary entropy,
in “dits/symbol”

g

Seroussi -- ATIPI

log# 𝑑$ℓ! = log# 𝑞& + log# 𝑐

From now on, we assume d = 2 for simplicity (binary codes)

The Shannon Code

q The lower bound 𝐿 𝐶 ≥ 𝐻(𝑝) would be attained if we could have
a code with lengths ℓ% = −log 𝑝% .
But the ℓ𝑖 must be integers, and −log 𝑝% are generally not.

q Simple approximation: take ℓ% = − log 𝑝% .
q Lengths satisfy Kraft:

A
%

2.ℓ! =A
%

2. . 012 "! ≤A
%

2012 "! =A
%

𝑝% = 1.

Þ there is a prefix code with these lengths (Shannon code).

q Optimal for dyadic distributions:
all 𝑝𝑖’s powers of 2Þ 𝐿 = 𝐻(𝑝)

● not optimal in general

11-Aug-21 7Seroussi -- ATIPI

The Shannon Code (cont.)

pi é-log pi ù code
0.24
0.24
0.24
0.24
0.04

3
3
3
3
5

000
001
010
011
10000

11-Aug-21

q In general, the Shannon code satisfies

𝐿 = A
%

𝑝% − log 𝑝% ≤A
%

𝑝%(− log 𝑝% + 1) = 𝐻 𝑝 + 1

Þ the optimal prefix code satisfies 𝐻 𝑝 ≤ 𝐿 ≤ 𝐻(𝑝) + 1.
qUpper bound cannot be improved:

𝐿 ≥ ℓ345 ≥ 1 but we can have 𝐻 𝑝 arbitrarily close to 0.

Kraft: ∑20ℓ! = 4 ⋅ 204 + 205 = #6
4$
< 1 (far!)

𝐿(𝐶) = 3.08 𝐻 = 2.162…

Example

Seroussi -- ATIPI 8

0

0

0

0

0

0

0

1

1

11 0

0.24 0.24 0.24 0.24

0.04

Huffman Codes
q Shannon codes are very simple but generally sub-optimal. In 1952,

Huffman presented a construction of optimal prefix codes.
Construction of Huffman codes - by example:

11-Aug-21

0.20

0.30

0.40

0.60

0.30

0.20

0.15

0.15

0.15

0.05

Probabilities

1.00

0

0

0

0
0

1

1

1

1
1

𝑝(𝑥) 𝐶(𝑥) ℓ(𝑥)
.05 000 3
.15 001 3
.15 100 3
.15 101 3
.20 01 2
.30 11 2
𝐿 = 2.5 𝐻 = 2.433...

Huffman algorithm
Given p1,p2 ,... , pm :
1. k ¬ m+1
2. find smallest pair of

unused pi,pj

3. form pk= pi+ pj

4. mark pi,pj ‘used’
5. if only unused is pk

stop
6. k ¬ k + 1, go to 2.

Shannon: 2.8
9Seroussi -- ATIPI

Huffman Codes

Let 𝑝# ≥ 𝑝$ ≥ ⋯ ≥ 𝑝7 be the probabilities in 𝑝 .
Lemma: For any PMF, there is an optimal prefix code satisfying
1. 𝑝$ > 𝑝+ ⟹ ℓ$ ≤ ℓ+
2. the two longest codewords have the same length, they differ only

in the last bit, and they correspond to the least likely symbols

11-Aug-21

Theorem: Codes constructed with the Huffman algorithm are optimal; i.e.,
if 𝐶∗ is a Huffman code for a PMF 𝑝, and 𝐶 is a prefix code with the same
number of words, then 𝐿+(𝐶∗) ≤ 𝐿𝑝(𝐶).

Proof of the Theorem: By induction on 𝑚. Trivial for 𝑚 = 2. Let 𝐶𝑚 be a Huffman
code for 𝑝. W.l.o.g., the first step in the construction of 𝐶𝑚 merged 𝑝𝑚 and 𝑝#&!.
Clearly, the remaining steps constructed a Huffman code 𝐶#&! for a PMF 𝑝′ with
probabilities 𝑝!, 𝑝", … , 𝑝#&", 𝑝#&! + 𝑝# . Now,

𝐿 𝐶#&! = ∑$%!#&" ℓ$𝑝$ + (ℓ#&! − 1)(𝑝#&! + 𝑝#) = 𝐿 𝐶# − 𝑝#&! − 𝑝#
Let 𝐶#, be an optimal code for 𝑝, satisfying the Lemma. Applying the same
merging on 𝐶#, , we obtain a code 𝐶#&!, for 𝑝′, with 𝐿 𝐶#&!, = 𝐿 𝐶#, − 𝑝#&! − 𝑝# .
Since 𝐶#&! is optimal (by ind.), we must have

𝐿 𝐶#&!, ≥ 𝐿 𝐶#&! ⟹ 𝐿 𝐶#, ≥ 𝐿(𝐶#). g

Huffman codes
satisfy the Lemma
by construction

10Seroussi -- ATIPI

Redundancy of Huffman Codes

q Redundancy: excess average code length over entropy
● the redundancy of a Huffman code for a PMF p satisfies

0 ≤ 𝐿 𝐶 − 𝐻 𝑝 ≤ 1
● the redundancy can get arbitrarily close to 1 when 𝐻 𝑝 → 0, but how large is

it typically?

q Gallager [1978] proved

𝐿 𝐶 − 𝐻 𝑝 ≤ 𝑃1 + 𝑐
where 𝑃1 is the probability of the most likely symbol, and

𝑐 = 1 − log 𝑒 + log log 𝑒 ≈ 0.086.
For 𝑃1 ≥ 1/2,

𝐿 𝐶 − 𝐻 𝑝 ≤ 2 − 𝐻6(𝑃7) − 𝑃1 ≤ 𝑃1

11-Aug-21

Example
𝑝(𝑥) 𝐶(𝑥) ℓ(𝑥)
.05 000 3
.15 001 3
.15 100 3
.15 101 3
.20 01 2
.30 11 2
𝐿 = 2.5
𝐻 = 2.433…

r = 0.067
bound = 0.386

q Precise characterization of the Huffman redundancy
has been a very difficult problem. There has been progress,
but the general problem is still open.

11Seroussi -- ATIPI

Entropy and Codes: Summary

q Entropy: 𝑋~ 𝑝 𝑥 , 𝐻 𝑋 = −∑,∈9 𝑝 𝑥 log 𝑝 𝑥 ≤ log |𝐴| (also 𝐻(𝑝)).
q Joint entropy: 𝐇 𝑋! = −∑,#∈9# 𝑝 𝑥! log 𝑝 𝑥! ≤ 𝑛 log |𝐴|.

q Entropy rate: lim
!→%

#
!
𝐇 𝑋#, 𝑋$, … , 𝑋! ≤ log |𝐴|.

q Code 𝐶 over 𝐴: 𝐿+ 𝐶 = ∑,∈9 𝑝 𝑥 ℓ;(𝑥)
● For UD codes, no performance loss in restriction to prefix codes.

q Entropy lower bound:
𝐿+ 𝐶 ≥ 𝐻(𝑝)

● Equality iff 𝑝 𝑥 = 2&ℓ ∀𝑥 ∈ 𝐴.

q Shannon code: ℓ 𝑥 = − log 𝑝(𝑥)
● sub-optimal, Kraft sum generally < 1.

q Huffman codes: optimal prefix codes, best possible 𝐿+(𝐶).

𝐻 𝑝 ≤ 𝐿+ 𝐶<=>>?@A ≤ 𝐿+ 𝐶BC@AADA ≤ 𝐻 𝑝 + 1
q Problem with symbol by symbol encoding: can never get below compression ratio

of 1 bit/symbol. Would like to approach entropy rate.

11-Aug-21 12Seroussi -- ATIPI

A Coding Theorem
q For a sequence of symbols from a data source, the per-symbol

redundancy can be reduced by using an alphabet extension

𝐴𝑛 = 𝑎1, 𝑎2, … , 𝑎8 𝑎% ∈ 𝐴 }
and an optimal code 𝐶8 for super-symbols

𝑋7, 𝑋6, … , 𝑋8 ~ 𝑝 𝑥7, 𝑥6, … , 𝑥8 .
Then, 𝐇 𝑋1, 𝑋2, … , 𝑋8 ≤ 𝐿 𝐶 𝑛 ≤ 𝐇(𝑋1, 𝑋2, … , 𝑋8) + 1.
Dividing by n, we get:

11-Aug-21

Coding Theorem (Shannon): The minimum expected codeword length per
symbol satisfies

𝐻 𝑋#, 𝑋$, … , 𝑋! ≤ 𝐿!∗ ≤ 𝐻 𝑋#, 𝑋$, … , 𝑋! +
1
𝑛
.

Furthermore, if X ¥ is a random proces with an entropy rate, then

𝐿!∗
!→%

𝐻 𝑋% .

Shannon tells us that there are codes that attain the fundamental
compression limits asymptotically. But, how do we get there in practice?

13Seroussi -- ATIPI

Probability Assignments and Ideal Code Length

q A probability assignment is a function 𝑃: 𝐴∗ → [0,1] satisfying
∑F∈9𝑃(𝑠𝑎) = 𝑃 𝑠 , ∀𝑠 ∈ 𝐴∗ with 𝑃(𝜆) = 1

q 𝑃 is not a PMF on 𝐴∗, but it is a PMF on any complete subset of 𝐴∗

● complete subset = leaves of a complete tree rooted at 𝜆, e.g., 𝐴𝑛

q Implicit sequentiality

1 =
∑9 𝑃(𝑠𝑎)
𝑃(𝑠)

= A
9

𝑃(𝑠𝑎)
𝑃(𝑠)

≝A
9

𝑃(𝑎|𝑠)

q The ideal code length for a string 𝑥78 relative to 𝑃 is defined as
ℓ∗(𝑥#!) = − log 𝑃 𝑥#!

11-Aug-21 14Seroussi -- ATIPI

Ideal Code Length (cont.)

ℓ:;<5515 𝑥8 = − log 𝑝(𝑥7, 𝑥6, … , 𝑥8) ≤ − log 𝑝 𝑥7, 𝑥6, … , 𝑥8 + 1

q The Shannon code attains the ideal code length for every string 𝑥8, up
to an integer-constraint excess 𝑂(1) which we shall ignore

● notice that attaining the ideal code length point-wise for every string is a
stronger requirement than attaining the entropy on the average

q The Shannon code, as defined, is infeasible in practice (as would be a
Huffman code on 𝐴𝑛 for large 𝑛)

● while the code length for 𝑥8 is relatively easy to compute given 𝑃(𝑥8),
it is not clear how the codeword assignment proceeds

● as defined, it appears that one needs to look at the whole 𝑥8 before
encoding; we would like to encode sequentially as we get the 𝑥𝑖

11-Aug-21

evolution that led to the solution of both issues Þ arithmetic coding

15Seroussi -- ATIPI

The Shannon-Fano Code

q A codeword assignment for the Shannon code
● Let 𝑋 ~ 𝑃(𝑥) take values in 𝑀 = {0,1, … ,𝑚 − 1}, 𝑃 0 ≥ 𝑃 1 ≥ ⋯ ≥ 𝑃 𝑚 − 1 > 0
● Define 𝐹 𝑥 = ∑-./ 𝑃(𝑎) , 𝑥 ∈ 𝑀. 𝐹 is strictly increasing.

q Encode x with the real number
𝐶(𝑥) = g𝐹(𝑥) truncated to

hℓ, = − log 𝑃(𝑥) bits
(digits to the right of the binary point)

● 𝐶 is prefix-free
● 𝐶(𝑥) is in the interval

𝐹 𝑥 − 1 < 𝐶 𝑥 ≤ 𝐹(𝑥)

11-Aug-21

Example:

𝑥 𝑃 𝐹 ℓ𝑥 𝐶(𝑥)

0 0.5 0 1 .0
1 0.25 0.5 2 .10
2 0.125 0.75 3 .110
3 0.125 0.875 3 .111

16Seroussi -- ATIPI

0 1 𝑚− 1.

𝑃(𝑥 − 1)

𝐹(0)

𝐹(1)

𝐹(2)

𝐹(𝑥 − 1)

𝐹(𝑚 − 1)

𝐹(𝑥)

𝑃(0)

⋮

⋮

𝐶 𝑥 ●

𝑃(1)

𝑥 − 1

The Shannon-Fano Code (cont.)
q To encode 𝑥!, we take 𝑀 = 𝐴!, ordered lexicographically.
q Challenges in the computation of 𝐹 𝑥! = ∑G#H,# 𝑃(𝑦!)

● it seems that we need to add an exponential number of probabilities, with huge precision
● it still seems that we need to have the full sequence 𝑥0 before we can start:

no sequentiallity
q Let 𝐴 = {0, 1, 2, … , 𝛼 − 1}, 𝑥!, 𝑥!0# > 0. Sequences whose 𝑃(⋅) we need to add:

11-Aug-21 17Seroussi -- ATIPI

1 2 3 · · · · · · n� 1 n
0 0 0 · · · · · · 0 0
1 0 0 · · · · · · 0 0
2 0 0 · · · · · · 0 0
...

...
...

...
...

...
...

↵� 1 0 0 · · · · · · 0 0
0 1 0 · · · · · · 0 0
1 1 0 · · · · · · 0 0
2 1 0 · · · · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
x1 x2 x3 · · · · · · xn�1 � 1 ↵� 1
x1 x2 x3 · · · · · · xn�1 0
x1 x2 x3 · · · · · · xn�1 1
...

...
...

...
...

...
...

x1 x2 x3 · · · · · · xn�1 xn � 1

1

all sequences
𝑦0 < 𝑥0

all sequences 𝑦0 with
𝑦0&! < 𝑥0&!

all sequences 𝑦0 with
𝑦0&! = 𝑥0&!,
𝑦0 < 𝑥0

sum of 𝑃(⋅) is 𝐹 𝑥0&!

Elias Coding - Arithmetic Coding

q Sequential probability assignment
𝑃 𝑥! = 𝑃 𝑥!0# ⋅ 𝑃(𝑥!|𝑥!0#)

q Sequential computation of 𝐹(𝑥78) (encoding)
𝐹 𝑥0 = %

1%./%
𝑃 𝑦0 = %

1%&'./%&'
𝑃 𝑦0&! + %

1./%

𝑃 𝑥0&!𝑦

⟹ 𝐹 𝑥0 = 𝐹 𝑥0&! + 𝑃 𝑥0&! %
1./%

𝑃 𝑦 𝑥0&!

We maintain an “active” interval that shrinks, has
width 𝑃 𝑥! , and, as 𝑛 → ∞, it converges to the
real number 𝐹(𝑥%)

11-Aug-21

𝑥2 is encoded by means of one real number, computed
sequentially by arithmetic operationsÞ arithmetic coding

18Seroussi -- ATIPI

what the model
will provide at
each step

)1(1
1 +-nxF

)(1
1
-nxF

)(1
1
-nxP

)(1
nxF

)(1
nxP

)1(1 +
nxF

what we’ll maintain
and update

Arithmetic Coding - Example

q Computational challenges
● precision of floating-point operations – register length
● active interval shrinks, but small numerical changes can lead to changes in

many bits of the binary representation – carry-over problem
● encoding/decoding delay – how many cycles does it take since a digit enters

the encoder until it can be output by the decoder?
11-Aug-21 19Seroussi -- ATIPI

1.0

0.0

3/4

1/4

0.25

0.4375
0.578125

0.68359

0.762695

3/4

1/4

1 1 1 1

“0”

“1”

0

0.75

Code = .1100

𝑃(0) = 0.25, 𝑃(1) = 0.75 (static i.i.d. model)

Initial
interval Input sequence

𝑃 𝑥!3 = 4
5

5
⋅ !
5
= 0.0791

No. codebits = − log𝑃(𝑥!3) = 4

Arithmetic Coding

q Arithmetic coding [Elias ca.‘60, Rissanen ‘75, Pasco ‘76]
solves problems of precision and carry-over in the sequential computation
of 𝐹(𝑥8), making it practical with bounded delay and modest memory
requirements.

● Refinements and contributions by many researchers over the decades.

q When carefully designed, AC attains a code length

− log 𝑃 𝑥8 + O 1 ,

ideal up to an additive constant.
q It reduces the lossless compression problem to one of finding the best

probability assignment for the given data 𝑥8 , that which will provide the
shortest ideal code length.

q Terminology: probability assignment = model

11-Aug-21 20Seroussi -- ATIPI

Codes and probability assignments

q We saw that a probability assignment induces, through AC, a code that
attains the ideal code length up to 𝑂(1).

q Conversely, a code with length function 𝐿(𝑥8) satisfying Kraft’s inequality

A
#&
2.G #& ≤ 1

naturally defines a probability assignment
𝑃G 𝑥8 = 2.G #&

Codes Û Probability assignments

q Coding system = modeling unit + coding unit

11-Aug-21 21Seroussi -- ATIPI

the lossless compression problem is not to find the best code for
a given probability distribution, it is to find the best probability
assignment for the data at hand

Lossless coding system (encoder)

11-Aug-21 22Seroussi -- ATIPI

modeling
unit

arithmetic
encoder

𝑃(S |𝑥7H.7)

𝑥H

𝑥7𝑥6𝑥I …𝑥H … 𝑏7𝑏6𝑏I …𝑏% …

input
stream

coded
stream

sequential
probability

assignment

Lossless coding system (decoder)

11-Aug-21 23Seroussi -- ATIPI

modeling
unit

arithmetic
decoder

𝑃(S |𝑥7H.7)

𝑥H

𝑥7𝑥6𝑥I …𝑥H …

𝑏7𝑏6𝑏I …𝑏% …

output
stream

coded
stream

𝑃(S |𝑥7H)

Model Classes and Universal Coding

q Universal data compression deals with the optimal description of data in
the absence of a given model

● in most practical applications, the model is not given to us
q What is an “optimal description of 𝑥8 ”?

● There is always a binary code that assigns just 1 bit to the data at hand

𝐶 𝑦! = p
0 𝑦! = 𝑥!

1 binary(𝑦!) 𝑦! ≠ 𝑥! , 𝑦! ∈ 𝐴!

● To decode, the decoder would need to know 𝑥! in advance, so why encode in
the first place. This “optimal code for 𝑥! ” is meaningless.

● We need a more meaningful notion of optimality.

11-Aug-21 24Seroussi -- ATIPI

Model Classes and Universal Coding

q The answer: Model Classes
● Examples: all memoryless assignments,

all Markov assignments of order 𝑘,
all Markov assignments of arbitrary order.

q We want a “universal” code to perform as well as the best model in a
given class 𝒞 for any string 𝑥8, where the best competing model changes
from string to string. Universality makes sense only w.r.t. a model class.

q A code with length function 𝐿(𝑥8) is pointwise universal w.r.t. a class 𝒞 if
𝑅𝒞 𝐿, 𝑥8 = 𝑛.7 𝐿 𝑥8 − min

K'∈𝒞
𝐿K' 𝑥8 → 0 when n ® ¥

11-Aug-21 25Seroussi -- ATIPI

memoryless

order 𝑘arbitrary
order

pointwise redundancy

Seroussi -- ATIPI

Example: Bernoulli Models
𝐴 = {0,1}, 𝒞 = {𝑃M , 𝜃 ∈ Θ = [0,1] }

min
K∈𝒞

𝐿K 𝑥8 = min
M∈N

log
1

𝑃M 𝑥8
= log

1
𝑃OM #& 𝑥8

= 𝑛]𝐻 𝑥8

Therefore, our goal is to find a code such that
𝐿(𝑥8)
𝑛

−]𝐻 𝑥8
8→Q

0

q Simple example of a universal code:
Use ⌈log 𝑛 + 1 ⌉ bits to encode 𝑛1 (maybe also 𝑛), then use an AC for
𝜃̀ = 8(

8
, precisely the ML-estimate of 𝜃

Þ describe the best model to the decoder, then encode with that model
q Code length 𝐿 𝑥8 = 𝑛]𝐻 𝑥8 + 𝑂(log 𝑛) : goal met, but with

two-part code, two-passes over the data (one to find 𝑛7, one to encode).

11-Aug-21 26

ML-estimate of q

i.i.d. distribution with parameter 𝜃 = 𝑝(1)

One-pass sequential schemes

q How about a one-pass, sequential version of this?
Naïve plug-in approach:

● after seeing 𝑥#, 𝑥$, … , 𝑥&, encode 𝑥&)# using 𝑃(1|𝑥&) = !$,%

&
(with an AC)

● Not good! If 𝑛# = 0 or 𝑛# = 𝑡, we have events with 𝑃 = 0 ⟹ −log 𝑃 = ∞ !!!

q Laplace’s rule of succession: 𝑃 1 𝑥H = 8(#) R7
HR6

● symbol probabilities always nonzero (initially 1/2, 1/2)

● generalizes to 𝑃 𝑎 𝑥& = !& ,%)#
&)I

for 𝛼 ≥ 2.

q Krichevskii-Trofimov (KT) estimator: 𝑃 1 𝑥H = 8(#) R7/6
HR7

● generalizes to 𝑃 𝑎 𝑥& = !& ,%)#/$
&)I/$

for 𝛼 ≥ 2.

● code length 𝐿 𝑥! = 𝑛 w𝐻 𝑥! + I0#
$
log 𝑛 + 𝑂(1)

q Both can be interpreted as mixture models
𝑃 𝑥8 = ∫M𝑊 𝜃 𝑃M 𝑥8 𝑑𝜃, for some prior 𝑊 𝜃

11-Aug-21 27Seroussi -- ATIPI

best possible pointwise
redundancy rate

Sequential coding for Markov models
q Accumulate state-conditioned counts, use KT estimator per-state

Code length: 𝐿 𝑥8 𝑆 = 𝑛]𝐻 𝑥8 𝑆 + |U|(V.7)
6

log 𝑛 + 𝑂(1)

● For 𝑘-th order Markov, 𝑆 = 𝐴K.
● Applies also to FSM and tree sources, where 𝑆 may be different.

q Example: binary Markov, 𝑘 = 1, state set 𝑆 = {0, 1}, initial state 0

x20 = 0 0 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 0
1/2 3/4 1/6 1/2 3/4 5/6 1/8 3/8 7/10 3/4 11/14 13/16 5/6 3/20 1/2 7/12 9/14 5/16 5/22 13/18

Total probability:
𝑄 𝑥0 =Y

6∈8

Γ 𝑛 0 𝑠 + 0.5 Γ(𝑛 1 𝑠 + 0.5)
𝑛 𝑠 ! Γ 0.5 " =

Γ 6.5 Γ 3.5 Γ 3.5 Γ(8.5)
9! 11! Γ 0.5 5

● −log 𝑄 𝑥! = 17.61 ⇒ code length = 18 bits

● 𝑛 w𝐻 x$L 𝑆 = 9ℎ #
4
+ 11ℎ 4

##
≈ 17.56 bits

11-Aug-21 28Seroussi -- ATIPI

half the number of free
statistical parametersstate set

Optimality and convergence rates
Normalized code length:

1
𝑛
𝐿 𝑥8 𝑆 =]𝐻 𝑥8 𝑆 +

|𝑆|(𝛼 − 1)
2

log 𝑛
𝑛

+ O(𝑛.7)

q In a stochastic setting, this code length is asymptotically optimal
● how good is the convergence rate?

Theorem [Rissanen’s lower bound] Let C = 𝑃W θ ∈ ΘX} be a class of
parametric models, where ΘX is an open, bounded subset of ℛX . Assume that
either the CLT holds for ML estimators of parameters in ΘX , or

Pr 𝑛 𝜃̀ 𝑥8 − 𝜃% ≥ log 𝑛 ≤ 𝛿 𝑛 → 0 as 𝑛 → ∞.
Then for all 𝑄 and all 𝜀 > 0,

−𝑛.7𝐸W[log 𝑄 𝑥8] ≥ 𝐻8 𝑃W +
𝐾
2
log 𝑛
𝑛

(1 − 𝜀)
for all points in θ ∈ ΘX except in a set whose volume → 0 as 𝑛 → ∞.

11-Aug-21 29Seroussi -- ATIPI

→ 0 as 𝑛 → ∞→ 𝐻 𝑋 a. s. as	 𝑛 → ∞
if 𝑋 = 𝑋% was indeed
generated by the structure 𝑆

Optimality and convergence rates (cont.)

q This lower bound parallels Shannon’s coding theorem:
when we consider a model class instead of a single distribution,
a model cost gets added to the entropy

● Interpretation: if the parameters can be estimated well, they are
“distinguishable” (𝑃Mis sensitive to 𝜃), so the class cannot be coded without a
model cost

● The bound cannot hold for all models in the family, but it holds for most
q Conclusion: the number of parameters affects the achievable convergence

rate of a universal code length to the entropy

● model cost = “cost of learning”
Minimum Description Length (MDL) principle: the model that best describes

the data is the model that minimizes the sum of the two parts.

11-Aug-21 30Seroussi -- ATIPI

Total length = Length(model description) + Length(encoding|model)

model cost
proportional to the number of

free statistical parameters

coding cost

Intuitive interpretations of model cost

q Sparse statistics
● Many parameters to estimate Þ samples will be “thinly spread”

Þ each parameter estimate will be based on few of samples
Þ unreliable estimates

● 𝑘-th order Markov model over 𝛼 symbols Þ 𝛼K 𝛼 − 1 parameters
● Example: 𝛼 = 4, 𝑘 = 10Þ more than 3 ⋅ 10N parameters
● Sometimes called the curse of dimensionality

q There is a trade-off between how much the model “fits the data” and how
reliable are the statistics collected to estimate the model

11-Aug-21 31Seroussi -- ATIPI

Basic compressor/decompressor with context model

Compressor
Input: 𝑥1 𝑥2 𝑥3 … 𝑥𝑡 …
Output: binary stream
1. Set 𝑡 = 1, initialize

count 𝐶 = 0,
count 𝑎 𝐶 = 0, 𝑎 ∈ 𝐴, 𝐶 ∈ 𝑆

2. Determine context 𝐶𝑡 of 𝑥𝑡 .
3. Retrieve u𝑃 � 𝐶H ,	 𝑥𝑡 .
4. Encode 𝑥𝑡 using u𝑃 � 𝐶H .
5. Update u𝑃 � 𝐶H :

Increase count 𝑥H 𝐶H by 1.
Increase count(𝐶H) by 1.
Done?
No: 𝑡 ← 𝑡 + 1,	go to 2.
Yes: Stop.

11-Aug-21 Seroussi -- ATIPI 32

Decompressor
Input: binary stream
Output: 𝑥1 𝑥2 𝑥3 … 𝑥𝑡 …
1. Set 𝑡 = 1, initialize

count 𝐶 = 0,
count 𝑎 𝐶 = 0, 𝑎 ∈ 𝐴, 𝐶 ∈ 𝑆

2. Determine context 𝐶𝑡 of 𝑥𝑡 .
3. Retrieve u𝑃 � 𝐶H .
4. Decode 𝑥𝑡 using u𝑃 � 𝐶H .
5. Update u𝑃 � 𝐶H :

Increase count 𝑥H 𝐶H by 1.
Increase count(𝐶H) by 1.	
Done?
No: 𝑡 ← 𝑡 + 1,	go to 2.
Yes: Stop.

Example: B/W image

§ 1 b/w pixel = 1 bit
§ Image size: 1800x2104 =

3,787,200 bits
§ scanned in 1D raster order:

§ modeled with k-th order
binary Markov

§ coded with KT probability
assignment + AC

11-Aug-21 33Seroussi -- ATIPI

𝑘 “context”

xtxt-1xt-k xt-2

⟹ 2Y parameters

Compression ratio vs. Markov order

11-Aug-21 34Seroussi -- ATIPI

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0 5 10 15 20 25 30 35 40

KT normalized code
length (compression ratio)

𝑘

How do we estimate the best context size?

q It depends on the computational environment and requirements
● one way (suggested in previous example) is to try all possible values of 𝑘, find

the one giving minimum code length, describe it in the output stream, and
then encode sequentially using a model of that order. Decoder reads the value
of 𝑘, and proceeds sequentially (statistics are not sent in the encoded stream).
§ asymmetric encoder/decoder complexity

● There are well known methods to do everything sequentially in one pass, or in
two passes without exhaustive search, not just for fixed 𝑘, but also for tree
sources.

11-Aug-21 35Seroussi -- ATIPI

● “Context” algorithm: [Rissanen’83],
[Nohre’94], [Weinberger-Rissanen-
Feder’95]

● Context Tree Weighting (CTW): [Willems-
Shtarkov-Tjalkens’95]

● Linear time semi-predictive: [Martín-
Seroussi-Weinberger’04]()ff0|txP ()f10|txP ()110|txP

()111|txP

0 1

0 1

0 1

Tree example: 4 parameters instead of 8

Two-dimensional contexts
q Images are two-dimensional objects, so it makes sense to condition

samples on their 2D neighborhoods
● Example: order context samples by distance to modeled sample

● causal conditioning: dependence only on pixels already encoded (decoder can
reconstruct the context)

● not strictly a finite memory model, since full rows need to be stored in order
to determine the next context

● nevertheless, a finite-state model (FSM)
11-Aug-21 36Seroussi -- ATIPI

Image

𝑃(𝑥9|𝑥9&!𝑥9&"…𝑥9&:)
square labeled 𝑖 corresponds to 𝑥9&$

𝑥9

11-Aug-21 37Seroussi -- ATIPI

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 10 20 30 40

2D contexts 1D contexts

Compression ratio vs. 2D context size

compression
ratio

𝑘

Another B/W example

11-Aug-21 38Seroussi -- ATIPI

0.1

0.12

0.14

0.16

0.18

0.2

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

KT-2D

KT-1D

compression
ratio

𝑘

Image size: 896x1160

Going from binary images to grayscale images
q Everything seems to work quite well for binary images. How about more

“natural” images?
q Continuous tone images

● Grayscale: 2D array of pixel intensity values (integers) in a given range
[0. . (𝛼 − 1)] (often 𝛼 = 256)

● Color: a 2D array of vectors (e.g. triplets) whose coordinates represent intensity
in a given color space (e.g., RGB, YUV); similar principles
§ Alternative interpretation: a vector of grayscale images, one per color component

(e.g., R, G, B).

q Even with almost minimal 2D context (3 closest samples, grayscale),
we have 26Z ≈ 17 ⋅ 10[possible different context patterns

● gets astronomical very quickly: big numbers = big problem

11-Aug-21 39Seroussi -- ATIPI

123 255 8 15

0 128 200 217

...

...
...

𝑐 𝑏
𝑎 𝑥9

