Applications of Information
Theory in Image Processing

1. Review of Information Theory and Lossless Source Coding (part B)
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Notation

A :discrete (usually finite) alphabet; o =| 4] : size of A (when finite)

A™ : set of strings of length n over A; A" : set of finite strings over 4

A : empty string

xy = x"™ =xyx, ...x, :finite sequence over A4

x{° = x% = xyXy ...X; ... : infinite sequence over 4

xij = XiXj4+1 .- Xj :sub-sequence (i sometimes omitted if = 1)

px(x) or Px(x) : Prob(X = x) probability mass function (PMF) on A4
(subscript X dropped if clear from context)

X ~p(x): X obeys PMF p(x)

E,[F] :expectation of /' w.r.t. PMF p (subscript and [ ] may be dropped)

p,n(x) :empirical distribution obtained from x™

log x : logarithm to base 2 of x, unless base otherwise specified

In x :natural logarithm of x

H(X),H(p) : entropy of a rv. X or PMF p, in bits (usually per-symbol)

H(X™) :joint entropy of X;, X5, ..., X;; (unnormalized)

H,(p) = —plogp— (1 —p)log(1—p), 0 <p < 1:binaryentropy function

D(p||q) : relative entropy (information divergence) between PMFs p and ¢
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Source Codes

J A source code C for arandom variable X defined on an alphabet A is
a mapping C : A —» D", where D is a finite coding alphabet of size d,
and D™ is the set of finite strings over D (often, d = 2, D = {0, 1}).

e ((x) = codeword corresponding to x € A (finite string over D)
o f(x)= |C(x)| code length

d Let X~p(x). The expected length of C(X) is
L(C) = Ep[#(X)] = 2 p(x)€(x)

Examples:

A={a,b,cd}, D ={0,1} A={a,b,c}, D ={0,1}
p(a) =1/2 C(a)=0 p(a) =1/3 C(a) =0
p(b) =1/4 C(b) =10 p(b) =1/3 C(b) =10
p(c) =1/8 C(c) =110 p(c) =1/3 C(c) =11
p(d)=1/8 Cld) =111 H(X) =log3 ~ 1.58 bits
H(X) = 1.75 bits L(C) = 1.75 bits L(C) = 5/3 = 1.66 bits

in fact, we have #(x) = —logp(x)

forall x € A in this case

11-Aug-21 Seroussi -- ATIPI



Source Codes (cont.)

J Acode C: A — D" extends naturally to a code C*: A* — D™ defined by
C*(A) =24, C"(x1x9 ...xp) = C(x1)C(x3) ...C(xy).
A C is called uniquely decodable (UD) if its extension C* is injective (1-1).

A Cis called a prefix (or instantaneous) code if no codeword of C is a
prefix of any other codeword
e a prefix code is uniquely decodable

e prefix codes are “self-punctuating”

Code examples

X not UD UD, not prefix prefix code

a 0 10 0

b 010 00 10

C 01 11 110

d 10 110 111

sample | 010<—>ad | 1000,110001110,... | 1000,11000,1110, ...

string N ab d bca .. baa ¢ aad a... a prefix code can always

b be described by a tree with

11-Aug-21 codewords at the leaves
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Prefix Codes
Q Kraft’s inequality
® The codeword lengths #,,%,, ..., #,, of any d-ary prefix code satisfy

m
z d—ti < 1.
i=1

Conversely, given a set of lengths that satisfy this inequality,
there exists a prefix code with these word lengths.

¢ in fact, the theorem holds for any UD code (McMillan)
¢ = no advantage in using UD codes that are not prefix codes
¢ codes with Kraft sum < 1 are always sub-optimal

Code tree embedded
, @ inner nodes
in full d-ary tree

of depth .«

@® leaves
O outside code

z dfmax_fi < dfmax
i

~ _

u d{);n(ax_fi
Y

dfmax
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The Entropy Lower Bound

L The expected code length L of any prefix code for a PMF p
with probabilities p4,p,, ..., p,, satisfies
H(p) d-ary entropy,
log d in “dits/symbol
with equality iff £; = —logyp;,1 < i < m.
e Proof: Let ¢ = Zid‘{)i (Kraft), q; = ¢~ td~*i (normalized distribution).

L(C) =z Hy(p) =

L—Hyi(p) = Zpif' +Z’Pi108dpi

— z piloggd™"i + z pilog p;
logg d™*t =log, q; +logg ¢

From now on, we assume d = 2 for simplicity (binary codes)
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The Shannon Code

The lower bound L(C) = H(p) would be attained if we could have
a code with lengths ¢; = —logp;.

But the £; must be integers, and —log p; are generally not.
Simple approximation: take £; = [—log p;].
Lengths satisfy Kraft:

z 2-ti = 2 2-I-logpil < z 2logp; — z p; = 1.
i

i i i
—> there is a prefix code with these lengths (Shannon code).
Optimal for dyadic distributions:

all p;’s powers of 2 = L = H(p)
e not optimal in general
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The Shannon Code (cont.)

 In general, the Shannon code satisfies

L= ZM— logp;| < Zm(— logp; +1) =H(p) +1
[ [

—> the optimal prefix code satisfies H(p) < L < H(p) + 1.

J Upper bound cannot be improved:
L = £.,i, = 1 but we can have H(p) arbitrarily close to 0.

Example
Di [Clogp, | code Kraft: Y2 % =4.273 4275 = ;—; < 1 (far!)
0.24 3 000 L(C)=3.08 H=2162..
0.24 3 001
0.24 3 010
0.24 3 011
004 5 10000 024 024 0.24 0.24

11-Aug-21 , 0.04 8
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Huffman Codes

(d Shannon codes are very simple but generally sub-optimal. In 1952,
Huffman presented a construction of optimal prefix codes.

Construction of Huffman codes - by example:

Probabilities
0.30 ®
0.20 ® 1 1
¢
o 1 0.60
0.15 0.30 e——
0 (> 1.00
0.15 @ 0
0.40
NS 0 05 000 3
0 15 001 3
0.05 &——— 15 100 3
15 101 3
.20 01 2
.30 11 2
L=25H=2433...
11-Aug-21
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Huffman algorithm
Given P1,P2 ;.- Pm:

1. kK < m+1
2. find smallest pair of
unused p;,p;

. form p,= pi+ p;
. mark p;,p; ‘used’

. if only unused is p,
stop

.k« k+1, goto2.

Shannon: 2.8



Huffman Codes

Theorem: Codes constructed with the Huffman algorithm are optimal; i.e.,
if C* is a Huffman code for a PMF p, and C is a prefix code with the same

number of words, then L,(C") < L,(C).

Let p; = pp, = -+ = p,, be the probabilitiesin p .

Lemma: For any PMF, there is an optimal prefix code satisfying

Huffman codes

1. pi>p=4 ={¢ satisfy the Lemma
2. the two longest codewords have the same length, they differ only by construction
in the last bit, and they correspond to the least likely symbols

Proof of the Theorem: By induction on m. Trivial for m = 2. Let C,, be a Huffman
code for p. W.l.0.g., the first step in the construction of C,, merged p,, and p,,,_;.
Clearly, the remaining steps constructed a Huffman code C,,,_, for a PMF p’ with

probabilities py,p,, ..., Pm—2, Pm—1 + Pm- NOW,
L(Cm—l) = Z:ri_lz fipi + (gm—l - 1)(pm—1 + pm) = L(Cm) — Pm-1— Pm
Let C,, be an optimal code for p, satisfying the Lemma. Applying the same
merging on C,,, we obtain a code C,,_, for p’, with L(C,,_,) = L(C;,) — Pp—1 — Prm-
Since C,,_, is optimal (by ind.), we must have
L(Ch—1) = L(Cp—1) = L(Cpy) = L(Cpy). |

11-Aug-21 Seroussi -- ATIPI 70



Redundancy of Huffman Codes

(d Redundancy: excess average code length over entropy
e the redundancy of a Huffman code for a PMF p satisfies

0<L(C)—H(p) <1
e the redundancy can get arbitrarily close to 1 when H(p) — 0, but how large is

it typically?
O Gallager [1978] proved

where P is the probability of the most likely symbol, and

c =1—1loge +logloge = 0.086.

For P = 1/2,

L(C)—H(p) < 2—Hy(P))—P, <P,

U Precise characterization of the Huffman redundancy

has been a very difficult problem. There has been progress,

but the general problem is still open.

11-Aug-21
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Example

p(x)
.05
15
15
15
20
.30

L=2.5

C(x) €(x)

000
001
100
101
01
11

NNWWWwWw

H = 2433 ..

r=0.067
bound = 0.386
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Entropy and Codes: Summary

Entropy: X~ p(x), H(X) = = Xxeap(x)logp(x) < log|A| (also H(p)).
Joint entropy: H(X™) = — X neanp(x™) logp(x™) < nlog|A].

Entropy rate: lim %H(Xl,XZ, ., Xy) <logl|A]|.
n—>0o
Code Cover A: L,(C) = Yyeap(x)?c(x)

e For UD codes, no performance loss in restriction to prefix codes.
Entropy lower bound:
L,(C) = H(p)
e Equalityiff p(x) = 27¢ vx € A.
Shannon code: (x) = [—logp(x)]

e sub-optimal, Kraft sum generally < 1.

Huffman codes: optimal prefix codes, best possible L, (C).

H(p) = Lp (CHuffman) = Lp (CShannon) = H(p) +1

Problem with symbol by symbol encoding: can never get below compression ratio
of 1 bit/symbol. Would like to approach entropy rate.

Seroussi -- ATIPI 12
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A Coding Theorem

For a sequence of symbols from a data source, the per-symbol
redundancy can be reduced by using an alphabet extension

A = {(ay,ay ...,a,)| a;€ A}
and an optimal code C™ for super-symbols

(X1, X5, o0, X)) ~ (X1, X5, oo, Xp).
Then, H(X, X,, ..., X,;) < L(C") < HX, X, .., X,) + 1.
Dividing by n, we get:

Coding Theorem (Shannon): The minimum expected codeword length per
symbol satisfies

1
H(Xy, Xz, o0, Xn) < Ly < H(Xy, Xp, oo, Xn) +

Furthermore, if X “is a random proces with an entropy rate, then

n—oo

L —S H(X®).

11-Aug-21

Shannon tells us that there are codes that attain the fundamental

compression limits asymptotically. But, how do we get there in practice?

Seroussi -- ATIPI
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Probability Assignments and Ideal Code Length

A probability assignment is a function P: A* — [0,1] satisfying
YaeaP(sa) = P(s), VseA" with P(1) =1
d P isnota PMF on A", but itis a PMF on any complete subset of A*
e complete subset = leaves of a complete tree rooted at A, e.g., A"
d Implicit sequentiality
Y., P(sa P(sa
1= a P( )= ( )d:efzp(als)
P(s) P(s)
a a
 The ideal code length for a string x{* relative to P is defined as
" (x1) = —logP(x{)

Seroussi -- ATIPI
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Ideal Code Length (cont.)

BShannon(xn) = |- logp(xl»xz» "-an)] = — logp(xl,xz, ---»xn) + 1

 The Shannon code attains the ideal code length for every string x™, up
to an integer-constraint excess O (1) which we shall ignore

e notice that attaining the ideal code length point-wise for every string is a
stronger requirement than attaining the entropy on the average

(d The Shannon code, as defined, is infeasible in practice (as would be a
Huffman code on A" for large n )

e while the code length for x™ is relatively easy to compute given P(x™),
it is not clear how the codeword assignment proceeds

e as defined, it appears that one needs to look at the whole x™ before
encoding; we would like to encode sequentially as we get the X;

evolution that led to the solution of both issues = arithmetic coding

11-Aug-21 Seroussi -- ATIPI 15



The Shannon-Fano Code

(d A codeword assignment for the Shannon code
e LetX ~P(x) takevaluesinM ={0,1,..,m—1}, P(0)=P(1)=--=P(m—-1)>0

e Define F(x) = Y ,<,P(a), x € M. F isstrictly increasing.

J Encode x with the real number
C(x) = (F (x) truncated to

F(m—1) £, =|—logP(x)] bits)
: - (digits to the right of the binary point)
F(x) T ) }P ) e ( is prefix-free
G | EE =1 e ((x) isintheinterval
: S F(x—1) < C(x) € F(x)
F(2) — :
}p(1) Example:
F(1) :
| X P F £, C(x)
P(0) |
F(0) | 0 0.5 0 1 .0
0 1 1 T — 1 1 0.25 0.5 2 .10
2 0.125 0.75 3  .110
3 0.125 0.875 3 .111
11-Aug-21 16
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The Shannon-Fano Code (cont.)

(d To encode x™, we take M = A", ordered lexicographically.

O Challenges in the computation of F(x™) = Y n,mn P(Y™)

e it seems that we need to add an exponential number of probabilities, with huge precision

e it still seems that we need to have the full sequence x™ before we can start:

no sequentiallity

d Let A={0,1,2,..,a —1}, x,,x,—1 > 0. Sequences whose P(-) we need to add:

sum of P(+) is F(x™1)

1 2 3 e e n—1 n
0 O 0 --- ... 0 0
1 o 0 - .. 0 0
2 o 0 - ... 0 0 /
— O 0 .- ... 0 0 N s
01 0 0 0 all sequ?nces y1 with
1 1 0 e e 0 0 =L < x™~
all sequences 9 1 0 .. e 0 0 Y
yr<x™ 7 . . . .
T To Xz - v Tpn—1 — 1 a—-1 _
L B G I all sequences y™ with
x]. 1‘2 xg ...... xn_l 1
5 : 3 yn—l — xn—l,
| ® wy oxg e e Tp1 Ty — 1] Yn < Xp
11-Aug-21
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Elias Coding - Arithmetic Coding

L Sequential probability assignment
n what the model
P(x™) = : will provide at
: . each step
what we’ll maintain

and update

O Sequential computation of F (x3") (encoding)
Fem = ) PO™M = POM+ ) PGy)
y

Nxh yn—leyn-1 y<Xn

— | F&x™) = Fe™ 1) + P(x™ 1) Z P(y|x" 1)

y<Xn

We maintain an “active” interval that shrinks, has
width P(x™), and, as n — oo, it converges to the
real number F(x™)

x” is encoded by means of one real number, computed

P(x

sequentially by arithmetic operations=> arithmetic coding

n—1

1

11-Aug-21 Seroussi -- ATIPI

2

F(x™ +1)

F(x/ +1)

e

F(xy)

F(x

18



Arithmetic Coding - Example

P(0) = 0.25, P(1) = 0.75 (static i.i.d. model)

10 A A A
“1 tE x ﬂ2695 0.75
v v ﬁ
3/4 4
0.578125
A 0.4375 4
1/4 P(x}) =) ->=00791
“0” 4 0.25
1/4 No. codebits = [—log P(x7)] = 4
v 1 1 1 1 0
0.0
ilmg?\llal Input sequence

d Computational challenges

e precision of floating-point operations — register length

® active interval shrinks, but small numerical changes can lead to changes in
many bits of the binary representation — carry-over problem

® encoding/decoding delay — how many cycles does it take since a digit enters
the encoder until it can be output by the decoder?

11-Aug-21
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Arithmetic Coding

O Arithmetic coding [Elias ca.’60, Rissanen ‘75, Pasco ‘76]
solves problems of precision and carry-over in the sequential computation
of F(x™), making it practical with bounded delay and modest memory
requirements.

e Refinements and contributions by many researchers over the decades.

(d When carefully designed, AC attains a code length
—logP(x™) + 0(1),

ideal up to an additive constant.

It reduces the lossless compression problem to one of finding the best

probability assignment for the given data x™, that which will provide the
shortest ideal code length.

O Terminology: probability assignment = model

11-Aug-21 20
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Codes and probability assignments

(J We saw that a probability assignment induces, through AC, a code that
attains the ideal code length up to 0(1).

[ Conversely, a code with length function L(x™) satisfying Kraft’s inequality

z 2L < q
xn

naturally defines a probability assignment
P (x™) = 271D

Codes < Probability assignments

the lossless compression problem is not to find the best code for
a given probability distribution, it is to find the best probability
assignment for the data at hand

 Coding system = modeling unit + coding unit
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Lossless coding system (encoder)

X1X2X3 wen Xp -

input
stream

11-Aug-21

Xt
unit encoder coded
P(-|xi ™1 stream
sequential
probability
assignment
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Lossless coding system (decoder)

P(-|xi™h)
arithmetic R modeling
decoder unit
bbb ...b; ..
P(-|xt
coded (- 1xp)
stream
X1 X3X3 eue Xp on.
>
output
stream
11-Aug-21 23
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Model Classes and Universal Coding

O Universal data compression deals with the optimal description of data in
the absence of a given model

® in most practical applications, the model is not given to us
( Whatis an “optimal description of x™ ”?
® There is always a binary code that assigns just 1 bit to the data at hand

0 yt = x"
n —
™) = {1 binary(y™) y™ #x™ "’

n

e To decode, the decoder would need to know x™ in advance, so why encode in
the first place. This “optimal code for x™” is meaningless.

e We need a more meaningful notion of optimality.

11-Aug-21 24
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Model Classes and Universal Coding

1 The answer: Model Classes
® Examples: all memoryless assignments, arbitrary

all Markov assignments of order k, order @

all Markov assignments of arbitrary order.

d We want a “universal” code to perform as well as the best model in a
given class C for any string x™, where the best competing model changes
from string to string. Universality makes sense only w.r.t. a model class.

L A code with length function L(x™) is pointwise universal w.r.t. a class C if

Re(L,x™) =n~t [L(x") — g}éré Lor(x™) ] — 0 whenn —

™ pointwise redundancy

25
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Example: Bernoulli Models
A = {01}, C={Py, €0 =1[01]}

i.i.d. distribution with parameter 6 = p(1)

min L-(x") = minlo = lo = n H(x"
CEC C( ) 0co g Q(Xn) gp@(xn)(xn) ( )
Therefore, our goal is to find a code such that ML-estimate of 0
L(x™)

—ﬁ(x")ﬂO

n
[ Simple example of a universal code:

Use [log (n + 1)] bits to encode n, (maybe also n), then use an AC for
0 = —, precisely the ML-estimate of 6

—> describe the best model to the decoder, then encode with that model

O Codelength L(x™) =nH(x™) + 0(logn) : goal met, but with
two-part code, two-passes over the data (one to find n,, one to encode).

11-Aug-21 Seroussi - ATIPI 26



One-pass sequential schemes

d How about a one-pass, sequential version of this?
Naive plug-in approach:
t
e after seeing x4, Xy, ..., X, encode x4 using P(1|xt) = 7%36) (with an AC)
e Notgood! Ifn; = 0orny = t, we have events with P =0 = —log P = oo Il

nq(xt)+1
t+2
e symbol probabilities always nonzero (initially 1/2, 1/2)

Q Laplace’s rule of succession: P(1|x*%) =

t
e generalizesto P(a|x?t) = % fora > 2.
+1/2
Q Krichevskii-Trofimov (KT) estimator: P(1|xt) = nl(xH)I /
t
e generalizesto P(a|x?t) = Na(¥)+1/2 fora > 2.
t+a/2

N — [T vl a-1 best possible pointwise
e codelength L(x™) =nH(x") + —logn +0(1) redundancy rate

J Both can be interpreted as mixture models
P(x™) = fe W(0)Py(x™)d@, for some prior W(8)

11-Aug-21 27
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Sequential coding for Markov models

(1 Accumulate state-conditioned counts, use KT estimator per-state

Code length: L(x™|S) = nH(x™|S) + ogn+ 0(1)
I

half the number of free
statistical parameters

state set

e For k-th order Markov, S = A¥.
e Applies also to FSM and tree sources, where S may be different.

U Example: binary Markov, k = 1, statesetS = {0, 1}, initial state 0
x=0 011 1101 111 1 1 0 0 00 1 O O
1/2 3/4 1/6 1/2 3/4 5/6 1/8 3/8 7/10 3/4 11/14 13/16 5/6 3/20 1/2 7/12 9/14 5/16 5/22 13/18

Total probability:
T T((0ls) + 0.5)M(n(1ls) +0.5)  T(6.5)I(3.5)I(3.5)I(8.5)
Q") = ls;[ n(s)! T(0.5)2 - 91111T(0.5)

e —logQ(x™) =17.61 = code length =18 bits
o nA(x2°|S) = 9h (%) +11h (13—1) ~ 17.56 bits

11-Aug-21 28
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Optimality and convergence rates

Normalized code length:

|S|(a — 1) logn
_|_
2 n
|
- H(X)a.s.as n > o — 0asn - oo
if X = X* was indeed
generated by the structure S

o(n 1)

J

lL(x”IS) = H(x"|S)
n

\ J \
1

 In a stochastic setting, this code length is asymptotically optimal
e how good is the convergence rate?

Theorem [Rissanen’s lower bound] Let C = { Pg | 6 € Ok} be aclass of
parametric models, where O is an open, bounded subset of RX. Assume that
either the CLT holds for ML estimators of parameters in O, or

Pr{\/ﬁ(é(x”) — Hl-) > logn} < &) > 0asn — oo.
ThenforallQ andalle > 0,

_ K logn
—n" " Eg[log Q(x™)] = H,,(Pg) + 5, -9

for all pointsin 8 € O except in a set whose volume —» 0 asn — oo,

11-Aug-21 Seroussi -- ATIPI 29




Optimality and convergence rates (cont.)

O This lower bound parallels Shannon’s coding theorem:
when we consider a model class instead of a single distribution,
a model cost gets added to the entropy

® Interpretation: if the parameters can be estimated well, they are
“distinguishable” (Pyis sensitive to 8), so the class cannot be coded without a
model cost

® The bound cannot hold for all models in the family, but it holds for most

(d Conclusion: the number of parameters affects the achievable convergence
rate of a universal code length to the entropy

Total length =‘Length(model description),+‘Length(encoding model}
| |
model cost coding cost
proportional to the number of
free statistical parameters

® model cost = “cost of learning”
Minimum Description Length (MDL) principle: the model that best describes
the data is the model that minimizes the sum of the two parts.

11-Aug-21 Seroussi -- ATIPI 30



Intuitive interpretations of model cost

L Sparse statistics

e Many parameters to estimate = samples will be “thinly spread”
—> each parameter estimate will be based on few of samples
=> unreliable estimates

e k-th order Markov model over @ symbols = a*(a — 1) parameters
e Example: @ = 4,k = 10 = more than 3 - 10° parameters
e Sometimes called the curse of dimensionality

O There is a trade-off between how much the model “fits the data” and how
reliable are the statistics collected to estimate the model

11-Aug-21 Seroussi - ATIPI 37



Basic compressor/decompressor with context model

Compressor

Input: x{ x, X3 ... X; ...

Output: binary stream

Decompressor
Input: binary stream

Output: x; X, X3 ... X; ...

1. Sett = 1, initialize 1. Sett = 1, initialize
count(C) = 0, count(C) = 0,
count(a|lC) =0,a€ A,C €S count(alC) =0,a€ A,C €S
2. Determine context C, of x,. 2. Determine context C, of x, .
3. Retrieve P(*|C;), x,. 3. Retrieve P(*|C,).
4. Encode x, using P(¢|C,). 4. Decode x, using P(*|C,).
5. Update P(°|C;): 5. Update P(¢|C,):
Increase count(x,|C,) by 1. Increase count(x,|C,) by 1.
Increase count(C;) by 1. Increase count(C;) by 1.
Done? Done?
No:t «< t + 1,goto 2. No:t «< t + 1,goto 2.
Yes: Stop. Yes: Stop.
11-Aug-21 Seroussi -- ATIPI 32



Example: B/W image

1 b/w pixel = 1 bit
Image size: 1800x2104 =
3,787,200 bits

scanned in 1D raster order:

YvYyYVvY

AlA|A

A

v

modeled with k-th order
binary Markov

xl‘_k ITTTTTTTT xt-2 I xt-] xt ITITEIY

\ 4
Y

k “context”
= 2% parameters

coded with KT probability
assignment + AC

A Mathematical Theory of Communication
By C. E. SHANNON

INTRODUCTION

HE recent development of various methods of modulation such as PCM

and PPM which exchange bandwidth for signal-to-noise ratio has in-
tensified the interest in a general theory of communication. A basis for
such a theory is contained in the important papers of Nyquist! and Hartley?
on this subject. In the present paper we will extend the theory to include a
number of new factors, in particular the effect of noise in the channel, and
the savings possible due to the statistical structure of the original message
and due to the nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at
one point either exactly or approximately a message sclected at another
point. Frequently the messages have meaning; that is they refer to or are
correlated according to some system with certain physical or conceptual
entities. These semantic aspects of communication are irrelevant to the
engineering problem. The significant aspect is that the actual message is
one selected from a set of possible messages. The system must be designed
to operate for each possible selection, not just the one which will actually
be chosen since this is unknown at the time of design.

If the number of messages in the set is finite then this number or any
monotonic function of this number can be regarded as a measure of the in-
formation produced when one message is chosen from the set, all choices
being equally likely. As was pointed out by Hartley the most natural
choice is the logarithmic function. Although this definition must be gen-
eralized considerably when we consider the influence of the statistics of the
message and when we have a continuous range of messages, we will in all
cases use an essentially logarithmic measure.

The logarithmic measure is more convenient for various reasons:

1. It is practically more useful. Parameters of engineering importance

! Nyquist, H., “Certain Factors Affecting Telegraph Speed,”” Bell System Technical Jour-
nal, April 1924, p. 324; ““Certain Topics in Telegraph Transmission Theory,” 4.1. E. E.
Trans., v. 47, April 1928, p. 617.

2 Hartley, R. V. L., ““Transmission of Information,” Bell System Technical Journal, July
1928, p. 535.
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Compression ratio vs. Markov order
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How do we estimate the best context size?

It depends on the computational environment and requirements

® one way (suggested in previous example) is to try all possible values of k, find
the one giving minimum code length, describe it in the output stream, and
then encode sequentially using a model of that order. Decoder reads the value
of k, and proceeds sequentially (statistics are not sent in the encoded stream).

= asymmetric encoder/decoder complexity

® There are well known methods to do everything sequentially in one pass, or in
two passes without exhaustive search, not just for fixed k, but also for tree
sources.

P(x,
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—P(x, [111)
I
P(x,[110)

Tree example: 4 parameters instead of 8
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® “Context” algorithm: [Rissanen’83],
[Nohre’94], [Weinberger-Rissanen-
Feder’95]

e (Context Tree Weighting (CTW): [Willems-
Shtarkov-Tjalkens’95]

® Linear time semi-predictive: [Martin-
Seroussi-Weinberger’04]
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Two-dimensional contexts

J Images are two-dimensional objects, so it makes sense to condition
samples on their 2D neighborhoods

Image
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Example: order context samples by distance to modeled sample

27| 24| 28

20| 21 171 14 18| 22| 30

31 19| 11 9 6| 10| 12| 20| 32

25| 15 7 3 2 < 8| 16| 26

_________________ 23| 13| 5 1

P(xe|xe—q1X¢—g o Xe—i)
square labeled i corresponds to x,_;

causal conditioning: dependence only on pixels already encoded (decoder can
reconstruct the context)

not strictly a finite memory model, since full rows need to be stored in order
to determine the next context

nevertheless, a finite-state model (FSM)
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Compression ratio vs. 2D context size
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Another B/W example
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Image size: 896x1160
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Going from binary images to grayscale images

O Everything seems to work quite well for binary images. How about more
“natural” images?

[ Continuous tone images

® Grayscale: 2D array of pixel intensity values (integers) in a given range
[0..(a —1)] (often a = 256)

[123] [255] | 8] | 15]...

| o] [128] [200] [217] ...

® (olor: a 2D array of vectors (e.g. triplets) whose coordinates represent intensity
in a given color space (e.g., RGB, YUV); similar principles

= Alternative interpretation: a vector of grayscale images, one per color component
(e.g., R, G, B).

(d Even with almost minimal 2D context (3 closest samples, grayscale),

we have 2%* ~ 17 - 10° possible different context patterns 5
e gets astronomical very quickly: big numbers = big problem B x
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