Applications of Information
Theory in Image Processing

1. Review of Information Theory and Lossless Source Coding
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Notation

A :discrete (usually finite) alphabet; o =| 4] : size of A (when finite)

A™ : set of strings of length n over A; A" : set of finite strings over 4

A : empty string

xy = x"™ =xyx, ...x, :finite sequence over A4

x{° = x% = xyXy ...X; ... : infinite sequence over 4

xij = XiXj4+1 .- Xj :sub-sequence (i sometimes omitted if = 1)

px(x) or Px(x) : Prob(X = x) probability mass function (PMF) on A4
(subscript X dropped if clear from context)

X ~p(x): X obeys PMF p(x)

E,[F] :expectation of /' w.r.t. PMF p (subscript and [ ] may be dropped)

p,n(x) :empirical distribution obtained from x™

log x : logarithm to base 2 of x, unless base otherwise specified

In x :natural logarithm of x

H(X),H(p) : entropy of a rv. X or PMF p, in bits (usually per-symbol)

H(X™) :joint entropy of X;, X5, ..., X;; (unnormalized)

H,(p) = —plogp— (1 —p)log(1—p), 0 <p < 1:binaryentropy function

D(p||q) : relative entropy (information divergence) between PMFs p and ¢
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Coding in a communication/storage system

data
channel destination
noise

data I source channel
source I encoder encoder

data

—
MU encoder

data 3 source channel
destination N decoder decoder
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Information Theory

1 Shannon, “A mathematical theory of communication,” Bell Tech.
Journal, 1948

e Theoretical foundations of source and channel coding

e Fundamental bounds and coding theorems in a probabilistic setting

= in a nutshell: perfect communication in the presence of noise is possible as
long as the entropy rate of the source is below the channel capacity

e Fundamental theorems essentially non-constructive: we’ve spent the last
70 years realizing Shannon’s promised paradise in practice

= very successful: enabled current digital revolution (multimedia, internet,
wireless communication, mass storage, ...)

e Separation theorem: source and channel coding can be done
independently
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Source Coding

data

source
source encoder

noiseless
channel

data source
destination decoder

Source coding = Data compression
—> efficient use of bandwidth/space
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Data Compression

C sl C de-
D compressor noiseless compressor D’
I (encoder) ‘ channel ‘ (decoder) ‘
data compressed data decompressed
data
the goal: size(C) < size(D)
compression ratio: p = S_lze(c) n appr_oprlate units,
size(D) e.g., bits/symbol or

unitless bits/bit

([ Lossless compression: D = D’ (the case of interest here)

[ Lossy compression: D' ~ D; D'is an approximation of D under
some metric
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Data Sources

data
source

> X1 .xz X3 e Xt“' Xn

 Symbols x; € A = a countable (usually finite) alphabet.

O Probabilistic source: x; are realizations of random variables X; ; X{* obeys
some probability distribution P on A™.

d We are often interested in n — o : X;° isarandom process.
= stationary (time-invariant): X;° = Xj°°, as random processes, Vi,j > 1
= ergodic: time averages converge to ensemble averages

" memoryless: X; are statistically independent

" ndependent, identically distributed (i.i.d.): memoryless, and X; ~ pyx Vi
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Data Sources

data
source

> X1 xz X3 Xtm Xn

d Symbols x; € A = a countable (usually finite) alphabet.

U Individual sequence: x; are just symbols, not assumed to be a realization of
a random process. We will talk about probability assignments, but they
will be derived from the data under certain constraints, and with certain
objectives.

(J Here too, we will often be interested in asymptotic behavior as n — oo.
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Statistics on Individual Sequences

d Empirical distributions derived from an individual sequence x™.
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A 1 , Memoryless
Pxn(a) = " ‘{l rl<isn x= a}‘, a€A (zero-th order)

We can compute empirical statistics of any order (joint, conditional, etc.)

Sequence probability according to its own empirical distribution
n

ﬁx" (x™) = Don (X;)
11
This is the highest probability assigned to the sequence by any distribution from
the model class: maximum likelihood (ML) probability

Example: Bernoulli model (binary, i.i.d.)

A=0,1}, no=|{i: =0}, ny=n—ng=|{i: x =1}

5(0) = =2, p(1) = L i Pyn(x™) = p(0)70 p(1)™ =
p()—? p()—;- xn(x™) =p(0)" p(1)™ = T

Notice that if x™ is in fact the outcome of a random process, then its empirical
distribution (and other statistics) are themselves random variables

= e.g., expressions of the type Pyn(|p(a) —p(a)| =€)
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Statistical Models for Data Sources: Finite Memory

 Markov (or finite memory) of order k = 0

i_f‘_’fﬁf_}_i _____________ P | Xt—k xt—k+]| Xe—1 | X¢ | Xts1
k : finite memory
i.i.d = Markov of
order O
ty — t
P(xt4qlx1) = P(xt+1|xt—k+1); t >k (memoryless)

e We refer to x{_, ., as the context, or the state x,,occurs in. A¥ is referred to

as the state space.

e Some convention is needed for t < k : initial state
= forexample, Xx_j,q-*X_1Xxy = some fixed string
e Sequence probability

n
Pep) = | [ pCeelxich)
t=1

= Say |A| = a. The a - a® numbers p(als), a € A4, s € A¥, together with the fixed

initial state, completely define the source.

= |n fact, there are only (a — 1) - a” independent parameters; once we have p(als)
fora — 1 symbols a, the probability of the remaining symbol is fully determined.
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Statistical Models for Data Sources: Finite Memory

(d Sequence probability

number of times
we see a in state s

n
P = | [pCelxih
t=1

L k-th order Markov empirical distribution /
: _ t—1 _
{t:1<t<n x,=a x{Zi=s}

{t:1<t<n, x,f:,%=5}|'\

number of times
we see state s

prn,k (als) =

(d As before, we can ask what probability this distribution assigns to x™
n
Penie™) = | [ BenCrelizh)
t=1

® This is the ML probability of x™ for the class of k-th order Markov models.
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Example: Binary finite memory source, k = 2

p(0[01) = 1/8

p(1jab) = 1-p(0lab),

; 31 ab € {00,01,10,11}

p(0]10) = 7/8

def

] Steady state: m,, &< p(ab) stationary state probabilities

Ty = zncdp(amcd), ab, cd € {00,01,10,11}

-1 3
cd x 2 0 O
0 0 ;> =
[700, o1, 10,11 | = [700, 01, 10,711 ] - 71 0 0
8 8
0 0 > Z
7 6 6 7 1 1
= [0, To1,T10,T11 ] = [% 56 26 %]r [ps(0), ps (1] = 5> 3l

ps(b) = Y .qmqq - P(blcd) stationary symbol probabilities
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Statistical Models for Data Sources: FSM

[ Finite State Machine (FSM)
e state space S = {sy, S1, ) Sk—1}
® |nitial state s,
® output probability
p(als), a€eAs€ES
® state transition probability
q(s|s’,x), s,s'"€S, xeA

® unifilar < deterministic transitions:
next-state function f:SxA—S

e every finite memory source is equivalent
to a unifilar FSM with K < |A|*%, but in
general, finite state # finite memory
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Example: Binary FSM

p(0|s;)=0.5

p(0lsg) = 0.9 p(0ls) = 0.1

O Steady state: 7; & porac(S;)

stationary state probs.

stationary symbol probs.

Petac(B) = ) ;- p(blsy)

l
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Statistical Models for Data Sources: Trees

 Tree sources e by merging nodes from the full Markov tree,
e finite memory <k (Markov) we get a model with a smaller number of free
e # of past symbols needed to parameters
determine the state might be ® the set of tree sources with unbalanced trees
<k for some states has measure zero in the space of Markov

sources of any given order

e yet, tree source models have proven very
useful in practice, and are associated with
some of the best compression algorithms to
date

p0[01) — p(O]11)
' So(—)O, Sl(—)OI, Sz(—)ll
equal (or close)
this tree has an FSM representation
(not always the case)
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Entropy

X~px): HX) ==Y, eap(x)logp(x) [log = log,, 0log0 £ 0 ]

H(X) = E,[~log p(X)]

entropy of X (or of the PMF p), measured in bits.

e H measures the uncertainty or (the average of the) self-
information of X.

e We also write H(p) : a random variable is not actually needed,;
p(-) could be an empirical distribution.
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Entropy: example

X~plx): HX) =—2yeapr(x)logp(x) [0log0 = 0]

Example: A={0,1} P(0)=p, P(1)=1-p

H,(p) = —plogp — (1 —p)log(1l —p) | binary entropy function

Main properties: 10--mmmmm oo ,
_ 091 Hy(p)
*H,(p) = 0, H,(p) is Nn-convex, 0 <p <1 0.8
0.7
« H,(p) » 0asp — 0 or 1, with slope o 06
* H,(p) ismaximalatp = 0.5, H,(0.5) =1 | [}
. . 0.2
— the entropy of an unbiased coin 0.1]
is 1 bit 01 02 03 04 05 06 07 08 09 10
p
9-Aug-21 17
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Entropy (cont.)

[ For a general finite alphabet A, H(X) is maximal when X is uniformly

distributed , i.e.,

X ~p,, wherep,q) = ﬁ Va e A .

J Proof:

® Jensen’s inequality:
if /' is a U-convex functionand Y ar.v,, then Ef (Y) = f(EY).

e —logx isau-convex function of x; setY = 1/p(X) and f(Y) = —logY

1

L
KM HX)=E [logﬁ_ = E[logY] = —E[—logY] < —(—1logEY)
- p(X).

= logE [ = log|A| = H(py) Jensen
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Joint Entropy

d The joint entropy of random variables (X,Y) ~ p(x,y) is defined as
HOX,Y) = = ) p(x,) log p(x,)
X,y

e This can be extended to any number of random variables: H(X{, X5, ..., X;,).

Notation:

H(X,, X5, ..., X,,)) =jointentropy of X;,X,,...,X,, (0<H<nloglAl|)

1
H(X0 X 0 X) = T H(X 3 Xy, X,)

= normalized per-symbol entropy (0 < H < log|A])
e If (X,Y) are statistically independent, then H(X,Y) = H(X) + H(Y).
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Conditional Entropy

HOXY) = = ) p(x,) logp(x, )
X,y

(d The conditional entropy (of Y conditioned on X) is defined as

HIYIX) = ) pOHYIX = 2)
== p() ) pIx)logp(y1x)
x y

= - z p(x,y)logp(ylx) = —Elogp(Y|X)
X,y

L Chain rule
H(X,Y) =HX)+ H(Y|X)

O Conditioning reduces uncertainty
HX|Y) < H(X)

e but H(X|Y =y) > H(X) is possible
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Entropy Rates

Q Entropy rate of a random process

1
H(XG) = lim ~H(XT)

J A related limit based on conditional entropy

in bits/symbol,
if the limit exists!

in bits/symbol,

H*(X1") = r{l—{{)lo H(Xy | Xn-1, Xn—2, -, X1)

Theorem: For a stationary random process, both limits exist, and

H*(X;") = H(X;")

9-Aug-21
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Entropy rates (examples)

d XllXZJ e iidld.:
1 1
H(X®) = lim —HX,, Xy, .., X,) = lim —nH(X,) = H(X,)
n—-oo N n—-oco N
O X;° stationary k-th order Markov:
H(X{°) = H*(X{°) theorem
= lim H(X,|X,,_1, ..., X1) definition
n— 0o
= lim H(X, | X,,_1, ) Xp—) Markov
n— 0o
= HXy 111Xy, -, X1) stationary

The theorem provides a very useful tool to compute

entropy rates for a broad family of source models
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Entropy Rates - Example

p(0[01) =1/4 steady state:

7 6 6 7
[7T00»7T01»7T10;7T11]=[% 56 26 %],

" Q 1 [ps(0), ps (D] =[5 3]

»(0[10) = 3/4
d Markov process entropy

J Zero-order entropy [—[(X|S) — Z ﬂabH(p(Olab)) =
H(%) =1 ab
76(3) + 261(5) * 267 (5) + 261 (3) ~ 0.688

1 Individual sequence—fitted with Markov model of order k = 2
0000001111111111100000100000001111111101

initial state 00 T state 11 T

state
state 01 state 10

Empirical: p(0]s) = [2,2L 2], p(s) =[2 4 LY, s=00,0110,11

1774’ 22 170 40’ 40’ 40’ 40

H(x*18) = ZH(Z) + HHG) + 5H(G) + 5H(5) ~ 0.657
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Entropy Rates - Example

p(0ls)) = 0.5 Steady state:
romml=[§ 56 vp bord=[5 5
state probs. symb. probs.
p(0lsy) = 0.9 p(0ls,) = 0.1
O Zero-order entropy L Markov process entropy
H(0.375) = 0.954 H(XIS)=i22(;p(Si)H(p(0|S,-))=
5 1

5
2 H(0.9)+— H(0.5)+ = H(0.1) ~ 0.502
SH 09+ H(0.5)+=H(0.1) 0.50

O Individual sequence - fitted with FSM model
0000001111111111100000100000001111111110 So SIS

Empirical entropy:

16 1 1 19 3 18 A
n(0 =—, p(0 =—,p0]s,)=—, T T T _— H(x|S)=0.594
pO]sg) =5, hOIs) ==, p(0s;) = [ |= {404040} (x|S)
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Empirical entropy

(J Defined for a sequence x™, relative to a class of models, as

—~ 1 lized,
H(x™) = — T—llog(ML probability of x™) Pno{,ﬁ?ga/s'f,?nbd

e Example: Bernoulli model. Recall

Ng_ n

_ . . n,'n,;' Mg n\™m using
Pen(e™) = p(O™ p(D)™ = 2= (1) () [matm =

This is the ML probability of x™ relative to the class of Bernoulli models (zero-
order Markov).

Ny

e We have

- 1 . n Ng. Ng Ni. Ny A
H(x") = —Elongn(x ) = —71087— 7108;= H,(p(0))

in fact, “empirical entropy = entropy of empirical probability”

holds for most probability models we are interested in,
including Markov models of any order
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Relative Entropy

O The relative entropy (or Kullback-Leibler distance, or information
divergence) between two PMFs p(x) and g(x) is defined as

_ p(x) _ p(x)
D(pllg) = Zx:p(x)logq(x) - Eplogq(x)

e Theorem: D(pllg) = 0, with equality iff p = q.

= Proof (using strict concavity of log, and Jensen’s inequality):

—D(pllq) —Zp(x)log E )—1 gz (x) logz q(x) <0

the summatlons are over values of x where p(x)q(x) #* 0; other terms contribute

either 0 or oo to D. Since log is strictly concave, equality holds iff p( ) =1Vvx.H

e D is not symmetric, and therefore not a distance in the metric sense.
e However, it is a very useful way to express ‘proximity’ of distributions.

in a sense, D(p||q) measures the inefficiency of

assuming that the distribution is g when it is actually p
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