
Applications of  Information 
Theory in Image Processing

1. Review of Information Theory and Lossless Source Coding
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Notation
• 𝐴 : discrete (usually finite) alphabet;   a = | A	| : size of A (when finite)
• 𝐴! : set of strings of length 𝑛 over 𝐴;    𝐴∗ :  set of finite strings over 𝐴
• 𝜆 : empty string
• 𝑥#! = 𝑥! = 𝑥#𝑥$ …𝑥! ∶ finite sequence over  A
• 𝑥#% = 𝑥% = 𝑥#𝑥$ …𝑥& … : infinite sequence over A
• 𝑥'

( = 𝑥'𝑥')#…𝑥( : sub-sequence (𝑖 sometimes omitted if = 1)
• 𝑝* 𝑥 or 𝑃*(𝑥) : Prob 𝑋 = 𝑥 probability mass function (PMF) on A	

(subscript  𝑋 dropped if clear from context)
• 𝑋 ~ 𝑝 𝑥 : 𝑋 obeys PMF 𝑝 𝑥
• 𝐸+ 𝐹 : expectation of F  w.r.t. PMF p   (subscript and [ ] may be dropped)

• �̂�,! 𝑥 : empirical distribution obtained from 𝑥!

• log 𝑥 :  logarithm to base 2 of x, unless base otherwise specified
• ln 𝑥 : natural logarithm  of x
• 𝐻(𝑋), 𝐻(𝑝) : entropy of a r.v. 𝑋 or PMF 𝑝, in bits (usually per-symbol)
• 𝐇 𝑋! : joint entropy of 𝑋#, 𝑋$, … , 𝑋! (unnormalized)
• 𝐻$ 𝑝 = − 𝑝 log 𝑝 − 1 − 𝑝 log 1 − 𝑝 , 0 ≤ 𝑝 ≤ 1 : binary entropy function
• 𝐷(𝑝||𝑞) : relative entropy (information divergence) between PMFs 𝑝 and q
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Coding in a communication/storage system
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Information Theory

q Shannon, “A mathematical theory of communication,”  Bell Tech. 
Journal, 1948

● Theoretical foundations of source and channel coding
● Fundamental bounds and coding theorems in a probabilistic setting

§ in a nutshell: perfect communication in the presence of noise is possible as 
long as the entropy rate of the source is below the channel capacity

● Fundamental theorems essentially non-constructive: we’ve spent the last 
70 years realizing Shannon’s promised paradise in practice
§ very successful: enabled current digital revolution (multimedia, internet, 

wireless communication, mass storage, …)

● Separation theorem: source and channel coding can be done 
independently
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Source Coding
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Source coding = Data compression 
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Data Compression

q Lossless compression: 𝐷 = 𝐷′ (the case of interest here)

q Lossy compression: 𝐷! ≈ 𝐷; 𝐷′ is an approximation of 𝐷 under 
some metric
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Data Sources

q Symbols 𝑥𝑖 ∈ 𝐴 = a  countable (usually finite)  alphabet.
q Probabilis6c source: 𝑥𝑖 are realiza:ons of random variables 𝑋" ;  𝑋#$ obeys 

some probability distribu:on 𝑃 on 𝐴$.
q We are o=en interested in  𝑛®¥ :  𝑋#% is a random process.

§ sta3onary (3me-invariant): 𝑋'% = 𝑋(%,  as random processes, "𝑖, 𝑗 ³ 1
§ ergodic:  Lme averages converge to ensemble averages
§ memoryless: 𝑋' are staLsLcally independent

§ independent, iden3cally distributed (i.i.d.):  memoryless, and 𝑋' ~ 𝑝* ∀𝑖
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Data Sources

q Symbols 𝑥𝑖 ∈ 𝐴 = a  countable (usually finite)  alphabet.
q Individual sequence: xi  are just symbols, not assumed to be a realization of 

a random process. We will talk about probability assignments, but they 
will be derived from the data under certain constraints, and with certain 
objectives.

q Here too, we will often be interested in asymptotic behavior as 𝑛 → ∞.
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Statistics on Individual Sequences
q Empirical distributions derived from an individual sequence 𝑥$. 

�̂�)! 𝑎 =
1
𝑛

𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛, 𝑥"= 𝑎 , 𝑎 ∈ 𝐴

● We can compute empirical statistics of any order (joint, conditional, etc.)
● Sequence probability according to its own empirical distribution

P𝑃,! 𝑥! =Q
'.#

!

�̂�,! 𝑥'

● This is the highest probability assigned to the sequence by any distribution from 
the model class: maximum likelihood (ML) probability

● Example: Bernoulli model (binary, i.i.d.)

𝐴 = 0, 1 , 𝑛/ = │ 𝑖 ∶ 𝑥' = 0 │, 𝑛# = 𝑛 − 𝑛/ = │ 𝑖 ∶ 𝑥' = 1 │

�̂� 0 =
𝑛/
𝑛
, �̂� 1 =

𝑛#
𝑛

∶ P𝑃,! 𝑥! = �̂� 0 !" �̂� 1 !# =
𝑛/
!"𝑛#

!#

𝑛!
● Notice that if 𝑥! is in fact the outcome of a random process, then its empirical 

distribution (and other statistics) are themselves random variables
§ e.g., expressions of the type  𝑃!! )( �̂� 𝑎 − 𝑝 𝑎 ≥ 𝜖
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Statistical Models for Data Sources: Finite Memory

q Markov (or finite memory) of order 𝑘 ≥ 0
𝑃 𝑥(*# 𝑥#( = 𝑃 𝑥(*# 𝑥(+,*#( , 𝑡 ≥ 𝑘

● We refer to 𝑥&01)#& as the context, or the state 𝑥&)#occurs in. 𝐴1 is referred to 
as the state space.

● Some convention is needed for 𝑡 < 𝑘 : initial state
§ for example,    𝑥"#$%⋯𝑥"%𝑥& = some fixed string

● Sequence probability

𝑃 𝑥#! =Q
&.#

!

𝑝(𝑥&|𝑥&01&0#)

§ Say 𝐴 = 𝛼.  The 𝛼 ⋅ 𝛼# numbers 𝑝 𝑎 𝑠 , 𝑎 ∈ 𝐴, 𝑠 ∈ 𝐴# , together with the fixed 
initial state, completely define the source.

§ In fact, there are only 𝛼 − 1 ⋅ 𝛼# independent parameters; once we have  𝑝 𝑎 𝑠
for 𝛼 − 1 symbols 𝑎 , the probability of the remaining symbol is fully determined.
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Statistical Models for Data Sources: Finite Memory

q Sequence probability

𝑃 𝑥$ =:
(-#

$

𝑝(𝑥(|𝑥(+,(+#)

q 𝑘-th order Markov empirical distribution

�̂�)!,, 𝑎 𝑠 =
𝑡 ∶ 1 ≤ 𝑡 ≤ 𝑛, 𝑥( = 𝑎, 𝑥(+,(+# = 𝑠

𝑡 ∶ 1 ≤ 𝑡 ≤ 𝑛, 𝑥(+,(+# = 𝑠

q As before, we can ask what probability this distribution assigns to 𝑥$

?𝑃)!,, 𝑥$ =:
(-#

$

�̂�)!,,(𝑥(|𝑥(+,(+#)

● This is the ML probability of 𝑥! for the class of 𝑘-th order Markov models.
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Example: Binary finite memory source, 𝑘 = 2

q Steady state: 𝜋/0 ≝ 𝑝1(𝑎𝑏) stationary state probabilities
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Statistical Models for Data Sources: FSM

q Finite State Machine (FSM)
● state space 𝑆 = {𝑠2, 𝑠#, … , 𝑠3+#}
● initial state s0
● output probability  

𝑝 𝑎 𝑠 , 𝑎 ∈ 𝐴, 𝑠 ∈ 𝑆
● state transition probability 

𝑞 𝑠 𝑠!, 𝑥 , 𝑠, 𝑠! ∈ 𝑆, 𝑥 ∈ 𝐴
● unifilar Û deterministic transitions: 

next-state function  f : S´ A®S

● every finite memory source is equivalent
to a unifilar FSM with 𝐾 ≤ 𝐴 , , but in
general, finite state ¹ finite memory
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Example: Binary FSM

q Steady state: 𝜋" ≝ 𝑝1454(𝑠")
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Statistical Models for Data Sources: Trees

q Tree sources
● finite memory £ k  (Markov)
● # of past symbols needed to 

determine the state might be 
< k  for some states

● by merging nodes from the full Markov tree, 
we get a model with a smaller number of free 
parameters

● the set of tree sources with unbalanced trees 
has measure zero in the space of Markov 
sources of any given order

● yet, tree source models have proven very 
useful in practice, and are associated with 
some of the best compression algorithms to 
date
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Entropy

entropy of 𝑋 (or of the PMF 𝑝), measured in bits.

● 𝐻 measures the uncertainty or  (the average of the) self-
informa6on of  𝑋.

● We also write 𝐻(𝑝) : a random variable is not actually needed; 
𝑝 ⋅ could be an empirical distribu:on.
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𝐻 𝑋 = 𝐸.[− log 𝑝 𝑋 ]

𝑋 ~ 𝑝 𝑥 ∶ 𝐻 𝑋 = −∑/∈1 𝑝 𝑥 log 𝑝(𝑥) [log = log2, 0 log 0 ≝ 0 ]



Entropy: example
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binary entropy function

Main properLes:
• 𝐻$ 𝑝 ≥ 0, 𝐻$(𝑝) is ∩-convex, 0 ≤ 𝑝 ≤ 1

• 𝐻& 𝑝 → 0 as 𝑝 → 0 or 1, with slope ∞
• 𝐻& 𝑝 is maximal at 𝑝 = 0.5, 𝐻2(0.5) = 1

Þ the entropy of an unbiased coin
is 1 bit

𝐻2 𝑝 = −𝑝 log 𝑝 − 1 − 𝑝 log(1 − 𝑝)

Example: 𝐴 = 0, 1 𝑃 0 = 𝑝, 𝑃 1 = 1 − 𝑝
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𝑋 ~ 𝑝 𝑥 ∶ 𝐻 𝑋 = −∑/∈1 𝑝 𝑥 log 𝑝(𝑥) [ 0 log 0 ≝ 0 ]

𝑝

𝐻((𝑝)



Entropy (cont.)

q For a general finite alphabet 𝐴, 𝐻(𝑋) is maximal when 𝑋 is uniformly 
distributed , i.e.,

𝑋 ~ 𝑝𝑢 ,  where 𝑝𝑢 𝑎 = #
|;|

∀𝑎 ∈ 𝐴 .

q Proof:
● Jensen’s inequality: 

if f  is a È-convex funcLon and 𝑌 a r.v., then 𝐸𝑓 𝑌 ≥ 𝑓(𝐸𝑌).

● - log x is a È-convex funcLon of x; set 𝑌 = 1/𝑝 𝑋 and 𝑓 𝑌 = − log 𝑌

𝐻 𝑋 = 𝐸 log #
+(*)

= 𝐸 log 𝑌 = −𝐸 − log 𝑌 ≤ − − log 𝐸𝑌

= log 𝐸 #
+(*)

= log 𝐴 = 𝐻(𝑝=)
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Joint Entropy

q The joint entropy of random variables (𝑋, 𝑌) ~ 𝑝(𝑥, 𝑦) is defined as

𝐇 𝑋, 𝑌 = −S
),<

𝑝 𝑥, 𝑦 log 𝑝(𝑥, 𝑦)

● This can be extended to any number of random variables: 𝐇(𝑋1, 𝑋2, … , 𝑋!).

Nota&on:

𝐇(𝑋1, 𝑋2, … , 𝑋𝑛) = joint entropy of 𝑋1, 𝑋2, … , 𝑋𝑛 (0 ≤ 𝐇 ≤ 𝑛 log 𝐴 )

𝐻 𝑋1, 𝑋2, … , 𝑋𝑛 = #
!
𝐇(𝑋1, 𝑋2, … , 𝑋𝑛)

= normalized per-symbol entropy  (0 ≤ 𝐻 ≤ log |𝐴|)

● If (𝑋, 𝑌) are staLsLcally independent, then  𝐇(𝑋, 𝑌) = 𝐇(𝑋) + 𝐇(𝑌).
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Conditional Entropy
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𝐇 𝑋, 𝑌 = −S
),<

𝑝 𝑥, 𝑦 log 𝑝(𝑥, 𝑦)

q The conditional entropy (of 𝑌 conditioned on 𝑋) is defined as

𝐻 𝑌 𝑋 =S
)

𝑝 𝑥 𝐻 𝑌 𝑋 = 𝑥

= −V
,

𝑝 𝑥 V
>

𝑝 𝑦 𝑥 log 𝑝 𝑦 𝑥

= −V
,,>

𝑝 𝑥, 𝑦 log 𝑝 𝑦 𝑥 = −𝐸 log 𝑝(𝑌|𝑋)

q Chain rule
𝐇 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 𝑋

q Conditioning reduces uncertainty
𝐻 𝑋 𝑌 ≤ 𝐻(𝑋)

● but 𝐻 𝑋 𝑌 = 𝑦 ≥ 𝐻 𝑋 is possible
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Entropy Rates
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q Entropy rate of a random process

𝐻 𝑋#% = lim
$→%

1
𝑛
𝐇(𝑋#$)

in bits/symbol,
if the limit exists!

q A related limit based on condi6onal entropy

𝐻∗ 𝑋#% = lim
$→%

𝐻(𝑋$|𝑋$+#, 𝑋$+&, … , 𝑋#)
in bits/symbol,

if the limit exists!

Theorem: For a sta:onary random process, both limits exist, and

𝐻∗ 𝑋#% = 𝐻(𝑋#%)
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q 𝑋1, 𝑋2, … i.i.d.: 

𝐻 𝑋#% = lim
$→%

1
𝑛
𝐇 𝑋#, 𝑋&, … , 𝑋$ = lim

$→%

1
𝑛
𝑛𝐻 𝑋# = 𝐻 X#

q 𝑋#% stationary 𝑘-th order Markov: 

𝐻 𝑋#% = 𝐻∗ 𝑋#% theorem

= lim
$→%

𝐻 𝑋$ 𝑋$+#, … , 𝑋# definition

= lim
$→%

𝐻 𝑋$ 𝑋$+#, … , 𝑋$+, Markov

= 𝐻 𝑋,*# 𝑋, , … , 𝑋#) stationary
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The theorem provides a very useful tool to compute 
entropy rates for a broad family of source models

Entropy rates (examples)
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Entropy Rates - Example

q Zero-order entropy
𝐻 #

& = 1

q Markov process entropy

𝐻 𝑋 𝑆 =V
23

𝜋23𝐻 𝑝 0 𝑎𝑏 =

?
&@A

#
B * @

&@A
#
C * @

&@A
?
C * ?

&@A
'
B ≈ 0.688
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#
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#
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)
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Entropy Rates - Example

q Zero-order entropy

H(0.375) =  0.954
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Empirical entropy

q Defined for a sequence 𝑥$ , rela:ve to a class of models, as

k𝐻 𝑥$ = −
1
𝑛
log ML probability of 𝑥$

● Example: Bernoulli model. Recall

P𝑃,! 𝑥! = �̂� 0 !" �̂� 1 !# =
𝑛/
!"𝑛#

!#

𝑛!
=

𝑛/
𝑛

!" 𝑛#
𝑛

!#

This is the ML probability of 𝑥! relaLve to the class of Bernoulli models (zero-
order Markov).

● We have

k𝐻 𝑥! = −
1
𝑛
log P𝑃,! 𝑥! = −

𝑛/
𝑛
log

𝑛/
𝑛
−
𝑛#
𝑛
log

𝑛#
𝑛
= 𝐻$(�̂� 0 )
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in fact,   “empirical entropy = entropy of empirical probability” 
holds for most probability models we are interested in, 
including Markov models of any order
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normalized,
in bits/symbol

using
𝑛* + 𝑛+ = 𝑛



Relative Entropy

q The rela6ve entropy  (or Kullback-Leibler distance, or informa6on 
divergence) between two PMFs  p(x) and q(x) is defined as

𝐷(𝑝||𝑞) = V
,

𝑝 𝑥 log
𝑝(𝑥)
𝑞 𝑥

= 𝐸+log
𝑝(𝑥)
𝑞(𝑥)

● Theorem: 𝐷(𝑝||𝑞) ≥ 0, with equality iff 𝑝 = 𝑞.
§ Proof (using strict concavity of log, and Jensen’s inequality):

−𝐷(𝑝| 𝑞 =E
/

𝑝 𝑥 log
𝑞 𝑥
𝑝 𝑥 ≤ logE

/

𝑝 𝑥
𝑞 𝑥
𝑝 𝑥 = logE

/

𝑞 𝑥 ≤ 0

the summaNons are over values of 𝑥 where 𝑝 𝑥 𝑞 𝑥 ≠ 0;  other terms contribute 
either 0 or ∞ to 𝐷. Since log is strictly concave, equality holds iff . /

3 /
= 1 ∀𝑥. g

● 𝐷 is not symmetric, and therefore not a distance in the metric sense.
● However, it is a very useful way to express ‘proximity’ of distribuLons.
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in a sense,  𝐷(𝑝||𝑞)measures the inefficiency of
assuming that the distribution is 𝑞 when it is actually 𝑝
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