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We develop an alternative thermodynamic cycle for the Stirling machine, where the polytropic

process plays a central role. Analytical expressions for pressure and temperatures of the working

gas are obtained as a function of the volume and the parameter that characterizes the polytropic

process. This approach achieves closer agreement with the experimental pressure-volume diagram

and can be adapted to any type of Stirling engine. VC 2017 American Association of Physics Teachers.

https://doi.org/10.1119/1.5007063

I. INTRODUCTION

The year 2016 marked the bicentenary of the submission of
a patent by Robert Stirling that described his famous
engine.1,2 A Stirling engine is a mechanical device that oper-
ates in a closed regenerative thermodynamic cycle, with
cyclic compressions and expansions of the working fluid at
different temperatures. The flow of the working fluid is con-
trolled only by the internal volume changes; there are no
valves and there is a net conversion of heat into work or vice-
versa. This engine can run on any heat source (including solar
heating), and if combustion-heated it produces very low levels
of harmful emissions. A Stirling-cycle machine can be con-
structed in a variety of different configurations. For example,
the expansion-compression mechanisms can be embodied as
turbo-machinery, as a piston-cylinder, or even using acoustic
waves. Most commonly, Stirling-cycle machines use a piston-
cylinder, in either an a, b, or c configuration.3

At the present time, several researchers are working to
improve the basic ideas of the Stirling engine.4–7 The entire
engine is a sophisticated combination of simple ideas. The
challenge is to make such devices cheap enough to generate
electrical power economically. It seems likely that the big-
gest role for Stirling engines in the future will be to create
electricity for local use.

The adequate theoretical description of the thermody-
namic cycle for the Stirling machine is not obvious and in
general it is necessary to adopt certain simplifications.
Usually, the thermodynamic cycle is modeled by alternating
two isothermal and two isometric processes. This model
has the virtue to give a simple theoretical base, but the real
thermodynamic process is quite different. In this paper, we
develop an alternative approach, where the polytropic pro-
cess plays a central role in the cycle. We provide an analyti-
cal expression for the pressure of the fluid as a function of its
volume and the parameter that characterizes the polytropic
process.

The paper is organized as follows. In Sec. II, we treat
some aspects of the usual thermodynamic cycle for the
Stirling engine, and in Sec. III, we introduce the alternative
cycle. In Sec. IV, we introduce the kinematics of the engine
in order to complete the model. In the final section, we pre-
sent our main conclusions.

II. USUAL STIRLING CYCLE

The usual Stirling cycle consists of four reversible pro-
cesses involving pressure and volume changes. We show
these processes, plotted in dashed lines in the pressure-volume

diagram of Fig. 1. It is an ideal thermodynamic cycle made up
of two isothermal and two isometric regenerative processes.
The relation between the movements of the pistons and the
processes of the cycle is explained in basic thermodynamics
textbooks.8 The net result of the Stirling cycle is the absorp-
tion of heat QH at the high temperature TH, the rejection of
heat QL (< 0) at the low temperature TL, and the delivery of
work W¼QHþQL, with no net heat transfer resulting from
the two constant-volume processes. This usual cycle is very
useful for understanding some qualitative aspects of the
Stirling machine; however, it is only a course approximation
to the real experimental cycle. The thermal efficiencies of the
best Stirling engines can be as high as those of a Diesel
engine,9 and theoretically, they have the Carnot efficiency.

Practical Stirling-cycle machines differ from the usual
ideal cycle in several important aspects:3 (i) the regenerator
and heat-exchangers in practical Stirling-cycle machines
have nonzero volume, which means that the working gas is
never completely in either the hot or cold zone of the
machine and therefore never at a uniform temperature; (ii)
the motion of the pistons is usually semi-sinusoidal rather
than discontinuous, leading to non-optimal manipulation of
the working gas; (iii) the expansion and compression pro-
cesses are better approximated as polytropic rather than iso-
thermal, which allows for pressure and temperature
fluctuations in the working gas and leads to adiabatic and
transient heat transfer losses; (iv) fluid friction losses occur
during gas displacement, particularly due to flow through the
regenerator; (v) other factors such as heat conduction
between the hot and cold zones of the machine, seal leakage
and friction, and friction in kinematic mechanisms all cause
real Stirling-cycle machines to differ from ideal behavior.
The above factors tend to reduce the performance of real
machines.

III. ALTERNATIVE STIRLING CYCLE

As an alternative to the cycle described in Sec. II, the
cycle proposed in this section consists of a polytropic pro-
cess for the working gas. Textbooks usually define a poly-
tropic process for an ideal gas through the relation

PVb ¼ constant; (1)

where P is the pressure of the gas, V its volume, and b the
polytropic index. Let us briefly review the main characteris-
tics of such a process. The quasistatic process is carried out
in such a way that the specific heat c remains constant.11–14
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Therefore, the relation between heat and temperature is
given by

dQ ¼ c N dT; (2)

where dQ is the heat absorbed by the gas, T is the absolute
temperature, and N is the number of moles. The value of c
determines the relation between pressure and volume for the
process. A process for which the pressure or the volume is
kept constant is, of course, polytropic with specific heat cP or
cV, respectively. An adiabatic process is a polytropic process
with c¼ 0. At the other extreme, isothermal evolution can be
thought of as a polytropic process with infinite specific heat.
The connection between the polytropic index and the specific
heat is given by

b ¼ cP � c

cV � c
; (3)

c ¼ cV
c� b
1� b

; (4)

where c¼ cP/cV. Note that if b 2 [1, c], then c< 0.
Next, we shall develop an alternative approach for the

Stirling cycle using a simple model for its engine. Nowadays, it
easy to find videos on the Internet that present the construction
and operation of several toy models of the Stirling engine. We
choose one of the simpler of these models10—one that works
well, is not expensive, and can be built by pre-university stu-
dents—to develop our ideas about its thermodynamics. This
device is schematically shown in Fig. 2. The pistons are con-
nected to the camshaft with an incorporated flywheel. As the
shaft rotates, the pistons move with a constant phase difference.
The two cylinders are filled with a fixed mass of air, which is
recycled from one cylinder to the other. One of the cylinders is
kept in contact with the high-temperature reservoir, while the

other is in contact with the low-temperature reservoir. The con-
nection between the cylinders is through a small tube that may
have a sponge device a called regenerator.

The model used in this paper has no regenerator and we
assume some simplifications for the working gas: (i) the gas
has a uniform temperature in each cylinder, T2 for the hot
cylinder and T1 for the cool cylinder; (ii) the mass of gas
inside the tube that connects the cylinders is negligible; (iii)
due to the connection between the cold and hot cylinders, the
gas always has a uniform pressure P; and (iv) the gas is con-
sidered to behave as a classical ideal gas.

In this context, the relation between the internal energy E
of the gas inside the Stirling machine and the temperature is
given by

E ¼ cVðN1 T1 þ N2 T2Þ; (5)

where cV is constant and N1 and N2 are the number of moles
of the gas inside of the cool and hot cylinders, respectively.
From Eq. (5), the energy change is calculated to be

dE ¼ cVðN1 dT1 þ N2 dT2Þ þ cV ðT1 � T2Þ dN1; (6)

where we have used the conservation of the total number of
moles N¼N1þN2. The first term on the right-hand side of
Eq. (6) gives the change of the mean kinetic energy of the
molecules with fixed mole numbers. The second term corre-
sponds to the energy change due to the mass redistribution in
the cylinders, with fixed temperatures.

In order to analyze the evolution of the system, we com-
pare Eq. (6) to the first law of thermodynamics

dE ¼ dQ� dW: (7)

The infinitesimal work is given by

dW ¼ P dV; (8)

where dV is the infinitesimal change of the total gas volume V.
The total absorbed (or emitted) heat dQ is given by

dQ ¼ c ðN1 dT1 þ N2 dT2Þ þ dQ0; (9)

where the first term on the right-hand side represents the heat
associated with the polytropic process in a bipartite system

Fig. 2. Simple model of the Stirling engine; it uses two disposable glass

syringes as a piston-cylinder system (see Ref. 10).

Fig. 1. Dimensionless pressure-volume diagram. The alternative Stirling

cycle is presented as the solid curve (green online) compared to the usual

Stirling cycle shown as the dashed cycle. The arrows indicate the evolution

with increasing h. The parameters values are /¼ 5.2p, a¼ 10, b¼ 1.33,

e¼ 0.1, and z¼ 0.1.

927 Am. J. Phys., Vol. 85, No. 12, December 2017 Alejandro Romanelli 927



with two different temperatures, and the second term dQ0 is
the heat associated with the gas transferred from one cylinder
to the other. Therefore, Eq. (7) may be rewritten as

dE ¼ �P dV þ c ðN1 dT1 þ N2 dT2Þ þ dQ0: (10)

Comparing Eq. (6) with Eq. (10) and taking into account that
the redistribution of the molecules in the cylinders does not
produce any work in this system it is clear that

dQ0 ¼ cV ðT1 � T2Þ dN1; (11)

and so

P dV ¼ ðc� cVÞ ðN1 dT1 þ N2 dT2Þ: (12)

On the other hand, using only the equation of state of the
ideal gas, we obtain the following expressions for the gas in
the cylinders

N1

N
¼ V1 T2

V1 T2 þ V2 T1

; (13)

N2

N
¼ V2 T1

V1 T2 þ V2 T1

; (14)

P

P0

¼ T1 T2

T10 T20

� �
V10 T20 þ V20 T10

V1 T2 þ V2 T1

� �
; (15)

where V1 and V2 are the volumes of gas in the cylinders,
{V10, T10}, {V20, T20}, and P0 are the initial conditions.
(Note that V1þV2¼V).

Using the previous results, we can rewrite Eq. (12) as

V1

dT1

T1

þ V2

dT2

T2

¼ 1� bð Þ dV1 þ dV2ð Þ: (16)

Equation (16) is clearly symmetric with respect to an inter-
change of the indices 1 and 2. Then, its solution (T1 and T2)
must be symmetric in the arguments V1 and V2 and their
functional forms must be essentially the same. Introducing
the partial differentiation of the temperatures, Eq. (16) can
also be written in the symmetrical form

V1

T1

@T1

@V1

þ V2

T2

@T2

@V1

� 1þ b

� �
dV1

þ V1

T1

@T1

@V2

þ V2

T2

@T2

@V2

� 1þ b

� �
dV2 ¼ 0: (17)

In this equation, the variations dV1 and dV2 are completely
arbitrary. Accordingly, the only way to satisfy this condition
is that both expressions in parentheses in Eq. (17) must van-
ish. Then, it is easy to show that

T1 ¼ T10

V0

V

� �b�1

; (18)

T2 ¼ T20

V0

V

� �b�1

; (19)

satisfy both requisites, where V0 is the total initial volume.
From Eqs. (15), (18), and (19), the pressure of the working

gas is expressed as

P ¼ P0

a V10 þ V20

a V1 þ V2

� �
V0

V

� �b�1

; (20)

where

a � T20=T10: (21)

Equations (18)–(20) prove explicitly that the system under-
goes a polytropic process. Using these results and Eqs. (9)
and (11), we obtain a differential equation for the heat
absorbed in the process

dQ ¼ P

c� 1
c� bð ÞdV þ 1� að ÞV2dV1 � V1dV2

aV1 þ V2

� �
:

(22)

The thermodynamic properties of the Stirling engine are
determined by Eqs. (18)–(20) and (22). These equations are
the principal theoretical results of this paper. In Sec. IV, we
derive some properties of the Stirling engine using the above
results.

IV. NUMERICAL IMPLEMENTATION

In order to complete the description of the Stirling engine,
we develop a simple model for the interaction between the
pistons of the engine and the working gas. With this model,
it is possible to implement numerical calculations and to
obtain some characteristic results of the Stirling engine.

The operation of the Stirling engine can be described
essentially in the following way. The working gas follows
the thermodynamic cycle interacting with the pistons, which
are connected with the camshaft and perform periodic move-
ments associated with the flywheel rotation. The inertia of
the flywheel collaborates to sustain the continuity of the
movement.

Figure 3 shows the details of the connection between a
piston and the camshaft through the rod of length R. The
cam has a rotating radius r and the piston has a cross-
sectional area a. From this figure, the functional relation
between the gas volume and the camshaft angle h, for both
cylinders, is obtained

V1

R a
¼ 1þ eþ z 1� cos hð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2 sin2h

p
; (23)

V2

R a
¼ 1þ eþ z 1� cos hþ /ð Þ½ � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2 sin2 hþ/ð Þ

q
;

(24)

Fig. 3. Constraint scheme between the volume of gas in the cylinder and the

camshaft angle h. The circle represents the cam rotation. The piston is con-

sidered to have a negligible thickness.
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where z¼ r/R, e determines the minimum volume of gas in
each cylinder during the cycle (we assume the same value
for both cylinders), and / is the phase difference between
the cams. In what follows, we obtain the initial conditions
using h0¼ 0.

The pressure-volume diagram for the alternative cycle is
shown in Fig. 1, which is obtained using Eqs. (20), (23), and
(24) and additional numerical calculations. We obtain a
smooth continuous curve closer to the experimental behavior.
The usual cycle is also shown for comparison with the same
highest and lowest temperatures as the alternative cycle. The
area inside the solid curve represents the total work of the
cycle

W ¼
þ

P dV ¼
ð2p

0

P
dV

dh
dh; (25)

this is the work available for overcoming mechanical friction
losses and for providing useful power to the engine
crankshaft.

The alternative cycle does not have four sharply defined
processes of the ideal cycle. This approach allows us to
model adequately the following facts: (i) the compression
and expansion processes do not take place wholly in one or
other of the cylinders; (ii) the motion of the pistons is contin-
uous rather than discontinuous; and (iii) the heat exchange
between gas and environment is best modeled by a poly-
tropic process rather than an isothermal-isometric sequence.

The pressure-volume diagrams for the hot and cool cylin-
ders are shown in Fig. 4. They are obtained numerically
using the same data of Fig. 1. As in the previous figure, the
areas of the curves represent the work of each cycle. It is
seen that their orientations are opposite, so the available
work for the engine is proportional to the difference between
these areas.

In Fig. 5, the work per cycle of the Stirling machine is pre-
sented as a function of /. The work has a maximum value
that depends on the initial conditions and the parameters, as

given in the caption. It is known empirically that to obtain
the maximum power of the machine, the phase difference
between the two cams must be near p/2. The present model
gives us a method to numerically determine this precise
angle.

Let us call Qin and Qout, respectively, the heat absorbed
and rejected by the gas in the cycle. These quantities are cal-
culated numerically using Eq. (22) with the convention
Qin> 0 and Qout< 0, that is,

Qin ¼
ð
Cin

dQ

dh
dh; (26)

Qout ¼
ð
Cout

dQ

dh
dh; (27)

where Cin and Cout refer to the paths where dQ/dh> 0 and
dQ/dh< 0, respectively. Because the internal energy change
in a complete cycle vanishes, the total work is W¼Qin

þQout as shown in Fig. 5.
The machine efficiency is defined as W/Qin, or

equivalently

g ¼ 1þ Qout=Qin: (28)

The efficiency as a function of a is shown in Fig. 6. It is easy
to prove from Eqs. (20) and (22) that if a¼ 1 then g¼ 0; this
means, as expected, that without a difference of temperature
the machine does not work. When a grows g also grows, how-
ever, the efficiency is asymptotically bounded by some value
below 0.2. Additionally, we have numerically checked that
the efficiency can be improved by reducing the value of e.

Figure 7 shows the efficiency as a function of the phase
difference between the cams. Note that the maximum effi-
ciency does not coincide with the maximum work. This fact
is highlighted in Fig. 8, which shows directly the dependence
between work and efficiency with varying /.

Fig. 4. Dimensionless pressure-volume diagram for the hot gas (solid curve,

red online) and the cool gas (dashed curve, blue online). For the hot (cool)

gas, the abscissa axis is V2/V20 (V1/V10). The arrows indicate the evolution

with increasing h. The values of the parameters are the same as in Fig. 1.

Fig. 5. The energy per cycle as a function of the phase difference / between

the cams. The solid curve (green online) is the work, the dashed curve (red

online) the heat absorbed, and the dot-dashed curve (blue online) the heat

rejected. The values of the parameters are the same as in Fig. 1. The maxi-

mum work corresponds to /¼ 0.52p.
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Figure 9 shows the behavior of the work and the efficiency
when the parameter b varies. Here, we point out that in Ref.
14 an analytical expression for the polytropic index of air
was obtained showing that b depends only on the thermody-
namic initial conditions.

Finally, it is interesting to note that our results given by
Eqs. (18)–(20) for the isothermal case b¼ 1 (c¼�1) coin-
cide with the well-known Schmidt solution,15–17 published
in the year 1871.

V. CONCLUSIONS

This paper develops an alternative theoretical approach to
the usual Stirling thermodynamic cycle. This alternative

cycle is obtained by applying the first law of thermodynam-
ics to the working fluid inside the Stirling engine. The main
characteristic of this approach is the introduction of a poly-
tropic process as a way to represent the exchange of heat
with the environment.

We have obtained analytical expressions for the pressure,
temperatures, work, and heat for the gas inside the engine.
We find that the theoretical pressure-volume diagram shows
a qualitative agreement with the experimental diagram. With
the aim to complete the description of the Stirling engine, we
develop a simple model for the interaction between the pis-
tons of the engine and the working gas and we study the
power and the efficiency of the Stirling engine as a function
of: (i) the phase difference / between the cams of the engine

Fig. 6. The efficiency as a function of the parameter a, with /¼ 0.52p,

b¼ 1.33, e¼ 0.1, and z¼ 0.1.

Fig. 7. The efficiency as a function of /, with a¼ 10, b¼ 1.33, e¼ 0.1, and

z¼ 0.1. The dots in the curve indicate the values of / for the maximum effi-

ciency and maximum work.

Fig. 8. Dimensionless work as a function of the efficiency g, with the angle

/ varying between 0 and p. The arrow indicates the direction of increasing

/. The parameters are W0¼P0V0, a¼ 10, b¼ 1.33, e¼ 0.1, and z¼ 0.1.

Fig. 9. Dimensionless work as a function of the efficiency g, with

W0¼P0V0, a¼ 10, e¼ 0.1, /¼ 0.52p, and z¼ 0.1. The polytropic index

varies from b¼ 1.0 to b¼ 1.4. The arrow indicates the direction of increas-

ing b.
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crankshaft; (ii) the ratio of the temperatures of the heat sour-
ces, a; and (iii) the type of polytropic process, b. We empha-
size that the Schmidt analysis for the Stirling machine is a
particular case of the solution presented in this paper for
b¼ 1.

In summary, the theoretical approach proposed in this
paper describes the thermodynamics of the Stirling engine in
a simple, precise, and natural way that can be adapted to any
variant of this engine.
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