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Air expansion in a water rocket
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Instituto de F�ısica, Facultad de Ingenier�ıa, Universidad de la Rep�ublica, C.C. 30, C.P. 11300,
Montevideo, Uruguay

(Received 14 August 2012; accepted 23 May 2013)

We study the thermodynamics of a water rocket in the thrust phase, taking into account the

expansion of the air with water vapor, vapor condensation, and the corresponding latent heat. We

set up a simple experimental device with a stationary bottle and verify that the gas expansion

in the bottle is well approximated by a polytropic process PVb¼ constant, where the parameter

b depends on the initial conditions. We find an analytical expression for b that depends only

on the thermodynamic initial conditions and is in good agreement with the experimental results.
VC 2013 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4811116]

I. INTRODUCTION

The water rocket is a popular toy that is already several
decades old.1 An inexpensive version can be built with a
plastic bottle filled with water and pressurized air obtained
from a bicycle pump. When the bottle is opened, the internal
air pressure pushes the water out and the bottle recoils with a
corresponding change in momentum. The water ejection
gives the bottle the thrust that allows it to move for several
meters.2

The launch of water rockets is used in our undergraduate
laboratory to illustrate several physics concepts: Newton
laws, conservation of momentum, the work-energy theorem,
the Bernoulli equation, the mass conservation equation, and
ideal gas expansion. On this last point, it is necessary to clar-
ify whether the expansion of the gas in the rocket is an adia-
batic or an isothermal process.

The theoretical description of the water rocket is not triv-
ial and, in general, it is necessary to adopt certain simplifi-
cations. In particular, the rocket’s only source of energy,
the air expansion, is in general modeled2–5 as an isothermal
or an adiabatic process involving dry air. These theoretical
approaches give qualitatively reasonable predictions, but
they are quantitatively incorrect, showing that some hypoth-
esis of the model is inadequate. In particular, observing the
launch of the water rocket, we see that when the ejection of
the water concludes, an additional ejection of fog follows.
Therefore, it is clear that the expansion occurs for a mixture
of dry air, water vapor, and condensed water (fog). In
Ref. 6, the author pursues this point and builds a pressure-
volume relation assuming that the total entropy of the mix-
ture is conserved during the expansion; he additionally
shows that the solution of the pressure-volume equation can
be approximated by a polytropic process.

We have developed an experimental device in order to
study the nature of the water-rocket gas expansion. We also
present a brief theoretical development that provides an ana-
lytical expression for the parameter that characterizes the
polytropic processes.

The paper is organized as follows. In Sec. II, we treat
some aspects of polytropic processes, and in Sec. III, we
study the exchange of heat during condensation in a poly-
tropic process. A theoretical expression for the polytropic
exponent of the system is obtained in Sec. IV. Our experi-
mental device and results are presented in Sec. V; this is
followed by Sec. VI.

II. CHARACTERIZATION OF POLYTROPIC

PROCESSES

We present here a brief review of the main characteristics
of polytropic processes for an ideal gas. A polytropic process
is a quasistatic process carried out in such a way that the
molar specific heat c remains constant.7–9 Therefore, the heat
exchange when the temperature change is

dQ ¼ Nc dT; (1)

where dQ is the heat absorbed by the system, dT is the tem-
perature change, and N is the number of moles. Pressure
and volume can change arbitrarily during the process, and
the value of c will depend on how they change. A process
in which the pressure or the volume is kept constant is of
course polytropic with specific heat cP or cV, respectively.
In an adiabatic process, there is no heat exchange between
the system and the environment, so it is a polytropic pro-
cess with c¼ 0. At the other extreme, isothermal evolution
is characterized by a constant temperature and therefore it
can be thought of as a polytropic process with infinite spe-
cific heat.

Starting from the first law of thermodynamics

dU ¼ dQ� P dV; (2)

where P is the pressure, V is the volume, and

dU ¼ cVNdT (3)

is the change in the internal energy of an ideal gas, together
with Eq. (1), we obtain a differential equation for the poly-
tropic process

ðcV � cÞN dT þ P dV ¼ 0: (4)

Using Eq. (4) and the ideal gas equation of state, one can
show that the polytropic process satisfies

PVb ¼ constant; (5)

where

b ¼ cP � c

cV � c
: (6)
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Normally thermodynamics textbooks define a polytropic
process through Eq. (5) (for example, see Ref. 10); however,
we have started with Eq. (1), which gives a direct link
between heat and temperature changes. In particular, for an
adiabatic process c¼ 0 and b ¼ c, where

c � cP

cV
(7)

(c ¼ 1:4 for dry air at room temperature). For an isothermal
process c ¼ 1 and b ¼ 1; for an isobaric process c ¼ cP and
b ¼ 0; and for an isovolumic process c ¼ cV and b ¼ 1.

Solving Eq. (6) for the specific heat gives

c ¼ cP � bcV

1� b
: (8)

It is well known that a system in stable thermodynamic equi-
librium must have cV > 0, otherwise the second law of ther-
modynamics is contradicted.13,14 However, the value of c
depends on the process and in principle it has no restric-
tion.15 For polytropic processes, it is seen from Eq. (8) that if
1 < b < c then c < 0. Common examples of such a case in
real life are the expansion process in an internal combustion
engine and the compression process in a vapor compression
refrigerator.

In the experimental system treated in this paper, c < 0
means that during the gas expansion phase heat is absorbed
(dQ > 0) and yet the gas temperature decreases (dT < 0);
this occurs because the gas performs an amount of work
larger than the absorbed heat.

Finally, the total heat Q exchanged between the ideal gas
and the environment can be calculated by integrating Eq. (1)
to get

Q ¼ cNðT � T0Þ; (9)

where T is the gas temperature and T0 is its initial
temperature.

III. HEAT EXCHANGE AND VAPOR

CONDENSATION

We now turn to our experimental situation. In the follow-
ing, we shall use the term “gas” to refer to the mixture of dry
air and water vapor. As the water is expelled from the bottle,
the gas expands and cools. During this process, the relative
humidity increases up to saturation and some of the vapor
condenses. The quantity of condensed water vapor at the end
of the experiment will depend on the initial relative humidity
in the gas and the initial and final temperatures. We want to
estimate the mass and the heat involved in this condensation.

The mass of water vapor mv can be calculated using12

mv ¼
PvV

RvT
; (10)

where Pv is the partial pressure of the vapor at T and
Rv¼ 0.4615 kJ/(kg K) is the ideal gas constant for the vapor.
The vapor partial pressure is determined by the equation
Pv ¼ eew, where e 2 ½0; 1� is the (fractional) relative humid-
ity and ew is the saturation pressure that depends only on
the temperature and can be obtained from a vapor table. In
our experiment, the pressurized air is generated by the

compressor at a higher temperature than the environment
and its cooling results in the saturation of the air with vapor
inside the system. Thus, we assume that we are working with
e ¼ 1 throughout the experiment and therefore Pv ¼ ew.
This assumption implies the maximization of the energy
delivered by the vapor-liquid phase transition. In our case,
the initial temperature is T0¼ 292 K and the partial pressure
is Pv0

¼ 2:3 kPa (this last value was taken from a vapor
table).

In order to get a fuller understanding of the heat exchange
due to vapor condensation, we start with the Clapeyron-
Clausius equation11 for the vapor-liquid phase transition

dew

dT
¼ Lv

Rv

ew

T2
; (11)

where Lv is the latent heat, which for our purposes may
be considered constant at Lv¼ 2500 kJ/kg. The solution of
Eq. (11) gives the partial pressure Pv ¼ eew as a function of
the temperature T to be

Pv ¼ Pv0
exp

Lv

Rv

1

T0

� 1

T

� �� �
; (12)

where the integration constant has been adjusted so that
PvðT0Þ ¼ Pv0

.
The condensation produces a change in the mass of vapor

in the gas. The mass of condensed vapor can be calculated
using Eq. (10) twice, that is,

M ¼ Pv0
V0

RvT0

� PvV

RvT
: (13)

Using the fact that a polytropic process can also character-
ized by the equation PTb=ð1�bÞ ¼ constant, we find

V

T
¼ NR

P
¼ NR

P0

T0

T

� �b=ðb�1Þ
; (14)

where R is the ideal gas constant. To obtain the latent heat of
condensation

Q ¼ MLv; (15)

we substitute Eqs. (12) and (14) into Eq. (13) to obtain

Q ¼ NRPv0
Lv

RvP0

1� T0

T

� �b=ðb�1Þ
exp

Lv

T0Rv
1� T0

T

� �� �( )
:

(16)

One may wonder if there are other types of heat exchange
between the system and the environment. As will be seen,
our experiment lasts for less than one second so it is reasona-
ble to assume that the heat exchanged through the walls is
not important; the energy delivered by the vapor-liquid phase
transition remains the sole source of heat for the system.

It is important to point out that, due to the water vapor
condensation, the number of moles N in the gas is not con-
stant. However, Eqs. (9) and (16) were obtained using the
ideal gas law for air and water vapor, assuming that N and Nv

(the number of moles of water vapor) are constants.
Therefore, these equations can be used only if the change in
the number of moles is negligible during condensation. The
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relative number of moles condensed dNv=Nv can be esti-
mated using Eqs. (10) and (13) to be

dNv

Nv
¼ M

mv0

¼ 1� T0

T

� �b=ðb�1Þ
exp

Lv

Rv

1

T0

� 1

T

� �� �
;

(17)

where mv0
is the initial water vapor mass. If we estimate the

final temperature as T¼ T0 � (10 K), then Eq. (17) gives
dNv=Nv � 0:6. The total relative variation of moles in the
gas dNv=N is then

dNv

N
¼ dNv

Nv

Nv

N
¼ Pv0

P0

dNv

Nv
� 10�3; (18)

where we have used the ideal gas equation both for the gas
and for the water vapor. Thus, dNv=N is negligible while but
dNv=Nv is not. In the derivation of Eq. (16), we have used
Eq. (10), which is correct only if dNv=Nv � 0; thus, Eq. (16)
can only be correct in the limit T ! T0. Therefore, we must
replace Eq. (16) with the exact differential equation

dQ ¼ cNdT; (19)

where

c ¼ � Lv

T0Rv

Pv0
R

P0

b
1� b

þ Lv

RvT0

� �
: (20)

Equation (19) is obtained by replacing T ¼ T0 þ dT in
Eq. (16) and taking the terms to first order in dT.

IV. CALCULATION OF THE POLYTROPIC

EXPONENT b

In this section, we calculate the exponent b using the
previous results. Equation (8) gives the general expression
for the polytropic specific heat c for an ideal gas. On the
other hand, Eq. (20) relates the specific heat c to the initial
conditions and the parameters of the system. Equating the
right-hand sides of Eqs. (8) and (20), we find

cP=R� bcV=R

1� b
¼ � Lv

T0Rv

Pv0

P0

b
1� b

þ Lv

RvT0

� �
; (21)

which can be solved to give a theoretical expression for
the b:

b ¼ cP=Rþ ðLv=RvT0Þ2ðPv0
=P0Þ

cV=Rþ ðLv=RvT0Þ2ðPv0
=P0Þ � ðLv=RvT0ÞðPv0

=P0Þ
:

(22)

Equation (22) is the main theoretical result in this paper.
Using this equation, we conclude, first, that if Pv0

� 0 or
Lv � 0 then b � c ¼ cP=cv; this means that the process is ad-
iabatic for dry air. Second, b depends only on the thermody-
namic initial conditions of the gas; other parameters like the
water ejection time do not appear. Table I shows the theoreti-
cal values of b calculated from Eq. (22), which are labelled
b�, computed for our experimental initial conditions.

The model developed in Ref. 6 also predicts that the expo-
nent b depends mostly on the initial relative humidity and
proposes the empirical function

b ¼ 1:15þ ð1:4� 1:15Þe�36Pv0
=P0 : (23)

Figure 1 compares the b values computed from Eqs. (22) and
(23) as functions of the initial ratio Pv0

=P0. (This figure also
shows the experimental values described in Sec. V.)

V. EXPERIMENTAL RESULTS

In order to elucidate the nature of the expansion of the air
in the water rocket, we designed an experimental device to
measure the heat exchange between the compressed gas of
the water rocket and the environment. The water rocket is
fixed in the laboratory frame and the time dependence of the
pressure and volume of the expanding gas in the bottle is
measured (see Fig. 2).

The bottle is a transparent acrylic cylinder of inner diame-
ter 5.40 cm, wall thickness 0.30 cm, and length 1 m, main-
tained in a vertical orientation. The upper and lower covers
are both made of aluminum. The upper cover has a tire valve
and a manometer (WIKA EN 837-1) working from 0 to
4 bars. The lower cover has a conical shape with a slope of
30�, with a 0.5-in. faucet that can fill and evacuate the water
in the bottle. The bottle was built in our mechanical work-
shop. The device is quite simple and the experiment is not
dangerous for the range of pressures used in this paper, so it
is appropriate for undergraduate students. In a typical trial

Table I. Experimental and theoretical results for different initial pressures

P0, with PA the atmosphere pressure, b the experimental value of the poly-

tropic exponent, b� the theoretical value of the polytropic exponent, c the

molar specific heat, R the ideal gas constant, and t the ejection time.

P0=PA b b� c/R t (s)

4.8 1.22 1.27 �2.0 0.64

4.4 1.21 1.26 �2.2 0.66

4.0 1.20 1.25 �2.6 0.75

3.6 1.19 1.24 �2.7 0.75

3.2 1.17 1.23 �3.5 0.88

Fig. 1. The polytropic exponent as a function of the initial molar fraction.

The star points are our experimental values of b. The solid line is our theo-

retical calculation given by Eq. (22), while the dashed line is the function

given by Eq. (23).
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the bottle is filled with about 1400 cm3 of water and the rest
with air. It is placed in a vertical orientation with the faucet
closed. The compressed air is introduced through the valve
and then the faucet is opened. The level and pressure of the
gas are filmed with a PIXELINK PL-B776F camera. The
video is recorded at 50 frames per second, with an exposure
time of 10 ms per frame. The ejection of water from the bot-
tle lasted between 0.64 and 0.88 s, depending of the initial
pressure (see Table I). Finally, the video was processed man-
ually to obtain the pressure and volume of the gas as func-
tions of time.

Figure 3 shows five sets of experimental pressures and
volumes. Each set corresponds to a different initial pressure
with the same initial volume. For each initial pressure, the
experiment was repeated five times and all the data are incor-
porated into the same figure. The data are fit with a power
law PVb¼ constant, and the values of b (from fitting the
slopes in the figure) are given in Table I. These experimental
values of the polytropic exponents b are in fair agreement
with the theoretical values b� given by Eq. (22).

VI. DISCUSSION AND CONCLUSION

The typical ejection time of the water in our experiments
is 0.7 s (see Table I), while the typical ejection time in the
usual water rocket is 0.1 s.2 The difference in the ejection
rates must be analyzed. The main geometrical difference
between the bottles is in the nozzles. The standard soda bot-
tle has a nozzle area of 3.46� 10�4 m2, while the nozzle
area of the stationary bottle was only 40% as large; a smaller
nozzle was necessary in order to accommodate the capability
of our video camera. Another difference between the experi-
ments is the apparent gravity. In the stationary bottle, the

water is only subjected to its weight, while in a normal water
rocket, the water is also subjected to a fictitious force due
to the rocket’s acceleration; this makes the apparent
gravitational field several times larger than the Earth’s gravi-
tational field. However, our theoretical calculation shows
that b� does not depend on the water output rate; it depends
only on the thermodynamic initial conditions of the gas.
Furthermore, b� agrees reasonably well with our experimen-
tal values. We therefore conclude that the thermodynamic
process is the same in both the water rocket and in our sta-
tionary experiment, given the same thermodynamic initial
conditions.

In summary, we have presented an experimental study of
the air expansion in the water rocket using a stationary bot-
tle. It is shown that the air expansion follows a polytropic
process of the type PVb¼ constant, where b is an average
value with slight dependence on the initial conditions. We
have also obtained an analytical expression for the polytropic
exponent that agrees reasonably well with the experimental
values. This theoretical exponent depends only on the ther-
modynamic initial conditions of the gas, so it also applies to
the air expansion in the usual water rocket. Finally, we con-
clude that vapor condensation is the main heat source for the
gas expansion process in the water rocket.
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