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I. INTRODUCTION

It has been our experience that students find mechanics
fun and exciting when they are able to use what they have
learned to model and to predict the behavior of familiar phe-
nomena. For this reason, we have made considerable efforts
to design experiments for the first course in fluid mechanics
that are simple and easy to visualize, and that relate theoret-
ical concepts from mechanics directly to the experience that
students have with familiar phenomena. These experiments
are particularly helpful when one has a class with students
who are likely to get lost in the mathematical details that
abound in the study of fluid flows. To illustrate this point, we
present a draining experiment that is one of many laboratory
exercises used to support the first course in fluid mechanics.

The experiment itself consists of draining a large cylindri-
cal tank under the influence of gravity. The tank’s axis of
revolution is vertical; its top is open to the atmosphere, and it
is drained through a small orifice located at the bottom of the
tank. We measure both the total time it takes to drain the tank
completely and the draining pattern itself, that is, how the
volume of liquid in the tank changes with time during the
draining process. We model the liquid as an incompressible
and inviscid fluid and the flow as quasisteady and irrota-
tional.

Although the actual flow is that of a viscous fluid, the
observed behavior is compared with that predicted by the
theory of the irrotational draining of an inviscid fluid. When
the cross-sectional area of the exit orifice is much smaller
than that of the tank, this comparison shows that the inviscid-
fluid model approximates the behavior of the real fluid quite
well. First, we describe the theory used for modeling, then
the experiment itself. Finally, we show experimental results
obtained and compare them to theory.

II. THEORY

Consider a cylindrical container of a circular cross section
�the tank� that is oriented such that its axis of rotational sym-

metry is vertical. The tank is open to the atmosphere at the
top so that water, or some other liquid, can be poured into the
tank easily. The bottom of the tank is capped, but the cap has
an orifice placed at its center through which liquid can drain.
The tank is equipped with plugs that have openings of vari-
ous diameters. The plugs can be threaded into the tank so as
to change the diameter of the opening. Figure 1 shows the
experimental setup.

Let At denote the inside cross-sectional area of the tank,
A0 the inside cross-sectional area of the opening of a plug,
h0 the initial elevation of the free surface relative to the
bottom of the tank, h the instantaneous elevation of the free
surface relative to the bottom of the tank at time t, t the time
elapsed since the beginning of the draining process, td the
total time needed to completely drain the tank of liquid, and
g the local acceleration of gravity. Applying the unsteady
conservation of energy for open systems to this problem re-
sults in the following equation that governs the variation
with time of the instantaneous elevation of the free surface,
h(t), relative to the bottom of the tank:1
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When the tank drains slowly, one can expect the acceleration
of the free surface of the liquid to be very small compared to
the acceleration of gravity. This means that g�d2h/dt2, and
Eq. �1� then becomes
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Equation �2� can now be integrated to obtain h(t). When this
is done, and the quantities involved are made dimensionless
through scaling, one finds that the elevation of the free sur-
face, h, varies with time according to2
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and the velocity and acceleration of the free surface are
given, respectively, by
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where the total time necessary to completely drain the tank,
td , is given by

td�� 2h0
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This expression for td is reminiscent of the time it takes a
free-falling particle to drop through a distance h0 from rest.
Indeed, for a particle that is released from rest at height h0

above a reference level and falls freely in the absence of air
resistance, the instantaneous elevation above that reference
level, hp(t), and the duration of the fall, t f , are given, re-
spectively, by

hp
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and
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g
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The instantaneous velocity of the falling particle, vp(t), is
given by

vp� t ���2
h0

t f
� tt f � �7�

and
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where t f denotes the time it takes a particle to fall freely
from rest under gravity from hp(0)�h0 to hp(t f)�0, and v f

is the velocity achieved by the particle when hp�0. It is
convenient to write the expression for td in Eq. �4� in a form
that is similar to the expression for t f in Eq. �6�. Doing so
leads to
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The quantity gm given in Eq. �10� can be considered to be
the modified acceleration of gravity resulting from the con-
striction of the flow at the draining orifice. It indicates that
the rate of descent of the free surface during draining will be
slower than the velocity of freefall.

III. EXPERIMENT

We performed experiments to gather data that would allow
us to compare theory to experiment. A cylindrical shell made
of Plexiglas was used as the tank in this experiment. The
shell is capped at its lower end to produce a transparent
cylinder that can hold water. One or more orifices can be
added to the cap. In our case, we used a single orifice but
fabricated many threaded plugs. Holes of different diameters
were drilled into the threaded plugs. By threading a drilled
plug into the orifice, we could change the diameter of the
exit orifice. A graduated scale was glued vertically along the
length of the tank and it was used to track the position of the
free surface of the water in the tank during the draining pro-
cess. After selecting a given plug and threading it into the
orifice, the tank was filled to a specified height and the water
was allowed to come to rest. Then, the drain was opened and,
using a stopwatch, we observed and recorded the location of
the free surface as a function of time during draining. Once
data were collected using one plug, the experiment was re-
peated using another plug. In this way, we collected data for
different plugs using the same tank and with the initial height
of liquid set to be the same for all trials.

The tank used in these experiments had an inside diameter
of 29.21 cm and a height of 86.40 cm. It was filled to 81.30
cm and then drained. The position of the free surface was
recorded at 2.54 cm intervals. The exit orifice diameters used
were 0.533, 0.668, 0.945, and 1.087 cm, corresponding to
area ratios, At /A0 , of 3003, 1912, 955, and 722, respec-
tively. The recorded total drain times, td , corresponding to
these were 1223, 767, 403, and 288 s, respectively.

IV. RESULTS AND DISCUSSION

When the instantaneous heights of the free surface of wa-
ter were plotted against time, they yielded the tank’s draining
pattern for the selected diameter of the exit orifice. The vol-
ume of water in the tank at any time is a linear function of
the height of water in the tank because its cross-section is
constant. Therefore, the volume of liquid remaining in the
tank, or that of the liquid flowing out of it, could be calcu-
lated from the height of the free surface. Indeed, the ratio of

Fig. 1. Diagram of the experimental setup showing the orientation of the
tank, the draining orifice fitted with a plug, and the tank stand.
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heights, h/h0 , is equal to the ratio of the instantaneous vol-
ume of fluid that remains in the tank to the original volume
of fluid in the tank when draining started.

The expressions derived above were compared to the cor-
responding results obtained experimentally. The variation of
the height of the free surface of liquid with time is predicted
to be parabolic in Eq. �3a�. This result is compared to our
experimental data in Fig. 2. Similarly, when the ratio be-
tween the cross-sectional area of the tank and that of the
draining orifice is much larger than unity, inviscid-flow
theory predicts that draining will be slow and that the time to
empty the tank will vary linearly with that ratio. This result is
given in Eq. �4� and is compared with experimental data in
Fig. 3. In both cases, discrepancies between theory and ex-
perimental data were computed at each point and assessed.
For the height of the free surface, discrepancies ranged from
0% to 14%, with an average value of 8.2%. For the total
draining time, td , they ranged from 0.5% to 3% with an
average value of 1.5%. It can be seen, therefore, that inviscid
theory predicts the slow draining of a large tank reasonably
well.

The forms of the expressions for h(t) given in Eq. �3a�,
and for hp(t) given in Eq. �5�, indicate several contrasting
features between the motion of the free surface and that of a
free-falling particle. These features are physically instructive
because they help clarify the differences between the two
behaviors.

�1� Unlike the free-falling particle, which is accelerated
uniformly downward by gravity with a constant acceleration
g, the falling free surface is uniformly decelerated in its

downward movement. The magnitude of the deceleration is
given by Eq. �10�; it is a small fraction of the acceleration of
gravity, the fraction being determined by the area ratio,
At /A0 . Figure 4 compares the motion of the free-falling par-
ticle in the absence of air resistance, as given in Eq. �5�, to
the downward movement of the free surface of a large tank
that is being emptied slowly, as given by Eq. �3a�.

�2� Unlike Eq. �7� for the free-falling particle that is re-
leased from rest, Eq. �3b� indicates that the initial velocity of
the free surface is not zero. Indeed, by combining Eqs. �3b�
and �4�, it can be seen that the velocity of the free surface at
t�0 is given by

��0 ��
� f

��At/A0�
2
�1]

. �11�

Equation �11� predicts a velocity that cannot be zero, while
Eq. �3b� makes it possible to determine that it is twice as
large as the average velocity of the draining process. This
implies a rapid change in the velocity of the free surface,
and, perhaps, even a sudden jump at the beginning of drain-
ing. Mathematically, this comes from the nature of Eq. �2�,
the simplified equation that was used to determine the solu-
tion in this application. It is of first order, and therefore the
first derivative, which represents the velocity in this case,
cannot be specified as an initial condition. Although surpris-
ing at first, the result indicated by Eq. �11� is consistent with
the derivation of Eq. �1�, which assumes that the tank is
draining when analysis starts. Since the fluid is incompress-
ible, the conservation of mass implies that the free surface of
the liquid must be moving downward while draining is in
effect. Accordingly, an impulsive start of the draining pro-
cess is not modeled by Eq. �1�.

�3� The downward motion of the free surface is much
slower than that of a free-falling particle. One expects the
area ratio, At /A0 , to be much larger than unity because the
exit area, A0 , is ordinarily much less than the cross-sectional
area of the tank, At . This ratio introduces an apparent accel-
eration of gravity gm , given by Eq. �10�, that is considerably
smaller than the actual acceleration of gravity. Consequently,
the time to drain the tank is much larger than the time it

Fig. 2. Fractional height of the free surface of the liquid, h/h0 , as a function
of the ratio of elapsed draining time to the emptying time, t/td , for values of
the area ratio, At /A0 , of 3003 �open square�, 1912 �open circle�, 955 �open
triangle�, and 722 �solid cross� compared with the theoretical predictions of
Eq. �3a� �plus�.

Fig. 3. Experimental values of the total time required to empty the tank, td ,
as a function of the area ratio At /A0 �open circle� compared with the pre-
dictions of Eq. �4� �solid line�.

Fig. 4. Calculated scaled height, h/h0 , as a function of the scaled time, t/t0 ,
for the free surface of the liquid �plus�, and calculated scaled height, hp /h0 ,
as a function of scaled time, t/t f , for a free-falling particle �open circle�.
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would take a particle to fall freely from rest through a verti-
cal distance h0 equal to the original height of fluid at the start
of the draining process.

�4� The distribution of mechanical energy during motion
can also be used to explain the differences in the behaviors.
In the case of a particle that is falling freely in the absence of
air resistance, gravity is the only force that acts on it; because
gravity is a conservative force, the total mechanical energy
of the particle is conserved at all times. Since it consists of
only kinetic energy and gravitational potential energy, the
total mechanical energy is distributed between these two
forms during motion. Taking the ratio between the instanta-
neous kinetic and gravitational potential energies for the fall-
ing particle, one obtains

R f�� Ek

Ep
�
f

�

� t/t f �
2

1�� t/t f �
2 , �12�

where Ek represents the kinetic energy, Ep the potential en-
ergy, and R f their ratio. This ratio varies with time and, as
expected, it increases during the fall because potential energy
is continually converted into kinetic energy.

For a fluid particle on the free surface of the draining
liquid, the situation is quite different. Gravity acts on it, but
it is also in contact with the adjacent fluid. Its mechanical
energy can be stored in three distinct forms: pressure, kinetic
energy, and gravitational potential energy. The pressure that
acts on it is the ambient atmospheric pressure because the
tank is open. It is conventional to use the energy associated
with atmospheric pressure as a reference. In that case, the
total mechanical energy of this particle consists only of the
sum of its kinetic and gravitational potential energies; how-
ever, when one computes the ratio between the two, as was
done in Eq. �12� for the falling particle, one finds that the
energy ratio for a particle on the liquid surface, Rs , is inde-
pendent of time and given by

Rs�� Ek

Ep
�
s

�

1

�At/A0�
2
�1

. �13�

Indeed, it is the same as the ratio obtained by dividing the
acceleration of the free surface, given in Eq. �10�, by the
local acceleration of gravity. In the conventional terminology
of fluid mechanics, the energy ratio expressed in Eq. �13� is
proportional to the square of the Froude number. The slow
draining of a large tank under gravity is, therefore, a process
that maintains the Froude number5 constant. The fact that
this ratio does not vary with time can be explained in the
following way. Draining causes the free surface to fall and,
as before, potential energy is continually converted into ki-
netic energy. However, in this case, the kinetic energy gen-
erated by this conversion does not stay in the tank; it is
carried out by the exiting mass of fluid. Therefore, both
forms of energy decrease continually within the tank. If the
draining process is slow enough, the free surface will decel-
erate slowly and uniformly, as described by Eq. �3c�, and, as
expected, Eq. �13� indicates that the kinetic energy of par-
ticles on the free surface will be very small compared to their
potential energy.

V. CONCLUSION

The lab exercise discussed here considers the slow drain-
ing of a large tank under gravity. When the draining is mod-
eled assuming an inviscid fluid in irrotational motion, theory

predicts draining patterns and total draining times that are in
good agreement with experiment. However, in our observa-
tions, the experiment is successful only when the exit orifices
are small. Exit orifices for which data are reported here are
such that ratios of the area of the tank to the area of the
orifice were greater than or equal to 722. For much smaller
area ratios, the acceleration of the fluid particles can no
longer be assumed constant and negligible compared to that
of gravity, and the quasisteady approximation is no longer
valid. Indeed, the rate of fall of the free surface is so rapid
that it is impractical to keep track of its location and to
record the elapsed time with a stopwatch for more than one
or two data points. In that case, computer data-acquisition
systems have to be used. Although our experiments could not
confirm it, it is important, nevertheless, to note that a theo-
retical estimate found in the literature indicates that the qua-
sisteady approximation would hold for area ratios as low as
100.3

Although the slow draining of a large tank is a common
problem in textbooks of fluid mechanics,3–6 the author is not
aware of experiments that show students that approximations
used to solve it yield realistic results when tested in the labo-
ratory. This exercise was used in our lab to fill this void. The
apparatus that is needed is easy to build, and the experimen-
tal procedure is quite simple. The experiment can be used in
introductory mechanics classes to illustrate uniformly decel-
erated motion that is caused by gravity. It can also be used to
demonstrate that viscosity can be neglected in special cir-
cumstances, thereby justifying the use of inviscid flow mod-
els to approximate the behavior of real flows without re-
course to advanced mathematical arguments about the
behavior of viscous boundary layers.4 The experiment can
also be used to illustrate the difference between the down-
ward motion of the free surface of a liquid during draining
and the free fall of a solid particle, thereby motivating a
discussion of the differences between the mechanics of fluids
and the mechanics of solids. We have used this simple ex-
periment for all these purposes over the years and our stu-
dents have enjoyed learning mechanics from it.
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