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Preface

Since the publication of the first edition of this book, we have been encouraged by
the growing interest in stochastic programming and its application in a variety of
areas, including routine use in many industries from transportation and logistics to
finance and energy. We have also been heartened by the many new methodological
and theoretical advances within the field. In this second edition, we have attempted
to capture aspects of both recent applications and models as well as new practically
relevant methods and theory. As in the first edition, our primary goal is to provide
students and other readers with an appreciation of how to build uncertainty into an
optimization model, what differences in decisions might result from recognizing the
presence of uncertainty, and how and what kinds of models are amenable to solution.
We have focused the second edition on satisfying these main objectives while also
uncovering basic research questions to give beginning researchers a foundation upon
which to build more in-depth knowledge.

To help make the relevant issues in modeling, solving, and analyzing stochas-
tic programs more evident, we have incorporated more examples than in the first
edition so that the each of the main modeling, solution, and analysis processes are
illustrated with a detailed example. We have also added many exercises whose so-
lutions provide additional insights into stochastic programming concepts and tools.
Many of these exercises assume the availability of software to solve basic linear
and nonlinear optimization models and to construct algorithmic procedures involv-
ing matrix operations. Since we view completing these exercises as a key part of
understanding the material, instructors should ensure that students have adequate
programming skills to implement the methods described in the book.

Besides additional examples and exercises throughout the book, we have re-
organized the material to improve the logical flow and to eliminate unnecessary or
complicating issues before explaining the most practically relevant material. Spe-
cific changes in the second edition include the following:

• a new section (Section 1.5) and routing example in Chapter 1;
• a worked-out modeling exercise (Section 2.8) and a section on risk modeling and

robust formulation (Section 2.9 in Chapter 2;
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viii Preface

• re-arrangement and simplification of the material in Chapter 3 to emphasize basic
model characteristics and illustrate them with examples;

• complete re-organization and combination of Chapters 5 and 6 into a new Chap-
ter 5 that unifies the treatment of cutting-plane methods and again provides addi-
tional examples;

• an additional section on Lagrangian multistage methods in Chapter 6 (formerly
Chapter 7);

• a completely re-organized version of Chapter 7 (formerly Chapter 8) including
new methods and review material on combinatorial optimization;

• additional examples in Chapter 8 (formerly Chapter 9) including bounds on loss
probabilities in loan portfolios;

• re-organization of Chapter 9 (formerly Chapter 10) to place practical methods
earlier and to include a new section on Monte Carlo methods for probabilistic
constraints;

• re-organization of Chapter 10 (formerly Chapter 11) to include new sections
on scenario generation, multistage sampling methods, and approximate dynamic
programming methods;

• removal of the short chapter (formerly Chapter 12) on a capacity expansion case
study.

We anticipate that classes would follow much of the same sequence as we sug-
gested for the first edition, but, with the increased availability of software to im-
plement methods, we recommend that instructors include more computational exer-
cises and additional modeling projects to fit students’ interests. Any course should
again start with the first two chapters to provide the application and modeling con-
text. Depending on student interest, a typical class would generally include Chapters
3, 4, and Sections 5.1, 5.2, and 5.5 to present the most typical types of methods. For
basic approximations, a modeling-focused class could focus on the main techniques
in Chapters 8, 9, and 10 (for dynamic models), while a theoretically-oriented class
might emphasize the analytical results in those chapters. A more computationally
focussed class might emphasize the remainder of Chapter 5 plus Chapters 6 and 7.

We wish to thank the many people who sent us comments and suggestions about
the first edition of the book and the numerous students we have worked with and
all those who have helped us see stochastic programming from a fresh perspective
every time we encounter something new. Among the many who have contributed,
we thank Michael Dempster, Michel Gendreau, Maarten van der Vlerk, and Bill
Ziemba. Thanks are also due to Martine Van Caeneghem for her patient typing of
the modifications in Namur. We also again thank Fonds National de la Recherche
Scientifique, the National Science Foundation, as well as the U.S. Department of
Energy, and the University of Chicago Booth School of Business for their financial
support.

In our first edition, we finished the preface with special thanks to our wives,
Pierrette and Marie, to whom our book was dedicated. These thanks are more than
ever very much present in our hearts. Now, we also want to express our proudness
and joy of having such great children. We have thus decided to dedicate this second
edition to them. We may thus expect that the third edition will be dedicated to our
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grandchildren, although the timing of this edition and the number of lines needed
for this future dedication remain unknown.

Chicago, Illinois, USA John R. Birge
Namur, Belgium François Louveaux





Preface to the First Edition

According to a French saying “Gérer, c’est prévoir,” which we may translate as
“(The art of) Managing is (in) foreseeing.” Now, probability and statistics have long
since taught us that the future cannot be perfectly forecast but instead should be
considered random or uncertain. The aim of stochastic programming is precisely
to find an optimal decision in problems involving uncertain data. In this terminol-
ogy, stochastic is opposed to deterministic and means that some data are random,
whereas programming refers to the fact that various parts of the problem can be
modeled as linear or nonlinear mathematical programs. The field, also known as
optimization under uncertainty, is developing rapidly with contributions from many
disciplines such as operations research, economics, mathematics, probability, and
statistics. The objective of this book is to provide a wide overview of stochastic
programming, without requiring more than a basic background in these various dis-
ciplines.

Introduction to Stochastic Programming is intended as a first course for begin-
ning graduate students or advanced undergraduate students in such fields as opera-
tions research, industrial engineering, business administration (in particular, finance
or management science), and mathematics. Students should have some basic knowl-
edge of linear programming, elementary analysis, and probability as given, for ex-
ample, in an introductory book on operations research or management science or
in a combination of an introduction to linear programming (optimization) and an
introduction to probability theory.

Instructors may need to add some material on convex analysis depending on the
choice of sections covered. We chose not to include such introductory material be-
cause students’ backgrounds may vary widely and other texts include these concepts
in detail. We did, however, include an introduction to random variables while mod-
eling stochastic programs in Section 2.1 and short reviews of linear programming,
duality, and nonlinear programming at the end of Chapter 2. This material is given
as an indication of the prerequisites in the book to help instructors provide any miss-
ing background. In the Subject Index, the first reference to a concept is where it is
defined or, for concepts specific to a single section, where a source is provided.

xi



xii Preface

In our view, the objective of a first course based on this book is to help students
build an intuition on how to model uncertainty into mathematical programs, which
changes uncertainty brings into the decision process, what difficulties uncertainty
may bring, and what problems are solvable. To begin this development, the first sec-
tion in Chapter 1 provides a worked example of modeling a stochastic program. It
introduces the basic concepts, without using any new or specific techniques. This
first example can be complemented by any one of the other proposed cases of Chap-
ter 1, in finance, in multistage capacity expansion, and in manufacturing. Based
again on examples, Chapter 2 describes how a stochastic model is formally built.
It also stresses the fact that several different models can be built, depending on the
type of uncertainty and the time when decisions must be taken. This chapter links
the various concepts to alternative fields of planning under uncertainty.

Any course should begin with the study of those two chapters. The sequel would
then depend on the students’ interests and backgrounds. A typical course would
consist of elements of Chapter 3, Sections 4.1 to 4.5, Sections 5.1 to 5.3 and 5.7,
and one or two more advanced sections of the instructor’s choice. The final case
study may serve as a conclusion. A class emphasizing modeling might focus on
basic approximations in Chapter 9 and sampling in Chapter 10. A computational
class would stress methods from Chapters 6 to 8. A more theoretical class might
concentrate more deeply on Chapter 3 and the results from Chapters 9 to 11.

The book can also be used as an introduction for graduate students interested
in stochastic programming as a research area. They will find a broad coverage of
mathematical properties, models, and solution algorithms. Broad coverage cannot
mean an in-depth study of all existing research. The reader will thus be referred to
the original papers for details. Advanced sections may require multivariate calculus,
probability measure theory, or an introduction to nonlinear or integer programming.
Here again, the stress is clearly in building knowledge and intuition in the field.
Mathematical results are given so long as they are either basic properties or helpful
in developing efficient solution procedures. The importance of the various sections
clearly reflects our own interests, which focus on results that may lead to practical
applications of stochastic programming.

To conclude, we may use the following little story. An elderly person, celebrating
her one hundredth birthday, was asked how she succeeded in reaching that age. She
answered, “It’s very simple. You just have to wait.”

In comparison, stochastic programming may well look like a field of young im-
patient people who not only do not want to wait and see but who consider waiting
to be suboptimal. We realize how much patience was needed from our friends and
colleagues who encouraged us to write this book, which took us much longer than
expected. To all of them, we are extremely thankful for their support. The authors
also wish to thank the Fonds National de la Recherche Scientifique and the National
Science Foundation for their financial support. Both authors are deeply grateful to
the people who introduced us to the field, George Dantzig, Roger Wets, Jacques
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Drèze, and Guy de Ghellinck. Our special thanks go to our wives, Pierrette and
Marie, to whom we dedicate this book.

Ann Arbor, Michigan John R. Birge
Namur, Belgium François Louveaux
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Notation

The following describes the major symbols and notations used in the text. To the
greatest extent possible, we have attempted to keep unique meanings for each item.
In those cases where an item has additional uses, they should be clear from context.
We include here only notation used in more than one section. Additional notation
may be needed within specific sections and is explained when used.

In general, vectors are assumed to be columns with transposes to indicate row
vectors. This yields cT x to denote the inner product of two n -vectors, c and x .
We reserve prime ( ′ ) for first derivatives with respect to time (e.g., f ′ = d f/dt ).

Vectors in primal programs are represented by lowercase Latin letters while ma-
trices are uppercase. Dual variables and certain scalars are generally Greek letters.
Superscripts indicate a stage while subscripts indicate components followed by re-
alization index. Boldface indicates a random quantity. Expectations of random vari-
ables are indicated by a bar ( ξ̄ ), μ , or ( E(ξ) ). We also use the bar notation to
denote sample means in Chapter 9.

Equations are numbered consecutively in the text by section and number within
the section (e.g., (1.2) for Section 1, Equation 2). For references to chapters other
than the current one, we use three indices: chapter, section, and equation, (e.g.,
(3.1.2) for Chapter 3, Section 1, Equation 2). Exercises are given at the end of
sections (or subsections in the cases of Sections 3.2 and 5.1) and are referenced
in the same manner as equations. All other items (figures, tables, declarations, ex-
amples) are labeled consecutively through the entire chapter with a single reference
(e.g., Figure 1) if within the current chapter and chapter and number if in a different
chapter (e.g., Figure 3.1 for Chapter 3, Figure 1).

xxi



xxii Notation

Symbol Definition
+ Superscript indicates the positive part of a real

(i.e., a+ = max(a,0) ) or unrestricted variable (e.g.,
y = y+ − y−,y+ ≥ 0,y− ≥ 0 ) and its objective
coefficients (e.g., q+ ), subscript as non-negative
values in a set (e.g., ℜ+ ) or the
right-limit ( F+(t) = lims↓t F(s))

− Superscript indicates the negative part of a real
(i.e., a− = max(−a,0) ) or unrestricted variable (e.g.,
y = y+ − y−,y+ ≥ 0,y− ≥ 0 ) and its objective
coefficients (e.g., q− ) or the left-limit ( F−(t) =
lims↑t F(s) )

∗ Indicates an optimal value or solution (e.g., x∗ )
0 ˆ ′ ˜ Indicate given nonoptimal values or

solutions (e.g., x0 , x̂ , x′ , x̃ )
0 Zero matrix (subscripts denote dimension when present)

1X Indicator function of set X
a Ancestor scenario, real value or vector
A First-stage matrix (e.g., Ax = b ), also used

to indicate an event or subset, A ∈ A ⊂Ω
A Collection of subsets
b First-stage right-hand side (e.g., Ax = b )
B Matrix, basis submatrix, Borel sets,

or index set of a basis
B Collection of subsets (notably Borel sets)
c First-stage objective ( cT x ), t -th stage objective

( (ct(ω))T xt ) or real vectors
C Matrix or index set of continuous variables
d Right-hand side of a feasibility cut in the L-shaped

method, a demand, or real vector
D Left-hand side vector of a feasibility cut in the

L-shaped method, a matrix, a set, or an index set
of discrete variables

D Set of descendant scenarios
e Exponential, right-hand side of an optimality cut

in the L-shaped method, an extreme point,
or the unit vector ( eT = (1, . . . ,1) )

E Mathematical expectation operator, left-hand
side vector of an optimality cut in the
L-shaped method, or an event

f Function (usually in an objective ( f (x) or fi(x) )
or a density

F Cumulative probability distribution
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Symbol Definition
g Function (usually in constraints ( g(x) or g j(x) ))
h Right-hand side in second-stage ( Wy = h−Tx ),

also ht(ω) in multistage problems
H Number of stages (horizon) in multistage problems
i Subscript index of functions ( fi )

or vector elements ( xi , xi j )
I Identity matrix or index set ( i ∈ I )
j Subscript index of functions ( g j )

or vector elements ( y j , yi j )
J Matrix or index set
k Index of a realization of a random

vector ( k = 1, . . . ,K )
K Feasibility sets ( K1,K2 ) or total number of

realizations of a discrete random vector
K Number of realizations or sample paths in a scenario tree

with K t nodes at stage t
l Index, lower bound on a variable, or

Lagrangian function
L The L-shaped method, objective value lower

bound, or real value
m Number of constraints ( m1,m2 ) or

number of elements ( i = 1, . . . ,m )
n Number of variables ( n1,n2 ) or

number of elements ( i = 1, . . . ,n )
N Set, normal cone, normal distribution,

or number of random elements
p Probability of a random element (e.g., pk

= P(ξ = ξk) ) or matrix of probabilities
P Probability of events (e.g., P (ξ ≤ 0) )
q Second-stage objective vector ( qT y )
Q Second-stage (multistage) value function

with random argument ( Q(x,ξ) or Qt(xt ,ξ t) )
Q Second-stage (multistage) expected value

value (recourse) function ( Q(x) or Qt(xt) )
r Revenue or return in examples, real vector,

or index
ℜ Real numbers
R Matrix or set
s Scenario or index



xxiv Notation

Symbol Definition
S Set or matrix
t Superscript stage or period index for multistage

programs ( t = 1, . . . ,H ), a real-valued parameter,
or an index

T Technology matrix ( Wy = h−Tx or
Tt−1(ω)(x) ); as a superscript, the transpose of
a matrix or vector

u General vector, upper-bound vector, or
expected shortage

U Objective value upper bound
v Variable vector or expected surplus
V Set, matrix or an operator
w Second-stage decision vector in some examples
W Recourse matrix ( Wy = h−Tx )
x First-stage decision vector or multistage

decision vector ( xt )
X First-stage feasible set ( x ∈ X ) or

t th stage feasible set ( Xt )
y Second-stage decision vector
Y Second-stage feasible set ( y ∈ Y )
z Objective value ( minz = cT x + · · · )
Z Integers
α Real value, vector, or probability level with

probabilistic constraints
β Real value or vector
γ Real value or function
δ Real value or function
ε Real value
ζ Random variable
η Real value or random variable
θ Lower bound on Q(x) in the

L-shaped method
κ Index
λ Dual multiplier, parameter in a convex

combination, or measure
μ Expectation (used mostly in examples of densities)

or a parameter for non-negative multiples
ν Algorithm iteration index (sometimes also the number

of samples in Monte Carlo sampling algorithms)
ξ Random vector (often indexed by time,

ξ t ) with realizations as ξ (without boldface)
Ξ Support of the random vector ξ
π Dual multiplier
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Symbol Definition
Π Product, projection operator, or

aggregated problem dual multiplier
ρ Dual multiplier or discount factor
σ Dual multiplier, standard deviation, or

σ -field
Σ Summation or covariance matrix
τ Possible right-hand side in bundles

or index of time
φ Function in computing the value of

the stochastic solution or a measure
Φ Function, cumulative distribution of standard

normal
/0 Empty set
χ Tender or offer from first to second

period ( χ = Tx )
ψ Second stage value function defined on tenders

and with random argument, ψ(χ,ξ (ω)) )
Ψ Expected second stage value function

defined on tenders, Ψ (χ) )
ω Random event (ω ∈Ω )
Ω Set of all random events
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Chapter 1
Introduction and Examples

This chapter presents stochastic programming examples from a variety of areas with
wide application. These examples are intended to help the reader build intuition
on how to model uncertainty. They also reflect different structural aspects of the
problems. In particular, we show the variety of stochastic programming models in
terms of the objectives of the decision process, the constraints on those decisions,
and their relationships to the random elements.

In each example, we investigate the value of the stochastic programming model
over a similar deterministic problem. We show that even simple models can lead to
significant savings. These results provide the motivation to lead us into the following
chapters on stochastic programs, solution properties, and techniques.

In the first section, we consider a farmer who must decide on the amounts of
various crops to plant. The yields of the crops vary according to the weather. From
this example, we illustrate the basic foundation of stochastic programming and the
advantage of the stochastic programming solution over deterministic approaches.
We also introduce the classical news vendor (or newsboy) problem and give the
fundamental properties of these problems’ general class, called two-stage stochastic
linear programs with recourse.

The second section contains an example in planning finances for a child’s educa-
tion. This example fits the situation in many discrete time control problems. Deci-
sions occur at different points in time so that the problem can be viewed as having
multiple stages of observations and actions.

The third section considers power system capacity expansion. Here, decisions
are taken dynamically about additional capacity and about the allocation of capac-
ity to meet demand. The resulting problem has multiple decision stages and a valu-
able property known as block separable recourse that allows efficient solution. The
problem also provides a natural example of constraints on reliability within the area
called probabilistic or chance-constrained programming.

The fourth example concerns the design of a simple axle. It includes market
reaction to the design and performance characteristics of products made by a man-
ufacturing system with variable performance. The essential characteristics of the

J.R. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer Series 3
in Operations Research and Financial Engineering, DOI 10.1007/978-1-4614-0237-4 1,
c© Springer Science+Business Media, LLC 2011
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maximum performance of the product illustrate a problem with fundamental non-
linearities incorporated directly into the stochastic program.

The fifth section presents a simple routing problem. It illustrates models where
some decisions (traveling on an arc or not) are represented by integer decision vari-
ables. As this example is easily illustrated and does not require any solver, it may
also be used as a preliminary example.

The final section of this chapter briefly describes several other major applica-
tion areas of stochastic programs. The exercises at the end of the chapter develop
modeling techniques. This chapter illustrates some of the range of stochastic pro-
gramming applications but is not meant to be exhaustive. Applications in location
and distribution, for example, are discussed in Chapter 2.

1.1 A Farming Example and the News Vendor Problem

a. The farmer’s problem

Consider a European farmer who specializes in raising wheat, corn, and sugar beets
on his 500 acres of land. During the winter, he wants to decide how much land to
devote to each crop. (We refer to the farmer as “he” for convenience and not to imply
anything about the gender of European farmers.)

The farmer knows that at least 200 tons (T) of wheat and 240 T of corn are needed
for cattle feed. These amounts can be raised on the farm or bought from a wholesaler.
Any production in excess of the feeding requirement would be sold. Over the last
decade, mean selling prices have been $170 and $150 per ton of wheat and corn,
respectively. The purchase prices are 40% more than this due to the wholesaler’s
margin and transportation costs.

Another profitable crop is sugar beet, which he expects to sell at $36/T; however,
the European Commission imposes a quota on sugar beet production. Any amount
in excess of the quota can be sold only at $10/T. The farmer’s quota for next year is
6000 T.

Based on past experience, the farmer knows that the mean yield on his land is
roughly 2.5 T, 3 T, and 20 T per acre for wheat, corn, and sugar beets, respectively.
Table 1 summarizes these data and the planting costs for these crops.

To help the farmer make up his mind, we can set up the following model. Let

65 x1 = acres of land devoted to wheat,
66 x2 = acres of land devoted to corn,
67 x3 = acres of land devoted to sugar beets,
68 w1 = tons of wheat sold,
69 y1 = tons of wheat purchased,
70 w2 = tons of corn sold,
71 y2 = tons of corn purchased,
72 w3 = tons of sugar beets sold at the favorable price,
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Table 1 Data for farmer’s problem.

Wheat Corn Sugar Beets
Yield (T/acre) 2.5 3 20
Planting cost ($/acre) 150 230 260
Selling price ($/T) 170 150 36 under 6000 T

10 above 6000 T
Purchase price ($/T) 238 210 –
Minimum require- 200 240 –
ment (T)
Total available land: 500 acres

73 w4 = tons of sugar beets sold at the lower price.

The problem reads as follows:

min 150x1 + 230x2 + 260x3 + 238y1−170w1

+ 210y2−150w2−36w3−10w4

s. t. x1 + x2 + x3 ≤ 500 , 2.5 x1 + y1−w1 ≥ 200 ,

3 x2 + y2−w2 ≥ 240 , w3 + w4 ≤ 20x3,w3 ≤ 6000 ,

x1,x2,x3, y1,y2, w1,w2,w3,w4 ≥ 0 .

(1.1)

After solving (1.1) with his favorite linear program solver, the farmer obtains an
optimal solution, as in Table 2.

Table 2 Optimal solution based on expected yields.

Culture Wheat Corn Sugar Beets
Surface (acres) 120 80 300
Yield (T) 300 240 6000
Sales (T) 100 – 6000
Purchase (T) – – –
Overall profit: $118,600

This optimal solution is easy to understand. The farmer devotes enough land to
sugar beets to reach the quota of 6000 T. He then devotes enough land to wheat and
corn production to meet the feeding requirement. The rest of the land is devoted to
wheat production. Some wheat can be sold.

To an extent, the optimal solution follows a very simple heuristic rule: to allocate
land in order of decreasing profit per acre. In this example, the order is sugar beets
at a favorable price, wheat, corn, and sugar beets at the lower price. This simple



6 1 Introduction and Examples

heuristic would, however, no longer be valid if other constraints, such as labor re-
quirements or crop rotation, would be included.

After thinking about this solution, the farmer becomes worried. He has indeed
experienced quite different yields for the same crop over different years mainly be-
cause of changing weather conditions. Most crops need rain during the few weeks
after seeding or planting, then sunshine is welcome for the rest of the growing pe-
riod. Sunshine should, however, not turn into drought, which causes severe yield
reductions. Dry weather is again beneficial during harvest. From all these factors,
yields varying 20 to 25% above or below the mean yield are not unusual.

In the next sections, we study two possible representations of these variable
yields. One approach using discrete, correlated random variables is described in
Sections 1.1b. and 1.1c. Another, using continuous uncorrelated random variables,
is described in Section 1.1d.

The influence of price fluctuations, illustrated by the dramatic price increases in
2007, is discussed in Exercise 8.

b. A scenario representation

A first possibility is to assume some correlation among the yields of the different
crops. A very simplified representation of this would be to assume that years are
good, fair, or bad for all crops, resulting in above average, average, or below average
yields for all crops. To fix these ideas, “above” and “below” average indicate a yield
20% above or below the mean yield given in Table 1. For simplicity, we assume
that weather conditions and yields for the farmer do not have a significant impact on
prices.

The farmer wishes to know whether the optimal solution is sensitive to variations
in yields. He decides to run two more optimizations based on above average and
below average yields. Tables 3 and 4 give the optimal solutions he obtains in these
cases.

Again, the solutions in Tables 3 and 4 seem quite natural. When yields are high,
smaller surfaces are needed to raise the minimum requirements in wheat and corn
and the sugar beet quota. The remaining land is devoted to wheat, whose extra pro-
duction is sold. When yields are low, larger surfaces are needed to raise the mini-
mum requirements and the sugar beet quota. In fact, corn requirements cannot be
satisfied with the production, and some corn must be bought.

The optimal solution is very sensitive to changes in yields. The optimal surfaces
devoted to wheat range from 100 acres to 183.33 acres. Those devoted to corn
range from 25 acres to 80 acres and those devoted to sugar beets from 250 acres
to 375 acres. The overall profit ranges from $59,950 to $167,667.

Long-term weather forecasts would be very helpful here. Unfortunately, as even
meteorologists agree, weather conditions cannot be accurately predicted six months
ahead. The farmer must make up his mind without perfect information on yields.
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Table 3 Optimal solution based on above average yields (+ 20%).

Culture Wheat Corn Sugar Beets
Surface (acres) 183.33 66.67 250
Yield (T) 550 240 6000
Sales (T) 350 – 6000
Purchase (T) – – –
Overall profit: $167,667

Table 4 Optimal solution based on below average yields (−20% ).

Culture Wheat Corn Sugar Beets
Surface (acres) 100 25 375
Yield (T) 200 60 6000
Sales (T) – – 6000
Purchase (T) – 180 –
Overall profit: $59,950

The main issue here is clearly on sugar beet production. Planting large surfaces
would make it certain to produce and sell the quota, but would also make it likely to
sell some sugar beets at the unfavorable price. Planting small surfaces would make
it likely to miss the opportunity to sell the full quota at the favorable price.

The farmer now realizes that he is unable to make a perfect decision that would be
best in all circumstances. He would, therefore, want to assess the benefits and losses
of each decision in each situation. Decisions on land assignment (x1,x2,x3) have
to be taken now, but sales and purchases (wi, i = 1, . . . ,4, y j, j = 1,2) depend
on the yields. It is useful to index those decisions by a scenario index s = 1,2,3
corresponding to above average, average, or below average yields, respectively. This
creates a new set of variables of the form wis , i = 1,2,3,4 , s = 1,2,3 and y js ,
j = 1,2 , s = 1,2,3 . As an example, w32 represents the amount of sugar beets sold
at the favorable price if yields are average.

Assuming the farmer wants to maximize long-run profit, it is reasonable for him
to seek a solution that maximizes his expected profit. (This assumption means that
the farmer is neutral about risk. For a discussion of risk aversion and alternative
utilities, see Chapter 2.) If the three scenarios have an equal probability of 1/3 , the
farmer’s problem reads as follows:
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min 150x1 + 230x2 + 260x3

− 1
3 (170w11−238y11 + 150w21−210y21 + 36w31 + 10w41)

− 1
3 (170w12−238y12 + 150w22−210y22 + 36w32 + 10w42)

− 1
3 (170w13−238y13 + 150w23−210y23 + 36w33 + 10w43)

s.t. x1 + x2 + x3 ≤ 500 , 3x1 + y11−w11 ≥ 200 ,
3.6x2 + y21−w21 ≥ 240 , w31 + w41 ≤ 24x3 , w31 ≤ 6000 ,
2.5x1 + y12−w12 ≥ 200 , 3x2 + y22−w22 ≥ 240 ,
w32 + w42 ≤ 20x3 , w32 ≤ 6000 , 2x1 + y13−w13 ≥ 200,
2.4x2 + y23−w23 ≥ 240, w33 + w43 ≤ 16x3 ,
w33 ≤ 6000, x,y,w ≥ 0 .

(1.2)

Such a model of a stochastic decision program is known as the extensive form of the
stochastic program because it explicitly describes the second-stage decision vari-
ables for all scenarios. The optimal solution of (1.2) is given in Table 5. The top
line gives the planting areas, which must be determined before realizing the weather
and crop yields. This decision is called the first stage. The other lines describe the
yields, sales, and purchases in the three scenarios. They are called the second stage.
The bottom line shows the overall expected profit.

Table 5 Optimal solution based on the stochastic model (1.2).

Wheat Corn Sugar Beets
First Area (acres) 170 80 250
Stage
s = 1 Yield (T) 510 288 6000
Above Sales (T) 310 48 6000

(favor. price)
Purchase (T) – – –

s = 2 Yield (T) 425 240 5000
Average Sales (T) 225 – 5000

(favor. price)
Purchase (T) – – –

s = 3 Yield (T) 340 192 4000
Below Sales (T) 140 – 4000

(favor. price)
Purchase (T) – 48 –
Overall profit: $108,390

The optimal solution can be understood as follows. The most profitable decision
for sugar beet land allocation is the one that always avoids sales at the unfavorable
price even if this implies that some portion of the quota is unused when yields are
average or below average.

The area devoted to corn is such that it meets the feeding requirement when
yields are average. This implies sales are possible when yields are above average
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and purchases are needed when yields are below average. Finally, the rest of the land
is devoted to wheat. This area is large enough to cover the minimum requirement.
Sales then always occur.

This solution illustrates that it is impossible, under uncertainty, to find a solution
that is ideal under all circumstances. Selling some sugar beets at the unfavorable
price or having some unused quota is a decision that would never take place with a
perfect forecast. Such decisions can appear in a stochastic model because decisions
have to be balanced or hedged against the various scenarios.

The hedging effect has an important impact on the expected optimal profit. Sup-
pose yields vary over years but are cyclical. A year with above average yields is
always followed by a year with average yields and then a year with below average
yields. The farmer would then take optimal solutions as given in Table 3, then Ta-
ble 2, then Table 4, respectively. This would leave him with a profit of $167,667
the first year, $118,600 the second year, and $59,950 the third year. The mean profit
over the three years (and in the long run) would be the mean of the three figures,
namely $115,406 per year.

Now, assume again that yields vary over years, but on a random basis. If the
farmer gets the information on the yields before planting, he will again choose the
areas on the basis of the solution in Table 2, 3, or 4, depending on the information
received. In the long run, if each yield is realized one third of the years, the farmer
will get again an expected profit of $115,406 per year. This is the situation under
perfect information.

As we know, the farmer unfortunately does not get prior information on the
yields. So, the best he can do in the long run is to take the solution as given by
Table 5. This leaves the farmer with an expected profit of $108,390. The differ-
ence between this figure and the value, $115,406, in the case of perfect information,
namely $7016, represents what is called the expected value of perfect information
( EVPI ). This concept, along with others, will be studied in Chapter 4. At this intro-
ductory level, we may just say that it represents the loss of profit due to the presence
of uncertainty.

Another approach the farmer may have is to assume expected yields and always
to allocate the optimal planting surface according to these yields, as in Table 2. This
approach represents the expected value solution. It is common in optimization but
can have unfavorable consequences. Here, as shown in Exercise 1, using the ex-
pected value solution every year results in a long run annual profit of $107,240. The
loss by not considering the random variations is the difference between this and the
stochastic model profit from Table 5. This value, $108,390− 107,240=$1,150, is the
value of the stochastic solution ( VSS ), the possible gain from solving the stochastic
model. Note that it is not equal to the expected value of perfect information, and, as
we shall see in later models, may in fact be larger than the EVPI .

These two quantities give the motivation for stochastic programming in general
and remain a key focus throughout this book. EVPI measures the value of know-
ing the future with certainty while VSS assesses the value of knowing and using
distributions on future outcomes. Our emphasis will be on problems where no fur-
ther information about the future is available so the VSS becomes more practically
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relevant. In some situations, however, more information might be available through
more extensive forecasting, sampling, or exploration. In these cases, EVPI would
be useful for deciding whether to undertake additional efforts.

c. General model formulation

We may also use this example to illustrate the general formulation of a stochastic
problem. We have a set of decisions to be taken without full information on some
random events. These decisions are called first-stage decisions and are usually rep-
resented by a vector x . In the farmer example, they are the decisions on how many
acres to devote to each crop. Later, full information is received on the realization
of some random vector ξ . Then, second-stage or corrective actions y are taken.
We use boldface notation here and throughout the book to denote that these vectors
are random and to differentiate them from their realizations. We also sometimes
use a functional form, such as ξ (ω) or y(s) , to show explicit dependence on an
underlying element, ω or s .

In the farmer example, the random vector is the set of yields and the corrective
actions are purchases and sales of products. In mathematical programming terms,
this defines the so-called two-stage stochastic program with recourse of the form

min cT x + EξQ(x,ξ)
s. t. Ax = b ,

x≥ 0 ,

(1.3)

where Q(x,ξ) = min{qT y |Wy = h−Tx,y ≥ 0} , ξ is the vector formed by the
components of qT , hT , and T , and Eξ denote mathematical expectation with
respect to ξ . We assume here that W is fixed (fixed recourse). Reasons for this
restriction are explained in Section 3.1.

In the farmer example, the random vector is a discrete variable with only three
different values. Only the T matrix is random. A second-stage problem for one
particular scenario s can thus be written as

Q(x,s) = min {238y1−170w1 + 210y2−150w2−36w3−10w4}
s. t. t1(s)x1 + y1−w1 ≥ 200 ,

t2(s)x2 + y2−w2 ≥ 240 ,

w3 + w4 ≤ t3(s)x3 ,

w3 ≤ 6000 ,

y,w≥ 0 ,

(1.4)

where ti(s) represents the yield of crop i under scenario s (or state of nature s ).
To illustrate the link between the general formulation (1.3) and the example (1.4),
observe that in (1.4) we may say that the random vector ξ = (t1, t2, t3) is formed by
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the three yields and that ξ can take on three different values, say ξ1 , ξ2 , and ξ3 ,
which represent (t1(1),t2(1),t3(1)) , (t1(2),t2(2),t3(2)) , and (t1(3),t2(3),t3(3)) ,
respectively.

An alternative interpretation would be to say that the random vector ξ (s) in fact
depends on the scenario s , which takes on three different values1.

In this section, we have illustrated two possible representations of a stochastic
program. The form (1.2) given earlier for the farmer’s example is known as the ex-
tensive form. It is obtained by associating one decision vector in the second-stage
to each possible realization of the random vector. The second form (1.3) or (1.4)
is called the implicit representation of the stochastic program. A more condensed
implicit representation is obtained by defining Q(x) = EξQ(x,ξ) as the value func-
tion or recourse function so that (1.3) can be written as

min cT x +Q(x)
s. t. Ax = b ,

x≥ 0 .

(1.5)

d. Continuous random variables

Contrary to the assumption made in Section 1.1b., we may also assume that yields
for the different crops are independent. In that case, we may as well consider a
continuous random vector for the yields. To illustrate this, let us assume that the
yield for each crop i can be appropriately described by a uniform random variable,
inside some range [li,ui] (see Appendix A.2). For the sake of comparison, we may
take li to be 80% of the mean yield and ui to be 120% of the mean yield so
that the expectations for the yields will be the same as in Section 1.1b. Again, the
decisions on land allocation are first-stage decisions because they are taken before
knowledge of the yields. Second-stage decisions are purchases and sales after the
growing period. The second-stage formulation can again be described as Q(x) =
EξQ(x,ξ) , where Q(x,ξ) is the value of the second stage for a given realization of
the random vector.

Now, in this particular example, the computation of Q(x,ξ) can be separated
among the three crops due to independence of the random vector. (Note that this
separability property also holds in the discrete representation of Section 1.1b.) We
can then write:

E ξQ(x,ξ) =
3

∑
i=1

EξQi(xi,ξ) =
3

∑
i=1

Qi(xi) , (1.6)

where Qi(xi,ξ) is the optimal second-stage value of purchases and sales of crop i .
We are in fact in position to give an exact analytical expression for the second-

stage value functions Qi(xi) , i = 1, . . . ,3 . We first consider sugar beet sales. For

1 Note that the decisions y1 , y2 , w1 , w2 , w3 , and w4 also depend on the scenario. This
dependence is not always made explicit. It appears explicitly in (1.7) but not in (1.4).



12 1 Introduction and Examples

a given value t3(ξ) of the sugar beet yield, one obtains the following second-stage
problem:

Q3(x3,ξ) = min −36w3(ξ)−10w4(ξ)
s. t. w3(ξ)+ w4(ξ)≤ t3(ξ)x3 ,

w3(ξ)≤ 6000 ,

w3(ξ),w4(ξ)≥ 0 .

(1.7)

The optimal decisions for this problem are clearly to sell as many sugar beets as
possible at the favorable price, and to sell the possible remaining production at the
unfavorable price, namely

w3(ξ) = min[6000,t3(ξ)x3] ,
w4(ξ) = max[t3(ξ)x3−6000,0] . (1.8)

This results in a second-stage value of

Q3(x3,ξ) =−36min[6000,t3(ξ)x3]−10max[t3(ξ)x3−6000,0] .

We first assume that the surface x3 devoted to sugar beets will not be so large
that the quota would be exceeded for any possible yield or so small that production
would always be less than the quota for any possible yield. In other words, we
assume that the following relation holds:

l3x3 ≤ 6000≤ u3x3 , (1.9)

where, as already defined, l3 and u3 are the bounds on the possible values of t3(ξ) .
Under this assumption, the expected value of the second stage for sugar beet sales
is

Q3(x3) = EξQ3(x3,ξ3)

=−
∫ 6000/x3

l3
36tx3 f (t)dt

−
∫ u3

6000/x3

(216000 + 10tx3−60000) f (t)dt,

where f (t) denotes the density of the random yield t3(ξ) . Given the assumption
that this density is uniform over the interval [l3,u3] , one obtains, after some com-
putation, the following analytical expression

Q3(x3) =−18
(u2

3− l2
3)x3

u3− l3
+

13(u3x3−6000)2

x3(u3− l3)
,

which can also be expressed as

Q3(x3) =−36t̄3x3 +
13(u3x3−6000)2

x3(u3− l3)
, (1.10)
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where t̄3 denotes the expected yield for sugar beet production, which is u3+l3
2 for

a uniform density.
Note that assumption (1.9) is not really limiting. We can still compute the ana-

lytical expression of Q3(x3) for the other situations.
For example, if the surface x3 is such that the production exceeds the quota

for any possible yield (l3x3 > 6000) , then the optimal second-stage decisions are
simply

w3(ξ) = 6000 ,

w4(ξ) = t3(ξ)x3−6000 , for all ξ .

The second-stage value for a given ξ is now

Q3(x3,ξ ) =−216000−10(t3(ξ )x3−6000) =−156000−10t3(ξ )x3 ,

and the expected value is simply

Q3(x3) =−156000−10t̄3x3 . (1.11)

Similarly, if the surface devoted to sugar beets is so small that for any yield the
production is lower than the quota, the second-stage value function is

Q3(x3) =−36t̄3x3 . (1.12)

We may therefore draw the graph of the function Q3(x3) for all possible values of
x3 as in Figure 1. Note that with our assumption of t̄3 = 20 , we would then have
the limits on x3 in (1.9) as 250≤ x3 ≤ 375 .

Fig. 1 The expected recourse value for sugar beets as a function of acres planted.

We immediately see that the function has three different pieces. Two of these pieces
are linear and one is nonlinear, but the function Q3(x3) is continuous and convex.
This property will be proved when we consider the generalization of this problem,
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known as the news vendor, newsboy, or Christmas tree problem. In fact, this prop-
erty holds for a large class of second-stage problems, as will be seen in Chapter 3.

Similar computations can be done for the other two crops. For wheat, we obtain

Q1(x1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

47600−595x1 for x1 ≤ 200/3 ,

119 (200−2x1)2

x1
−85 (200−3x1)2

x1
for 200

3 ≤ x1 ≤ 100 ,

34000−425x1 for x1 ≥ 100 ,

and, for corn, we obtain

Q2(x2) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

50400−630x2 for x2 ≤ 200/3 ,

87.5 (240−2.4x2)2

x2
−62.5 (240−3.6x2)2

x2
for 200/3≤ x2 ≤ 100 ,

36000−450x2 for x2 ≥ 100 .

The global problem is therefore

min 150x1 + 230x2 + 260x3 +Q1(x1)+Q2(x2)+Q3(x3)
s. t. x1 + x2 + x3 ≤ 500 ,

x1,x2,x3 ≥ 0 .

Given that the three functions Qi(xi) are convex, continuous, and differentiable
functions and the first-stage objective is linear, this problem is a convex program for
which Karush-Kuhn-Tucker (K-K-T) conditions are necessary and sufficient for a
global optimum. (This result is from nonlinear programming. For more on this result
about optimality, see Section 2.11.) Denoting by λ the multiplier of the surface
constraint and as before by ci the first-stage objective coefficient of crop i , the
K-K-T conditions require

xi

[
ci +

∂Qi(xi)
∂xi

+λ
]

= 0 , ci +
∂Qi(xi)

∂xi
+ λ ≥ 0 , xi ≥ 0 , i = 1,2,3 ;

λ [x1 + x2 + x3−500] = 0 , x1 + x2 + x3 ≤ 500 , λ ≥ 0 .

Assume the optimal solution is such that 100 ≤ x1 , 200
3 ≤ x2 ≤ 100 , and 250 ≤

x3 ≤ 375 with λ �= 0 . Then the conditions read
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−275 + λ = 0 ,

−76− 1.44 106

x2
2

+ λ = 0 ,

476− 5.85 107

x2
3

+λ = 0 ,

x1 + x2 + x3 = 500 .

Solving this system of equations gives λ = 275.00 , x1 = 135.83 , x2 = 85.07 ,
x3 = 279.10 , which satisfies all the required conditions and is therefore optimal.
We observe that this solution is similar to the one obtained by using the scenario
approach, although more surface is devoted to sugar beet and less to wheat than be-
fore. This similarity represents a characteristic robustness of a well-formed stochas-
tic programming formulation. We shall consider it in more detail in our discussion
of approximations in Chapter 8.

e. The news vendor problem

The previous section illustrates an example of a famous and basic problem in
stochastic optimization, the news vendor problem. In this problem, a news vendor
goes to the publisher every morning and buys x newspapers at a price of c per pa-
per. This number is usually bounded above by some limit u , representing either the
news vendor’s purchase power or a limit set by the publisher to each vendor. The
vendor then walks along the streets to sell as many newspapers as possible at the
selling price q . Any unsold newspaper can be returned to the publisher at a return
price r , with r < c .

We are asked to help the news vendor decide how many newspapers to buy every
morning. Demand for newspapers varies over days and is described by a random
variable ξ .

It is assumed here that the news vendor cannot return to the publisher during the
day to buy more newspapers. Other news vendors would have taken the remaining
newspapers. Readers also only want the last edition.

To describe the news vendor’s profit, we define y as the effective sales and w as
the number of newspapers returned to the publisher at the end of the day. We may
then formulate the problem as

min cx +Q(x)
0≤ x≤ u ,

where
Q(x) = E ξQ(x,ξ)

and
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Q(x,ξ) = min −qy(ξ)− rw(ξ)
s. t. y(ξ)≤ ξ ,

y(ξ)+ w(ξ)≤ x ,

y(ξ),w(ξ)≥ 0 ,

where again Eξ denotes the mathematical expectation with respect to ξ .
In this notation, −Q(x) is the expected profit on sales and returns, while

−Q(x,ξ) is the profit on sales and returns if the demand is at level ξ . The model
illustrates the two-stage aspect of the news vendor problem. The buying decision
has to be taken before any information is given on the demand. When demand is
known in the so-called second stage, which represents the end of the sales period of
a given edition, the profit can be computed. This is done using the following simple
rule:

y∗(ξ) = min(ξ,x) ,

w∗(ξ) = max(x−ξ,0) .

Sales can never exceed the number of available newspapers or the demand. Re-
turns occur only when demand is less than the number of newspapers available. The
second-stage expected value function is simply

Q(x) = Eξ[−qmin(ξ,x)− r max(x−ξ,0)] .

As we will learn later, this function is convex and continuous. It is also differentiable
when ξ is a continuous random vector. In that case, the optimal solution of the news
vendor’s problem is simply:

⎧⎪⎨
⎪⎩

x = 0 if c +Q′(0) > 0 ,

x = u if c +Q′(u) < 0 ,

a solution of c +Q′(x) = 0 otherwise,

where Q′(x) denotes the first order derivative of Q(x) evaluated at x .
By construction, Q(x) can be computed as

Q(x) =
∫ x

−∞
(−qξ − r(x− ξ ))dF(ξ )+

∫ ∞

x
−qx dF(ξ )

=−(q− r)
∫ x

−∞
ξ dF(ξ )− rx F(x)−qx(1−F(x)) ,

where F(ξ) represents the cumulative probability distribution of ξ (see Sec-
tion 2.1).

Integrating by parts, we observe that
∫ x

−∞
ξ dF(ξ ) = xF(x)−

∫ x

−∞
F(ξ )dξ

under mild conditions on the distribution function F(ξ) . It follows that
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Q(x) =−qx +(q− r)
∫ x

−∞
F(ξ )dξ .

We may thus conclude that

Q′(x) =−q +(q− r)F(x)

and therefore that the optimal solution is

⎧⎪⎨
⎪⎩

x∗ = 0 if q−c
q−r < F(0) ,

x∗ = u if q−c
q−r > F(u) ,

x∗ = F−1( q−c
q−r ) otherwise,

where F−1(α) is the α -quantile of F (see Section 2.1). If F is continuous, x =
F−1(α) means α = F(x) . Any reasonable representation of the demand would
imply F(0) = 0 so that the solution is never x∗ = 0 .

As we shall see in Chapter 3, this problem is an example of a basic type of
stochastic program called the stochastic program with simple recourse. The ideas
of this section can be generalized to larger problems in this class of examples. Also
observe that, as such, we only come to a partial answer, under the form of an ex-
pression for x∗ . The vendor may still need to consult a statistician, who would
provide an accurate cumulative distribution F(·) . Only then will a precise figure be
available for x∗ .

Exercises

1. Value of the stochastic solution
Assume the farmer allocates his land according to the solution of Table 2, i.e.,
120 acres for wheat, 80 acres for corn, and 300 acres for sugar beets. Show that if
yields are random (20% below average, average, and 20% above average for all
crops with equal probability one third), his expected annual profit is $107,240.
To do this observe that planting costs are certain but sales and purchases depend
on the yield. In other words, fill in a table such as Table 5 but with the first-stage
decisions given here.

2. Price effect
When yields are good for the farmer, they are usually also good for many other
farmers. The supply is thus increasing, which will lower the prices. As an ex-
ample, we may consider prices going down by 10% for corn and wheat when
yields are above average and going up by 10% when yields are below average.
Formulate the model where these changes in prices affect both sales and pur-
chases of corn and wheat. Assume sugar beet prices are not affected by yields.
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3. Binary first stage
Consider the case where the farmer possesses four fields of sizes 185 , 145 ,
105 , and 65 acres, respectively. Observe that the total of 500 acres is unchanged.
Now, the fields are unfortunately located in different parts of the village. For rea-
sons of efficiency the farmer wants to raise only one type of crop on each field.
Formulate this model as a two-stage stochastic program with a first-stage pro-
gram with binary variables.

4. Integer second stage
Consider the case where sales and purchases of corn and wheat can only be
obtained through contracts involving multiples of hundred tons. Formulate the
model as a stochastic program with a mixed-integer second stage.

5. Consider any one of Exercises 2 to 4. Using standard mixed integer program-
ming software, obtain an optimal solution of the extensive form of the stochastic
program. Compute the expected value of perfect information and the value of
the stochastic solution.

6. Multistage program
It is typical in farming to implement crop rotation in order to maintain good soil
quality. Sugar beets would, for example, appear in triennial crop rotation, which
means they are planted on a given field only one out of three years. Formulate
a multistage program to describe this situation. To keep things simple, describe
the case when sugar beets cannot be planted two successive years on the same
field, and assume no such rule applies for wheat and corn.

(On a two-year basis, this exercise consists purely of formulation: with the
basic data of the example, the solution is clearly to repeat the optimal solution
in Table 5, i.e., to plant 170 acres of wheat, 80 acres of corn, and 250 acres of
sugar beets. The problem becomes more relevant on a three-year basis. It is also
relevant on a two-year basis with fields of the sizes given in Exercise 1.

In terms of formulation, it is sufficient to consider a three-stage model. The
first stage consists of first-year planting. The second stage consists of first-
year purchases and sales and second-year planting. The third-stage consists
of second-year purchases and sales. Alternatively, a four-stage model can be
built, separating first-year purchases and sales from second-year planting. Also
discuss the question of discounting the revenues and expenses of the various
stages.)

7. Risk aversion
Economic theory tells us that, like many other people, the farmer would nor-
mally act as a risk-averse person. There are various ways to model risk aver-
sion. One simple way is to plan for the worst case. More precisely, it consists of
maximizing the profit under the worst situation. Note that for some models, it is
not known in advance which scenario will turn out to induce the lowest profit.
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In our example, the worst situation corresponds to Scenario 3 (below average
yields). Planning for the worst case implies the solution of Table 4 is optimal.

(a) Compute the loss in expected profit if that solution is taken.
(b) A median situation would be to require a reasonable profit under the worst

case. Find the solution that maximizes the expected profit under the con-
straint that in the worst case the profit does not fall below $58,000. What is
now the loss in expected profit?

(c) Repeat part (b) with other values of minimal profit: $56,000, $54,000,
$52,000, $50,000, and $48,000. Graph the curve of expected profit loss.
Also compare the associated optimal decisions.

8. Data fluctuations
Table 1 contains mean data over a relatively long period, from the late nineties
till 2006. Yield fluctuations have been treated through random yields. What
about other data’s fluctuations? Planting costs in euros have not changed so
much over time. (The story is different when expressed in dollars. However, the
farmer’s decisions are unaffected by currency modifications as they simply shift
the objective function. The only element which could be affected by currency
rates is the world price of sugar beets, but it has stayed low enough to play no
significant role for the farmer.) Starting from the deterministic model (1.1), sen-
sitivity analysis tells us that the optimal solution remains valid if wheat and corn
selling prices remain below 220 and 168.333, respectively, and if sugar beet’s
favorable price remains over 26.75. This implies the solution of model (1.1) re-
mains stable even if relatively large changes in prices occur (with the provision
that the results of linear programming sensitivity analysis are guaranteed to hold
when only one price is changing at a time). For joint modifications of prices, it
is interesting to look at the returns of each crop. Then, one can see that profound
changes in solutions only occur if the sales of a given crop provide a higher re-
turn than sugar beets at the favorable price. This happened in 2007, with wheat’s
price more than doubling in a 12-month period. At the moment of this writing,
the current costs and prices are as follows (rounded figures):

Wheat Corn Sugar Beets
Yield (T/acre) 2.5 3 20
Planting cost ($/acre) 180 280 310
Selling price ($/T) 300 170 41 under 6000 T

11 above 6000 T

The increase in wheat’s selling price is due to a strong demand and low yields
in Asia. These conditions may not prevail next year. Consider a model with a
random selling price of wheat being 300 or 220 with equal probability. Purchase
prices are as before 40% higher than selling prices. Compare the optimal solu-
tion with that of Table 5. How much would a farmer be willing to pay for a
perfect forecast on the selling price of wheat?
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9. If prices are also random variables, the news vendor’s problem becomes more
complicated. However, if prices and demands are independent random variables,
show that the solution of the news vendor’s problem is the one obtained before,
where q and r are replaced by their expected values. Indicate under which
conditions the same proposition is true for the farmer’s problem.

10. In the news vendor’s problem, we have assumed for simplicity that the random
variable takes value from −∞ to +∞ . Show that the optimal decisions are
insensitive to this assumption, so that if the random variables have a nonzero
density on a limited interval then the optimal solutions are obtained by the same
analytical expression.

11. Suppose c = 10 , q = 25 , r = 5 , and demand is uniform on [50,150] . Find the
optimal solution of the news vendor problem. Also, find the optimal solution of
the deterministic model obtained by assuming a demand of 100 . What is the
value of the stochastic solution?

1.2 Financial Planning and Control

Financial decision-making problems can often be modeled as stochastic programs.
In fact, the essence of financial planning is the incorporation of risk into investment
decisions. The area represents one of the largest application areas of stochastic pro-
gramming. Many references can be found in, for example, Mulvey and Vladimirou
[1989, 1991b, 1992], Ziemba and Vickson [1975], and Zenios [1993].

We consider a simple example that illustrates additional stochastic programming
properties. As in the farming example of Section 1.1, this example involves random-
ness in the constraint matrix instead of the right-hand side elements. These random
variables reflect uncertain investment yields.

This section’s example also has the characteristic that decisions are highly depen-
dent on past outcomes. In the following capacity expansion problem of Section 1.3,
this is not the case. In Chapter 3, we define this difference by a block separable
recourse property that is present in some capacity expansion and similar problems.

For the current problem, suppose we wish to provide for a child’s college educa-
tion Y years from now. We currently have $ b to invest in any of I investments.
After Y years, we will have a wealth that we would like to have exceed a tuition
goal of $ G . We suppose that we can change investments every υ years, so we
have H = Y/υ investment periods. For our purposes here, we ignore transaction
costs and taxes on income although these considerations would be important in re-
ality. We also assume that all figures are in constant dollars.

In formulating the problem, we must first describe our objective in mathematical
terms. We suppose that exceeding $ G after Y years would be equivalent to our
having an income of q % of the excess while not meeting the goal would lead to
borrowing for a cost r % of the amount short. This gives us the concave utility
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function in Figure 2. Many other forms of nonlinear utility functions are, of course,
possible. See Kallberg and Ziemba [1983] for a description of their relevance in
financial planning.

Fig. 2 Utility function of wealth at year Y for a goal G .

The major uncertainty in this model is the return on each investment i within
each period t . We describe this random variable as ξ(i,t) = ξ (i,t,ω) where ω
is some underlying random element. The decisions on investments will also be ran-
dom. We describe these decisions as x(i,t) = x(i,t,ω) . From the randomness of the
returns and investment decisions, our final wealth will also be a random variable.

A key point about this investment model is that we cannot completely observe the
random element ω when we make all our decisions x(i,t,ω) . We can only observe
the returns that have already taken place. In stochastic programming, we say that we
cannot anticipate every possible outcome so our decisions are nonanticipative of
future outcomes. Before the first period, this restriction corresponds to saying that
we must make fixed investments, x(i,1) , for all ω ∈ Ω , the space of all random
elements or, more specifically, returns that could possibly occur.

To illustrate the effects of including stochastic outcomes as well as modeling
effects from choosing the time horizon Y and the coarseness of the period approx-
imations H , we use a simple example with two possible investment types, stocks
( i = 1 ) and government securities (bonds) ( i = 2 ). We begin by setting Y at 15
years and allow investment changes every five years so that H = 3 .

We assume that, over the three decision periods, eight possible scenarios may
occur. The scenarios correspond to independent and equal likelihoods of having
(inflation-adjusted) returns of 1.25 for stocks and 1.14 for bonds or 1.06 for
stocks and 1.12 for bonds over the five-year period. We indicate the scenarios by
an index s = 1, . . . ,8 , which represents a collection of the outcomes ω that have
common characteristics (such as returns) in a specific model. When we wish to al-
low more general interpretations of the outcomes, we use the base element ω . With
the scenarios defined here, we assign probabilities for each s , p(s) = 0.125 . The
returns are ξ (1,t,s) = 1.25 , ξ (2,t,s) = 1.14 for t = 1,s = 1, . . . ,4 , for t = 2 ,
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s = 1,2,5,6 , and for t = 3 , s = 1,3,5,7 . In the other cases, ξ (1,t,s) = 1.06 ,
ξ (2,t,s) = 1.12 .

Fig. 3 Tree of scenarios for three periods.

The eight scenarios are represented by the tree in Figure 3. The scenario tree divides
into branches corresponding to different realizations of the random returns. Because
Scenarios 1 to 4, for example, have the same return for t = 1 , they all follow the
same first branch. Scenarios 1 and 2 then have the same second branch and finally
divide completely in the last period. To show this more explicitly, we may refer
to each scenario by the history of returns indexed by st for periods t = 1,2,3 as
indicated on the tree in Figure 3. In this way, Scenario 1 may also be represented as
(s1,s2,s3) = (1,1,1) .

With the tree representation, we need only have a decision vector for each node of
the tree. The decisions at t = 1 are just x(1,1) and x(2,1) for the amounts invested
in stocks (1) and bonds (2) at the outset. For t = 2 , we would have x(i,2,s1) where
i = 1,2 for the type of investment and s1 = 1,2 for the first-period return outcome.
Similarly, the decisions at t = 3 are x(i,3,s1,s2) .

With these decision variables defined, we can formulate a mathematical program
to maximize expected utility. Because the concave utility function in Figure 1 is
piecewise linear, we just need to define deficit or shortage and excess or surplus
variables, w(i1, i2, i3) and y(i1, i2, i3) , and we can maintain a linear model. The
objective is simply a probability- and penalty-weighted sum of these terms, which,
in general, becomes:
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∑
sH

· · ·∑
s1

p(s1, . . . ,sH )(−rw(s1, . . . ,sH)+ qy(s1, . . . ,sH)) .

The first-period constraint is simply to invest the initial wealth:

∑
i

x(i,1) = b .

The constraints for periods t = 2, . . . ,H are, for each s1, . . . ,st−1 :

∑
i
−ξ (i,t−1,s1, . . . ,st−1)x(i,t−1,s1, . . . ,st−2)

+∑
i

x(i,t,s1, . . . ,st−1) = 0 ,

while the constraints for period H are:

∑
i

ξ (i,H,s1, . . . ,sH )x(i,H,s1, . . . ,sH−1)

− y(s1, . . . ,sH)+ w(s1, . . . ,sH) = G .

Other constraints restrict the variables to be non-negative.
To specify the model in this example, we use initial wealth, b = 55,000 ; target

value, G = 80,000 ; surplus reward, q = 1 ; and shortage penalty, r = 4 . The re-
sult is a stochastic program in the following form where the units are thousands of
dollars:

maxz =
2

∑
s1=1

2

∑
s2=1

2

∑
s3=1

0.125(y(s1,s2,s3)−4w(s1,s2,s3)) (2.1)

s. t. x(1,1)+ x(2,1) = 55 ,
−1.25x(1,1)−1.14x(2,1)+ x(1,2,1)+ x(2,2,1) = 0 ,
−1.06x(1,1)−1.12x(2,1)+ x(1,2,2)+ x(2,2,2) = 0 ,

−1.25x(1,2,1)−1.14x(2,2,1)+ x(1,3,1,1)+ x(2,3,1,1) = 0 ,
−1.06x(1,2,1)−1.12x(2,2,1)+ x(1,3,1,2)+ x(2,3,1,2) = 0 ,
−1.25x(1,2,2)−1.14x(2,2,2)+ x(1,3,2,1)+ x(2,3,2,1) = 0 ,
−1.06x(1,2,2)−1.12x(2,2,2)+ x(1,3,2,2)+ x(2,3,2,2) = 0 ,
1.25x(1,3,1,1)+ 1.14x(2,3,1,1)− y(1,1,1)+w(1,1,1) = 80 ,
1.06x(1,3,1,1)+ 1.12x(2,3,1,1)− y(1,1,2)+w(1,1,2) = 80 ,
1.25x(1,3,1,2)+ 1.14x(2,3,1,2)− y(1,2,1)+w(1,2,1) = 80 ,
1.06x(1,3,1,2)+ 1.12x(2,3,1,2)− y(1,2,2)+w(1,2,2) = 80 ,
1.25x(1,3,2,1)+ 1.14x(2,3,2,1)− y(2,1,1)+w(2,1,1) = 80 ,
1.06x(1,3,2,1)+ 1.12x(2,3,2,1)− y(2,1,2)+w(2,1,2) = 80 ,
1.25x(1,3,2,2)+ 1.14x(2,3,2,2)− y(2,2,1)+w(2,2,1) = 80 ,
1.06x(1,3,2,2)+ 1.12x(2,3,2,2)− y(2,2,2)+w(2,2,2) = 80 ,

x(i,t,s1, . . . ,st−1)≥ 0 , y(s1,s2,s3)≥ 0 , w(s1,s2,s3) ≥ 0 ,
for all i,t,s1,s2,s3 .
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Solving the problem in (2.1) yields an optimal expected utility value of −1.514 . We
call this value, RP , for the expected recourse problem solution value. The optimal
solution (in thousands of dollars) appears in Table 6.

Table 6 Optimal solution with three-period stochastic program.

Period, Scenario Stock Bonds
1,1-8 41.5 13.5
2,1-4 65.1 2.17
2,5-8 36.7 22.4
3,1-2 83.8 0.00
3,3-4 0.00 71.4
3,5-6 0.00 71.4
3,7-8 64.0 0.00

Scenario Above G Below G
1 24.8 0.00
2 8.87 0.00
3 1.43 0.00
4 0.00 0.00
5 1.43 0.00
6 0.00 0.00
7 0.00 0.00
8 0.00 12.2

In this solution, the initial investment is heavily in stock ($41,500) with only
$13,500 in bonds. Notice the reaction to first-period outcomes, however. In the case
of Scenarios 1 to 4, stocks are even more prominent, while Scenarios 5 to 8 reflect a
more conservative government security portfolio. In the last period, notice how the
investments are either completely in stocks or completely in bonds. This is a general
trait of one-period decisions. It occurs here because in Scenarios 1 and 2, there is no
risk of missing the target. In Scenarios 3 to 6, stock investments may cause one to
miss the target, so they are avoided. In Scenarios 7 and 8, the only hope of reaching
the target is through stocks.

We compare the results in Table 6 to a deterministic model in which all random
returns are replaced by their expectation. For that model, because the expected return
on stock is 1.155 in each period, while the expected return on bonds is only 1.13
in each period, the optimal investment plan places all funds in stocks in each period.
If we implement this policy each period, but instead observed the random returns,
we would have an expected utility called the expected value solution, or EV . In this
case, we would realize an expected utility of EV = −3.788 , while the stochastic
program value is again RP = −1.514 . The difference between these quantities is
the value of the stochastic solution:

VSS = RP−EV =−1.514− (−3.788)= 2.274 .
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This comparison gives us a measure of the utility value in using a decision from a
stochastic program compared to a decision from a deterministic program. Another
comparison of models is in terms of the probability of reaching the goal. Models
with these types of objectives are called chance-constrained programs or programs
with probabilistic constraints (see Charnes and Cooper [1959] and Prékopa [1973]).
Notice that the stochastic program solution reaches the goal 87.5% of the time. The
expected value deterministic model solution only reaches the goal 50% of the time.
In this case, the value of the stochastic solution may be even more significant.

The formulation we gave in (2.1) can become quite cumbersome as the time
horizon, H , increases and the decision tree of Figure 3 grows quite bushy. Another
modeling approach to this type of multistage problem is to consider the full horizon
scenarios, s , directly, without specifying the history of the process. We then sub-
stitute a scenario set S for the random elements Ω . Probabilities, p(s) , returns,
ξ (i,t,s) , and investments, x(i,t,s) , become functions of the H -period scenarios
and not just the history until period t .

The difficulty is that, when we have split up the scenarios, we may have lost
nonanticipativity of the decisions because they would now include knowledge of
the outcomes up to the end of the horizon. To enforce nonanticipativity, we add
constraints explicitly in the formulation. First, the scenarios that correspond to the
same set of past outcomes at each period form groups, St

s1,...,st−1
, for scenarios at

time t . Now, all actions up to time t must be the same within a group. We do this
through an explicit constraint. The new general formulation of (2.1) becomes:

maxz = ∑
s

p(s)(qy(s)− rw(s))

s. t.
I

∑
i=1

x(i,1,s) = b , ∀s ∈ S , (2.2)

I

∑
i=1

ξ (i,t,s)x(i,t−1,s)−
I

∑
i=1

x(i,t,s) = 0 , ∀s ∈ S ,

t = 2, . . . ,H ,

I

∑
i=1

ξ (i,H,s)x(i,H,s)− y(s)+ w(s) = G ,

⎛
⎝ ∑

s′∈St
J(s,t)

p(s′)x(i,t,s′)

⎞
⎠−

⎛
⎝ ∑

s′∈St
J(s,t)

p(s′)

⎞
⎠x(i,t,s) = 0 ,

∀1≤ i≤ I , ∀1≤ t ≤ H , ∀s ∈ S ,

x(i,t,s) ≥ 0 , y(s)≥ 0 , w(s) ≥ 0 ,

∀ 1≤ i≤ I , ∀ 1≤ t ≤ H , ∀ s ∈ S ,

where J(s,t) = {s1, . . . ,st−1} such that s ∈ St
s1,...,st−1

. Note that the last equality
constraint indeed forces all decisions within the same group at time t to be the
same. Formulation (2.2) has a special advantage for the problem here because these



26 1 Introduction and Examples

nonanticipativity constraints are the only constraints linking the separate scenarios.
Without them, the problem would decompose into a separate problem for each s ,
maintaining the structure of that problem.

In modeling terms, this simple additional constraint makes it relatively easy to
move from a deterministic model to a stochastic model of the same problem. This
ease of conversion can be especially useful in modeling languages. For example,
Figure 4 gives a complete AMPL (Fourer, Gay, and Kernighan [1993]) model of
the problem in (2.2). In this language, set, param, and var are keywords for sets,
parameters, and variables. The addition of the scenario indicators and nonanticipa-
tivity constraints (nonanticip) are the only additions to a deterministic model.

# This problem describes a simple financial planning problem
# for financing college education
set investments; # different investment options
param initwealth; # initial holdings
param H; # number of periods
param scenarios; # number of scenarios (total S)
# The following 0-1 array shows which scenarios are combined at period H
param scen links { 1..scenarios,1..scenarios,1..H } ;
param target; # target value G at time H
param invest; # value of investing beyond target value
param penalty; # penalty for not meeting target
param return { investments,1..scenarios,1..H } ; # return on each inv
param prob { 1..scenarios } ; # probability of each scenario
# variables
var amtinvest { investments,1..scenarios,1..H } ¿= 0; #actual amounts inv’d
var above target { 1..scenarios } ¿= 0; # amt above final target
var below target { 1..scenarios } ¿= 0; # amt below final target
# objective
maximize exp value : sum { i in 1..scenarios } prob[i]*(invest*above target[i]
- penalty*below target[i]);
# constraints
subject to budget { i in 1..scenarios } :
sum { k in investments } (amtinvest[k,i,1]) = initwealth;#invest initial wealth
subject to nonanticip { k in investments,j in 1..scenarios,t in 1..H } :
(sum { i in 1..scenarios } scen links[j,i,t]*prob[i]*amtinvest[k,i,t]) -
(sum { i in 1..scenarios } scen links[j,i,t]*prob[i])*
amtinvest[k,j,H] = 0; # makes all investments nonanticipative
subject to balance { j in 1..scenarios, t in 1..H-1 } :
(sum { k in investments } return[k,j,t]*amtinvest[k,j,t]) - sum { k in
investments } amtinvest[k,j,t+1] = 0; # reinvest each time period
subject to scenario value { j in 1..scenarios } : (sum { k in
investments } return[k,j,H]*amtinvest[k,j,H]) - above target[j] +
below target[j] = target; # amounts not meeting target

Fig. 4 AMPL format of financial planning model.

Given the ease of this modeling effort, standard optimization procedures can be
simply applied to this problem. However, as we noted earlier, the number of sce-
narios can become extremely large. Standard methods may not be able to solve the
problem in any reasonable amount of time, necessitating other techniques. The re-
maining chapters in this book focus on these other methods and on procedures for
creating models that are amenable to those specialized techniques.

In financial problems, it is particularly worthwhile to try to exploit the underly-
ing structure of the problem without the nonanticipativity constraints. This relaxed
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problem is in fact a generalized network that allows the use of efficient network
optimization methods that cannot apply to the full problem in (2.2). We discuss this
option more thoroughly in Chapter 5.

With either formulation (2.1) or (2.2), in completing the model, some decisions
must be made about the possible set of outcomes or scenarios and the coarseness
of the period structure, i.e., the number of periods H allowed for investments. We
must also find probabilities to attach to outcomes within each of these periods. These
probabilities are often approximations that can, as we shall see in Chapter 8, provide
bounds on true values or on uncertain outcomes with incompletely known distribu-
tions. A key observation is that the important step is to include stochastic elements
at least approximately and that deterministic solutions most often give misleading
results.

In closing this section, note that the mathematical form of this problem actually
represents a broad class of control problems (see, for example, Varaiya and Wets
[1989]). In fact, it is basically equivalent to any control problem governed by a linear
system of differential equations. We have merely taken a discrete time approach
to this problem. This approach can be applied to the control of a wide variety of
electrical, mechanical, chemical, and economic systems. We merely redefine state
variables (now, wealth) in each time period and controls (investment levels). The
random gain or loss is reflected in the return coefficients. Typically, these types of
control problems would have nonlinear (e.g., quadratic) costs associated with the
control in each time period. This presents no complication for our purposes, so we
may include any of these problems as potential applications. In Section 1.4, we will
look at a fundamentally nonlinear problem in more detail.

Exercises

1. Suppose you consider just a five-year planning horizon. Choose an appropriate
target and solve over this horizon with a single first-period decision.

2. Suppose you implement a buy-and-hold strategy and make a single investment
decision without any additional trading until the end of the time horizon. For-
mulate and solve this problem to determine an optimal allocation.

3. Suppose that goal G is also a random parameter and could be $75,000 or
$85,000 with equal probabilities. Formulate and solve this problem. Compare
this solution to the solution for the problem with a known target.

4. Suppose that every trade (purchase or sale) of an asset involves a transaction
cost that is equal to 1% of the amount traded. Re-formulate the problem with
this transaction cost and solve for the optimal solution.
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1.3 Capacity Expansion

Capacity expansion models optimal choices of the timing and levels of investments
to meet future demands of a given product. This problem has many applications.
Here we illustrate the case of power plant expansion for electricity generation: we
want to find optimal levels of investment in various types of power plants to meet
future electricity demand.

We first present a static deterministic analysis of the electricity generation prob-
lem. Static means that decisions are taken only once. Deterministic means that the
future is supposed to be fully and perfectly known.

Three properties of a given power plant i can be singled out in a static analysis:
the investment cost ri , the operating cost qi , and the availability factor ai , which
indicates the percent of time the power plant can effectively be operated. Demand
for electricity can be considered a single product, but the level of demand varies
over time. Analysts usually represent the demand in terms of a so-called load dura-
tion curve that describes the demand over time in decreasing order of demand level
(Figure 5). The curve gives the time, τ , that each demand level, D , is reached. Be-
cause here we are concerned with investments over the long run, the load duration
curve we consider is taken over the life cycle of the plants.

The load duration curve can be approximated by a piecewise constant curve (Fig-
ure 6) with m segments. Let d1 = D1 , d j = D j−Dj−1 , j = 2, . . . ,m represent
the additional power demanded in the so-called mode j for a duration τ j . To obtain
a good approximation of the load curve, it is necessary to consider large values of
m . In the static situation, the problem consists of finding the optimal investment for
each mode j , i.e., to find the particular type of power plant i , i = 1, . . . ,n , that
minimizes the total cost of effectively producing 1 MW (megawatt) of electricity
during the time τ j . It is given by

i( j) = argmin i=1,...,n

{
ri + qi τ j

ai

}
, (3.1)

where n is the number of available technologies and argmin represents the index
i for which the minimum is achieved.

The static model (3.1) captures one essential feature of the problem, namely,
that base load demand (associated with large values of τ j , i.e., small indices j )
is covered by equipment with low operating costs (scaled by availability factor),
while peak-load demand (associated with small values of τ j , i.e., large indices j )
is covered by equipment with low investment costs (also scaled by their availabil-
ity factor). For the sake of completeness, peak-load equipment should also offer
operational flexibility.

At least four elements justify considering a dynamic or multistage model for the
electricity generation investment problem:

• the long-term evolution of equipment costs;
• the long-term evolution of the load curve;
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Fig. 5 The load duration curve.

Fig. 6 A piecewise constant approximation of the load duration curve.
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• the appearance of new technologies;
• the obsolescence of currently available equipment.

The equipment costs are influenced by technological progress but also (and, for
some, drastically) by the evolution of fuel costs.

Of significant importance in the evolution of demand is both the total energy
demanded (the area under the load curve) and the peak-level Dm , which determines
the total capacity that should be available to cover demand. The evolution of the load
curve is determined by several factors, including the level of activity in industry,
energy savings in general, and the electricity producers’ rate policy.

The appearance of new technologies depends on the technical and commercial
success of research and development while obsolescence of available equipment
depends on past decisions and the technical lifetime of equipment. All the elements
together imply that it is no longer optimal to invest only in view of the short-term
ordering of equipment given by (3.1) but that a long-term optimal policy should be
found.

The following multistage model can be proposed. Let

• t = 1, . . . ,H index the periods or stages;
• i = 1, . . . ,n index the available technologies;
• j = 1, . . . ,m index the operating modes in the load duration curve.

Also define the following:

• ai = availability factor of i ;
• Li = lifetime of i ;
• gt

i = existing capacity of i at time t , decided before t = 1 ;
• rt

i = unit investment cost for i at time t (assuming a fixed plant life cycle for
each type i of plant);

• qt
i = unit production cost for i at time t ;

• dt
j = maximal power demanded in mode j at time t ;

• τt
j = duration of mode j at time t .

Consider, finally, the set of decisions

• xt
i = new capacity made available for technology i at time t ;

• wt
i = total capacity of i available at time t ;

• yt
i j = capacity of i effectively used at time t in mode j .

The electricity generation H-stage problem can be defined as

min
x,y,w

H

∑
t=1

(
n

∑
i=1

rt
i ·wt

i +
n

∑
i=1

m

∑
j=1

qt
i · τt

j · yt
i j

)
(3.2)

s. t. wt
i = wt−1

i + xt
i− xt−Li

i , i = 1, . . . ,n , t = 1, . . . ,H , (3.3)
n

∑
i=1

yt
i j = dt

j , j = 1, . . . ,m , t = 1, . . . ,H , (3.4)
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m

∑
j=1

yt
i j ≤ ai(gt

i + wt
i) , i = 1, . . . ,n , t = 1, . . . ,H , (3.5)

x,y,w ≥ 0 .

Decisions in each period t involve new capacities xt
i made available in each tech-

nology and capacities yt
i j operated in each mode for each technology.

Newly decided capacities increase the total capacity wt
i made available, as given

by (3.3), where the equipment’s becoming obsolete after its lifetime is also consid-
ered. We assume xt

i = 0 if t ≤ 0 , so equation (3.3) only involves newly decided
capacities.

By (3.4), the optimal operation of equipment must be chosen to meet demand
in all modes using available capacities, which by (3.5) depend on capacities gt

i
decided before t = 1 , newly decided capacities xt

i , and the availability factor.
The objective function (3.2) is the sum of the investment plus maintenance costs

and operating costs. Compared to (3.1), availability factors enter constraints (3.5)
and do not need to appear in the objective function. The operating costs are exactly
the same and are based on operating decisions yt

i j , while the investment annuities
and maintenance costs rt

i apply on the cumulative capacity wt
i . Placing annuities on

the cumulative capacity, instead of charging the full investment cost to the decision
xt

i , simplifies the treatment of end of horizon effects and is currently used in many
power generation models. It is a special case of the salvage value approach and other
period aggregations discussed in Section 10.2.

The same reasons that plead for the use of a multistage model motivate resorting
to a stochastic model. The evolution of equipment costs, particularly fuel costs, the
evolution of total demand, the date of appearance of new technologies, even the life-
time of existing equipment, can all be considered truly random. The main difference
between the stochastic model and its deterministic counterpart is in the definition of
the variables xt

i and wt
i . In particular, xt

i now represents the new capacity of i

decided at time t , which becomes available at time xt+Δi
i , where Δi is the con-

struction delay for equipment i . In other words, to have extra capacity available at
time t , it is necessary to decide at t−Δi , when less information is available on the
evolution of demand and equipment costs. This is especially important because it
would be preferable to be able to wait until the last moment to take decisions that
would have immediate impact.

Assume that each decision is now a random variable. Instead of writing an ex-
plicit dependence on the random element, ω , we again use boldface notation to
denote random variables. We then have:

• xt
i = new capacity decided at time t for equipment i , i = 1, . . . ,n ;

• wt
i = total capacity of i available and in order at time t ;

• ξ = the vector of random parameters at time t ;

and all other variables as before. The stochastic model is then
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min Eξ

H

∑
t=1

(
n

∑
i=1

rt
iw

t
i +

n

∑
i=1

m

∑
j=1

qt
i τ t

j yt
i j

)
(3.6)

s. t. wt
i = wt−1

i + xt
i−xt−Li

i , i = 1, . . . ,n , t = 1, . . . ,H , (3.7)
n

∑
i=1

yt
i j = dt

j , j = 1, . . . ,m , t = 1, . . . ,H , (3.8)

m

∑
j=1

yt
i j ≤ ai(gt

i + wt−Δi
i ) , i = 1, . . . ,n , t = 1, . . . ,H , (3.9)

w,x,y≥ 0 ,

where the expectation is taken with respect to the random vector
ξ = (ξ2, . . . ,ξH) . Here, the elements forming ξt are the demands,
(dt

1, . . . ,d
t
k) , and the cost vectors, (rt ,qt) . In some cases, ξt can also contain the

lifetimes Li , the delay factors Δi , and the availability factors ai , depending on the
elements deemed uncertain in the future.

Formulation (3.6)–(3.9) is a convenient representation of the stochastic program.
At some point, however, this representation might seem a little confusing. For ex-
ample, it seems that the expectation is taken only on the objective function, while
the constraints contain random coefficients (such as dt

j in the right-hand side of
(3.8)).

Another important aspect is the fact that decisions taken at time t , (wt ,yt) , are
dependent on the particular realization of the random vector, ξt , but cannot depend
on future realizations of the random vector. This is clearly a desirable feature for a
truly stochastic decision process. If demands in several periods are high, one would
expect investors to increase capacity much more than if, for example, demands re-
main low.

Formally, if the decision variables (wt ,yt) were not dependent on ξt , the ob-
jective function in (3.6) could be replaced by

∑
t

∑
i

(
Eξ rt

i wt
i +∑

j

Eξ qt
i τ t

i yt
i j

)
= ∑

t
∑

i

(
r̄t

i ·wt
i +∑

j

(qiτ j)yt
i j

)
,

(3.10)
where r̄t

i = Eξrt
i and qiτ j = Eξ(qt

i τ t
j) , making problem (3.6) to (3.9) determin-

istic. In the next section, we will make the dependence of the decision variables on
the random vector explicit.

The formulation given earlier is convenient in its allowing for both continuous
and discrete random variables. Theoretical properties such as continuity and con-
vexity can be derived for both types of variables. Solution procedures, on the other
hand, strongly differ.

Problem (3.6) to (3.9) is a multistage stochastic linear program with several
random variables that actually has an additional property, called block separable
recourse. This property stems from a separation that can be made between the
aggregate-level decisions, (xt ,wt) , and the detailed-level decisions, yt .
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We will formally define block separability in Chapter 3, but we can make an ob-
servation about its effect here. Suppose future demands are always independent of
the past. In this case, the decision on capacity to install in the future at some t only
depends on available capacity and does not depend on the outcomes up to time t .
The same xt must then be optimal for any realization of ξ . The only remaining
stochastic decision is in the operation-level vector, yt , which now depends sepa-
rately on each period’s capacity. The overall result is that a multiperiod problem
now becomes a much less complex two-period problem.

As a simple example, consider the following problem that appears in Louveaux
and Smeers [1988]. In this case, the resulting two period model has three operating
modes, n = 4 technologies, Δi = 1 period of construction delay, full availabilities,
a≡ 1 , and no existing equipment, g≡ 0 . The only random variable is d1 = ξ . The
other demands are d2 = 3 and d3 = 2 . The investment costs are r1 = (10,7,16,6)T

with production costs q2 = (4,4.5,3.2,5.5)T and load durations τ2 = (10,6,1)T .
We also add a budget constraint to keep all investment below 120 . The resulting
two-period stochastic program is:

min 10x1
1 + 7x1

2 + 16x1
3 + 6x1

4 + Eξ[
3

∑
j=1

τ2
j (4y2

1 j + 4.5y2
2 j

+ 3.2y2
3 j + 5.5y2

4 j)]

s. t. 10x1
1 + 7x1

2 + 16x1
3 + 6x1

4 ≤ 120 , (3.11)

− x1
i +

3

∑
j=1

y2
i j ≤ 0 , i = 1, . . . ,4 ,

y

∑
i=1

y2
i1 = ξ ,

y

∑
i=1

y2
i j = d2

j , j = 2,3 ,

x1
1 ≥ 0 , x1

2 ≥ 0 , x1
3 ≥ 0 , x1

4 ≥ 0 ,

y2
i j ≥ 0 , i = 1, . . . ,4 , j = 1,2,3 .

Assuming that ξ takes on the values 3 , 5 , and 7 with probabilities 0.3 , 0.4 , and
0.3 , respectively, an optimal stochastic programming solution to (3.11) includes
x1∗ = (2.67,4.00,3.33,2.00)T with an optimal objective value of 381.85 . We can
again consider the expected value solution, which would substitute ξ ≡ 5 in (3.11).
An optimal solution here (again not unique) is x̄1 = (0.00,3.00,5.00,2.00)T . The
objective value, if this single event occurs, is 365 . However, if we use this solution
in the stochastic problem, then with probability 0.3 , demand cannot be met. This
would yield an infinite value of the stochastic solution.

Infinite values probably do not make sense in practice because an action can
be taken somehow to avoid total system collapse. The power company could buy
from neighboring utilities, for example, but the cost would be much higher than
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any company operating cost. An alternative technology (internal or external to the
company) that is always available at high cost is called a backstop technology. If
we assume, for example, in problem (3.11) that some other technology is always
available, without any required investment costs at a unit operating cost of 100 ,
then the expected value solution would be feasible and have an expected stochastic
program value of 427.82 . In this case, the value of the stochastic solution becomes
427.82−381.85 = 45.97 .

In many power problems, focus is on the reliability of the system or the system’s
ability to meet demand. This reliability is often described as expressing a minimum
probability for meeting demand using the non-backstop technologies. If these tech-
nologies are 1, . . . ,n−1 , then the reliability restriction (in the two-period situation
where capacity decisions need not be random) is:

P [
n−1

∑
i=1

ai(gt
i + wt

i)≥
m

∑
j=1

dt
j]≥ α , ∀t , (3.12)

where 0 < α ≤ 1 . Inequality (3.12) is called a chance or probabilistic constraint in
stochastic programming. In production problems, these constraints are often called
fill rate or service rate constraints. They place restrictions on decisions so that con-
straint violations are not too frequent. Hence, we would often have α quite close
to 1 .

If the only probabilistic constraints are of the form in (3.12), then we simply
want the cumulative available capacity at time t to be at least the α quantile of the
cumulative demand in all modes at time t . We then obtain a deterministic equivalent
constraint to (3.12) of the following form:

n−1

∑
i=1

ai(gt
i + wt

i)≥ (Ft)−1(α) , ∀t , (3.13)

where Ft is the (assumed continuous) distribution function of ∑m
j=1 dt

j and F−1(α)
is the α -quantile of F . Constraints of the form in (3.13) can then be added to (3.6)
to (3.9) or, indeed, to the deterministic problem in (3.2) to (3.5), where expected
values replace the random variables.

By adding these chance constraint equivalents, many of the problems of deter-
ministic formulations can be avoided. For example, if we choose α = 0.7 for the
problem in (3.11), then adding a constraint of the form in (3.13) would not change
the deterministic expected value solution. However, we would get a different result
if we set α = 1.0 . In this case, constraint (3.13) for the given data becomes simply:

4

∑
i=1

w1
i ≥ 12 . (3.14)

Adding (3.14) to the expected value problem results in an optimal solution with
w1∗ = (0.833,3.00,4.17,4.00)T . The expected value of using this solution in the
stochastic program is 383.99 , or only 2.14 more than the optimal value in (3.11).
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In general, probabilistic constraints are represented by deterministic equivalents
and are often included in stochastic programs. We discuss some of the theory of
these constraints in Chapter 3. Our emphasis in this book is, however, on optimizing
the expected value of continuous utility functions, such as the costs in this capacity
expansion problem. We, therefore, concentrate on recourse problems and assume
that probabilistic constraints are represented by deterministic equivalents within our
formulations.

This problem illustrates a multistage decision problem and the addition of prob-
abilistic constraints. The structure of the problem, however, allows for a two-stage
equivalent problem. In this way, the capacity expansion problem provides a bridge
between the two-stage example of Section 1.1 and the multistage problem of Sec-
tion 1.2.

This problem also has a natural interpretation with discrete decision variables.
For most producing units, only a limited number of possible sizes exists. Typical
sizes for high-temperature nuclear reactors would be 1000 MW and 1300 MW, so
that capacity decisions could only be taken as integer multiples of these values.

Exercises

1. The detailed-level decisions can be found quite easily according to an order of
merit rule. In this case, one begins with Mode 1 and uses the least expensive
equipment until its capacity is exhausted or demand is satisfied. One continues
to exhaust capacity or satisfy demand in order of increasing unit operating cost
and mode. Show that this procedure is indeed optimal for determining the yt

i j
values.

2. Prove that, in the case of no serial correlation ( ξt and ξt+1 stochastically inde-
pendent), an optimal solution has the same value for wt and xt for all ξ . Give
an example where this does not occur with serial correlation.

3. For the example in (3.11), suppose we add a reliability constraint of the form in
(3.14) to the expected value problem, but we use a right-hand side of 11 instead
of 12 . What is the stochastic program expected value of this solution?

1.4 Design for Manufacturing Quality

This section illustrates a common engineering problem that we model as a stochastic
program. The problem demonstrates nonlinear functions in stochastic programming
and provides further evidence of the importance of the stochastic solution.

Consider a designer deciding various product specifications to achieve some
measure of product cost and performance. The specifications may not, however,
completely determine the characteristics of each manufactured product. Key charac-
teristics of the product are often random. For example, every item includes variations
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due to machining or other processing. Each consumer also does not use the product
in the same way. Cost and performance characteristics thus become random vari-
ables.

Deterministic methods may yield costly results that are only discovered after
production has begun. From this experience, designing for quality and considera-
tion of variable outcomes has become an increasingly important aspect of modern
manufacturing (see, for example, Taguchi et al. [1989]). In industry, the methods of
Taguchi have been widely used (see also Taguchi [1986]). Taguchi methods can, in
fact, be seen as examples of stochastic programming, although they are often not
described this way.

In this section, we wish to give a small example of the uses of stochastic program-
ming in manufacturing design and to show how the general stochastic programming
approach can be applied. We note that we base our analysis on actual performance
measures, whereas the Taguchi methods generally attach surrogate costs to devia-
tions from nominal parameter values.

We consider the design of a simple axle assembly for a bicycle cart. The axle has
the general appearance in Figure 7.

Fig. 7 An axle of length w and diameter ξ with a central load L .

The designer must determine the specified length w and design diameter ξ of
the axle. We use inches to measure these quantities and assume that other dimen-
sions are fixed. Together, these quantities determine the performance characteristics
of the product. The goal is to determine a combination that gives the greatest ex-
pected profit.

The initial costs are for manufacturing the components. We assume that a single
process is used for the two components. No alternative technologies are available,
although, in practice, several processes might be available. When the axle is pro-
duced, the actual dimensions are not exactly those that are specified. For this exam-
ple, we suppose that the length w can be produced exactly but that the diameter ξ
is a random variable, ξ(x) , that depends on a specified mean value, x , that repre-
sents, for example, the setting on a machine. We assume a triangular distribution for
ξ(x) on [0.9x,1.1x] . This distribution has a density,
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fx(ξ ) =

⎧⎪⎨
⎪⎩

(100/x2)(ξ −0.9x) if 0.9x≤ ξ < x ,

(100/x2)(1.1x− ξ ) if x≤ ξ ≤ 1.1x ,

0 otherwise.

(4.1)

The decision is then to determine w and x , subject to certain limits, w ≤ wmax

and x≤ xmax , in order to maximize expected profits. For revenues, we assume that
if the product is profitable, we sell as many as we can produce. This amount is
fixed by labor and equipment regardless of the size of the axle. We, therefore, only
wish to determine the maximum selling price that generates enough demand for all
production. From marketing studies, we determine that this maximum selling price
depends on the length and is expressed as

r(1− e−0.1w) , (4.2)

where r is the maximum possible for any such product.
Our production costs for labor and equipment are assumed fixed, so only material

cost is variable. This cost is proportional to the mean values of the specified dimen-
sions because material is acquired before the actual machining process. Suppose c
is the cost of a single axle material unit. The total manufacturing cost for an item is
then

c

(
wπx2

4

)
. (4.3)

In this simplified model, we assume that no quantity discounts apply in the produc-
tion process.

Other costs are incurred after the product is made due to warranty claims and
potential future sales losses from product defects. These costs are often called qual-
ity losses. In stochastic programming terms, these are the recourse costs. Here, the
product may perform poorly if the axle becomes bent or broken due to excess stress
or deflection. The stress limit, assuming a steel axle and 100 -pound maximum cen-
tral load, is

w
ξ 3 ≤ 39.27 . (4.4)

For deflection, we use a maximum 2000-rpm speed (equivalent to a speed of 60
km/hour for a typical 15-centimeter wheel) to obtain:

w3

ξ 4 ≤ 63,169 . (4.5)

When either of these constraints is violated, the axle deforms. The expected cost for
not meeting these constraints is assumed proportional to the square of the violation.
We express it as

Q(w,x,ξ ) = min
y
{qy2 s. t.

w
ξ 3 − y≤ 39.27,

w3

ξ 4 −300y≤ 63,169} , (4.6)
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where y is, therefore, the maximum of stress violation and (to maintain similar
units) 1

300 of the deflection violation.
The expected cost, given w and x , is

Q(w,x) =
∫

ξ
Q(w,x,ξ ) fx(ξ )dξ , (4.7)

which can be written as:

Q(w,x) = q
∫ 1.1x

.9x
(100/x2)min{ξ − .9x,1.1x− ξ}

[max{0,

(
w
ξ 3

)
−39.27,

(
w3

300ξ 4

)
−210.56}]2dξ . (4.8)

The overall problem is to find:

max (total revenue per item − manufacturing cost per item

− expected future cost per item). (4.9)

Mathematically, we write this as:

maxz(w,x) = r(1− e−0.1w)− c

(
wπx2

4

)
−Q(w,x)

s. t. 0≤ w≤ wmax ,0≤ x≤ xmax . (4.10)

In stochastic programming terms, this formulation gives the deterministic equiv-
alent problem to the stochastic program for minimizing the current value for the
design decision plus future reactions to deviations in the axle diameter. Standard
optimization procedures can be used to solve this problem. Assuming maximum
values of wmax = 36 , xmax = 1.25 , a maximum sales price of $10 ( r = 10 ), a
material cost of $0.025 per cubic inch ( c = .025 ), and a unit penalty q = 1 , an
optimal solution is found at w∗ = 33.6 , x∗ = 1.038 , and z∗ = z(w∗,x∗) = 8.94 .
The graphs of z as a function of w for x = x∗ and as a function of x for w = w∗
appear in Figures 8 and 9. In this solution, the stress constraint is only violated when
.9x = 0.934≤ ξ ≤ 0.949 = (w/39.27)1/3 .

We again consider the expected value problem where random variables are re-
placed with their means to obtain a deterministic problem. For this problem, we
would obtain:

maxz(w,x, ξ̄ ) = r(1− e−0.1w)− c

(
wπx2

4

)

−q[max{0,
( w

x3

)
−39.27,

(
w3

300x4

)
−210.56}]2

s. t. 0≤ w≤ wmax , 0≤ x≤ xmax . (4.11)
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Fig. 8 The expected unit profit as a function of length with a diameter of 1.038 inches.

Fig. 9 The expected unit profit as a function of diameter with a length of 33.6 inches.

Using the same data as earlier, an optimal solution to (4.11) is w̄(ξ̄ ) = 35.0719 ,
x̄(ξ̄ ) = 0.963 , and z(w̄, x̄, ξ̄ ) = 9.07 .

At first glance, it appears that this solution obtains a better expected profit than
the stochastic problem solution. However, as we shall see in Chapter 8 on approx-
imations, this deterministic problem paints an overly optimistic picture of the ac-
tual situation. The deterministic objective is (in the case of concave maximiza-
tion) always an overestimate of the actual expected profit. In this case, the true
expected value of the deterministic solution is z(w̄, x̄) = −26.8 . This problem then
has a value of the stochastic solution equal to the difference between the expected
value of the stochastic solution and the expected value of the deterministic solution,
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z∗ − z(w̄, x̄) = 35.7 . In other words, solving the stochastic program results in a sig-
nificant profit compared to a considerable loss associated with solving the determin-
istic problem.

This problem is another example of how stochastic programming can be used.
The problem has nonlinear functions and a simple recourse structure. We will dis-
cuss further computational methods for problems of this type in Chapter 5. In other
problems, decisions may also be taken after the observation of the outcome. For
example, we could inspect and then decide whether to sell the product (Exercise 3).
This often leads to tolerance settings and is the focus of much of quality control.

The general stochastic program provides a framework for uniting design and
quality control. Many loss functions can be used to measure performance degrada-
tion to help improve designs in their initial stages. These functions may include the
stress and performance penalties described earlier, the Taguchi-type quadratic loss,
or methods based on reliability characterizations.

Most traditional approaches assume some form for the distribution as we have
done here. This situation rarely matches practice, however. Approximations can
nevertheless be used that obtain bounds on the actual solution value so that robust
decisions may be made without complete distributional information. This topic will
be discussed further in Chapter 8.

Exercises

1. For the example given, what is the probability of exceeding the stress constraint
for an axle designed according to the stochastic program optimal specifications?

2. Again, for the example given, what is the probability of exceeding the stress
constraint for an axle designed according to the deterministic program’s (4.11)
optimal specifications?

3. Suppose that every axle can be tested before being shipped at a cost of s per test.
The test completely determines the dimensions of the product and thus informs
the producer of the risk of failure. Formulate the new problem with testing.

1.5 A Routing Example

a. Presentation

Consider the following simplified vehicle routing problem. A vehicle has to visit
four clients (A,B,C,D) in a route starting and ending at a depot (or at the “home
sweet home” of the traveling salesperson). One single vehicle of capacity 10 is avail-
able. There is no limit on the travel time, so that the vehicle can make consecutive
legs if needed.
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It is easy to represent a routing problem on a graph (see Figure 10.). A graph
G = (V,E) consists of a set V of vertices (or nodes) and a set E of edges (or arcs).
Here, the nodes correspond to the set of clients plus the depot V = {0,A,B,C,D}
where 0 is the depot. Arc (i, j) corresponds to traveling from node i to node j .
Arcs may be traveled in either direction. We assume that the vehicle can travel from
any point (client or depot) to another. This is equivalent to saying that the graph is
complete.

The demands of clients A , B and D are known and equal to 2 . Demand of
client C is random. To put things to the extreme, assume that the demand of C is
either 1 or 7 with equal probability 1

2 . (As we will see later, the example also
works with less extreme situations, like a demand of 3 and 5 with equal probabil-
ity. Direct calculation of all cases is easier here as there are more infeasible cases).
All demands must be served. To make things clear, we assume in the sequel that
demand is collected at the client. All results and terminologies are easily adapted
if demand is delivered. The case of simultaneous pick-ups and deliveries is more
involved.
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Fig. 10 Graph representation of the vehicle routing problem.

The distances between any two points are given under the form of a symmetrical
matrix C = (ci j) , where ci j is the distance between i and j . Data are in Table 7.

Table 7 Distance matrix.

0 A B C D
0 − 2 4 4 1
A 2 − 3 4 2
B 4 3 − 1 3
C 4 4 1 − 3
D 1 2 3 3 −

The distance matrix is symmetrical, which means that the distance between two
points is the same when traveling in either direction. Distance matrices usually
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satisfy the so-called triangle inequality:

ci j ≤ cik + ck j ∀i, j,k . (5.1)

The triangle inequality simply means that it is shorter (or at least not longer) to go
directly from i to j than through an intermediate node k . The distance matrix in
Table 7 satisfies the triangle inequality, but not always strictly. As an example, the
distance between A and C is equal to the distance between A and B plus that
between B and C . This is due to using small integer data.

The problem of finding the shortest route to visit all clients starting and ending
at the depot is known as the TSP (traveling salesperson problem). The optimal TSP
route is (0,A,B,C,D,0) of length 10 .

This is checked by using a TSP solver. This can also be checked by brute force
calculation of all routes. For a problem with n clients, there are n! routes. Indeed,
starting from the depot, there are n possible clients to be visited first. When the first
client is fixed, there remain (n−1) clients to be visited next and so on. By symme-
try, only half of the n! routes have to be checked. As an example, (0,D,C,B,A,0)
has the same length as (0,A,B,C,D,0) . Here, 12 routes have to be checked. Alter-
natively, you may trust the authors.

Finding the shortest distance or TSP route is not enough here: the vehicle has
a limited capacity of 10 and the demand at C is random. The treatment of the
uncertainty depends on the moment when the information becomes available.

b. Wait-and-see solutions

A first case is when the level of the demand is known before starting the route.
This could be the case, for instance, if the delivered product is part of a just-in-time
production process. If the process works in batches, the number of batches required
in C may be 1 or 7 , depending on the production process. But the number of
batches may then be adequately forecasted.

Alternatively, the products may be wastes generated during the production pro-
cess. The amount to be collected can be known if an agreement exists with the client
or if the client is a subsidiary.

This is known as a situation of a priori information. The decision process corre-
sponds to the wait-and-see approach. It consists of making the choice of the route
after getting the information on the demand level.

The optimal solution in the wait-and-see situation is illustrated in Figure 11.

• Whenever client C requires a single unit to be collected, the vehicle’s capacity
is large enough to accommodate the demand of the four clients. It is optimal to
follow the TSP route of length 10 .

• Whenever client C requires 7 units, the total demand of 13 exceeds the vehicle’s
capacity. The vehicle must travel two successive routes. The combination of



1.5 A Routing Example 43

B,2

A,2

Depot

C,1

D,2

�

�

�

�

��
�
�
��

�
�

��

�
�

�
��

�
�

��

B,2

A,2

Depot

C,7

D,2

�

�

�

�

�

�
�

�
�

�
�
�

�
�
�
�
�
�
�

�
�

��

�
�

��

Fig. 11 Wait-and-see solutions (when demand in C is 1 or 7 ).

two routes with smallest distance is the sequence (0,A,D,0,B,C,0) of total
distance 14 .

This can be checked as follows. As the demand of C is 7 and the vehicle capacity
is 10 , the part of the route that visits C can either visit C alone or C with one
other client.

There are three possibilities in the first case depending on the order of visit of A ,
B and D , the best one being (0,A,B,D) . There are also three possibilities for the
second case, depending on the client which belongs to the route visiting C .

As both situations occur half of the time, optimal routes of length 10 and 14
are traveled half time each. It follows that the mean (or expected) distance traveled
under the wait-and-see approach is

WS =
1
2

10 +
1
2

14 = 12 .

c. Expected value solution

If the demand is not known in advance, it is discovered when arriving at client
C . One first attitude is to forget uncertainty. The route is planned in view of the
expected demand. As the expected demand of client C is 4 , the vehicle’s capacity
is large enough to accommodate the demand of the four clients (in fact, the expected
demand of C and the known demand of the other clients). It is optimal to follow
the TSP route (0,A,B,C,D,0) of length 10 .

Planning for the expected case is in fact “forgetting” uncertainty. It does not
mean uncertainty is absent. To say it in other words, “even if you forget uncertainty,
uncertainty will not forget you”.

Demand in C is revealed when arriving in C . It is 1 half of the time and 7 the
other half of the time, but in a random fashion. Figure 12 shows what really happens.



44 1 Introduction and Examples

B,2

A,2

Depot

C,1

D,2

�

�

�

�

��
�
�
��

�
�

���
�

�
�
��

�
�

��

B,2

A,2

Depot

C,7

D,2

�

�

�

�

��
�
�
��

�
�

���
	
	
	
	
	
	
		

	
	
	
	
	�

�
�
�

��

�
�

��

Fig. 12 Effective travel (when demand in C is 1 or 7 ) if TSP route is planned.

• When the vehicle arrives in C and demand is 1 , it simply proceeds with the
planned route. The total demand is 7 and is less than the capacity. The traveled
distance is 10. Everything goes well in a beautiful world.

• When the vehicle arrives in C , its load is already 4 . If the demand in C is
7 , the vehicle is unable to collect the total demand. Assuming the goods are
divisible, it collects 6 units, then returns to the depot to unload, goes back to C
to take the last unit and resumes its trip. The vehicle travels (0,A,B,C,0,C,D,0)
for a total length of 18 . In the routing literature, the situation when a vehicle
is unable to load a client’s demand is known as a failure. The extra distance
traveled due to this failure is a return trip to the depot. The length of 18 is equal
to the planned distance 10 of the TSP tour plus the distance 8 of the return trip
from C . You may also observe that the same solution is obtained if goods are
not divisible.

As both situations occur half of the time, the true cost under uncertainty of the
expected value solution is the so-called expectation of the expected value problem
or

EEV =
1
2

10 +
1
2

18 = 14 .

d. Recourse solution

Let us now improve the route choice, in view of the uncertainty at C .
First, observe that it is possible to travel the TSP route (0,A,B,C,D,0) in the op-

posite direction. The situation is represented on Figure 13. Travelling (0,D,C,B,A,0)
implies that

• when the vehicle arrives in C and demand is 1 , it simply proceeds with the
planned route. The traveled distance is 10 , as before.

• when the vehicle arrives in C and demand is 7 , the vehicle is able to collect
the demand in C . It will not be able to collect the total demand. After collecting
demand in C , it returns to the depot, unloads, and then goes to B and A . This
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situation is known as a preventive return. (It is already known in C that the load
in B cannot be collected. It is thus better to return to the depot and resume the
tour in B , instead of going to B and making a return trip to the depot.) The
vehicle travels (0,D,C,0,B,A,0) for a total length of 17 .

The true cost under uncertainty of traveling (0,D,C,B,A,0) is
1
2 10 + 1

2 17 = 13.5 .
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Fig. 13 Effective travel (when demand in C is 1 or 7 ) if TSP route is planned counterclockwise.

Thus, we have seen that the uncertainty implies that there is a difference between
a planned route and the route that is effectively traveled. In the stochastic terminol-
ogy, deciding on the planned route (or a priori route) is a first-stage decision, taken
before the random parameters are known. When the uncertainty is revealed, addi-
tional or second stage actions are possible. They are called recourse actions. In the
present example, we have two possible such actions: a return trip to the depot or a
preventive return.

After some calculations, it turns out that the optimal solution is to select
(0,C,B,A,D,0) as the planned route. If demand in C is 1 , the route is followed
with length 11 . Otherwise, a preventive return occurs in B . The traveled route is
(0,C,B,0,A,D,0) with length 14 . The optimal solution is represented in Figure 14.
The expected length under the optimal recourse policy is

RP =
1
2

11 +
1
2

14 = 12.5 .

This example illustrates three important aspects of stochastic programming:

• when dealing with uncertainty, it is important to consider what happens before
(first-stage) and after (second-stage) the uncertainty is revealed. It is also im-
portant to consider a wider variety of decisions (reversing the travel direction in
the first-stage, or doing return trips or preventive returns in the second-stage in
this example).

• due to uncertainty, a worse solution is often chosen in the favorable case.
This happens here. When demand is low, the vehicle travels the planned route
(0,C,B,A,D,0) , which is longer than the TSP tour. This may seem stupid: “why



46 1 Introduction and Examples

B,2

A,2

Depot

C,1

D,2

�

�

�

�

��
�
�
��

�
�
�
�
�
���

�
�

��

B,2

A,2

Depot

C,7

D,2

�

�

�

�

�

�
�
�
�
�
�
��

�
��

�
�
�
�
�
���

�
�

��

Fig. 14 Effective travel (when demand in C is 1 or 7 ) if optimal recourse route is planned.

didn’t you simply pick up the shortest route?” or lead to some “regret.” The rea-
son is simple. By visiting C first, the demand becomes known early in the route
and an efficient recourse action (preventive return after B ) can be taken when
the demand in C is high. This implies indeed some extra cost when the demand
in C is low.

• the following relations hold :

WS ≤ RP≤ EEV .

The first relation WS ≤ RP simply says that it is always better to get the infor-
mation in advance. The difference RP−WS is known as the EVPI , expected
value of perfect information. Here, EVPI = 0.5 . This is the maximal amount
the planner would be ready to pay client C to get the information in advance.
The second relation says that it is better to solve the stochastic program than
to pretend uncertainty does not exist. The difference EEV−RP is known as
the VSS , value of stochastic solution. Here, VSS = 1.5 . It tells says that dealing
with uncertainty really matters.

e. Other random variables

The present example may seem a bit extreme, with a demand being either 1 or 7 . In
fact, it extends to more general random variables. Let ξ denote the random demand
in C . We assume ξ has an expectation of 4 (as above). We also assume that the
probability of a negative demand is negligible and, similarly, that the probability of
ξ exceeding 8 is negligible.

Denote by p f = P (ξ > 4) , where the index f is a mnemonic to recall that
a failure will occur if the expected value solution is chosen. Then the following
relations hold:

WS = (1− p f )10 + p f 14 ,



1.5 A Routing Example 47

EEV = (1− p f )10 + p f 18 ,

RP = (1− p f )11 + p f 14 .

In the wait-and-see case, the TSP route of length 10 is optimal when demand is
less than or equal to 4 and the sequence (0,A,D,0,B,C,0) with length 14 other-
wise. In the EEV , a distinction is made between no failure (length 10 ) or a failure
with a return trip (length 18 ). Finally, in the RP , the route is either (0,C,B,A,D,0)
with length 11 when demand is less or equal to 4 or (0,C,B,0,A,D,0) with length
14 otherwise.

Now, consider that demand in C follows a normal distribution with expectation 4
and a variance such that P(ξ < 0)∼= 0 . Symmetry implies P(ξ > 8)∼= 0 . Symmetry
also implies p f = 1

2 . Thus, all results obtained in the above discrete case are also
obtained in the same manner for a normal distribution. The same is true for any
continuous uniform distribution of the type ξ ∼U [4−a,4 + a] , with 0 < a≤ 4 .

The table of the Poisson(4) distribution shows that p f = 0.371 . However, there
exists a nonzero probability of the demand exceeding 8 . We may denote this prob-
ability as pe = P(ξ > 8) = 0.0214 . If demand exceeds 8 , the recourse solution
must be adapted as traveling (0,B,C,0) becomes infeasible. A possible solution
for the recourse case is to travel (0,C,B,D,A,0) with length 11 when demand is
less or equal to 4 , travel (0,C,B,0,A,D,0) with length 14 when demand is be-
tween 5 and 8 and, finally, travel (0,C,0,A,B,D,0) with length 17 otherwise. The
corresponding expected cost is:

Expected cost = (1− p f )11 +(p f − pe)14 + pe17 .

f. Chance-constraints

The chance-constraint approach consists of finding the smallest distance feasible
route or sequence of routes. A route or sequence of routes is feasible if the vehicle
can collect the total demand with a large probability. A typical large probability is,
as usual, 90 or 95%. To make things concrete, we take a 95% requirement. This
corresponds to a 5% probability of failure.

In the initial example, demand is 1 or 7 with probability 1
2 . Feasibility with a

95% confidence level implies demand of 7 must always be collected. If not, the
confidence of the solution would only be 50%. The chance-constraint solution is the
sequence (0,A,D,0,B,C,0) of total distance 14 , much worse than the recourse
solution.

In line with the previous subsection, we now show how to deal with other random
variables.

Let ξ be the random variable representing the demand in C . Any route that does
not return to the depot has a capacity of 10 . The probability that it can cover the
demand is equal to P (6+ξ≤ 10) = P(ξ≤ 4) = 1− p f . Any route that returns once
to the depot consists of two legs, each having a capacity of 10 . Feasibility depends
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on the leg that visits C (as the other leg has a known demand less than the vehicle
capacity).

We can summarize all cases as follows:

• visiting C with the three other clients is feasible with probability P(ξ ≤ 4) =
1− p f . The best such route is the TSP tour (0,A,B,C,D,0) of length 10 .

• visiting C with two other clients is feasible with probability P (4 +ξ ≤ 10) =
P (ξ ≤ 6) . The smallest distance corresponding route is the sequence
(0,D,0,A,B,C,0) of total distance 12 .

• if C is visited with one other client, the route is feasible with probability
P (ξ ≤ 8) . The corresponding route with smallest distance is the sequence
(0,A,D,0,B,C,0) of total distance 14 .

• if the leg that visits C does not visit any other client, it is feasible with proba-
bility P (ξ ≤ 10) . The best corresponding route is (0,C,0,A,B,D,0) of length
17 .

The various solutions have increased lengths but also increased probabilities of
being feasible. To find the chance-constraint solution, it suffices to consider each
case in turn. The first that has a probability larger than the requested 95% is the
chance-constraint solution.

For a Poisson random variable with expectation 4 , p f = 0.371 and thus any
route that does not return to the depot is infeasible. A route that returns once to the
depot and visits C with two other clients has a probability P(ξ ≤ 6) = 0.8893 to
cover the demand and is thus infeasible. A route that returns once to the depot and
visits C with at most one other client has a probability P(ξ≤ 8) = 0.9786 to cover
the demand. The route (0,A,D,0,B,C,0) is, as before, the optimal solution for a
95% chance-constraint.

Exercises

1. Consider a continuous uniform distribution of the type ξ∼U [4−a,4+a] , with
0 < a≤ 4 . Obtain the optimal chance constraint solution as a function of a .

2. Consider the case where the demand in C follows a Normal distribution with
expectation 4 and a variance such that P(ξ < 0)∼= 0 . Obtain the optimal chance
constraint solution as a function of σ .

1.6 Other Applications

In this chapter, we discussed a few examples of stochastic programming applica-
tions. The examples were chosen because of their frequency in stochastic program-
ming application as well as to illustrate various aspects of stochastic programming
models in terms of number of stages, continuous or discrete variables, separable or
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nonseparable recourse, probabilistic constraints, and linear or nonlinear constraint
and objective functions.

Several other application areas deserve some recognition but were not discussed
yet. A particular example is in airline planning. One of the first applications of
stochastic programming was a decision on the allocation of aircraft to routes (fleet
assignment) by Ferguson and Dantzig [1956]. In this problem, penalties were in-
curred for lost passengers. The problem becomes a simple recourse problem in
stochastic programming terms that they solved using a variant of the standard trans-
portation simplex method (see Section 5.7).

Production planning is another major area that was not in our examples. This area
also has been the subject of stochastic programming models for many years. The
original chance-constrained stochastic programming model of Charnes, Cooper, and
Symonds [1958], for example, considered the production of heating oil with con-
straints on meeting sales and not exceeding capacity. Other examples include the
study by Escudero et al. [1993] for IBM procurement policies.

Water resource modeling has also received widespread application. A good ex-
ample of this area is the paper by Prékopa and Szántai [1976], where they discuss
regulation of Lake Balaton’s water level and show how stochastic programming
could have avoided floods that occurred before such planning methods were avail-
able. Approaches to pollution and the environmental area of water resource planning
are also common. An example discussion appears in Somlyódy and Wets [1988].

Energy planning has been the focus of many stochastic programming studies.
We note in particular Manne’s [1974] analysis of the U.S. decision on whether to
invest in breeder reactors. The more recent work of Manne and Richels [1992] on
buying insurance against the greenhouse effect is also an excellent example of how
stochastic programming can model uncertain future situations so that informed pub-
lic policy decisions may be made.

Stochastic programming has been applied in many other areas. Of particular note
is the forestry planning model in Gassmann ([1989]) and the hospital staffing prob-
lem in Kao and Queyranne ([1985]). We also include two exercises in stochastic pro-
gramming in sports. Many other references appear in King’s survey (King [1988b]),
the volume by Ermoliev and Wets [1988], and the collection edited by Wallace and
Ziemba [2005]. Many more applications are open to stochastic programming, es-
pecially with the powerful techniques now available. In the remainder of this book,
we will explore those methods, their properties, and the general classes of problems
they solve.

Exercises

These exercises all contain a stochastic programming problem that can be solved
using standard linear, nonlinear and integer programming software. For each prob-
lem, you should develop the model, solve the stochastic program, solve the expected
value problem, and find the value of the stochastic solution.
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1. Northam Airlines is trying to decide how to partition a new plane for its
Chicago–Detroit route. The plane can seat 200 economy class passengers. A
section can be partitioned off for first class seats but each of these seats takes
the space of 2 economy class seats. A business class section can also be in-
cluded, but each of these seats takes as much space as 1.5 economy class seats.
The profit on a first class ticket is, however, three times the profit of an economy
ticket. A business class ticket has a profit of two times an economy ticket’s
profit. Once the plane is partitioned into these seating classes, it cannot be
changed. Northam knows, however, that the plane will not always be full in
each section. They have decided that three scenarios will occur with about the
same frequency: (1) weekday morning and evening traffic, (2) weekend traffic,
and (3) weekday midday traffic. Under Scenario 1, they think they can sell as
many as 20 first class tickets, 50 business class tickets, and 200 economy tick-
ets. Under Scenario 2, these figures are 10 , 25 , and 175 . Under Scenario 3,
they are 5 , 10 , and 150 . You can assume they cannot sell more tickets than
seats in each of the sections. (In reality, the company may allow overbooking,
but then it faces the problem of passengers with reservations who do not appear
for the flight (no-shows). The problem of determining how many passengers to
accept is part of the field called yield management or revenue management. For
one approach to this problem, see Brumelle and McGill [1993]. This subject is
explored further in Exercise 1 of Section 2.7.)

2. Tomatoes Inc. (TI) produces tomato paste, ketchup, and salsa from four re-
sources: labor, tomatoes, sugar, and spices. Each box of the tomato paste re-
quires 0.5 labor hours, 1.0 crate of tomatoes, no sugar, and 0.25 can of spice. A
ketchup box requires 0.8 labor hours, 0.5 crate of tomatoes, 0.5 sacks of sugar,
and 1.0 can of spice. A salsa box requires 1.0 labor hour, 0.5 crate of tomatoes,
1.0 sack of sugar, and 3.0 cans of spice.

The company is deciding production for the next three periods. It is restricted
to using 200 hours of labor, 250 crates of tomatoes, 300 sacks of sugar, and 100
cans of spices in each period at regular rates. The company can, however, pay
for additional resources at a cost of 2.0 per labor hour, 0.5 per tomato crate,
1.0 per sugar sack, and 1.0 per spice can. The regular production costs for each
product are 1.0 for tomato paste, 1.5 for ketchup, and 2.5 for salsa.

Demand is not known with certainty until after the products are made in each
period. TI forecasts that in each period two possibilities are equally likely, cor-
responding to a good or bad economy. In the good case, 200 boxes of tomato
paste, 40 boxes of ketchup, and 20 boxes of salsa can be sold. In the bad case,
these values are reduced to 100 , 30 , and 5 , respectively. Any surplus produc-
tion is stored at costs of 0.5 , 0.25 , and 0.2 per box for tomato paste, ketchup,
and salsa, respectively. TI also considers unmet demand important and assigns
costs of 2.0 , 3.0 , and 6.0 per box for tomato paste, ketchup, and salsa, re-
spectively, for any demand that is not met in each period.

3. The Clear Lake Dam controls the water level in Clear Lake, a well-known resort
in Dreamland. The Dam Commission is trying to decide how much water to re-
lease in each of the next four months. The Lake is currently 150 mm below flood



1.6 Other Applications 51

stage. The dam is capable of lowering the water level 200 mm each month, but
additional precipitation and evaporation affect the dam. The weather near Clear
Lake is highly variable. The Dam Commission has divided the months into two
two-month blocks of similar weather. The months within each block have the
same probabilities for weather, which are assumed independent of one another.
In each month of the first block, they assign a probability of 1/2 to having a
natural 100-mm increase in water levels and probabilities of 1/4 to having a
50-mm decrease or a 250-mm increase in water levels. All these figures corre-
spond to natural changes in water level without dam releases. In each month of
the second block, they assign a probability of 1/2 to having a natural 150-mm
increase in water levels and probabilities of 1/4 to having a 50-mm increase or
a 350-mm increase in water levels. If a flood occurs, then damage is assessed at
$10,000 per mm above flood level. A water level too low leads to costly impor-
tation of water. These costs are $5000 per mm less than 250 mm below flood
stage. The commission first considers an overall goal of minimizing expected
costs. They also consider minimizing the probability of violating the maximum
and minimum water levels. (This makes the problem a special form of chance-
constrained model.) Consider both objectives.

4. The Energy Ministry of a medium-size country is trying to decide on expen-
ditures for new resources that can be used to meet energy demand in the next
decade. There are currently two major resources to meet energy demand. These
resources are, however, exhaustible. Resource 1 has a cost of 5 per unit of de-
mand met and a total current availability equal to 25 cumulative units of de-
mand. Resource 2 has a cost of 10 per unit of demand met and a total current
availability of 10 demand units. An additional resource from outside the country
is always available at a cost of 16.7 per unit of demand met.

Some investment is considered in each of Resources 1 and 2 to discover new
supplies and build capital. Resource 1 is, however, elusive. A unit of investment
in new sources of Resource 1 yields only 0.1 demand unit of Resource 1 with
probability 0.5 and yields 1 demand unit with probability 0.5 . For Resource 2,
investment is well known. Each unit of investment yields a demand unit equiva-
lent of Resource 2. Cumulative demand in the current decade is projected to be
10 , while demand in the next decade will be 25 .

The ministry wants to minimize expected costs of meeting demands in the
current and following decade assuming that the results of Resource 1 invest-
ment will only be known when the current decade ends. Next-decade costs are
discounted to 60% of their future real values (which should not change).

5. Pacific Pulp and Paper is deciding how to manage their main forest. They have
trees at a variety of ages, which we will break into Classes 1 to 4 . Currently,
they have 8000 acres in Class 1 , 10,000 acres in Class 2 , 20,000 in Class 3,
and 60,000 in Class 4 . Each class corresponds to about 25 years of growth.
The company would like to determine how to harvest in each of the next four 25-
year periods to maximize expected revenue from the forest. They also foresee
the company’s continuing after a century, so they place a constraint of having
40,000 acres in Class 4 at the end of the planning horizon.
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Each class of timber has a different yield. Class 1 has no yield, Class 2 yields
250 cubic feet per acre, Class 3 yields 510 cubic feet per acre, and Class 4
yields 700 cubic feet per acre. Without fires, the number of acres in Class i (for
i = 2,3 ) in one period is equal to the amount in Class i−1 from the previous
period minus the amount harvested from Class i− 1 in the previous period.
Class 1 at period t consists of the total amount harvested in the previous period
t−1 , while Class 4 includes all remaining Class 4 land plus the increment from
Class 3.

While weather effects do not vary greatly over 25-year periods, fire damage
can be quite variable. Assume that in each 25-year block, the probability is 1/3
that 15% of all timber stands are destroyed and that the probability is 2/3 that
5% is lost. Suppose that discount rates are completely overcome by increasing
timber value so that all harvests in the 100-year period have the same current
value. Revenue is then proportional to the total wood yield.

6. A hospital emergency room is trying to plan holiday weekend staffing for a
Saturday, Sunday, and Monday. Regular-time nurses can work any two days
of the weekend at a rate of $300 per day. In general, a nurse can handle 10
patients during a shift. The demand is not known, however. If more patients
arrive than the capacity of the regular-time nurses, they must work overtime at
an average cost of $50 per patient overload. The Saturday demand also gives a
good indicator of Sunday–Monday demand. More nurses can be called in for
Sunday–Monday duty after Saturday demand is observed. The cost is $400 per
day, however, in this case. The hospital would like to minimize the expected
cost of meeting demand.

Suppose that the following scenarios of 3-day demand are all equally likely:
(100,90,20) , (100,110,120) , (100,100,110) , (90,100,110) , (90,80,110) ,
(90,90,100) , (80,90,100) , (80,70,100) , and (80,80,90) .

7. After winning the pole at Monza, you are trying to determine the quickest way
to get through the first right-hand turn, which begins 200 meters from the start
and is 30 meters wide. You are through the turn at 100 meters past the begin-
ning of the next stretch (see Figure 15). As in the figure, you will attempt to stay
10 meters inside the barrier on the starting stretch (maintaining this distance
from each barrier as accelerate as fast as possible until point d1 . At this dis-
tance, you will start braking as hard as possible and take the turn at the current
velocity reached at some point d2 . (Assume a circular turn with radius equal
to the square of velocity divided by maximum lateral acceleration.) Obviously,
you do not want to go off the course.

The problem is that you can never be exactly sure of the car and track speed
until you start braking at point d1 . At that point, you can tell whether the track is
fast, medium, or slow, and you can then determine the point d2 where you enter
the turn. You suppose that the three kinds of track/car combinations are equally
likely. If fast, you accelerate at 27 m/sec 2 , decelerate at 45 m/sec 2 , and have
a maximum lateral acceleration of 1.8 g (= 17.5 m/sec 2 ). For medium, these
values are 24 , 42 , and 16 ; for slow, the values are 20 , 35 , and 14 . You
want to minimize the expected time through this section. You also assume that
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Fig. 15 Opening straight and turn for Problem 7.

if you follow an optimal strategy, other competitors will not throw you out of the
race (although you may not be sure of that). After finding the optimal strategy
for any feasible position on the second straight-away, find an optimal strategy
with a constraint to remain no more than 10 meters from the inside wall after
completing the turn and compare the results.

8. In training for the Olympic decathlon, you are trying to choose your takeoff
point for the long jump to maximize your expected official jump. Unfortunately,
when you aim at a certain spot, you have a 50/50 chance of actually taking off
10 cm beyond that point. If that violates the official takeoff line, you foul and
lose that jump opportunity. Assume that you have three chances and that your
longest jump counts as your official finish.

You then want to determine your aiming strategy for each jump. Assume that
your actual takeoff is independent from jump to jump. Initially you are equally
likely to hit a 7.4- or 7.6-meter jump from your actual takeoff point. If you hit
a long first jump, then you have a 2/3 chance of another 7.6-meter jump and
1/3 chance of jumping 7.4 meters. The probabilities are reversed if you jumped
7.4 meters the first time. You always seem to hit the third jump the same as the
second.

First, find a strategy to maximize the expected official jump. Then, maximize
decathlon points from the following Table 8.
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Table 8 Decathlon Points for Problem 8.

Distance Points Distance Points
7.30 886 7.46 925
7.31 888 7.47 927
7.32 891 7.48 930
7.33 893 7.49 932
7.34 896 7.50 935
7.35 898 7.51 937
7.36 900 7.52 940
7.37 903 7.53 942
7.38 905 7.54 945
7.39 908 7.55 947
7.40 910 7.56 950
7.41 913 7.57 952
7.42 915 7.58 955
7.43 918 7.59 957
7.44 920 7.60 960
7.45 922 7.61 962



Chapter 2
Uncertainty and Modeling Issues

In the previous chapter, we gave several examples of stochastic programming mod-
els. These formulations fit into different categories of stochastic programs in terms
of the characteristics of the model. This chapter presents those basic characteristics
by describing the fundamentals of any modeling effort and some of the standard
forms detailed in later chapters.

Before beginning general model descriptions, however, we first describe the
probability concepts that we will assume in the rest of the book. Familiarity with
these concepts is essential in understanding the structure of a stochastic program.
This presentation is made simple enough to be understood by readers unfamiliar
with the field and, thus, leaves aside some questions related to measure theory. Sec-
tions 2.2 through 2.7 build on these fundamentals and give the general forms in var-
ious categories. Section 2.8 provides a detailed discussion of a modeling exercise.
Sections 2.9 and 2.10 give alternative characterizations of stochastic optimization
problems and some background on the relationship of stochastic programming to
other areas of decision making under uncertainty. Section 2.11 briefly reviews the
main optimization concepts used in the book.

2.1 Probability Spaces and Random Variables

Several parameters of a problem can be considered uncertain and are thus repre-
sented as random variables. Production and distribution costs typically depend on
fuel costs, which are random. Future demands depend on uncertain market condi-
tions. Crop returns depend on uncertain weather conditions.

Uncertainty is represented in terms of random experiments with outcomes de-
noted by ω . The set of all outcomes is represented by Ω . In a transport and distri-
bution problem, the outcomes range from political conditions in the Middle East to
general trade situations, while the random variable of interest may be the fuel cost.
The relevant set of outcomes is clearly problem-dependent. Also, it is usually not
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very important to be able to define those outcomes accurately because the focus is
mainly on their impact on some (random) variables.

The outcomes may be combined into subsets of Ω called events. We denote by
A a collection of random events. As an example, if Ω contains the six possible
results of the throw of a die, A also contains combined outcomes such as an odd
number, a result smaller than or equal to four, etc. If Ω contains weather conditions
for a single day, A also contains combined events such as “a day without rain,”
which might be the union of a sunny day, a partly cloudy day, a cloudy day without
showers, etc.

Finally, to each event A ∈ A is associated a value P(A) , called a probability,
such that 0 ≤ P(A) ≤ 1 , P ( /0) = 0 , P (Ω) = 1 and P (A1∪A2) = P(A1)+ P(A2)
if A1∩A2 = /0 . The triplet (Ω ,A ,P) is called a probability space that must sat-
isfy a number of conditions (see, e.g., Chung [1974]). It is possible to define several
random variables associated with a probability space, namely, all variables that are
influenced by the random events in A . If one takes as elements of Ω events rang-
ing from the political situation in the Middle East to the general trade situations,
they allow us to describe random variables such as the fuel costs and the interest
rates and inflation rates in some Western countries. If the elements of Ω are the
weather conditions from April to September, they influence random variables such
as the production of corn, the sales of umbrellas and ice cream, or even the exam
results of undergraduate students.

In terms of stochastic programming, there exists one situation where the descrip-
tion of random variables is closely related to Ω : in some cases indeed, the elements
ω ∈ Ω are used to describe a few states of the world or scenarios. All random el-
ements then jointly depend on these finitely many scenarios. Such a situation fre-
quently occurs in strategic models where the knowledge of the possible outcomes in
the future is obtained through experts’ judgments and only a few scenarios are con-
sidered in detail. In many situations, however, it is extremely difficult and pointless
to construct Ω and A ; the knowledge of the random variables is sufficient.

For a particular random variable ξ , we define its cumulative distribution Fξ(x)=
P(ξ≤ x) , or more precisely Fξ(x) = P ({ω | ξ≤ x}) . Two major cases are then con-
sidered. A discrete random variable takes a finite or countable number of different
values. It is best described by its probability distribution, which is the list of possible
values, ξ k , k ∈ K , with associated probabilities,

f (ξ k) = P(ξ = ξ k) s. t. ∑
k∈K

f (ξ k) = 1 .

Continuous random variables can often be described through a so-called density
function f (ξ ) . The probability of ξ being in an interval [a,b] is obtained as

P(a≤ ξ ≤ b) =
∫ b

a
f (ξ)dξ ,

or equivalently
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P(a ≤ ξ ≤ b) =
∫ b

a
dF(ξ) ,

where F(·) is the cumulative distribution as earlier. Contrary to the discrete case,
the probability of a single value P(ξ = a) is always zero for a continuous random
variable. The distribution F(·) must be such that

∫ ∞
−∞ dF(ξ) = 1 .

The expectation of a random variable is computed as μ = ∑k∈K ξ k f (ξ k) or
μ =

∫ ∞
−∞ ξdF(ξ) in the discrete and continuous cases, respectively. The variance of

a random variable is E [(ξ−μ)2] . The expectation of ξr is called the r th moment
of ξ and is denoted ξ̄ (r) = E [ξr] . A point η is called the α -quantile of ξ if and
only if for 0 < α < 1 , η = min{x | F(x)≥ α} .

The appendix lists the distributions used in the textbook and their expectations
and variances. The concepts of probability distribution, density, and expectation eas-
ily extend to the case of multiple random variables. Some of the sections in the book
use probability measure theory which generalizes these concepts. These sections
contain a warning to readers unfamiliar with this field.

2.2 Deterministic Linear Programs

A deterministic linear program consists of finding a solution to

min z = cT x

s. t. Ax = b ,

x≥ 0 ,

where x is an (n×1) vector of decisions and c , A and b are known data of sizes
(n×1) , (m×n) , and (m×1) , respectively. The value z = cT x corresponds to the
objective function, while {x | Ax = b , x≥ 0} defines the set of feasible solutions.
An optimum x∗ is a feasible solution such that cT x ≥ cT x∗ for any feasible x .
Linear programs typically search for a minimal-cost solution under some require-
ments (demand) to be met or for a maximum profit solution under limited resources.
There exists a wide variety of applications, routinely solved in the industry. As in-
troductory references, we cite Chvátal [1980], Dantzig [1963], and Murty [1983].
We assume the reader is familiar with linear programming and has some knowledge
of basic duality theory as in these textbooks. A short review is given in Section 2.11.

2.3 Decisions and Stages

Stochastic linear programs are linear programs in which some problem data may
be considered uncertain. Recourse programs are those in which some decisions or
recourse actions can be taken after uncertainty is disclosed. To be more precise,
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data uncertainty means that some of the problem data can be represented as ran-
dom variables. An accurate probabilistic description of the random variables is as-
sumed available, under the form of the probability distributions, densities or, more
generally, probability measures. As usual, the particular values the various random
variables will take are only known after the random experiment, i.e., the vector
ξ = ξ (ω) is only known after the experiment.

The set of decisions is then divided into two groups:

• A number of decisions have to be taken before the experiment. All these de-
cisions are called first-stage decisions and the period when these decisions are
taken is called the first stage.

• A number of decisions can be taken after the experiment. They are called
second-stage decisions. The corresponding period is called the second stage.

First-stage decisions are represented by the vector x , while second-stage decisions
are represented by the vector y or y(ω) or even y(ω,x) if one wishes to stress
that second-stage decisions differ as functions of the outcome of the random exper-
iment and of the first-stage decision. The sequence of events and decisions is thus
summarized as

x→ ξ (ω)→ y(ω ,x) .

Observe here that the definitions of first and second stages are only related to before
and after the random experiment and may in fact contain sequences of decisions
and events. In the farming example of Section 1.1, the first stage corresponds to
planting and occurs during the whole spring. Second-stage decisions consist of sales
and purchases. Selling extra corn would probably occur very soon after the harvest
while buying missing corn will take place as late as possible.

A more extreme example is the following. A traveling salesperson receives one
item every day. She visits clients hoping to sell that item. She returns home when
a buyer is found or when all clients are visited. Clients buy or do not buy in a
random fashion. The decision is not influenced by the previous days’ decisions. The
salesperson wishes to determine the order in which to visit clients, in such a way
as to be at home as early as possible (seems reasonable, does it not?). Time spent
involves the traveling time plus some service time at each visited client.

To make things simple, once the sequence of clients to be visited is fixed, it is
not changed. Clearly the first stage consists of fixing the sequence and traveling to
the first client. The second stage is of variable duration depending on the successive
clients buying the item or not. Now, consider the following example. There are two
clients with probability of buying 0.3 and 0.8 , respectively and traveling times
(including service) as in the graph of Figure 1.

Assume the day starts at 8 A.M. If the sequence is (1,2) , the first stage goes
from 8 to 9:30. The second stage starts at 9:30 and finishes either at 11 A.M. if 1
buys or 4:30 P.M. otherwise. If the sequence is (2,1) , the first stage goes from 8
to 12:00, the second stage starts at 12:00 and finishes either at 4:00 P.M. or at 4:30
P.M. Thus, the first stage if sequence (2,1) is chosen may sometimes end after the
second stage is finished when (1,2) is chosen if Client 1 buys the item.
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Fig. 1 Traveling salesperson example.

2.4 Two-Stage Program with Fixed Recourse

The classical two-stage stochastic linear program with fixed recourse (originated by
Dantzig [1955] and Beale [1955]) is the problem of finding

minz = cT x + Eξ[minq(ω)T y(ω)] (4.1)

s. t. Ax = b , (4.2)

T (ω)x +Wy(ω) = h(ω) , (4.3)

x≥ 0 ,y(ω)≥ 0 . (4.4)

As in the previous section, a distinction is made between the first stage and the
second stage. The first-stage decisions are represented by the n1× 1 vector x .
Corresponding to x are the first-stage vectors and matrices c , b , and A , of sizes
n1×1 , m1×1 , and m1×n1 , respectively. In the second stage, a number of random
events ω ∈ Ω may realize. For a given realization ω , the second-stage problem
data q(ω) , h(ω) and T (ω) become known, where q(ω) is n2× 1 , h(ω) is
m2×1 , and T (ω) is m2×n1 .

Each component of q , T , and h is thus a possible random variable. Let Ti·(ω)
be the i th row of T (ω) . Piecing together the stochastic components of the second-
stage data, we obtain a vector ξ T (ω) = (q(ω)T ,h(ω)T ,T1·(ω), . . . ,Tm2·(ω)) , with
potentially up to N = n2 +m2 +(m2×n1) components. As indicated before, a single
random event ω (or state of the world) influences several random variables, here,
all components of ξ .
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Let also Ξ ⊂ ℜN be the support of ξ , that is, the smallest closed subset in
ℜN such that P (Ξ) = 1 . As just said, when the random event ω is realized, the
second-stage problem data, q , h , and T , become known. Then, the second-stage
decision y(ω) or (y(ω ,x)) must be taken. The dependence of y on ω is of a
completely different nature from the dependence of q or other parameters on ω . It
is not functional but simply indicates that the decisions y are typically not the same
under different realizations of ω . They are chosen so that the constraints (4.3) and
(4.4) hold almost surely (denoted a.s.), i.e., for all ω ∈ Ω except perhaps for sets
with zero probability. We assume random constraints to hold in this way throughout
this book unless a specific probability is given for satisfying constraints.

The objective function of (4.1) contains a deterministic term cT x and the expec-
tation of the second-stage objective q(ω)T y(ω) taken over all realizations of the
random event ω . This second-stage term is the more difficult one because, for each
ω , the value y(ω) is the solution of a linear program. To stress this fact, one some-
times uses the notion of a deterministic equivalent program. For a given realization
ω , let

Q(x,ξ (ω)) = min
y
{q(ω)T y |Wy = h(ω)−T(ω)x,y≥ 0} (4.5)

be the second-stage value function. Then, define the expected second-stage value
function

Q(x) = EξQ(x,ξ (ω)) (4.6)

and the deterministic equivalent program (DEP)

minz = cT x +Q(x) (4.7)

s. t. Ax = b ,

x≥ 0 .

(4.8)

This representation of a stochastic program clearly illustrates that the major differ-
ence from a deterministic formulation is in the second-stage value function. If that
function is given, then a stochastic program is just an ordinary nonlinear program.

Formulation (4.1)–(4.4) is the simplest form of a stochastic two-stage program.
Extensions are easily modeled. For example, if first-stage or second-stage decisions
are to be integers, constraint (4.4) can be replaced by a more general form:

x ∈ X , y(w) ∈ Y ,

where X = Zn1
+ and Y = Zn2

+ . Similarly, nonlinear first-stage and second-stage ob-
jectives or constraints can easily be incorporated.
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Examples of recourse formulation and interpretations

The definition of first stage versus second stage is not only problem dependent but
also context dependent. We illustrate different examples of recourse formulations
for one class of problems: the location problem.

Let i = 1, . . . ,m index clients having demand di for a given commodity. The
firm can open a facility (such as a plant or a warehouse) in potential sites j =
1, . . . ,n . Each client can be supplied from an open facility where the commodity is
made available (i.e., produced or stored). The problem of the firm is to choose the
number of facilities to open, their locations, and market areas to maximize profit or
minimize costs.

Let us first present the deterministic version of the so-called simple plant location
or uncapacitated facility location problem. Let x j be a binary variable equal to one
if facility j is open and zero otherwise. Let c j be the fixed cost for opening and
operating facility j and let v j be the variable operating cost of facility j . Let yi j

be the fraction of the demand of client i served from facility j and ti j be the unit
transportation cost from j to i .

All costs and profits should be taken in conformable units, typically on a yearly
equivalent basis. Let ri denote the unit price charged to client i and qi j = (ri−
v j− ti j)di be the total revenue obtained when all of client i ’s demand is satisfied
from facility j . Then the simple plant location problem or uncapacitated facility
location problem (UFLP) reads as follows:

UFLP: max
x,y

z(x,y) =−
n

∑
j=1

c jx j +
m

∑
i=1

n

∑
j=1

qi jyi j (4.9)

s. t.
n

∑
j=1

yi j ≤ 1 , i = 1, . . . ,m , (4.10)

0≤ yi j ≤ x j , i = 1, . . . ,m , j = 1, . . . ,n , (4.11)

x j ∈ {0,1} , j = 1, . . . ,n . (4.12)

Constraints (4.10) ensure that the sum of fractions of clients i ’s demand served
cannot exceed one. Constraints (4.11) ensure that clients are served only through
open plants.

It is customary to present the uncapacitated facility location in a different canon-
ical form that minimizes the sum of the fixed costs of opening facilities and of the
transportation costs plus possibly the variable operating costs. (There are several
ways to arrive at this canonical representation. One is to assume that unit prices are
much larger than unit costs in such a way that demand is always fully satisfied.) This
presentation more clearly stresses the link between the deterministic and stochastic
cases.

In the UFLP, a trade-off is sought between opening more plants, which results
in higher fixed costs and lower transportation costs and opening fewer plants with
the opposite effect. Whenever the optimal solution is known, the size of an open
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facility is computed as the sum of demands it serves. (In the deterministic case, it is
always optimal to have each yi j equal to either zero or one.) The market areas of
each facility are then well-defined.

The notation x j for the location variables and yi j for the distribution variables
is common in location theory and is thus not meant here as first stage and second
stage, respectively, although in some of the models it is indeed the case.

Several parameters of the problem may be uncertain and may thus have to be
represented by random variables. Production and distribution costs may vary over
time. Future demands for the product may be uncertain.

As indicated in the introduction of the section, we will now discuss various sit-
uations of recourse. It is customary to consider that the location decisions x j are
first-stage decisions because it takes some time to implement decisions such as mov-
ing or building a plant or warehouse. The main modeling issue is on the distribution
decisions. The firm may have full control on the distribution, for example, when the
clients are shops owned by the firm. It may then choose the distribution pattern after
conducting some random experiments. In other cases, the firm may have contracts
that fix which plants serve which clients, or the firm may wish fixed distribution pat-
terns in view of improved efficiency because drivers would have better knowledge
of the regions traveled.

a. Fixed distribution pattern, fixed demand, ri,v j, ti j stochastic

Assume the only uncertainties are in production and distribution costs and prices
charged to the client. Assume also that the distribution pattern is fixed in advance,
i.e., is considered first stage. The second stage then just serves as a measure of
the cost of distribution. We now show that the problem is in fact a deterministic
problem in which the total revenue qi j = (ri − v j − ti j)di can be replaced by its
expectation. To do this, we formally introduce extra second-stage variables wi j ,
with the constraint wi j(ω) = yi j for all ω . We obtain

max −
n

∑
j=1

c jx j + Eξ

m

∑
i=1

n

∑
j=1

qi j(ω)wi j(ω)

s.t. (4.10), (4.11), (4.12), and

wi j(ω) = yi j, i = 1, . . . ,m , j = 1, . . . ,n ∀ω . (4.13)

By (4.13), the second-stage objective function can be replaced by

Eξ

m

∑
i=1

n

∑
j=1

qi j(ω)yi j

or
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n

∑
i=1

n

∑
j=1

Eξqi j(ω)yi j ,

because yi j is fixed and summations and expectation can be interchanged. The
problem is thus the deterministic problem

max −
n

∑
j=1

c jx j +
m

∑
i=1

n

∑
j=1

(Eξqi j(ω))yi j

s.t. (4.10), (4.11), (4.12).
Although there exists uncertainty about the distribution costs and revenues, the

only possible action is to plan in view of the expected costs.

b. Fixed distribution pattern, uncertain demand

Assume now that demand is uncertain, but, for some of the reasons cited earlier,
the distribution pattern is fixed in the first stage. Depending on the context, the
distribution costs and revenues (v j,ti j,ri) may or may not be uncertain.

We define yi j = quantity transported from j to i , a quantity no longer defined
as a function of the demand di , because demand is now stochastic. For simplicity,
we assume that a penalty q+

i is paid per unit of demand di which cannot be satisfied
from all quantities transported to i (they might have to be obtained from other
sources) and a penalty q−i is paid per unit on the products delivered to i in excess
of di (the cost of inventory, for example). We thus introduce second-stage variables:
w−i (ω) = amount of extra products delivered to i in state ω ; w+

i (ω) = amount
of unsatisfied demand to i in state ω .

The formulation becomes

max−
n

∑
j=1

c jx j +
m

∑
i=1

n

∑
j=1

(Eξ(−v j− ti j))yi j + Eξ[−
m

∑
i=1

q+
i w+

i (ω)

−
m

∑
i=1

q−i w−i (ω)]+ Eξ

m

∑
i=1

ridi(ω) (4.14)

s. t.
m

∑
i=1

yi j ≤Mxj , j = 1, . . . ,n , (4.15)

w+
i (ω)−w−i (ω) = di(ω)−

n

∑
j=1

yi j , i = 1, . . . ,m , (4.16)

x j ∈ {0,1} , 0≤ yi j , w+
i (ω)≥ 0 ,w−i (ω)≥ 0 ,

i = 1, . . . ,m , j = 1, . . . ,n . (4.17)

This model is a location extension of the transportation model of Williams [1963].
The objective function contains the investment costs for opening plants, the expected
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production and distribution costs, the expected penalties for extra or insufficient de-
mands, and the expected revenue. This last term is constant because it is assumed
that all demands must be satisfied by either direct delivery or some other means
reflected in the penalty for unmet demand. The problem only makes sense if q+

i is
large enough, for example, larger than Eξ(v j + ti j) for all j , although weaker con-
ditions may sometimes suffice. Constraint (4.15) guarantees that distribution only
occurs from open plants, i.e., plants such that x j = 1 . The constant M represents
the maximum possible size of a plant.

Observe that here the variables yi j are first-stage variables. Also observe that in
the second stage, the constraints (4.16), (4.17) have a very simple form, as w+

i (ω) =
di−∑n

j=1 yi j if this quantity is non-negative and w−i (ω) = ∑n
j=1 yi j−di otherwise.

This is an example of a second stage with simple recourse.
Also note that in Cases a and b, the size or capacity of plant j is simply obtained

as the sum of the quantity transported from j , namely, ∑m
i=1 diyi j in Case a and

∑m
i=1 yi j in Case b.

c. Uncertain demand, variable distribution pattern

We now consider the case where the distribution pattern can be adjusted to the real-
ization of the random event. This might be the case when uncertainty corresponds to
long-term scenarios, of which only one is realized. Then the distribution pattern can
be adapted to this particular realization. This also implies that the sizes of the plants
cannot be defined as the sum of the quantity distributed, because those quantities
depend on the random event. We thus define as before:

x j =

{
1 if plant j is open,

0 otherwise.

We now let yi j depend on ω with yi j(ω) = fraction of demand di(ω) served
from j and define new variables wj = size (capacity) of plant j , with unit invest-
ment cost g j .

The model now reads

max −
n

∑
j=1

c jx j−
n

∑
j=1

g jwj + Eξ max
m

∑
i=1

n

∑
j=1

qi j(ω)yi j(ω) (4.18)

s. t. x j ∈ {0,1} , wj ≥ 0 , j = 1, . . . ,n , (4.19)
n

∑
j=1

yi j(ω)≤ 1 , i = 1, . . . ,m , (4.20)

m

∑
i=1

di(ω)yi j(ω)≤ wj , j = 1, . . . ,n , (4.21)
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0≤ yi j(ω)≤ x j , i = 1, . . . ,m , j = 1, . . . ,n , (4.22)

where qi j(ω) = (ri− v j− ti j)di(ω) now includes the demand di(ω) .
Constraint (4.20) indicates that no more than 100% of i ’s demand can be served,

but that the possibility exists that not all demand is served. Constraint (4.21) imposes
that the quantity distributed from plant j does not exceed the capacity w j decided
in the first stage. For the sake of clarity, one could impose a constraint w j ≤Mx j ,
but this is implied by (4.21) and (4.22). For a discussion of algorithmic solutions of
this problem, see Louveaux and Peeters [1992].

d. Stages versus periods; Two-stage versus multistage

In this section, we highlight again the difference in a stochastic program between
stages and periods of times. Consider the case of a distribution firm that makes
its plans for the next 36 months. It may formulate a model such as (4.18)–(4.22).
The location of warehouses would be first-stage decisions, while the distribution
problem would be second-stage decisions. The duration of the first stage would
be something like six months (depending on the type of warehouse) and the second
stage would run over the 30 remaining months. Although we may think of a problem
over 36 periods, a two-stage model is totally relevant. In this case, the only moment
where the number of periods is important is when the precise values of the objective
coefficients are computed.

In this example, a multistage model becomes necessary if the distribution firm
foresees additional periods where it is ready to change the location of the ware-
houses. In this example, suppose the firm decides that the opening of new ware-
houses can be decided after one year. A three-stage model can be constructed. The
first stage would consist of decisions on warehouses to be built now. The second
stage would consist of the distribution patterns between months 7 and 18 as well
and new openings decided in month 12 . The third stage would consist of distribu-
tion patterns between months 19 and 36 .

Fig. 2 Three-stage model decisions and times.
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Let x1 and x2(ω2) be the binary vectors representing opening warehouses in
stages 1 and 2, respectively. Let y2(ω2) and y3(ω3) be the vectors representing
the distribution decisions in stages 2 and 3, respectively, where ω2 and ω3 are the
states of the world in stages 2 and 3. Assuming each warehouse can only have a
fixed size M , the following model can be built:

max −
n

∑
j=1

c jx
1
j + Eξ2 max{

m

∑
i=1

n

∑
j=1

q2
i j(ω2)y2

i j(ω2)−
n

∑
j=1

c2
j(ω2)x2

j (ω2)

+ Eξ3|ξ2
max[

m

∑
i=1

n

∑
j=1

q3
i j(ω3)y3

i j(ω3)]}

s. t.
n

∑
j=1

y2
i j(ω2)≤ 1 , i = 1, . . . ,m ,

m

∑
i=1

di(ω2)y2
i j(ω2)≤Mx1

j , j = 1, . . . ,n ,

n

∑
j=1

y3
i j(ω3)≤ 1 , i = 1, . . . ,m ,

m

∑
i=1

di(ω3)y3
i j(ω3)≤M(x1

j + x2
j(ω2)) , j = 1, . . . ,n ,

x1
j + x2

j(ω2)≤ 1 , j = 1, . . . ,n ,

x1
j ,x

2
j(ω2) ∈ {0,1} , j = 1, . . . ,n ,

y2
i j(ω2),y3

i j(ω3)≥ 0 , i = 1, . . . ,m , j = 1, . . . ,n .

Multistage programs will be further studied in Section 3.4.

2.5 Random Variables and Risk Aversion

In our view, one can often classify random events and random variables in two major
categories. In the first category, we would place uncertainties that recur frequently
on a short-term basis. As an example, uncertainty may correspond to daily or weekly
demands. This normally leads to a model similar to the one in Section 2.4, Case b
(4.b), where allocation cannot be adjusted every time period. It follows that the
expectation in the second stage somehow represents a mean over possible values of
the random variables, of which many will occur. Thus, the expectation takes into
account realizations that might not occur and many realizations that will occur. To
fix ideas here, if in Model 4.b the units in the objective function are in a yearly
basis and the randomness involves daily or weekly demands, one may expect that
the value of the objective of stochastic model will closely match the realized total
yearly revenue.
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As one interesting example of a real-world application of a location model of
this first category, we may recommend the paper by Psaraftis, Tharakan, and Ceder
[1986]. It deals with the optimal location and size of equipment to fight oil spills.
Occurrence and sizes of spills are random. The sizes of the spills are represented
by a discrete random variable taking three possible values, corresponding to small,
medium, or large spills. Sadly enough, spills are sufficiently frequent that the expec-
tation may be considered close enough to the mean cost, as just described. Occur-
rence of spills at a given site is also random. It is described by a Poisson process. By
making the assumption of non-concomitant occurrence of spills, all equipment is
made available for each spill, which simplifies the second-stage descriptions com-
pared to (4.14)–(4.17).

As a common example, consider revenue management decisions such as those
considered in Problem 1.1 for an airline that must determine reservation controls
for hundreds of daily flights. This area has become one of the most widespread
applications of analytical methods to determining optimal choices under uncertain
conditions (see Talluri and van Ryzin [2005]). Airlines routinely solve thousands of
these stochastic programs each month and can reasonably expect to receive close
to the expected revenue from their decisions each month (if not each day). Risk
aversion has little affect in that case.

In the second category, we would place uncertainties that can be represented as
scenarios, of which basically only one or a small number are realized. An example in
a similar situation to the airline might be the problem of the organizers of the World
Cup championship soccer game, which only occurs once every four years, to choose
prices and seat allocations to maximize revenues but also to protect against possible
losses. This consideration would also be the case in long-term models where sce-
narios represent the general trend or path of the variables. As already indicated, this
is the spirit in which Model 4.c is built. In the second stage, among all scenarios
over which expectation is taken, only one is realized. The objective function with
only expected values may then be considered a poor representation of risk aversion,
which is typically assumed in decision making (if we exclude gambling).

Starting from the von Neumann and Morgenstern [1944] theory of utility, this
field of modeling preferences has been developed by economics. Models such as the
mean-variance approach of Markowitz [1959] have been widely used. Other meth-
ods have been proposed based on mixes of mean-variance and other approaches
(see, e.g, Ben-Tal and Teboulle [1986]). From a theoretical point of view, consid-
ering a nonlinear utility function transforms the problems into stochastic nonlinear
programs, which can require more computational effort than linear versions. In prac-
tice, risk aversion is often captured with a piecewise-linear representation, as in the
financial planning example in Section 1.2, to maintain a linear problem structure.

One interesting alternative to nonlinear utility models is to include risk aversion
in a linear utility model under the form of a linear constraint, called downside risk
(Eppen, Martin, and Schrage [1989]). The problem there is to determine the type
and level of production capacity at each of several locations. Plants produce various
types of cars and may be open, closed, or retooled. The demand for each type of car
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in the medium term is random. The decisions about the locations and configurations
of plants have to be made before the actual demands are known.

Scenarios are based on pessimistic, neutral, or optimistic realizations of demands.
A scenario consists of a sequence of realizations for the next five years. The stochas-
tic model maximizes the present value of expected discounted cash flows. The linear
constraint on risk is as follows: the downside risk of a given scenario is the amount
by which profit falls below some given target value. It is thus zero for larger profits.
The expected downside risk is simply the expectation of the downside risk over all
scenarios. The constraint is thus that the expected downside risk must fall below
some level.

To give an idea of how this works, consider a two-stage model similar to (4.1)–
(4.4) but in terms of profit maximization, by

maxz = cT x + Eξ[maxqT (ω)y(ω)]

s.t. (4.2)–(4.4).

Then define the target level g on profit. The downside risk u(ξ ) is thus defined by
two constraints:

u(ξ (ω))≥ g−qT (ω)y(ω) (5.1)

u(ξ (ω))≥ 0 . (5.2)

The constraint on expected downside risk is

Eξu(ξ)≤ l , (5.3)

where l is some given level. For a problem with a discrete random vector ξ , con-
straint (5.3) is linear. Observe that (5.3) is in fact a first-stage constraint as it runs
over all scenarios. It can be used directly in the extensive form. It can also be used
indirectly in a sequential manner, by imposing such a constraint only when needed.
This can be done in a way similar to the induced constraints for feasibility that we
will study in Chapter 5.

2.6 Implicit Representation of the Second Stage

This book is mainly concerned with stochastic programs of the form (4.1)–(4.4),
assuming that an adequate and computationally tractable representation of the re-
course problem exists. This is not always the case. Two possibilities then exist that
still permit some treatment of the problem:

• A closed form expression is available for the expected value function Q(x) .
• For a given first-stage decision x , the expected value function Q(x) is com-

putable.
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These possibilities are described in the following sections.

a. A closed form expression is available for Q(x)

We may illustrate this case by the stochastic queue median model (SQM) first pro-
posed by Berman, Larson, and Chiu [1985] from which we take the following in
a simplified form. The problem consists of locating an emergency unit (such as an
ambulance). When a call arrives, there is a certain probability that the ambulance
is already busy handling an earlier demand for ambulance service. In that event,
the new service demand is either referred to a backup ambulance service or entered
into a queue of other waiting “customers.” Here, the first-stage decision consists of
finding a location for the ambulance. The second stage consists of the day-to-day
response of the system to the random demands. Assuming a first-in, first-out deci-
sion rule, decisions in the second stage are somehow automatic. On the other hand,
the quality of response, measured, e.g., by the expected service time, depends on the
first-stage decision. Indeed, when responding to a call, an ambulance typically goes
to the scene and returns to the home location before responding to the next call.
The time when it is unavailable for another call is clearly a function of the home
location.

Let λ be the total demand rate, λ ≥ 0 . Let pi be the probability that a demand
originates from demand region i , with ∑m

i=1 pi = 1 . Let also t(i,x) denote the
travel time between location x and call i . On-scene service time is omitted for
simplicity. Given facility location x , the expected response time is the sum of the
mean-in-queue delay w(x) and the expected travel time t̄(x) ,

Q(x) = w(x)+ t̄(x) , (6.1)

where

w(x) =

{
λ t̄(2)(x)

2(1−λ t̄(x)) if λ t̄(x) < 1 ,

0 otherwise,
(6.2)

t̄(x) =
m

∑
i=1

pit(i,x) , (6.3)

and

t̄(2)(x) =
m

∑
i=1

pit
2(i,x) . (6.4)

The global problem is then of the form:

min
x∈X

Q(x) , (6.5)
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where the first-stage objective function is usually taken equal to zero and X repre-
sents the set of possible locations, which typically consists of a
network.

It should be clear that no possibility exists to adequately describe the exact se-
quence of decisions and events in the so-called second stage and that the expected
recourse Q(x) represents the result of a computation assuming the system is in
steady state.

b. For a given x , Q(x) is computable

The deterministic traveling salesperson problem (TSP) consists of finding a Hamil-
tonian tour of least cost or distance. Following a Hamiltonian tour means that
the traveling salesperson starts from her home location, visits all customers, (say
i = 1, . . . ,m ) exactly, and returns to the home location.

Now, assume each customer has a probability pi of being present. A full opti-
mization that would allow the salesperson to decide the next customer to visit at each
step would be a difficult multistage stochastic program. A simpler two-stage model,
known as a priori optimization is as follows: in the first-stage, an a priori Hamilto-
nian tour is designed. In the second stage, the a priori tour is followed by skipping
the absent customers. The problem is to find the tour with minimal expected cost
(Jaillet [1988]).

The exact representation of such a second-stage recourse problem as a mathemat-
ical program with binary decision variables might be possible in theory but would
be so cumbersome that it would be of no practical value. On the other hand, the
expected length of the tour (and thus Q(x) ) is easily computed when the tour (x)
is given.

Let ci j be the distance between i and j . Assume for simplicity of notation that
the given tour is {0,1,2, . . . ,n,0} where 0 is the depot.

Define t(k) as the expected length from k till the depot if k is present. Thus
we search for Q(x) = t(0) .

Start with t(n + 1) = 0 and t(n) = cn0 . Let p0 = 1 and cin+1 = ci0 . Then

t(k) =
n−k

∑
r=0

r

∏
j=1

(1− pk+ j) pk+r+1(ckk+r+1 + t(k + r + 1)) for k = n−1, . . . ,0,

where the condensed product is equal to 1 if r = 0 .
This calculation is a backward recursion: assuming k is present, it considers the

next present customer to be k + r+1 (and thus k +1 to k + r being absent) for all
possible successors ( k + 1 to n + 1 := 0 ).
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2.7 Probabilistic Programming

In probabilistic programming, some of the constraints or the objective are expressed
in terms of probabilistic statements about first-stage decisions. The description of
second-stage or recourse actions is thus avoided. This is particularly useful when
the cost and benefits of second-stage decisions are difficult to assess.

For some probabilistic constraints, it is possible to derive a deterministic linear
equivalent. A first example was given in Section 1.3. We now detail two other ex-
amples where a deterministic linear equivalent is obtained and one where it is not.

a. Deterministic linear equivalent: a direct case

Consider Exercise 1.6.1. An airline wishes to partition a plane of 200 seats into
three categories: first, business, economy. Now, assume the airline wishes a special
guarantee for its clients enrolled in its loyalty program. In particular, it wants 98%
probability to cover the demand of first-class seats and 95% probability to cover the
demand of business class seats (by clients of the loyalty program). First-class pas-
sengers are covered if they get a first-class seat. Business class passengers are cov-
ered if they get either a business or a first-class seat (upgrade). Assume weekday de-
mands of loyalty-program passengers are normally distributed, say ξF ∼ N(16,16)
and ξB ∼ N(30,48) for first-class and business, respectively. Also assume that the
demands for first-class and business class seats are independent.

Let x1 be the number of first-class seats and x2 the number of business seats.
The probabilistic constraints are simply

P (x1 ≥ ξF)≥ 0.98, (7.1)

P(x1 + x2 ≥ ξF +ξB)≥ 0.95 . (7.2)

Given the assumptions on the random variables, these probabilistic constraints can
be transformed into a deterministic linear equivalent.

Constraint (7.1) can be written as FF (x1) ≥ 0.98 , where FF(·) denotes the cu-
mulative distribution of ξF . Now, the 0.98 quantile of the normal distribution is
2.054 . As ξF ∼ N(16,16) , FF(x1)≥ 0.98 is the same as (x1−16)/4≥ 2.054 or
x1≥ 24.216 . Thus, the probabilistic constraint (7.1) is equivalent to a simple bound.

Similarly, constraint (7.2) can be written as FFB(x1 + x2)≥ 0.95 , where FFB(·)
denotes the cumulative distribution of ξF + ξB . By the independence assumption
and the properties of the normal distribution, ξF +ξB ∼ N(46,64) . The 0.95 quan-
tile of the standard normal distribution is 1.645 . Thus, FFB(x1 + x2)≥ 0.95 is the
same as (x1 + x2−46)/8≥ 1.645 or x1 + x2 ≥ 59.16 .

Thus, the probabilistic constraint (7.2) is equivalent to a linear constraint. We
say that (7.2) has a linear deterministic equivalent. This is the desired situation with
probabilistic constraints.
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b. Deterministic linear equivalent: an indirect case

We now provide an example where finding the deterministic equivalent requires
some transformation.

Consider the following covering location problem. Let j = 1, . . . ,n be the po-
tential locations with, as usual, x j = 1 if site j is open and 0 otherwise, and c j

the investment cost. Let i = 1, . . . ,m be the clients. Client i is served if there ex-
ists an open site within distance ti . The distance between i and j is ti j . Define
Ni = { j | ti j < ti} as the set of eligible sites for client i . The deterministic covering
problem is

min
n

∑
j=1

c jx j (7.3)

s. t. ∑
j∈Ni

x j ≥ 1 , i = 1, . . . ,m , (7.4)

x j ∈ {0,1} , j = 1, . . . ,n . (7.5)

Taking again the case of an ambulance service, one site may cover more than one
region or demand area. When a call is placed, the emergency units may be busy
serving another call. Let q be the probability that no emergency unit is available at
site j . For simplicity, assume this probability is the same for every site (see Toregas
et al. [1971]). Then, the deterministic covering constraint (7.4) may be replaced by
the requirement that P (at least one emergency unit from an open eligible site is
available) ≥ α where α is some confidence level, typically 90 or 95%. Here, the
probability that none of the eligible sites has an available emergency unit is q to the
power ∑ j∈Ni

x j , so that the probabilistic constraint is

1−q∑j∈Ni
x j ≥ α , i = 1, . . . ,m (7.6)

or
q∑ j∈Ni

x j ≤ 1−α .

Taking the logarithm on both sides, one obtains

∑
j∈Ni

x j ≥ b (7.7)

with

b =

⌈
ln(1−α)

lnq

⌉
, (7.8)

where �a denotes the smallest integer greater than or equal to a . Thus, the prob-
abilistic constraint (7.6) has a linear deterministic equivalent (7.7).
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c. Deterministic nonlinear equivalent: the case of random
constraint coefficients

The diet problem is a classical example of linear programming (discussed in Dantzig
[1963] for the case in Stigler [1945]) . It consists of selecting a number of foods in
order to get the cheapest menus that meet the daily requirements in the main nutri-
ents (energy, protein, vitamins,. . . ). Consider the data in the introductory example
of Chvátal (1980). Polly wants to choose among six foods (oatmeal, chicken, eggs,
whole milk, cherry pie and pork with beans). Each food has a given serving size;
for instance, a serving of eggs is two large eggs and a serving of pork with beans
is 260 grams. Each food has therefore a known content of nutrients. If we take the
case of protein, the content is 4 , 32 , 13 , 8 , 4 and 14 grams (grams) of proteins,
respectively, for the given serving sizes.

Let x1, . . . ,x6 represent the number of servings of each product per day. As Polly
is a girl of 18 years of age, she needs 55 grams of protein per day. The protein
constraint reads as follows:

4x1 + 32x2 + 13x3 + 8x4 + 4x5 + 14x6 ≥ 55 .

(We omit here the other constraints and the objective function, which are very im-
portant to Polly but not central to our discussion.)

The same book later on contains an interesting discussion on the difficulty to get
precise reliable RDA (recommended daily allowances) as well as precise nutrient
contents per serving (Chvátal [Chapter 11, pp. 182–187]). Let us concentrate on this
second aspect. It is indeed very unlikely that every large egg has exactly 6.5 grams
of protein, or every serving of 260 grams of pork with beans has exactly 14 grams
of protein. This implies that the nutrient content of each serving is in fact a random
variable. Let a1, . . . ,a6 be the random content in proteins for the six products. The
probabilistic constraint reads as follows:

P(a1 x1 + a2 x2 + a3 x3 + a4 x4 + a5 x5 + a6 x6 ≥ 55)≥ α . (7.9)

Let us now assume the contents of the products are normally distributed, say
ai ∼ N(μi,σ 2

i ) , i = 1, . . . ,6 . We can clearly assume independence between the
six products. Then a1 x1 + a2 x2 + a3 x3 + a4 x4 + a5 x5 + a6 x6 ∼ N(μ ,σ2) with
μ = μ1 x1 +μ2 x2 +μ3 x3 +μ4 x4 +μ5 x5 +μ6 x6 and σ 2 = σ 2

1 x2
1 +σ 2

2 x2
2 +σ2

3 x2
3 +

σ2
4 x2

4 +σ 2
5 x5 +σ 2

6 x6 .
Classical probabilistic analysis of the normal distribution implies that (7.9) is

equivalent to
(55− μ)/σ ≤ z1−α

with z1−α the (1−α) -quantile of the normal distribution. Taking α = 0.98 , the
constraint reads (55− μ)/σ ≤ −2.054 or μ ≥ 55 + 2.054 ·σ . As σ2 = σ 2

1 x2
1 +

σ2
2 x2

2 +σ 2
3 x2

3 +σ 2
4 x2

4 + σ 2
5 x2

5 + σ2
6 x2

6 , this constraint is non-linear and convex.
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2.8 Modeling Exercise

In this section, we propose a modeling exercise and comment on a number of pos-
sible answers.

a. Presentation

Consider a production or assembly problem. It consists of producing two products,
say A and B . They are obtained by assembling two components, say C1 and C2 ,
in fixed quantities. The following table shows the components usage for the two
products:

Components usage A B
C1 6 10
C2 8 5

Components are produced within the plant. Material (and / or operating) costs for
C1 and C2 are 0.4 and 1.2 , respectively. The level of production, or capacity,
is related to the work-force and the equipment. Each unit of capacity costs 150
and 180 and can produce batches of 60 and 90 components, respectively for C1
and C2 . Current capacity level is (40,20) batches and cannot be decreased. The
total number of batches must not exceed 120. An integer number of batches is not
requested here.

In the deterministic case, the demands and unit selling prices are certain and are
as follows:

A B
Demand 500 200
Unit selling price 50 60

Unmet demand results in lost sales. This does does not imply any additional penalty.

1. Select adequate units for each data. Formulate and solve the deterministic
problem.

Then, consider a number of stochastic variants. For the sake of comparison, in all
cases, the random variables have expectations which are the corresponding deter-
ministic values.
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2. Stochastic prices (known demand).

The selling prices of A and B are described by a random vector, say ζT = (ζ1,ζ2) .
The rest of the data is unchanged. Formulate a recourse model in the following
cases:

(a) ζT takes on the values (54,56) , (50,60) , and (46,64) with probability 0.3 ,
0.4 and 0.3 respectively.

(b) ζ1 takes on the values (46,50,54) with probability 0.3 , 0.4 and 0.3 ; ζ2

takes on the values (56,60,64) with probability 0.3 , 0.4 and 0.3 ; ζ1 and ζ2

are independent.
(c) ζ1 has a continuous uniform distribution in the range [46,54] ; ζ2 has a con-

tinuous uniform distribution in the range [56,64] ; ζ1 and ζ2 are independent.
(d) ζT takes on the values (70,50) , (50,60) , (30,70) with probability 0.3 , 0.4

and 0.3 .
(e) ζ1 takes on the values (30,50,70) with probability 0.3 , 0.4 and 0.3 ; ζ2

takes on the values (50,60,70) with probability 0.3 , 0.4 and 0.3 ; ζ1 and ζ2

are independent.

3. Stochastic demands (known prices).

The demand levels of A and B are described by a random vector, say ηT =
(η1,η2) . The rest of the data is as in the deterministic model.

(a) Formulate and solve a recourse model when ηT takes on the values (400,100) ,
(500,200) , (600,300) with probability 0.3 , 0.4 and 0.3 .

(b) Assume η1 and η2 are independent random variables with normal distribu-
tions, η1 ∼ N(500,6000) and η2 ∼ N(200,12000) . Find the optimal solution
of the recourse problem if the production of A and B is decided in the first-
stage and there is no restriction at all on the number of batches of C1 and C2 .

(c) Consider case (b). Add the restriction that the total number of
batches must not exceed 120 . Also ensure that the probability that the demand
of B is covered must be larger than 80%.

4. Stochastic prices and demands.

Demands and prices are described by three scenarios S1 , S2 and S3 , as follows.
Demand level S1 S2 S3
A 700 500 300
B 100 200 300
Unit selling price
A 45 50 55
B 70 60 50
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Formulate and solve a recourse model assuming the three scenarios have probability
0.3 , 0.4 and 0.3 respectively.

5. Obtain EVPI and VSS for some relevant cases among these alternatives.

b. Discussion of solutions

1. Choice of units and deterministic model.

Units are as follows. First, define the unit of time. We may assume here data are
given per day for example. Then, demand is the number of units of A and B per
day. Selling prices are given as $ per unit of A and B . The level of production
is given by the number of batches (of 60 C1 and 90 C2 ) per day. Capacity cost
must include work-force cost, operating costs, and depreciation per day. Material
costs are $ per component. The distinction among these costs is important for the
stochastic model.

There is more than one formulation for the deterministic problem. The following
formulation (M1) is useful in view of later stochastic models. Let

• x1 = number of batches of C1 available for production;
• x2 = number of batches of C2 available for production;
• x3 = number of units of A produced and sold per day;
• x4 = number of units of B produced and sold per day.

For batches of C1 and C2 , the objective contains the daily capacity cost. For
products A and B , it contains the selling price minus the material costs. (Each
unit of A , e.g. has a selling price of $50. It requests 6 units of C1 and 8 units
of C2 for a total material cost of $12. The difference is the objective coefficient
38 .) The first two constraints state that the usage of components is smaller than
the availability. The third constraint is the upper limit on the number of batches.
Demand and capacity bounds follow.

(M1) z = max−150x1−180x2 + 38x3 + 50x4

s. t. 6x3 + 10x4 ≤ 60x1,
8x3 + 5x4 ≤ 90x2,
x1 + x2 ≤ 120,

40≤ x1 , 20≤ x2 , 0≤ x3 ≤ 500 , 0≤ x4 ≤ 200.

The optimal solution of (M1) is z = 5800 , x1 = 220/3 , x2 = 140/3 , x3 = 400 ,
x4 = 200 . Product B is at the maximum corresponding to its demand. All 120
batches of capacity are used. The rest of the solutions follow.

A shorter formulation (M2) is to define two variables:

• x1 = number of units of A produced and sold per day;
• x2 = number of units of B produced and sold per day.
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This formulation requires computing the margins of A and B . Each unit of A
obtains the selling price of $50. It requires 6 components C1 and 8 components C2
for a total material cost of $12. It also requires 6/60 batches of capacity for C1 and
8/90 batches for C2 at a cost of $31. The net margin for A is thus $7 per unit. Sim-
ilarly, the net margin for B is $15 per unit. Note that this calculation of the margins
of A and B is only valid if there is no unused capacity or unsold product, which
is not always the case in a stochastic model. The first two constraints correspond to
maintaining at least the existing capacity levels of 40 and 20 respectively. The third
constraint corresponds to a maximal capacity level of 120 (each unit of A requires
6/60 of C1 and 8/90 of C2 , or 17/90 capacity units; each unit of B requires
10/60 of C1 and 5/90 of C2 or 20/90 capacity units). The model also includes
the demand constraints and reads as follows:

(M2) z = max7x1 + 15x2

s. t. 6x1 + 10x2 ≥ 2400,
8x1 + 5x2 ≥ 1800,
17x1 + 20x2 ≤ 10800,
0≤ x1 ≤ 500 , 0≤ x2 ≤ 200.

This model has the same optimal solution, z = 5800 , x1 = 400 , x2 = 200 , as
previously. It is clear in (M2) that the margin of B is larger than that of A . Thus,
product B is at the maximum corresponding to its demand. Product A is then
reduced from the limit of 120 batches of capacity. The number of batches for C1
and C2 can be computed from the production of A and B , and are equal to 220/3
and 140/3 , respectively.

2. Stochastic prices.

The essential modeling question concerns the timing of the decisions. Typically, the
capacity decisions are made in the long run. They are first-stage decisions. Sales oc-
cur when the price is known. They are always second-stage decisions. Depending on
the flexibility of the production process, the decision on the quantity to be produced
may be first- or second-stage. We may thus distinguish between two formulations:
production is first-stage (M3) or second-stage (M4).

2.1. Production is first-stage.

Let

• x1 = number of batches of C1 available for production;
• x2 = number of batches of C2 available for production;
• x3 = number of units of A produced per day;
• x4 = number of units of B produced per day;
• y1 = number of units of A sold per day;
• y2 = number of units of B sold per day;
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z = max−150x1−180x2−12x3−10x4

+ Eξ(q1(ω) y1(ω)+ q2(ω) y2(ω))
s. t. 6x3 + 10x4 ≤ 60x1,

8x3 + 5x4 ≤ 90x2,
x1 + x2 ≤ 120

y1(ω)≤ x3, y2(ω)≤ x4,

40≤ x1, 20≤ x2, 0≤ x3, 0≤ x4,

0≤ y1(ω)≤ 500, 0≤ y2(ω)≤ 200,

where ξT (ω) = (q1(ω),q2(ω)) = ζT (ω) corresponds to the selling prices.
In practice, it is customary to use a simplified notation where the dependence of

y and ξ on ω is not made explicit. This (abuse of) notation is used here.

(M3) z = max−150x1−180x2−12x3−10x4

+ Eξ(q1 y1 + q2 y2)
s. t. 6x3 + 10x4 ≤ 60x1,

8x3 + 5x4 ≤ 90x2,
x1 + x2 ≤ 120,

y1 ≤ x3 , y2 ≤ x4,
40≤ x1 , 20≤ x2 , 0≤ x3 , 0≤ x4 ,
0≤ y1 ≤ 500 , 0≤ y2 ≤ 200,

where ξT = (q1,q2) = ζT .
We now transform (M3) as in Section 2.4a. Assuming q1 and q2 are never

negative (a much needed assumption for the producer to survive), we obtain

(M3’) z = max−150x1−180x2−12x3−10x4

+Eξ(q1 min{x3,500}+ q2 min{x4,200})
s. t. 6x3 + 10x4 ≤ 60x1,

8x3 + 5x4 ≤ 90x2,
x1 + x2 ≤ 120,

40≤ x1 , 20≤ x2 , 0≤ x3 , 0≤ x4,
or
(M3”) z = max−150x1−180x2−12x3−10x4

+μ1 min{x3,500}+ μ2 min{x4,200}
s. t. 6x3 + 10x4 ≤ 60x1

8x3 + 5x4 ≤ 90x2

x1 + x2 ≤ 120
40≤ x1 , 20≤ x2 , 0≤ x3 , 0≤ x4

where (μ1,μ2) is the expectation of ξT .
As (μ1,μ2) is equal to the deterministic selling prices (50,60) , it is easy to

show that (M3”) has the same optimal solution as the model (M1). This is true
for each of the considered cases (a) to (e). To put it another way, if production is
decided in the first-stage, the stochastic model where only the selling prices are
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random can be replaced by a deterministic model with the random prices replaced
by their expectations.

2.2. Production is second-stage

Let x1 and x2 be as in (M3) and

• y1 = number of units of A produced and sold per day;
• y2 = number of units of B produced and sold per day.

(M4) z = max−150x1−180x2 + Eξ(q1 y1 + q2 y2)
s. t. x1 + x2 ≤ 120,

6y1 + 10y2 ≤ 60x1,
8y1 + 5y2 ≤ 90x2,
40≤ x1 , 20≤ x2 , 0≤ y1 ≤ 500 , 0≤ y2 ≤ 200,

where ξT = (q1,q2) = ζT − (12,10) corresponds to selling prices minus material
costs.

Before using formulation (M4), consider the deterministic formulation (M2). As
long as the margin of B is larger than the margin of A and the margin of A re-
mains positive, it is optimal to produce and sell 400 A and 200 B . If this holds for
all realizations of the selling prices, the same optimal solution is obtained for all re-
alizations of ζ . It is thus the optimal solution of the stochastic model. (This will be
elaborated in the comments after Proposition 5 of Chapter 4.) The expected margin
is simply Eζ(400ζ1 + 200ζ2− 26,200) where 26,200 is the total of the material
and capacity costs for the daily production of 400 A and 200 B . As (ζ1,ζ2) has
expectation (50,60) as in the deterministic model, the expected margin is again the
same as in the deterministic model. This situation occurs in cases (a), (b) and (c)
of this exercise: the margin of A is ζ1− 43 , the margin of B is ζ2− 45 and the
relation ζ2−45≥ ζ1−43≥ 0 holds.

If at some point, the margin of A becomes negative or exceeds that of B , then
(M4) is a truly stochastic model. For cases (d) and (e), there are values of the selling
prices where the margin of A exceeds that of B . The stochastic model (M4) has to
be solved.

In case (d), ζT takes on the values (70,50) , (50,60) , (30,70) with probability
0.3 , 0.4 and 0.3 , respectively. First-stage optimal capacity decisions are (x1,x2) =
(69.167,50.833) . Second-stage optimal production and sale decisions (x3,x4) are
(500,115) , (500,115) and (358.333,200) for the three possible scenarios. The
optimal objective value is z = 5990 .

In case (e), the two random variables ζ1 and ζ2 are independent, taking three
different values each. Thus, the second-stage must consider 9 realizations. The op-
timal solution is the same as in the deterministic case: first-stage decisions are
(x1,x2) = (73.333,46.667) , second-stage decisions are (x3,x4) = (400,200) , with
objective value z = 5800 .
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3. Stochastic demands.

(a) As in Question 2, the first modeling question is the timing of the decisions.
Capacity decisions are made in the long run and are first-stage decisions. Sales occur
when price is known and are second-stage. The decisions on the quantities to be
produced may be first- or second-stage.

(a.1) Production is first-stage.

If production is first-stage, lost sales occur when demand exceeds production. What
happens when production exceeds demand is problem dependent. In some situa-
tions, excess production may be held in inventory. This would be the case when
the randomness represents day-to-day variations in demand. Then excess produc-
tion is used later to compensate for possible lost sales. Randomness only results in
inventory costs. On the other hand, for products such as perishable goods, produc-
tion is lost ( C1 and C2 could be flour and eggs, A and B could be bread and
pastry, e.g.) and lost sales cannot be compensated. The same is true when the ran-
domness describes a set of scenarios of which only one is realized. The scenarios
could represent the uncertainty about the success of a new product. If a product is
not successful, extra production is lost. If it is very successful, sales are lost to com-
petitors if the production level is insufficient. Or, alternative actions are needed such
as subcontracting or overtime.

We now present a formulation (M5) corresponding to a scenario situation (excess
production is lost, lost sales are not compensated). The decision variables are the
same as in (M3).

(M5) z = max−150x1−180x2−12x3−10x4

+ Eξ(50y1 + 60y2)
s. t. 6x3 + 10x4 ≤ 60x1,

8x3 + 5x4 ≤ 90x2,
x1 + x2 ≤ 120,

y1 ≤ x3 , y2 ≤ x4,
40≤ x1 , 20≤ x2 , 0≤ x3 , 0≤ x4 ,
0≤ y1 ≤ d1 , 0≤ y2 ≤ d2,

where ξT = (d1,d2) = ηT correspond to the demand level.
The first-stage optimal capacity decisions are (x1,x2) = (56.667,41.111) . The

second-stage optimal production and sale decisions (x3,x4) are
(400,100) in the three possible scenarios. The optimal objective value is z = 4300 .
Observe that the production is set to meet the lowest possible demand.
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(a.2) Production is second-stage.

If production is second-stage, lost sales occur when the available production capac-
ities are insufficient to cover the demand. Excess production does not occur as the
level of production can be adjusted to the downside. The decision variables are the
same as in (M4). Formulation (M6) reads as follows:

(M6) z = max−150x1−180x2 + Eξ(38y1 + 50y2)
s. t. x1 + x2 ≤ 120,

6y1 + 10y2 ≤ 60x1,
8y1 + 5y2 ≤ 90x2,
40≤ x1 , 20≤ x2 , 0≤ y1 ≤ d1 , 0≤ y2 ≤ d2,

where ξT = (d1,d2) = ηT corresponds to the demand level.
The first-stage optimal capacity decisions are (x1,x2) = (67.083,41.111) . The

second-stage optimal production and sale decisions (x3,x4) are
(400,100) , (337.5,200) and (337.5,200) for the three possible scenarios. The
optimal objective value is z = 4575 . Observe that the capacity limit of 120 batches
is not fully used.

(b) We consider a variant of formulation (M5) where the only constraints on x1 and
x2 are the components usage:

(M7) z = max−150x1−180x2−12x3−10x4

+ Eξ(50min{x3,d1}+ 60min{x4,d2})
s. t. 6x3 + 10x4 ≤ 60x1,

8x3 + 5x4 ≤ 90x2,
0≤ x1 , 0≤ x2 , 0≤ x3 , 0≤ x4,

where ξT = (d1,d2) = ηT corresponds to the demand level.
Clearly, the two constraints are always tight. Replacing x1 by (6x3 + 10x4)/60

and x2 by (8x3 + 5x4)/90 , the model becomes

z = max{−43x3−45x4 + Eξ(50min{x3,d1}
+ 60min{x4,d2}) | 0≤ x3, 0≤ x4} ,

or
(M7’) z = max{−43x3 + 50Eξ1 min{x3,ξ1}−45x4

+ 60Eξ2 min{x4,ξ2} | 0≤ x3 , 0≤ x4}.
This optimization is separable in x3 and x4 . Both variables will be nonzero. So,

we are searching twice for the unconstrained minimum of an expression of the form
−a x+bQ(x) , with Q(x) = Eξ min{x,ξ} and ξ∼N(μ ,σ 2) . From Exercise 2.8.2,
we obtain that Q′(x) = 1−F(x) . As Q′′(x) =− f (x) , the second-order conditions
are satisfied. Thus the unconstrained minimum is obtained for Q′(x) = a/b , i.e.
1−F(x) = a/b .

Denote by Fi(·) the cumulative distribution of ξi , i = 1,2 . For x3 , the un-
constrained optimum satisfies 1− F1(x3) = 43/50 , or F1(x3) = 0.14 . It corre-
sponds to a quantile q = −1.08 and a decision x3 = 500−1.08

√
6000 = 416.34 .

For x4 , we have 1− F2(x4) = 45/60 , or F2(x4) = 0.25 . It corresponds to a
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quartile q = −0.675 and a decision x4 = 200− 0.675
√

12000 = 126.06 . For
the sake of comparison, we may compute x1 = (6x3 + 10x4)/60 = 62.644 and
x2 = (8x3 + 5x4)/90 = 44.011 . Also, using the closed form expression of Q(x) ,
(see again Exercise 2.8.2), one can obtain the optimal value of z .

(c) Requesting that the probability that the demand of B is covered must be larger
than 80% is P(x4 ≥ ξ2) ≥ 0.8 or F2(x4) ≥ 0.8 . The 0.8 quantile is 0.84 . Thus,
F2(x4)≥ 0.8 is equivalent to (x4− μ2)/σ2 ≥ 0.8 , or x4 ≥ 200 + 0.84

√
12000 , or

x4 ≥ 292.02 .
The model to solve is:

(M8) z = max{−43x3 + 50Eξ1 min{x3,ξ1}−45x4

+ 60Eξ2 min{x4,ξ2} | 0≤ x3,
292.02≤ x4 , 17x3 + 20x4 ≤ 10800},

where the constraint on the 120 batches has been transformed as in (M2).
By applying the Karush-Kuhn-Tucker conditions (see Review Section 2.11c.),

one can show that (x3,x4) = (291.74,292.02) is the optimal solution.

4. Just as in the previous cases, there are two possible formulations as the produc-
tion decisions may be first- or second-stage. Model (M9) corresponds to first-stage
production while (M10) corresponds to second-stage production.

(M9) z = max−150x1−180x2−12x3−10x4

+ Eξ(q1 y1 + q2 y2)
s. t. 6x3 + 10x4 ≤ 60x1,

8x3 + 5x4 ≤ 90x2,
x1 + x2 ≤ 120,

y1 ≤ x3 , y2 ≤ x4,
40≤ x1 , 20≤ x2 , 0≤ x3 , 0≤ x4 ,
0≤ y1 ≤ d1 , 0≤ y2 ≤ d2,

where ξT = (q1,q2,d1,d2) , with q1 and q2 the selling prices and d1 and d2 the
demands jointly defined in a scenario. Thus ξT=(45,70,700,100),(50,60,500,200)
and (55,50,300,300) with probability 0.3 , 0.4 , and 0.3 respectively. The opti-
mal solution is z = 3600 , (x1,x2)= (46.667,32.222) with corresponding (x3,x4)=
(300,100) . The second-stage decisions are (y1,y2) = (300,100) in all three sce-
narios. As the production cannot be adapted to the demand, the optimal solution is
to plan for the lowest demand and the expected margin is low.

(M10) z = max−150x1−180x2 + Eξ(q1 y1 + q2 y2)
s. t. x1 + x2 ≤ 120

6y1 + 10y2 ≤ 60x1,
8y1 + 5y2 ≤ 90x2,
40≤ x1 , 20≤ x2 , 0≤ y1 ≤ d1 , 0≤ y2 ≤ d2,

where ξT = (q1,q2,d1,d2) with q1 and q2 the selling prices minus the material
costs and d1 and d2 the demands. Thus, ξT = (33,60,700,100) , (38,50,500,200)
and (43,40,300,300) with probability 0.3 , 0.4 , and 0.3 . The optimal solu-
tion is z = 4048.75 , (x1,x2) = (73.333,46.667) . The second-stage decisions are
(y1,y2) = (462.5,100) , (400,200) and (300,260) in the three scenarios. While
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obtaining the optimal solution of (M10) with your favorite LP solver, you may ob-
serve that there is a high shadow price for the maximum number of batches.

Exercises

1. Consider Exercise 1 of Section 1.6.

(a) Show that this is a two-stage stochastic program with first-stage integer
decision variables. Observe that, for a random variable with integer real-
izations, the second-stage variables can be assumed continuous because
the optimal second-stage decisions are automatically integer. Assume that
Northam revises its seating policy every year. Is a multistage program
needed?

(b) Assume that the data in Exercise 1 correspond to the demand for seat reser-
vations. Assume that there is a 50% probability that all clients with a reser-
vation effectively show up and that 10 or 20% no-shows occur with equal
probability. Model this situation as a three-stage program, with first-stage
decisions as before, second-stage decisions corresponding to the number of
accepted reservations, and third-stage decisions corresponding to effective
seat occupation. Show that the third stage is a simple recourse program with
a reward for each occupied seat and a penalty for each denied reservation.

(c) Consider now the situation where the number of seats has been fixed to 12 ,
24 , and 140 for the first class, business class, and economy class, respec-
tively. Assume the top management estimates the reward of an occupied
seat to be 4 , 2 , and 1 in the first class, business class, and economy class,
respectively, and the penalty for a denied reservation is 1.5 times the re-
ward. Model the corresponding problem as a recourse program. Find the
optimal acceptance policy with the data of Exercise 1 in Section 1.6 and
no-shows as in (b) of the current exercise. To simplify, assume that passen-
gers with a denied reservation are not seated in a higher class even if a seat
is available there.

2. Let Q(x) = Eξ min{x,ξ} .

(a) Obtain a closed form expression for Q(x) when ξ follows a Poisson dis-
tribution.

(b) Obtain a closed form expression for Q(x) when ξ follows a normal dis-
tribution. (Hint: for a normal distribution, the relation ξ f (ξ) = μ f (ξ)−
σ 2 f ′(ξ) holds for any given ξ .)

(c) Assume ξ has a continuous distribution. Show that Q′(x) = 1−F(x) .

3. Consider an airplane with x seats. Assume passengers with reservations show
up with probability 0.90 , independently of each other.
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(a) Let x = 40 . If 42 passengers receive a reservation, what is the probability
that at least one is denied a seat.

(b) Let x = 50 . How many reservations can be accepted under the constraint
that the probability of seating all passengers who arrive for the flight is
greater than 90% ?

4. Consider the design problem in Section 1.4. Suppose the design decision does
not completely specify x in (1.4.1) , but the designer only knows that if a value
x̂ is specified then x ∈ [.99x̂,1.01x̂] . Suppose a uniform distribution for x is
assumed initially on this interval. How would the formulation in Section 1.4 be
modified to account for information as new parts are produced?

5. Consider the example in Section 2.7a.

(a) One may feel uncomfortable with the deterministic linear equivalent yield-
ing a non-integer number of seats. Show how to cope with this.

(b) One may also feel uncomfortable with the demands represented by normal
distributions. Show that deterministic linear equivalents are also obtained if
ξF ∼ P(3) and ξB ∼ P(4) for example.

2.9 Alternative Characterizations and Robust Formulations

While the main focus of this book is on problems that can be represented in the
form in (4.1–4.4) as stochastic linear programs, this formulation can still repre-
sent a wide range of risk preferences. As observed in Section 2.5, an expected von
Neumann-Morgenstern concave utility objective can be represented as a piecewise-
linear function. For example, if the utility function is U(−q(ω)T y(ω)− γ) where
γ is a scaling parameter for fitting the function, then an additional set of variables
y′(ω) j with bounds u j and slopes −q′j such that 0≤ y′(ω) j ≤ u j , −q′j ≥−q′j+1 ,
and for j = 0, . . . ,J can be defined with an additional linear constraint as:

−y′0 + ∑
j=1

y′j(ω)−q(ω)T y(ω) = γ, (9.1)

and with a new recourse function objective to minimize

−q′0y0(ω)+
J

∑
j=1

q′jy(ω). (9.2)

The parameters γ , q′ , and u′ can be chosen to fit the utility function U as closely
as desired while maintaining the same linear optimization form as in (4.1–4.4).

Other risk–measures may be included in the objective and as fixed or probabilis-
tic constraints. A common use of these constraints in financial applications is to
maximize expected return subject to a constraint on value–at–risk ( VaR ), the great-
est loss in portfolio value that can occur with a given probability α , defined as
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VaRα(q(ω)T y(ω)) = min{t|P(q(ω)T y(ω)≤ t)≥ α}. (9.3)

A VaR constraint to limit losses to be no greater than t̄ with probability at most α
can then be written as

P (q(ω)T y(ω)≤ t̄)≥ α, (9.4)

since this ensures that VaRα(q(ω)T y(ω))≤ t̄.
A criticism of VaR as a measure of risk is that it does not have the useful property

of subadditivity such that the VaR of the sum of two random variables is at most the
the sum of the VaR ’s of each individual random variable. The subadditive property
is part of the set of axioms that define coherent risk measures (see Artzner, Delbaen,
Eber, and Heath [1999]), such that R(·) is a coherent risk measure if the following
hold:

Definition 2.1. 1. subadditivity: R(ξ+ζ)≤R(ξ)+R(ζ) for any random variables
ξ and ζ ;

2. positive homogeneity (of degree one): R(λξ) = λR(ξ) for all λ ≥ 0 ;
3. monotonicity: R(ξ) ≤ R(ζ) whenever ξ � ζ , where � indicates first-order

stochastic dominance,i.e., P(ξ ≤ t)≥ P(ζ ≤ t),∀t ;
4. translation invariance: R(ξ + t) = R(ξ)+ t for any t ∈ℜ .

A related risk measure to VaR , called the conditional value-at-risk ( CVaR ), can
be defined to avoid the potential problems of a non-subadditive risk measure by
taking the conditional expectations over losses in excess of VaR . For random loss
ξ with distribution function P , the α -confidence level is then defined as

CVaRα(ξ) = E Pα [ξ], (9.5)

where Pα is the distribution function defined by

Pα(t) =

{
0 if t < VaRα(ξ);
P(t)−α

1−α if t ≥ VaRα(ξ).
(9.6)

As shown by Rockafellar and Uryasev [2000,2002], CVaR satisfies all of the
axioms for a coherent risk measure (Exercise 3) and has a convenient representation
as the solution to the following optimization problem:

CVaRα(ξ) = min
t

t +
1

1−α
E P[(ξ− t)+], (9.7)

which can also be written as the linear program:

min t +
1

1−α
E P[y(ω)] (9.8)

s. t. ξ (ω)− y(ω) ≤ t, a. s. (9.9)

y(ω) ≥ 0, a. s. (9.10)
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With the representation in (9.8), a risk constraint to limit CVaRα to be less than t̄
can be constructed similarly to the probabilistic constraint in (9.4) or the downside
risk constraint in (5.3) with additional linear constraints and variables y′(ω) as
follows:

t +
1

1−α
E [y′(ω)] ≤ t̄ (9.11)

−t + q(ω)T y(ω)− y′(ω) ≤ 0, a.s., (9.12)

y′(ω) ≥ 0,a.s. (9.13)

The use of coherent risk measures has another useful interpretation that R is a
coherent risk measure if and only if there is a class of probability measure P such
that R(ξ) equals the highest expectation of ξ with respect to members of this class
(see Huber [1981]):

R(ξ) = sup
P∈P

E P[ξ]. (9.14)

This representation provides a worst-case view of the risk, which is discussed in
more detail in Chapter 8.

One worst-case version of the approach in (9.14) is to let P correspond to
any distribution with support in a given range or uncertainty set. This worst-case
type of risk-measure is called robust so that optimization models including a robust
risk-measure of this form are robust optimization models. A robust version of the
two–stage stochastic program can then be written as:

min
x

max
ξ∈Ξ

cT x + Q(x,ξ ) (9.15)

s. t. Ax = b,

x ≥ 0.

Depending on the properties of Ξ , robust optimization models can be tractable
linear or conic optimization models. A variety of results in the area appear in Bertsi-
mas and Sim [2006], Ben-Tal and Nemirovski [2002] with multi-period extensions
also appearing, for example, in Ben-Tal, Boyd, and Nemirovski [2006] and Bertsi-
mas, Iancu, and Parrilo [2010].

Exercises

1. Give an example of random variables ξ and ζ where VaRα(ξ+ζ)> VaRα(ξ)+
VaRα(ζ) for some 0 < α < 1 .

2. Show that VaR satisfies the axioms of positive homogeneity, monotonicity, and
translation independence.

3. Show that CVaR satisfies all of the axioms for a coherent risk measure.

4. Give a class of probability distribution P such that CVaR solves (9.14).
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5. Find the robust formulation of the two-stage model (9.15) when uncertainty is
only in the right-hand side h ∈ Ξ = [l,u] , a rectangular region.

6. Find the robust formulation of the two-stage model (9.15) when uncertainty is
only in the right-hand side h ∈ Ξ = {h|(h−μ)TV (h−μ)≤ 1} , an ellipsoidal
region.

2.10 Relationship to Other Decision-Making Models

The stochastic programming models considered in this section illustrate the general
form of a stochastic program. While this form can apply to virtually all decision-
making problems with unknown parameters, certain characteristics typify stochastic
programs and form the major emphasis of this book. In general, stochastic programs
are generalizations of deterministic mathematical programs in which some uncon-
trollable data are not known with certainty. The key features are typically many de-
cision variables with many potential values, discrete time periods for decisions, the
use of expectation functionals for objectives, and known (or partially known) distri-
butions. The relative importance of these features contrasts with similar areas, such
as statistical decision theory, decision analysis, dynamic programming, Markov de-
cision processes, and stochastic control. In the following subsections, we consider
these other areas of study and highlight the different emphases.

a. Statistical decision theory and decision analysis

Wald [1950] developed much of the foundation of optimal statistical decision theory
(see also DeGroot [1970] and Berger [1985]). The basic motivation was to determine
best levels of variables that affect the outcome of an experiment. With variables x
in some set X , random outcomes, ω ∈ Ω , an associated distribution, F(ω) , and
a reward or loss associated with the experiment under outcome ω of r(x,ω) , the
basic problem is to find x ∈ X to

maxEω [r(x,ω)|F ] = max
∫

ω
r(x,ω)dF(ω). (10.1)

The problem in (10.1) is also the fundamental form of stochastic programming. The
major differences in emphases between the fields stem from underlying assumptions
about the relative importance of different aspects of the problem.

In stochastic programming, one generally assumes that difficulties in finding the
form of the function r and changes in the distribution F as a function of actions
are small in comparison to finding the expectations with known distributions and
an optimal value x with all other information known. The emphasis is on finding
a solution after a suitable problem statement in the form (10.1) has been found.
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For example, in the simple farming example in Section 1.1, the number of possi-
ble planting configurations (even allowing only whole-acre lots) is enormous. Enu-
merating the possibilities would be hopeless. Stochastic programming avoids such
inefficiencies through an optimization process.

We might suppose that the fields or crop varieties are new and that the farmer
has little direct information about yields. In this case, the yield distribution would
probably start as some prior belief but would be modified as time went on. This mod-
ification and possible effects of varying crop rotations to obtain information are the
emphases from statistical decision theory. If we assumed that only limited variation
in planting size (such as 50-acre blocks) was possible, then the combinatorial nature
of the problem would look less severe. Enumeration might then be possible without
any particular optimization process. If enumeration were not possible, the farmer
might still update the distributions and objectives and use stochastic programming
procedures to determine next year’s crops based on the updated information.

In terms of (10.1)), statistical decision theory places a heavy emphasis on changes
in F to some updated distribution F̂x that depends on a partial choice of x and
some observations of ω . The implied assumption is that this part of the analysis
dominates any solution procedure, as when X is a small finite set that can be enu-
merated easily.

Decision analysis (see, e.g., Raiffa [1968]) can be viewed as a particular part of
optimal statistical decision theory. The key emphases are often on acquiring infor-
mation about possible outcomes, on evaluating the utility associated with various
outcomes, and on defining a limited set of possible actions (usually in the form of a
decision tree ). For example, consider the capacity expansion problem in Section 1.3.
We considered a wide number of alternative technology levels and production de-
cisions. In that model, we assumed that demand in each period was independent of
the demand in the previous period. This characteristic gave the block separability
property that can allow efficient solutions for large problems.

A decision analytic model might apply to the situation where an electric utility’s
demand depends greatly on whether a given industry locates in the region. The de-
cision problem might then be broken into separate stochastic programs depending
on whether the new industry demand materializes and whether the utility starts on
new plants before knowing the industry decision. In this framework, the utility first
decides whether to start its own projects. The utility then observes whether the new
industry expands into the region and faces the stochastic program form from Sec-
tion 1.4 with four possible input scenarios about the available capacity when the
industry’s location decision is known (see Figure 3).

The two stochastic programs given each initial decision allow for the evaluation
of expected utility given the two possible outcomes and two possible initial deci-
sions. The actual initial decision taken on current capacity expansion would then be
made by taking expectations over these two outcomes.

Separation into distinct possible outcomes and decisions and the realization of
different distributions depending on the industry decision give this model a decision
analysis framework. In general, a decision analytic approach would probably also
consider multiple attributes of the capacity decisions (for example, social costs for a
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Fig. 3 Decision tree for utility with stochastic programs on leaves.

given location) and would concentrate on the value of risk in the objective. It would
probably also entail consideration of methods for obtaining information about the
industry’s decision and contingent decisions based on the outcomes of these investi-
gations. Of course, these considerations can all be included in a stochastic program,
but they are not typically the major components of a stochastic programming anal-
ysis.

b. Dynamic programming and Markov decision processes

Much of the literature on stochastic optimization considers dynamic programming
and Markov decision processes (see, e.g., Heyman and Sobel [1984], Bellman
[1957], Ross [1983], and Kall and Wallace [1994] for a discussion relating to
stochastic programming). In these models, one searches for optimal actions to take
at generally discrete points in time. The actions are influenced by random outcomes
and carry one from some state at some stage t to another state at stage t + 1 .
The emphasis in these models is typically in identifying finite (or, at least, low-
dimensional) state and action spaces and in assuming some Markovian structure (so
that actions and outcomes only depend on the current state).

With this characterization, the typical approach is to form a backward recursion
resulting in an optimal decision associated with each state at each stage. With large
state spaces, this approach becomes quite computationally cumbersome although it
does form the basis of many stochastic programming computation schemes as given
in Chapter 6. Another approach is to consider an infinite horizon and use discounting
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to establish a stationary policy (see Howard [1960] and Blackwell [1965]) so that
one need only find an optimal decision associated with a state for any stage.

A typical example of this is in investment. Suppose that instead of saving for
a specific time period in the example of Section 1.2, you wish to maximize a dis-
counted expected utility of wealth in all future periods. In this case, the state of the
system is the amount of wealth. The decision or action is to determine what amount
of the wealth to invest in stock and bonds. We could discretize to varying wealth
levels and then form a problem as follows:

max
∞

∑
t=1

ρ tE [qy(t)− rw(t)] (10.2)

s. t. x(1,1)+ x(2,1) = b,
ξ(1,t)x(1,t)+ξ(2,t)x(2,t)−y(t)+w(t) = G,

ξ(1,t)x(1,t)+ξ(2,t)x(2,t) = x(1,t + 1)+ x(2,t + 1),
x(i,t),y(t),w(t)≥ 0, x ∈N ,

where N is the space of nonanticipative decisions and ρ is some discount factor.
This approach could lead to finding a stationary solution to

z(b) = max
x(1)+x(2)=b

{E [−q(G−ξ(1)x(1)−ξ(2)x(2))−

−r(G−ξ(1)x(1)−ξ(2)x(2))+ +ρE [z(ξ(1)x(1)+ξ(2)x(2))]}. (10.3)

Again, problem (10.2) fits the general stochastic programming form, but particular
solutions as in (10.3) are more typical of Markov decision processes. These are not
excluded in stochastic programs, but stochastic programs generally do not include
the Markovian assumptions necessary to derive (10.3).

c. Machine learning and online optimization

While Markov decision problems have the general character of stochastic programs
of including a distribution over some set of uncertain parameters, online optimiza-
tion problems involve a changing objective (perhaps chosen adversarially) without
knowledge of the choice and only considering the history of observations. The ob-
jective is then to choose x1,x2, . . . sequentially to minimize

H

∑
t=1

f t (xt), (10.4)

where H may increase without bound and each xt is chosen only with knowledge
of x1, . . . ,xt−1 and f 1(x1), . . . , f t−1(xt−1) . Performance is measured in terms of
regret, which refers to the difference relative to best possible choices taken ex post,
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i.e.,

regretH =
H

∑
t=1

f t (xt)−min
x∈X

H

∑
t=1

f t(x), (10.5)

where X is some feasible region.
The emphasis in this stream of literature is on algorithms with provable regret

bounds. For convex objectives, stochastic search methods (as in Chapter 9) can
obtain bounds on regretH , such as O(H3/4) , O(

√
H) , and O(logH) depend-

ing on properties of f t and observability of the function (see, respectively, Hazan,
Kalai, Kale, and Agarwal [2006], Zinkerich [2003], Flaxman, Kalai, and McMahon
[2004]).

d. Optimal stochastic control

Stochastic control models are often similar to stochastic programming models. The
differences are mainly due to problem dimension (stochastic programs would gen-
erally have higher dimension), emphases on control rules in stochastic control, and
more restrictive constraint assumptions in stochastic control. In many cases, the dis-
tinction is, however, not at all clear.

As an example, suppose a more general formulation of the financial model in
Section 1.2. There, we considered a specific form of the objective function, but we
could also use other forms. For example, suppose the objective was generally stated
as minimizing some cost rt(x(t),u(t)) in each time period t , where u(t) are the
controls u((i, j),t,s) that correspond to actual transactions of exchanging asset i
into asset j in period t under scenario s . In this case, problem (1,2.2) becomes:

minz = ∑
s

p(s)(
H

∑
t=1

rt(x(t,s),u(t,s),s))

s. t. x(0,s) = b,

x(t,s)+ ξ (s)T u(t,s) = x(t + 1,s),t = 0, . . . ,H,

x(s),u(s) nonanticipative, (10.6)

where ξ (s) represents returns on investments minus transaction costs. Additional
constraints may be incorporated into the objective of (10.6) through penalty terms.

Problem (10.6) is fairly typical of a discrete time control problem governed by
a linear system. The general emphasis in control approaches to such problems is
for linear, quadratic, Gaussian (LQG) models (see, for example, Kushner [1971],
Fleming and Rishel [1975], and Dempster [1980]), where we have a linear system
as earlier, but where the randomness is Gaussian in each period (for example, ξ
is known but the state equation for x(t + 1,s) includes a Gaussian term), and rt

is quadratic. In these models, one may also have difficulty observing x so that an
additional observation variable y(t) may be present.
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LQG models can also include forms of risk aversion as, for example, in Whittle
[1990]. In this model, instead of an additively time-separable model as generally
used here, the objective to minimize becomes:

2
θ

logE [eθ ∑H
t=1(x

t)T Qt xt+(ut)T Rtut
], (10.7)

where xt+1 = Atxt + Btut + εt . A useful property is that this objective avoids some
of the issues with time-additive utility functions that do not appear consistent with
preferences (as, for example, discussed in Kreps and Porteus [1979], Epstein and
Zinn [1989]). A minimizing solution also has a min-max characterization as in ro-
bust optimization models and the max-min utility function proposed in Gilboa and
Schmeidler [1989] (see Exercise 3 and Hansen and Sargent [1995]).

The LQG problem leads to Kalman filtering solutions (see, for example, Kalman
[1969]). Various extensions of this approach are also possible, but the major empha-
sis remains on developing controls with specific decision rules to link observations
directly into estimations of the state and controls. In stochastic programming mod-
els, general constraints (such as non-negative state variables) are emphasized. In this
case, most simple decision rules forms (such as when u is a linear function of state)
fail to obtain satisfactory solutions (see, for example, Gartska and Wets [1974]).
For this reason, stochastic programming procedures tend to search for more general
solution characteristics.

Stochastic control procedures may, of course, apply but stochastic programming
tends to consider more general forms of interperiod relationships and state space
constraints. Other types of control formulations, such as robust control, may also
be considered specific forms of a stochastic program that are amenable to specific
techniques to find control policies with given characteristics.

Continuous time stochastic models (see, e.g., Harrison [1985]) are also possible
but generally require more simplified models than those considered in stochastic
programming. Again, continuous time formulations are consistent with stochastic
programs but have not been the main emphasis of research or the examples in this
book. In certain examples again, they may be quite relevant (see, for example, Har-
rison and Wein [1990] for an excellent application in manufacturing) in defining
fundamental solution characteristics, such as the optimality of control limit poli-
cies.

In all these control problems, the main emphasis is on characterizing solutions
of some form of the dynamic programming Bellman-Hamilton-Jacobi equation or
application of Pontryagin’s maximum principle. Stochastic programs tend to view
all decisions from beginning to end as part of the procedure. The dependence of
the current decision on future outcomes and the transient nature of solutions are
key elements. Section 3.5 provides some further explanation by describing these
characteristics in terms of general optimality conditions.
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e. Summary

Stochastic programming is simply another name for the study of optimal decision
making under uncertainty. The term stochastic programming emphasizes a link to
mathematical programming and algorithmic optimization procedures. These con-
siderations dominate work in stochastic programming and distinguish stochastic
programming from other fields of study. In this book, we follow this paradigm
of concentrating on representation and characterizations of optimal decisions and
on developing procedures to follow in determining optimal or approximately opti-
mal decisions. This development begins in the next chapter with basic properties of
stochastic program solution sets and optimal values.

Exercises

1. Consider the design problem in Section 1.4. Suppose the design decision does
not completely specify x in (1.4.1), but the designer only knows that if a value
x̂ is specified then x ∈ [.99x̂,1.01x̂] . Suppose a uniform distribution for x is
assumed initially on this interval and that the designer can alter the design once
after manufacturing and testing N axles out of a total predicted demand of
1,000 axles. The designer assumes that her posterior distribution on the actual
mean relative to x̂ would not change if she adjusts the target diameter x̂ af-
ter observing the first N axle diameters. With these assumptions, formulate a
Bayesian model to determine an initial specification x̂1 and N followed by a
second specification x̂2 for the remaining 1000−N axles.

2. From the example in Section 1.2, suppose that a goal in each period is to re-
alize a 16% return in each period with penalties q = 1 and r = 4 as before.
Formulate the problem as in (10.2).

3. Consider the risk-sensitive model in (10.7) given initial state x1 , θ > 0 ,
H = 2 , and ε1 ∼ N(μ ,Σ) , the multivariate normal distribution with mean μ
and variance-covariance matrix, Σ . Show that solving (10.7) is equivalent to
solving the min-max problem:

min
u1

max
ε1

θ [((u1)T R1u1 + x2(x1,u1,ε1)T Q2x2(x1,u1,ε1)T )

+ (ε1− μ)T Σ−1(ε1− μ)], (10.8)

i.e., u1 optimal in (10.8) is also optimal in (10.7) and vice versa as long as both
problems have finite optimal values. To do this, first show that

∫
e−Q(x,y)dy =

ke−miny Q(x,y) for some constant k (independent of x ) for any positive definite
quadratic function Q(x,y) .



94 2 Uncertainty and Modeling Issues

2.11 Short Reviews

a. Linear programming

Consider a linear program (LP) of the form

max{cT x | Ax = b,x≥ 0} , (11.1)

where A is an m× n matrix, x and c are n× 1 vectors, and b is an m× 1
vector. If needed, any inequality constraint can be transformed into an equality by
the addition of slack variables:

ai·x≤ bi becomes ai·x + si = bi ,

where si is the slack variable of row i and ai· is the i th row of matrix A .
A solution to (11.1) is a vector x that satisfies Ax = b . A feasible solution

is a solution x with x ≥ 0 . An optimal solution x∗ is a feasible solution such
that cT x∗ ≥ cT x for all feasible solutions x . A basis is a choice of n linearly
independent columns of A . Associated with a basis is a submatrix B of the cor-
responding columns, so that, after a suitable rearrangement, A can be partitioned
into A = [B,N] . Associated with a basis is a basic solution, xB = B−1b , xN = 0 ,
and z = cT

BB−1b , where [xB,xN ] and [cB,cN ] are partitions of x and c following
the basic and nonbasic columns. We use B−1 to denote the inverse of B , which is
known to exist because B has linearly independent columns and is square.

In geometric terms, basic solutions correspond to extreme points of the polyhe-
dron, {x |Ax = b,x≥ 0} . A basis is feasible (optimal) if its associated basic solution
is feasible (optimal). The conditions for feasibility are B−1b ≥ 0 . The conditions
for optimality are that in addition to feasibility, the inequalities, cT

N− cT
BB−1N ≤ 0 ,

hold.
Linear programs are routinely solved by widely distributed, easy-to-use LP

solvers. Access to such a solver would be useful for some exercises in this book.
For a better understanding, some examples and exercises also use manual solutions
of linear programs.

Finding an optimal solution is equivalent to finding an optimal dictionary, a def-
inition of individual variables in terms of the other variables. In the simplex algo-
rithm, starting from a feasible dictionary, the next one is obtained by selecting an
entering variable (any nonbasic variable whose increase leads to an increase in the
objective value), then finding a leaving variable (the first to become negative as the
entering variable increases), then realizing a pivot substituting the entering for the
leaving variable in the dictionary. An optimal solution is reached when no entering
variable can be found.

A linear program is unbounded if an entering variable exists for which no leaving
variable can be found. In some cases, a feasible initial dictionary is not available at
once. Then, phase one of the simplex method consists of finding such an initial
dictionary. A number of artificial variables are introduced to make the dictionary
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feasible. The phase one procedure minimizes the sum of artificials using the simplex
method. If a solution with a sum of artificials equal to zero exists, then the original
problem is feasible and phase two continues with the true objective function. If the
optimal solution of the phase one problem is nonzero, then the original problem is
infeasible.

As an example, consider the following linear program:

max− x1 + 3x2

s. t. 2x1 + x2 ≥ 5 ,

x1 + x2 ≤ 3 ,

x1,x2 ≥ 0 .

Adding slack variables s1 and s2 , the two constraints read

2x1 + x2 − s1 = 5 ,
x1 + x2 + s2 = 3 .

The natural choice for the initial basis is (s1,s2) . This basis is infeasible as s1

would obtain the value −5 . An artificial variable ( a1 ) is added to row one to
form:

2x1 + x2− s1 + a1 = 5 .

The phase-one problem consists of minimizing a1 , i.e., finding −max−a1 . Let
z =−a1 be the phase one objective, which after substituting for a1 gives the initial
dictionary in phase one:

z = −5 + 2x1 + x2 − s1 ,
a1 = 5 − 2x1 − x2 + s1 ,
s2 = 3 − x1 − x2 ,

corresponding to the initial basis (a1,s2) . Entering candidates are x1 and x2 as
they both increase the objective value. Choosing x1 , the leaving variable is a1 (be-
cause it becomes zero for x1 = 2.5 while s2 becomes zero only for x1 = 3 ). Sub-
stituting x1 for a1 , the second dictionary becomes:

z = −a1 ,
x1 = 2.5 − 0.5x2 + 0.5s1 − 0.5a1 ,
s2 = 0.5 − 0.5x2 − 0.5s1 + 0.5a1 .

This dictionary is an optimal dictionary for phase one. (No nonbasic variable would
possibly increase x .) This means the original problem is feasible. (In fact, the basis
(x1,s2) is feasible with solution x1 = 2.5 , x2 = 0.0 .)

We now turn to phase two. We replace the phase one objective with the original
objective:

z =−x1 + 3x2 =−2.5 + 3.5x2−0.5s1 .
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By removing the artificial variable a1 (as it is not needed anymore), we obtain the
following first dictionary in phase two:

z = −2.5 + 3.5x2 − 0.5s1 ,
x1 = 2.5 − 0.5x2 + 0.5s1 ,
s2 = 0.5 − 0.5x2 − 0.5s1 .

The next entering variable is x2 with leaving variable s2 . After substitution, we
obtain the final dictionary:

z = 1 − 4s1 − 7s2 ,
x1 = 2 + s1 + s2 ,
x2 = 1 − s1 − 2s2 ,

which is optimal because no nonbasic variable is a valid entering variable. The op-
timal solution is x∗ = (2,1)T with z∗ = 1 .

b. Duality for linear programs

The dual of the so-called primal problem (11.1) is:

min{πT b | πT A≥ cT ,π unrestricted} . (11.2)

Variables π are called dual variables. One such variable is associated with each
constraint of the primal. When the primal constraint is an equality, the dual variable
is free (unrestricted in sign). Dual variables are sometimes called shadow prices or
multipliers (as in nonlinear programming). The dual variable πi may sometimes be
interpreted as the marginal value associated with resource bi .

If the dual is unbounded, then the primal is infeasible. Similarly, if the primal is
unbounded, then the dual is infeasible. Both problems can also be simultaneously
infeasible.

If x is primal feasible and π is dual feasible, then cT x ≤ πT b . The primal has
an optimal solution x∗ if and only if the dual has an optimal solution π∗ . In that
case, cT x∗ = (π∗)T b and the primal and dual solutions satisfy the complementary
slackness conditions:

(ai·)x∗ = bi or π∗i = 0 or both, for any i = 1, . . . ,m ,

(π∗)T a· j = c j or x∗j = 0 or both, for any j = 1, . . . ,n ,

where a· j is the j -th column of A and, as before, ai· is the i -th row of A .
An alternative presentation is to say that s∗i π∗i = 0 , where si is the slack variable

of the i th constraint, i.e., either the slack or the dual variable associated with a
constraint is zero, and similarly for the second condition. Thus, the optimal solution
of the dual can be recovered from the optimal solution for the primal, and vice versa.
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The optimality conditions can also be interpreted to say that either there exists
some improving direction, w , from a current feasible solution, x̂ , so that cT w > 0 ,
w j ≥ 0 for all j ∈ N , N = { j | x̂ j = 0} , and ai·w = 0 for all i ∈ I , I = {i |
ai·x̂ = bi} (hence, for Ax = b in the primal system of (11.1), I = {1, . . . ,m} ) or
there exists some π such that ∑i∈I πiai j ≥ c j for all j ∈ N , ∑i∈I πiai j = c j for all
j �∈ N , but both cannot occur. This result is equivalent to the Farkas lemma, which
gives alternative systems with or without solutions.

The dual simplex method replicates on the primal solution what the iterations of
the simplex method would be on the dual problem: it first finds the leaving variable
(one that is strictly negative) then the entering variable (the first one that would
become positive in the objective line). The dual simplex is particularly useful when a
solution is already available to the original primal problem and some extra constraint
or bound is added to the problem. The reader is referred to Chvátal [1980, pp. 152–
157] for a detailed presentation.

Other material not covered in this section is meant to be restrictive to a given topic
area. The next section discusses more of the mathematical properties of solutions
and functions.

c. Nonlinear programming and convex analysis

When objectives and constraints may contain nonlinear functions, the optimization
problem becomes a nonlinear program. The nonlinear program analogous to (11.1)
has the form

min{ f (x) | g(x)≤ 0,h(x) = 0} , (11.3)

where x∈ℜn , f : ℜn→ℜ , g : ℜn→ℜm , and h : ℜn→ℜl . We may also assume
that the range of f may include ∞ to allow the objective to include constraints
directly through an indicator function:

δ (x | X) =

{
0 if g(x)≤ 0 , h(x) = 0 ,

+∞ otherwise,

where X is the set of x satisfying the constraints in (11.3), i.e., the feasible region.
In this book, the feasible region is usually a convex set so that X contains any

convex combination,

s

∑
i=1

λ ixi,
s

∑
i=1

λ i = 1,λ i ≥ 0 , i = 1, . . . ,s ,

of points, xi , i = 1, . . . ,s , that are in the feasible region. Extreme points of the
region are points that cannot be expressed as a convex combination of two distinct
points also in the region. The set of all convex combinations of a given set of points
is its convex hull.
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The feasible region is also most generally closed so that it contains all limits of
infinite sequences of points in the region. The region is also generally connected,
so that, for any x1 and x2 in the region, there exists some path of points in the
feasible region connecting x1 to x2 by a function, η : [0,1]→ ℜn that is contin-
uous with η(0) = x1 and η(1) = x2 . For certain results, we may also assume the
region is bounded so that a ball of radius M , {x | ‖x‖ ≤M} , contains the entire set
of feasible points. Otherwise, the region is unbounded. Note that a region may be
unbounded while the optimal value in (11.1) or (11.3) is still bounded. In this case,
the region often contains a cone, i.e., a set S such that if x ∈ S , then λx ∈ S for all
λ ≥ 0 . When the region is both closed and bounded, then it is compact.

The set of equality constraints, h(x) = 0 , is often affine, i.e., they can be ex-
pressed as linear combinations of the components of x and some constant. In this
case, each constraint, hi(x) = 0 , is a hyperplane, ai·x− bi = 0 , as in the linear
program constraints. In this case, h(x) = 0 , defines an affine space, a translation
of the parallel subspace, Ax = 0 . The affine space dimension is the same as its
parallel subspace, i.e., the maximum number of linearly independent vectors in the
subspace.

With nonlinear constraints and inequalities, the region may not be an affine space,
but we often consider the lowest-dimension affine space containing them, i.e., the
affine hull of the region. The affine hull is useful in optimality conditions because it
distinguishes interior points that can be the center of a ball entirely within the region
from the relative interior ( ri ), which can be the center of a ball whose intersection
with the affine hull is entirely within the region. When a point is not in a feasible
region, we often take its projection into the region using an operator, Π . If the
region is X , then the projection of x onto X is Π(x) = argmin{‖w−x‖ | w∈ X} .

In this book, we generally assume that the objective function f is a convex func-
tion, i.e., such that

f (λx1 +(1−λ )x2)≤ λ f (x1)+ (1−λ ) f (x2),

0≤ λ ≤ 1 . If f also is never −∞ and is not +∞ everywhere, then f is a proper
convex function. The region where f is finite is called the effective domain of f
( dom f ). We can also define convex functions in terms of the epigraph of f ,
epi( f ) = {(x,β ) | β ≥ f (x)} . In this case, f is convex if and only if its epigraph is
convex. If − f is convex, then f is concave.

Often, we assume that f has directional derivatives, f ′(x;w) , that are defined
as:

f ′(x;w) = lim
λ↓0

f (x + λw)− f (x)
λ

.

When these limits exist and do not vary in all directions, then f is differentiable,
i.e., there exists a gradient, ∇ f , such that

∇ f T w = f ′(x;w)
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for all directions w ∈ ℜn . We sometimes distinguish this standard form of differ-
entiability from stricter forms as Gâteaux or G-differentiability. The stricter forms
impose more conditions on the directional derivative such as uniform convergence
over compact sets (Hadamard derivatives).

We also consider Lipschitz continuous or Lipschitzian functions such that | f (x)−
f (w)| ≤M‖x−w‖ for any x and w and some M < ∞ . If this property holds for
all x and w in a set X , then f is Lipschitzian relative to X . When this property
only holds locally, i.e., for ‖w−x‖≤ ε for some ε > 0 , then f is locally Lipschitz
at x .

Among differentiable functions, we often use quadratic functions that have a
Hessian matrix of second derivatives, D , and can be written as

f (x) = cT x +
1
2

xT Dx .

Many functions are not, however, differentiable. In this case, we express optimality
in terms of subgradients at a point x , or vectors, η , such that

f (w) ≥ f (x)+ηT (w− x)

for all w . In this case, {(x,β ) | β = f (x)+ηT (w− x)} is a supporting hyperplane
of f at x . The set of subgradients at a point x is the subdifferential of f at x ,
written ∂ f (x) .

Other useful properties include that f is piecewise linear, i.e., such that f (x)
is linear over regions defined by linear inequalities. When f is separable so that
f (x) = ∑n

i=1 fi(xi) , then other advantages are possible in computation.
Given f convex and a convex feasible region in (11.3), we can define conditions

that an optimal solution x∗ and associated multipliers (π∗,ρ∗) must satisfy. In
general, these conditions require some form of regularity condition. A common
form is that there exists some x̂ such that g(x̂)< 0 and h is affine. This is generally
called the Slater condition.

Given a regularity condition of this type, if the constraints in (11.3) define a
feasible region, then x∗ is optimal if and only if the Karush-Kuhn-Tucker conditions
hold so that x∗ ∈ X and there exists π∗ ≥ 0,ρ∗ such that

∇ f (x∗)+ (π∗)T ∇g(x∗)+ (ρ∗)T ∇h(x∗) = 0,∇g(x∗)T π∗ = 0 . (11.4)

Optimality can also be expressed in terms of the Lagrangian:

l(x,π ,ρ) = f (x)+ πT g(x)+ ρT h(x) ,

so that sequentially minimizing over x and maximizing over π (in both orders)
produces the result in (11.4). This occurs through a Lagrangian dual problem to
(11.3) as

max
π≥0,ρ

inf
x

f (x)+ πT g(x)+ρT h(x) , (11.5)
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which is always a lower bound on the objective in (11.3) (weak duality), and, under
the regularity conditions, yields equal optimal values in (11.3) and (11.4) (strong
duality). In many cases, the Lagrangian can also be interpreted with the conjugate
function of f , defined as

f ∗(π) = sup
x
{πT x− f (x)} ,

which is also a convex function if f is convex.
Our algorithms often apply to the Lagrangian to obtain convergence, i.e., a se-

quence of solutions, xν → x∗ . In some cases, we also approximate the function so
that f ν → f in some way. If this convergence is pointwise, then f ν(x)→ f (x) for
each x individually. If the convergence is uniform on a set X , then, for any ε > 0 ,
there exists N(ε) such that for all ν ≥ N(ε) and all x ∈ X , | f ν(x)− f (x)|< ε .


