Lossless Source Coding

Geometric distributions and Golomb codes — Part 1




Distributions on the nonnegative integers

d N ={0,1,2,..}:the nonnegative integers (natural numbers).
O Probability mass function P: N = [0,1], Yo P(k) = 1.

d X~P may have finite or infinite entropy

HX) =-— P(k)logP(k)

(d Clearly, N here can be used as proxy for any countable alphabet
underlying P. We refer to P as a countable distribution (or countable
PMF).
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Example: PMF with infinite entropy

-1

c =1
P(k)_klogzk’ =2 C:(Zklogzk)

k=2 T

d We have H(P) = o convergent
series
° : oo_ . . .
why: > log is divergent
0.5 A n 3.0 1
1- z P(k
0.4 1 P (k) 2.5
2.0 1 n
=) P log(P ()
1.5 P
1.0 4
0.5+
(I) 5IO l(l)O IEI')O 2(I)0 ZéO (I) 5I0 l(l)O 1%0 2(I)O 250
n n

3 Gadiel Seroussi - Lossless Data Compression - 2021



Example: PMF with finite entropy (1)

L Zeta distribution:

P(k) = e 1, k=1, {(s) = Zio:l;—s Riemann zeta function

J(s) kS’ (we’ll omit the argument s)
Q Writing s—1=2¢ (e>0),

10010 k=5 —1lo soolok
k=1 k=1

+ log ¢

Ko—1

S logk s =1
< +—Z + log{ < 0.

/ ¢ k=1 fe2 €k=K0 ks_‘e

K, such that T
logk < k€ Vk = K, finite sum s—e=14+€e>1
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Example: PMF with finite entropy (2)

O The geometric distribution GD(y):
P(k) = (1 -y)Y", ye(@©1), k=0

d We have ),;,.oP(k) = 1 (prove!), and

HG) == ) (1= y)r*[log(1 =) +klogy |
k=0

= —(1—y)log(1 - V)z yek—QQ-vy) logyz ky*

k=0 k=0
_—(@—=y)log(1 —y)—ylogy  hy(y)
1-y 1-vy

< ©o

h,(x) = —xlogx — (1 —x)log(1—x)
binary entropy
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Binary prefix codes for countable distributions

O C:N - {0,1}, such that C(i) is not a prefix of C(j) foranyi + j .
(d Asin the finite case, a prefix code must satisfy Kraft’s condition:

2 5-length(C(k)) < 1. . 1

k=0
( C can be represented by an infinite binary tree.

d The tree is complete if every node that is not a leaf
has exactly two children.

e Differently from the finite case, a complete infinite
tree may have a Kraft sum < 1.

( Given a PMF P, the average code length of C is
L(C) = Yz P(K) - length(C(K))

which, again, may be finite or infinite.

O Cis optimal for Pif L(C) < L(C") for any code C’;
= makes sense only when L(C) < o

R

R
R

3%+

- .'ﬂ

6 Gadiel Seroussi - Lossless Data Compression - 2021



Code convergence

A sequence of finite binary prefix codes C,, C;, C,, ... for subsets of N
converges to an infinite code C for N iff

e foreveryintegeri € N there isanindex J; = 0 such that C; assigns a
codeword to i forallj = J;,

o foreveryintegeri € N there is anindexJ'; > J; such C;(i) remains constant,
and equal to C(i), forall j = J'..
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Code convergence: Example

K
 The unary code C(k) = 00...01 is the limit of the sequence of codes

¢, =1{1,01,001,..,0"1, 0"0}, n=0.

nt+l n
Q say P(k) = 2=+1) (geometric distribution y = %)

Then, L(C) = Yook + 1)274+D =2 and

H(X) = = Yy2o P(K)10g P(k) =Y}50 27 %D (k + 1) = 2.
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Questions of interest

 How does the average code length L(C) relate to the entropy H(X) ?
J Are there optimal codes for countable distributions?

O If so, for what distributions?

 Can we construct them?

 Can we describe them compactly?

(J Some answers:

e Shannon’s lower bound applies also to countable distributions, i.e.,
L(C) = H(X).

e Therefore, the code in the previous example is optimal. Clearly, it can be
described compactly.

e How about more general cases? We cannot use Huffman’s procedure!
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Existence of optimal codes

d X~P, where P is a countable distribution. The truncated random variable X,,~P,
has finite support {0,1, ..., n}, with B, (k) = P(k)/ Xj-o P(j).

Q A truncated Huffman code G2 for X is a Huffman code for X,,.

Theorem [Linder, Tarokh, Zeger ‘97], [Kato, Han, Nagoka ‘96]
Let X be a random variable with countable support, and with finite entropy. Then,

e there exists a sequence of binary truncated Huffman codes for X which converges to an
optimal code for X,

e the sequence of average code lengths of the truncated Huffman codes converges to the
minimum possible average code length for X,

e any optimal prefix code for X must satisfy the Kraft condition with equality.

L The proof is not constructive: it does not tell us how to choose or construct the
sequence of truncated Huffman codes.

O In fact, there are very few classes of countable distributions for which an optimal
prefix code can be constructed and described compactly.

d We will study such a construction for arbitrary geometric distributions.
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Why geometric distributions?

Geometric distributions are useful in practice
O Consider random variable B~Bernoulli(y) (i.e., P(0) = y). We are
interested in describing long sequences of independent realizations of B.
e We could use an arithmetic coder, but we are interested in a simpler solution.
e Let b’ be the sequence of interest, emitted by B™. Parse b{" as

We have

P(00..01) =y*(1 —-y)

= B{' can be represented by a sequence of independent random variables
distributed as GD(y) .
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Why geometric distributions?

Geometric distributions are useful in practice

 In natural, continuous tone images, differences between contiguous pixels
are well modeled by a two-sided geometric distribution (discrete Laplacian)

1-y
P(xipg —x; =A4) = myml

+ we will see that optimal
codes for geometric
distributions are
very easy to implement!
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Golomb codes

J In 1966, Golomb described a family of prefix-free codes for N (motivated by
sequences of Bernoulli trials).

(1 Consider an integer m = 1. The mth order Golomb code G,,, encodes an
integer i = 0 in two parts, as follows:

l concatenation

G, (i) = binary,,, (i mod m) | unary(i divm)

 Here C/CH++:

i%m
i/m

e i modm, i divm = remainder and quotient in integer division n% (resp.)

e binary,,(j) = binary encoding of j in an optimal code for {0, 1, ..., m — 1} under
a uniform distribution (|log m| or [log m| bits, shorter codes for smaller numbers)
"= Example:m =5, lengths2and3: 0:00 1:01 2:10 3:110 4:111
J
e unary(j) = 00...01 unary representation of j.
U Givenm and G,,,(i) , a decoder uniquely reconstructs
i = (idivm) -m+ (i mod m)
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Golomb codes - Examples

m=5 = 2" = 4,
e e S oy a® 20
0 001 3 0 00 001 3
1 011 3 -3 1 01 011 3
2 101 3 2 10 101 3 [
3 1101 4 3 11 111 3
4 1111 4 4 100 0001 4
5 0001 4 5 5 101 0101 4
6 0101 4 6 110 1000 a4 | °
7 1001 4 ) 7 111 1101 4
8 11001 5 8 1000 00001 5
9 11101 5 9 1001 01001 5
10 00001 5 5 10 1010 10001 5 B
11 01001 5 11 1011 11001 5
12 10001 5 12 1100 000001 6
13 110001 6 13 1101 010001 6
14 111001 6 14 1110 100001 6
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Golomb PO2 codes

O Whenm = 2%, we call G,,, a Golomb power of two (PO2) code and use k
as the defining parameter: G, £ G,k .

(d PO2 codes are especially simple to implement!
Example: Golomb PO2 encoder

MS bits k LS bits
A |
input: integer | ’ C/C++:
b in binary ——{byb;_1 *** by |by_1byx_, - b1 by bmod2*: b & ((1<<k)-1)
representation bdiv2k: b > k
b div 2 b mod 2% :
!
counter
unary part binary part
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Optimality of Golomb codes

Theorem [Gallager, Van Voorhis 1975]
Let X~GD(y) and let m be the unique integer satisfying
ym + ym+1 S 1 < ym + ym—ll

Then, G,, is an optimal prefix-free code for X.

Why is there a unique such value of m ?

Given y, we have
m =min{m’' | y™ +y™*1 <1}

Golomb (1966) had proved
optimality for y =2 m, i.e., y™ = %

m
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What range of y is G,, optimal for?

Solution of y™ + y™*tl =1

OO\ICDU'I-bUUNI—\E

Optimality of Golomb codes

Ym
0.6180339887

0.7548776662
0.8191725134
0.8566748839
0.8812714616
0.8986537126
0.9115923535
0.9215993196

Gy

G, Gg -
G, Gy

A

{

&
<«
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17

0.2

0.4

HENMER
0.6 0.8

Gadiel Seroussi - Lossless Data Compression - 2021



Proof of optimality

Consider y fixed and m as determined above. Define an r-reduced source §,., for any
r = 0, as a source withr + 1 + m symbols, with the following probabilities:

(1 -y, 0<i<r,
FO=1a -y
, r+1<i<r+m.
L 1=rT

We have z{:gl P.(i) = 1.In fact, S, can be interpreted as defined over an alphabet of
regular symbols and “super-symbols”,

Se=1{0,1,2,.,7, Ay, Ay, e, Ay |,

where
agp={r+j+t-m|t=012.} 1<j<m.
Indeed, we have
< 1—y)y™
B(&):CL;wZZW%ﬁmn:(ljgi 1<j<m.
t=0

18 Gadiel Seroussi - Lossless Data Compression - 2021



Proof of optimality (cont.)

Recall: y™ + y™+t1 <1 < y™ + y™~1 definition of m (**)

S, =1{0,1,2,..,r, A, A,, ..., A},
PO =0-y), 0<is<r, p
(1-ny™* : r
P.(4)) = o lsjsm
Consider Huffman coding of §,.. u L'
Claim: The 2 symbols with lowest 012  r—1r AjA Ap 14y

probability in S, are 1, A,,.
Proof: It suffices to prove

Pr(r) <Pr(Am—1)r Pr(Am) Spr(r_l)-

(1_y)yr+m—1 ]/m_l

(1—-py)y'< o 1< & 1 —y™ < y™™ 1 RHS of (**).

1—ym

Similarly, P.(A,,) < P.(r — 1) is implied by the LHS of (**).
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Proof of optimality (cont.)

d The 2 symbols with lowest probability are r, 4,,
= first step of Huffman procedure merges r, 4,,,, resulting in a probability

(1-p)y™
N € S 0 A S 0 P(4;) = — S
A=y +—— =" = 1-y r
= prob. of symbol A{ in S;_1 ! u L'
O Also, A;inS,isA,inS,_q, 012 r—1r A A, A, 1A,

A, inS,isAzin S, _4, ..., etc.

U = Huffman step transforms S, into S,_;.

Continue until we obtain S_4 with

_ i—-1
4Rﬂm)=gf%731SiSm.

012 r—1 A4, Ay A,

20 Gadiel Seroussi - Lossless Data Compression - 2021



Proof of optimality (cont.)

We obtain S_; = { 44, A5, ..., A, } with

1 — i—1
P—1(Ai)=(1_y3}:n , 1<i<m

We have
P_1(A;) < P_1(Ajp-1) + P_1(4;,) from (**)

= S_1 is a quasi-uniform source with m symbols. An optimal code for such a source

has 21198 ™l _ 1 words of length |logm| and 2m — 21°8 ™l words of length [log m]

(shortest codewords assigned to highest probability symbols).

Example:m = 5

A A As 5

Ay As
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Unfolding reduced sources
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Unfolding reduced sources
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Unfolding reduced sources

Ay, 0 Ag 1 A, Aj
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Unfolding reduced sources

A, 0 A, 1 Ay 2
A, 3A54
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Unfolding reduced sources
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Unfolding reduced sources

® |eaves of the
binary,, tree

0 1 2
Y P CHETIN (S
10 11 12 8 9
15 16 : 17 13 14
P50 8 19

L |
L J
L]
L J
L]
L
L]

From each leaf of the binary,, tree we “hang” a unary tree:
equivalent to concatenating the two codes!
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Proof of optimality (cont.)

J We have proved that the sequence of optimal codes C_4, Cy, C4, ... for the
reduced sources S_4, Sy, S1, ... converges to the Golomb code G,,, for
m satisfying (**).

1 Why is the code optimal for GD(y)? (intuition is obvious, but ...)

L = inf L(C) over all uniquely decipherable codes C for GD(y).
L = expected code length for Gy,

L, = expected code length for C,- on S,
e Clearly, wehave L < L.

e Also, l_,r < L because we can use a subset of the codewords of C for Sy, taking
the original codeword from C for 0,1, ..., 7, and the codeword C assigns to

r+ jfor 4;.
L = Yi—o P(D]C@)] +Z§'n=1 ZiEAjP(i)lc(i)l ‘> r + j has shortest
> Y=o POICODI + X721 Xiea, POIC + ) codeword in 4;

= Yo PDIC@OI+3I™, P(4)Ictr + DI =L,

e For similar reasons, L, is increasing with r, and it has a limitas r = o, so
limL, <L.But limL, =L;,soL; <L.

T—00 T—00
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Expected code length

(d Short calculation shows that (The G-vV paper

1 L has an error in
(t = gllogm|+1 _ m) this formula—| |

instead of | |)

t

_r
1—ym
e This holds for any y and m , not necessarily optimal.

L; = |logm] +1 +
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