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MDP Recap

» A Markov Decision Process is a tuple (S, 4, R, P)
» P is a Markov transition probability if for any 8’ C S and R’ C R
P[St+1 S S,, Rt+1 c 'R'|St, At, ey SO,AO] == P[St+1 c S/, Rt+1 S R/|St, At]
> We select the actions based on parametrerized policies mg(als)
= We cannot work with general continuous functions
= Parameterization is necessary
>

Find the best policy within the functions that our parameterization defines

= "Best” is defined by the value function

Vg (5) = E‘rre |:Z '7th+1‘50 = 5:|

t=0
= Recall that the expectation is with respect to all the rewards seen

= We write Er, to denote the we are following the policy ms(als)
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Maximizing the Value function

» Expanding the expectation, the value function is written as
oo
k k=1
Vry () = Z/ Y g p(sj1, r411s7, aj)me(aj]s;) dskdak—1drk
=0 Rk AkSk—1

v

Where the policy is parameterized by 6 € R?

v

We will update the parameters via gradient ascent

= This gradient is given by the policy gradient theorem

v

The gradient of v with respect to § € R? is given by

Tov(0) = (av(e) av(e))T

961 7 904

v

To find the maximum, we update the parameters 6 via

Ok+1 = Ok + OszQV(a), with ax >0
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The Different Policy Gradients

» Policy gradient for Episodic Tasks

T-1

Vov(0) =E+ | Y Vologm(Ac|S:)Ge

t=0
» Policy gradient for Continuing Tasks

Vovny(s) = (1 =) Eswpg,avry [Vo log mo(A|S)ar, (S, A)]

po(si,s’) = 1*7)27 (So=s—Si=5)
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Issues with the Policy Gradient

> There are several issues with the classical policy gradient
= We have attempted to address some of them
= Via baselines and actor-critic methods

» There are still issues that we have not tackled

v

Modern methods for policy gradients attempt to tackle these issues
» We measure distance in the space of parameters
= Parameters that are close can generate very different distributions
= Especially problematic with deep neural networks
= Makes the choice of step size difficult
= We can attempt to characterize distances in the space of distributions
» We can be more efficient by reusing data from previous trajectories
= We have studied some of this for off-policy methods

= We can attempt to do so via importance sampling
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Measuring in the space of distributions: KL Divergence

» The Kullback-Leibler (KL) divergence is an asymmetric measure of
difference between probability distributions
» For discrete probability distributions P and Q it is defined as
P(x)
DkL(P = P(x)I
kL (PlIQ) XX: (x)log )
» Properties of the KL divergence
= D (P|Q) =20
= DKL(PHP) =0
= Du(Pl|Q) # Dxi(QIIP)
>

The KL divergence is not a metric as it is not symmetric

= Nonetheless, it is a good measure of closeness between distributions
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Importance Sampling

> Importance sampling is a technique for estimating a probability distribution

= With only samples from a different distribution

v

For distributions P and @ and an arbitrary function f we have that

e /(0] = Buva | o0 1)

v

We denote the ratio P(x)/Q(x) as the importance sampling weight

» The variance of the stochastic approximation estimator is then given by

Var (” () f(x)) —Eg [(P(X) f(X))2] ~Eao [P ) f(x)r

o) Q) Q%)
_ PO ] - O
—Beer | g (] ~ Eer (0]

v

If the importance sampling weight P(x)/Q(x) is large

= The variance of the estimator can blow up
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Example: Importance Sampling in the Policy Gradient

» Consider a trajectory 7 = (So, Ao, S1, R1, A1, S2, Ra ..., ST, RT)
» Recall that the distribution of the trajectory is given by
T-1
p(7) = p(S0) H To(Ae|St)p(Str1, Resa|Se, Ar)
t=0
» Which depends on the policy g with parametrization 6
» Further Recall that the policy gradient for finite horizon is given by
T-1
Vov(0) =E- | Y Vologmo(AS) G
t=0
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Example: Importance Sampling in the Policy Gradient

» We want to reuse information from a different trajectory
= Trajectory 7’ generated from a policy gy

» Via importance sampling we can write

T-1

Vov(0) =E. T))

By taking a closer look at the ratio p(7)/p(7') we have that

Vo log o (A¢|St) Gt

v

p(7) P(SO)Ht 0 WG(At‘St)p(St+17Rt+1|St7 t) H o (At|St)
p(r) (SO)Hf 0 " 7or (A Se)p(Sta1, Res1|Se, Ae) 0 Tor (At| St)

v

Small differences can multiply and become quite large

= Not the most stable way to reuse information from a different policy
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Relative Policy Performance

> First step to tackle the previous issues

= Characterize the difference between two policies

v

Recall that the advantage is defined as the difference between g and v
a(Se, Ae) = q(St, Ar) — v(St)

> It is a normalization with respect to the state
= How much an action can improve over the value of the current state
= Or the advantage of choosing a specific action

» Given policies 7 and 7’ and respective value functions v(r) and v(7’)

oo
V(ﬂ—/) - V(ﬂ—) = Eﬂ" |:Z FYtaW(Sty At)
=0
> We relate the return of a policy in terms of the advantage over another
» We call this the relative policy performance identity
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Relative Policy Performance Identity: Proof

> Note that the advantage is given by
arx (S, At) = Rer + Yva(Ser1) — v (St)

> Then we can rewrite the term on the right hand side

E, |:Z ytaﬁ(st,At)] =E, [Z Vt(RHl + YV (Ses1) — V“(Sf)):|

t=0 t=0
zvf“vw(stH)—Zv‘vﬂ(Sf’}
t=0 t=0
= v(r') — Exr [v2(S0)]

= v(n') — v(n)

v(7r/) + E.
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Finding a Policy 7’/

> We can use this identity to find a policy 7’ that maximizes v(7')

’ /
max v(r') = max v(r') — v(m)

v

By the relative policy performance identity this is equivalent to

max v(r') = Ep Z’ytaﬂ(sn Ar)
=0

ke

v

This allows us to assess the quality of policy 7" via the advantage of 7
» This expression still depends on trajectories generated from the policy 7’

= We want to remove this dependence

Miguel Calvo-Fullana, Santiago Paternain Modern Policy Gradient Methods 14



Dependence on Trajectories Generated From 7’

v

We try to remove the dependence on trajectories sampled from 7’

v

Let us define the discounted state distribution d, as
dx(s) 1—’)’)27 (St = s|m)

» Then we can rewrite the relative performance identity as

')

v(r') = v(r) = B [Z v'ar (S, Ar)

t=0

1
= Es~ ' [ax(S, A
[ Esa ar [92(S. A)

» We can remove the dependence a ~ 7’ via importance sampling

i ™ (AlS)
v(n') = v(m) = 7IEsNd,,MLr(Am ﬂ(S,A)}

v

All that is left is to take care of the states s ~ d,-
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Relative Performance Bound

How can we get rid of the dependency on s ~ d, ?

>
> Let us assume for a second that d» ~ d.
» We then have the local approximation L,(7’) as follows
/ 1 7' (AlS)
— E ~dy A | —7 v an(S, A
V() = v(7) % B ar | T ar (5.
= Ln(m )

we have the following approximation guarantee

)| < C\/Esa, [Di('||m)]

Under these conditions,

[v(r") — (v(7) + Lx(

v

> Where C is a system-dependent constant
» The approximation is good if the policies are close in KL divergence

Modern Policy Gradient Methods
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Using the Relative Performance Bound

» The local approximation is given by
1 ' (A|S)
Lo(7") = ——FEsmd, anr | —var(S, A

() = T2 Bsmsr o | S50 20(5.A)

> We can rewrite it as
o7 (AdlSt)
L.(7')=E, tMaWS,A
™) [ZOV w(Ads) ° (5o A)

» We can use this approximation to optimize with respect to 7’
= Using only trajectories generated from 7
= Valid as long as policies are close in KL divergence

» Compared with the importance sampling of the policy gradient
= The ratio 7'(A¢|S:)/m(A¢|S:) only appears per time instance

= It is not multiplied over the whole trajectory
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Monotonic Improvement via the Relative Performance Bound

» We have another version of the relative performance bound

v(r') = Lx(n") — CORT (' [|)

v

Where C = 5=, and DX (' ||w) = maxs Dy (7'||7)

> If we maximize the right hand side of this bound
Tk1 = argmax | Lr, (1) — COR™ (7| 7k)

» We are guaranteed to generate a monotonically improving sequence

v(mo) < v(m) < v(m) < ---

v

To see this let Mx(m) = Ly, (1) — CORZ*(7||mk) then

v(Tkt1) > Mi(mis1)
V(Tl'k) = Mk(ﬂ'k)
(k1) — v(mk) = Mi(Tries1) — Mi(m)
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Policy Iteration with Guaranteed Improvement

Input: Policy 7

for episode k =0,1,2,... do

Generate an episode following 7y : So, Ao, R1, S1,A1,...,S1—1,A1—1, RT
Compute values of the advantage function ar, (St, A:)

Update policy according to

Thg1 = argmax | Ly, (m) — COR (|| 7i)

Where C = =5 and DX (' || ) = maxs Do (7'||7)

end
Algorithm 1: Policy Iteration with Guaranteed Improvement
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Monotonic Improvement

> The previous algorithm is a Majorization-Minimization (MM) algorithm
= In our case a Minorization-Maximization
= We construct a lower bound on the original objective function
= We maximize this lower bound
» This approach guarantees monotonic improvement
» However in practice computing DR (7’ ||7) is complicated
= Requires evaluating the KL divergence at all states

= Computationally expensive or simply impossible

v

Substitute it for the average KL divergence over states

V(ﬂ',) > L-,r(7Tl) — CEs~ad, [DKL(W,HW)]
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Optimization Problem

» From now on we will consider parameterized policies g

» From previously we have the following maximization

fii1 = argmax Lo, (0) = CEsnay, [Dr(0110)]

v

The value of C = (14_63)2 is given by the relative performance bound

= In practice this value is is too conservative

v

Instead we propose to solve the following optimization problem
maxiemize Lo, (0)

subject to  Eswa,, [DkL(0]|0k)] <6

v

Where we have control over a parameter §
= This is called a trust region method

= ¢ controls the extend of the region of trust
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Natural Policy Gradient

» The natural policy gradient is a special case of the previous problem
= Linearly approximate the objective function Lg, ()
= Quadratically approximate the constraint Es~q,, [DxL(6]16)]

» Done via Taylor's expansion resulting in the following approximations
Lo, (8) ~ Lo, (6x) +&" (6 — 6x)
1
Esway, [Dru(0]104)] ~ 5(0 = 0x) TH(O — 0)"

v

Where g £ VLo, (64) [o=6, and H £ ViEs~q,, [DrL(0]|0k)] |o=0,

We can then write the approximate optimization problem

v

mameize Lo, (0x) + &' (6 — 6k)

subject to %(9 —0)THO -0 <6

v

The gradient ascent update on which is given by

26 1

- 20y
Ok+1 = Ok + TH g

g
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Structure of the Natural Policy Gradient

> The term g = VLo, (0x) |o—o, corresponds to the policy gradient

~ + Vomg(Ae|St) |o—o
Volo, (0k) o—o, = Ex A P  a, (S, A
oLo, (0k) lo=0, o [tz_;v o (AJS)  ° o, (St At)

= Enr, [Z V'V log 7o(At|St) lo=o, ang, (St, Ar)

t=0

> The Hessian matrix H £ ViEs~q, [DkL(0]16k)] [o=e, is given by
H = Ex,, [Vologmo(AlS) o=, Valogmo(AlS) i-s,
» Called the Fisher information matrix

» Important property is that H™'g is invariant to parametrization
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Natural Policy Gradient

Input: Policy 7, KL divergence target ¢

for episode k =0,1,2,... do

Generate an episode following 7y, : So, Ao, R1, 51, A1, ..., S1-1,Ar—1, Rt
Estimate policy gradient gx

gk = Eny, [Z V'V log mo(Ae|St) lo=0, ang, (St, Ac)
t=0

Estimate Hessian Hy
Hic = Eny, [vg log 70 (A|S) |o=0, Vo log mo(A|S) |;,L9k]
Compute natural policy gradient update

26 _

————H g
gl H. '«

Ok+1 = Ok +

end
Algorithm 2: Natural Policy Gradient
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Dealing with the Hessian inverse

» The previous approach has a severe downfall
= We need to compute the inverse H!

= This can be problematic as it does not scale well

\4

Instead of finding H™" use the Conjugate Gradient (CG) to compute H™'g
» The conjugate gradient method can be used to solve for x in Ax = b

= Widely used iterative method to solve linear system of equations

= Finds it via projections to the Krylov subspace span{b, Ab, A%b, ...}

» Conjugate gradient only needs to evaluate Hessian-vector products
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Line Search

» We want to ensure that the KL divergence constraint is satisfied

= KL might not be satisfied due to the quadratic approximation

= At some iterations, the trust region given by § can be too large
» We include a line search step

= Backtracking line search with exponential decay

= Enforce improvement in the approximation Ly, (6) > 0

= Ensure the KL divergence constraint ESNd"Bk [D(0]|0k)] < 6 is met
» Trust Region Policy Optimization (TRPO) consists of

= The natural policy gradient

= Efficient Hessian-vector product computation via conjugate gradient

= A line search to enforce the KL divergence
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Trust Region Policy Optimization (TRPO)

Input: Policy 7, KL divergence target ¢

for episode k =0,1,2,... do

Generate an episode following o, - 50, Ao, Rl, 51, Al, RN ST_1, AT_1, R+
Estimate policy gradient gk

gk = Ery, [Z 7'V log mo(A:|St) |o-e, arg, (St; At)
t=0

Use Conjugate Gradient to estimate xx = Hk_lgk

Conduct a line search with the proposed update

Update parameters after line search

ki1 = O + o/ Ay

end
Algorithm 3: Trust Region Policy Optimization (TRPO)
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Line Search for TRPO

25
gl H ex
for j=0,1,2,...,L steps do
Compute proposed update 8 = 6, + o/ Ay
if Lgk (0) >0 and ]EsNdﬂgk [DKL(HHQk)] < ¢ then
Set Ox11 = Ok + Ochk
Stop

Input: Update step Ay = H;lgk, step size decay a € (0,1)

end

end
Algorithm 4: Line Search for TRPO
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Performance of Natural Gradient Based Algorithms

— ddpg = reinforce
2000 | tnpg reps ]
— eIWI — cem
trpo cma_es

1500 | 4

1000 | 4

» Comparison of various RL methods on a MuJoCo walker task.’

1Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel “Benchmarking Deep
Reinforcement Learning for Continuous Control”, in International Conference on Machine
Learning, pp. 1329-1338, 2016.
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The Issues With Natural Policy Gradients

v

Methods based on natural gradients are computationally expensive

v

Even with the modifications made to TRPO it is still expensive

= They are fundamentally second order methods

v

Can we obtain similar performance with a first-order method?

= Avoid Hessian-related computations

v

Proximal Policy Optimization (PPO) attempt to do so
= It is a first order approach based on heuristics

= Matches or surpasses TRPO performance in practice

v

Proximal Policy Optimization has two variants
= Proximal Policy Optimization with KL penalty
= Proximal Policy Optimization with clipped objective
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Proximal Policy Optimization with KL Penalty

v

Recall the previous unconstrained optimization problem

Oxe1 = arg;nax Lo, (6) — BkESNde [DKL(HHQ/(”

v

Choosing a fixed value of i is complicated

v

PPO with KL penalty attempts to adjust the value of x dynamically

= This is done via a heuristic check at each iteration

v

The policy adapts the value i
= Individual iterations can violate KL constraints as [« adapts

= This is not much of an issue in practice as adaptation occurs fast
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Proximal Policy Optimization with KL Penalty

Input: Policy 7, KL divergence target ¢

for episode k =0,1,2,... do

Generate an episode following g : So, Ao, R1, S1,A1,...,57-1,A1—1, RT
Update policy according to

9k+1 = argmax Lgk (9) — 5k}E5~d9k [DKL(GHGk)]
0

if ESNdok [DKL(0k+1||0k)] > 1.56 then

| Brr1 = 2Pk
end
if ESNdek [DKL(0k+1||0k)] < 5/1.5 then
| Brr1 = Br/2
end
end

Algorithm 5: PPO with KL Penalty
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Proximal Policy Optimization with Clipped Objective

» Clipping PPO modifies the objective to penalize policies moving far away
= Extremely simple to implement

> The update is given by the maximization of the objective function

> Uy A |5t)
Z min (77"(# A5 7TBk(St,At),

Okr1 = argmax [

=0
. 7T9(At|5t)
| ——,1—¢,1 o (St, A
CIp (ﬂ'Gk(At|St)7 67 +6 a Hk( t t)
LCLIP A>0 A<0
} 1—€1 N
0 1 l+4e ' rovr
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Different Clipping Objectives

0.12
0.10
0.08
0.06
0.04
0.02
0.00

—-0.02

0 1
Linear interpolation factor

EdKLA
L = é![rtAI]
Edclip(re, 1 —€, 1+ €)Ad

—— LU = £ [min(rA:, clip(re, 1 — €, 1+ €)A))]

» Objective function vs interpolation factor between 0, and 0x11

> The objective is penalized as the policy moves away from 6
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Proximal Policy Optimization with Clipped Objective

Input:Policy 7, Clipping value €

for episode k =0,1,2,... do

Generate an episode foIIowing o, - 50, Ao, R1, 51, A1, RN ST_1, AT_1, R+
Update policy according to

Ok+1 = argmax Lg,':'P(G)
)

Where Lgk"'P is given by

cup 7o (At|St) - mo(AdSe)
Lok me (mkAISt) ar,, (St, Ar), clip T(At\strl &1+ ¢ ) an, (St, Ar)

end
Algorithm 6: PPO with Clipped Objective
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Performance of PPO
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» Performance of PPO on various MuJoCo tasks.?

2). Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. “Proximal policy
optimization algorithms”, arXiv preprint arXiv:1707.06347, 2017.
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Recap: Modern Policy Gradient Methods

» These methods are based on the KL divergence between policies
= This is an asymmetric measure and hence not a metric
» TRPO provides a fundamentally solid approach
= However it is computationally expensive
» PPO is based on intuitive heuristics
= In practice works surprisingly well
» Still, there is an important question that we have not answered
= What is the right measure of similarity between two policies?
>

We should use a true metric (Wasserstein distance)

= Wasserstein Reinforcement Learning
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