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MDP Recap

I A Markov Decision Process is a tuple (S,A,R,P)

I P is a Markov transition probability if for any S ′ ⊆ S and R′ ⊆ R

P[St+1 ∈ S ′,Rt+1 ∈ R′|St ,At , . . . , S0,A0] = P[St+1 ∈ S ′,Rt+1 ∈ R′|St ,At ]

I We select the actions based on parametrerized policies πθ(a|s)

⇒ We cannot work with general continuous functions

⇒ Parameterization is necessary

I Find the best policy within the functions that our parameterization defines

⇒ “Best” is defined by the value function

vπθ (s) = Eπθ

[
∞∑
t=0

γtRt+1

∣∣S0 = s

]

⇒ Recall that the expectation is with respect to all the rewards seen

⇒ We write Eπθ to denote the we are following the policy πθ(a|s)
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Maximizing the Value function

I Expanding the expectation, the value function is written as

vπθ (s) =
∞∑
k=0

∫
RkAkSk−1

γk rkΠk−1
j=0 p(sj+1, rj+1|sj , aj)πθ(aj |sj) dskdak−1drk

I Where the policy is parameterized by θ ∈ Rd

I We will update the parameters via gradient ascent

⇒ This gradient is given by the policy gradient theorem

I The gradient of v with respect to θ ∈ Rd is given by

∇θv(θ) =

(
∂v(θ)

∂θ1
, . . . ,

∂v(θ)

∂θd

)T

I To find the maximum, we update the parameters θ via

θk+1 = θk + αk∇θv(θ), with αk > 0
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The Different Policy Gradients

I Policy gradient for Episodic Tasks

∇θv(θ) = Eτ

[
T−1∑
t=0

∇θ log πθ(At |St)Gt

]
I Policy gradient for Continuing Tasks

∇θvπθ (si ) = (1− γ)−1ES∼ρθ,A∼πθ [∇θ log πθ(A|S)qπθ (S ,A)]

ρθ(si , s
′) = (1− γ)

∞∑
t=0

γtP(S0 = si → St = s ′)

Miguel Calvo-Fullana, Santiago Paternain Modern Policy Gradient Methods 5



Issues with the Policy Gradient

I There are several issues with the classical policy gradient

⇒ We have attempted to address some of them

⇒ Via baselines and actor-critic methods

I There are still issues that we have not tackled

I Modern methods for policy gradients attempt to tackle these issues

I We measure distance in the space of parameters

⇒ Parameters that are close can generate very different distributions

⇒ Especially problematic with deep neural networks

⇒ Makes the choice of step size difficult

⇒ We can attempt to characterize distances in the space of distributions

I We can be more efficient by reusing data from previous trajectories

⇒ We have studied some of this for off-policy methods

⇒ We can attempt to do so via importance sampling
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Measuring in the space of distributions: KL Divergence

I The Kullback-Leibler (KL) divergence is an asymmetric measure of
difference between probability distributions

I For discrete probability distributions P and Q it is defined as

DKL(P‖Q) =
∑
x

P(x) log
P(x)

Q(x)

I Properties of the KL divergence

⇒ DKL(P‖Q) ≥ 0

⇒ DKL(P‖P) = 0

⇒ DKL(P‖Q) 6= DKL(Q‖P)

I The KL divergence is not a metric as it is not symmetric

⇒ Nonetheless, it is a good measure of closeness between distributions
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Importance Sampling

I Importance sampling is a technique for estimating a probability distribution

⇒ With only samples from a different distribution

I For distributions P and Q and an arbitrary function f we have that

Ex∼P [f (x)] = Ex∼Q

[
P(x)

Q(x)
f (x)

]
I We denote the ratio P(x)/Q(x) as the importance sampling weight

I The variance of the stochastic approximation estimator is then given by

Var

(
P(x)

Q(x)
f (x)

)
= Ex∼Q

[(
P(x)

Q(x)
f (x)

)2
]
− Ex∼Q

[
P(x)

Q(x)
f (x)

]2
= Ex∼P

[
P(x)

Q(x)
f (x)2

]
− Ex∼P [f (x)]2

I If the importance sampling weight P(x)/Q(x) is large

⇒ The variance of the estimator can blow up
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Example: Importance Sampling in the Policy Gradient

I Consider a trajectory τ = (S0,A0, S1,R1,A1, S2,R2 . . . ,ST ,RT )

I Recall that the distribution of the trajectory is given by

p(τ) = p(S0)
T−1∏
t=0

πθ(At |St)p(St+1,Rt+1|St ,At)

I Which depends on the policy πθ with parametrization θ

I Further Recall that the policy gradient for finite horizon is given by

∇θv(θ) = Eτ

[
T−1∑
t=0

∇θ log πθ(At |St)Gt

]
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Example: Importance Sampling in the Policy Gradient

I We want to reuse information from a different trajectory

⇒ Trajectory τ ′ generated from a policy πθ′

I Via importance sampling we can write

∇θv(θ) = Eτ ′
[
p(τ)

p(τ ′)

T−1∑
t=0

∇θ log πθ(At |St)Gt

]
I By taking a closer look at the ratio p(τ)/p(τ ′) we have that

p(τ)

p(τ ′)
=

p(S0)
∏T−1

t=0 πθ(At |St)p(St+1,Rt+1|St ,At)

p(S0)
∏T−1

t=0 πθ′(At |St)p(St+1,Rt+1|St ,At)
=

T−1∏
t=0

πθ(At |St)

πθ′(At |St)

I Small differences can multiply and become quite large

⇒ Not the most stable way to reuse information from a different policy
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Relative Policy Performance

I First step to tackle the previous issues

⇒ Characterize the difference between two policies

I Recall that the advantage is defined as the difference between q and v

a(St ,At) = q(St ,At)− v(St)

I It is a normalization with respect to the state

⇒ How much an action can improve over the value of the current state

⇒ Or the advantage of choosing a specific action

I Given policies π and π′ and respective value functions v(π) and v(π′)

v(π′)− v(π) = Eπ′
[
∞∑
t=0

γtaπ(St ,At)

]
I We relate the return of a policy in terms of the advantage over another

I We call this the relative policy performance identity
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Relative Policy Performance Identity: Proof

I Note that the advantage is given by

aπ(St ,At) = Rt+1 + γvπ(St+1)− vπ(St)

I Then we can rewrite the term on the right hand side

Eπ′
[
∞∑
t=0

γtaπ(St ,At)

]
= Eπ′

[
∞∑
t=0

γt

(
Rt+1 + γvπ(St+1)− vπ(St)

)]

= v(π′) + Eπ′
[
∞∑
t=0

γt+1vπ(St+1)−
∞∑
t=0

γtvπ(St)

]
= v(π′)− Eπ′ [vπ(S0)]

= v(π′)− v(π)
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Finding a Policy π′

I We can use this identity to find a policy π′ that maximizes v(π′)

max
π′

v(π′) = max
π′

v(π′)− v(π)

I By the relative policy performance identity this is equivalent to

max
π′

v(π′) = Eπ′
[
∞∑
t=0

γtaπ(St ,At)

]
I This allows us to assess the quality of policy π′ via the advantage of π

I This expression still depends on trajectories generated from the policy π′

⇒ We want to remove this dependence
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Dependence on Trajectories Generated From π′

I We try to remove the dependence on trajectories sampled from π′

I Let us define the discounted state distribution dπ as

dπ(s) = (1− γ)
∞∑
t=0

γtP(St = s|π)

I Then we can rewrite the relative performance identity as

v(π′)− v(π) = Eπ′
[
∞∑
t=0

γtaπ(St ,At)

]

=
1

1− γES∼dπ′ ,A∼π′ [aπ(S ,A)]

I We can remove the dependence a ∼ π′ via importance sampling

v(π′)− v(π) =
1

1− γES∼dπ′ ,A∼π

[
π′(A|S)

π(A|S)
aπ(S ,A)

]
I All that is left is to take care of the states s ∼ dπ′
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Relative Performance Bound

I How can we get rid of the dependency on s ∼ dπ′ ?

I Let us assume for a second that dπ′ ≈ dπ

I We then have the local approximation Lπ(π′) as follows

v(π′)− v(π) ≈ 1

1− γES∼dπ,A∼π

[
π′(A|S)

π(A|S)
aπ(S ,A)

]
, Lπ(π′)

I Under these conditions, we have the following approximation guarantee∣∣v(π′)−
(
v(π) + Lπ(π′)

)∣∣ ≤ C
√

ES∼dπ

[
DKL(π′‖π)

]
I Where C is a system-dependent constant

I The approximation is good if the policies are close in KL divergence
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Using the Relative Performance Bound

I The local approximation is given by

Lπ(π′) =
1

1− γES∼dπ,A∼π

[
π′(A|S)

π(A|S)
aπ(S ,A)

]
I We can rewrite it as

Lπ(π′) = Eπ

[
∞∑
t=0

γt π
′(At |St)

π(At |St)
aπ(St ,At)

]
I We can use this approximation to optimize with respect to π′

⇒ Using only trajectories generated from π

⇒ Valid as long as policies are close in KL divergence

I Compared with the importance sampling of the policy gradient

⇒ The ratio π′(At |St)/π(At |St) only appears per time instance

⇒ It is not multiplied over the whole trajectory
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Monotonic Improvement via the Relative Performance Bound

I We have another version of the relative performance bound

v(π′) ≥ Lπ(π′)− CDmax
KL (π′‖π)

I Where C = 4εγ
(1−γ)2 and Dmax

KL (π′‖π) = maxs DKL(π′‖π)

I If we maximize the right hand side of this bound

πk+1 = argmax
π

[
Lπk (π)− CDmax

KL (π‖πk)

]
I We are guaranteed to generate a monotonically improving sequence

v(π0) ≤ v(π1) ≤ v(π2) ≤ · · ·

I To see this let Mk(π) = Lπk (π)− CDmax
KL (π‖πk) then

v(πk+1) ≥ Mk(πk+1)

v(πk) = Mk(πk)

v(πk+1)− v(πk) ≥ Mk(πk+1)−Mk(πk)

Miguel Calvo-Fullana, Santiago Paternain Modern Policy Gradient Methods 18



Policy Iteration with Guaranteed Improvement

Input: Policy πθ
for episode k = 0, 1, 2, . . . do

Generate an episode following πθ : S0,A0,R1, S1,A1, . . . , ST−1,AT−1,RT

Compute values of the advantage function aπk (St ,At)
Update policy according to

πk+1 = argmax
π

[
Lπk (π)− CDmax

KL (π‖πk)

]
Where C = 4εγ

(1−γ)2 and Dmax
KL (π′‖π) = maxs DKL(π′‖π)

end
Algorithm 1: Policy Iteration with Guaranteed Improvement
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Monotonic Improvement

I The previous algorithm is a Majorization-Minimization (MM) algorithm

⇒ In our case a Minorization-Maximization

⇒ We construct a lower bound on the original objective function

⇒ We maximize this lower bound

I This approach guarantees monotonic improvement

I However in practice computing Dmax
KL (π′‖π) is complicated

⇒ Requires evaluating the KL divergence at all states

⇒ Computationally expensive or simply impossible

I Substitute it for the average KL divergence over states

v(π′) ≥ Lπ(π′)− CES∼dπ

[
DKL(π′‖π)

]
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Optimization Problem

I From now on we will consider parameterized policies πθ

I From previously we have the following maximization

θk+1 = argmax
θ

Lθk (θ)− CES∼dθk

[
DKL(θ‖θk)

]
I The value of C = 4εγ

(1−γ)2 is given by the relative performance bound

⇒ In practice this value is is too conservative

I Instead we propose to solve the following optimization problem

maximize
θ

Lθk (θ)

subject to ES∼dθk

[
DKL(θ‖θk)

]
≤ δ

I Where we have control over a parameter δ

⇒ This is called a trust region method

⇒ δ controls the extend of the region of trust
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Natural Policy Gradient

I The natural policy gradient is a special case of the previous problem

⇒ Linearly approximate the objective function Lθk (θ)

⇒ Quadratically approximate the constraint ES∼dθk

[
DKL(θ‖θk)

]
I Done via Taylor’s expansion resulting in the following approximations

Lθk (θ) ≈ Lθk (θk) + gT (θ − θk)

ES∼dθk

[
DKL(θ‖θk)

]
≈ 1

2
(θ − θk)TH(θ − θk)T

I Where g , ∇θLθk (θk) |θ=θk and H , ∇2
θES∼dθk

[
DKL(θ‖θk)

]
|θ=θk

I We can then write the approximate optimization problem

maximize
θ

Lθk (θk) + gT (θ − θk)

subject to
1

2
(θ − θk)TH(θ − θk)T ≤ δ

I The gradient ascent update on which is given by

θk+1 = θk +

√
2δ

gTH−1g
H−1g
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Structure of the Natural Policy Gradient

I The term g , ∇θLθk (θk) |θ=θk corresponds to the policy gradient

∇θLθk (θk) |θ=θk = Eπθk

[
∞∑
t=0

γt∇θπθ(At |St) |θ=θk
πθk (At |St)

aπθk
(St ,At)

]

= Eπθk

[
∞∑
t=0

γt∇θ log πθ(At |St) |θ=θk aπθk
(St ,At)

]

I The Hessian matrix H , ∇2
θES∼dθk

[
DKL(θ‖θk)

]
|θ=θk is given by

H = Eπθk

[
∇θ log πθ(A|S) |θ=θk ∇θ log πθ(A|S) |Tθ=θk

]
I Called the Fisher information matrix

I Important property is that H−1g is invariant to parametrization
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Natural Policy Gradient

Input: Policy πθ, KL divergence target δ
for episode k = 0, 1, 2, . . . do

Generate an episode following πθk : S0,A0,R1, S1,A1, . . . , ST−1,AT−1,RT

Estimate policy gradient gk

gk = Eπθk

[
∞∑
t=0

γt∇θ log πθ(At |St) |θ=θk aπθk
(St ,At)

]

Estimate Hessian Hk

Hk = Eπθk

[
∇θ log πθ(A|S) |θ=θk ∇θ log πθ(A|S) |Tθ=θk

]
Compute natural policy gradient update

θk+1 = θk +

√
2δ

gT
k H−1

k gk
H−1

k gk

end
Algorithm 2: Natural Policy Gradient
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Dealing with the Hessian inverse

I The previous approach has a severe downfall

⇒ We need to compute the inverse H−1

⇒ This can be problematic as it does not scale well

I Instead of finding H−1 use the Conjugate Gradient (CG) to compute H−1g

I The conjugate gradient method can be used to solve for x in Ax = b

⇒ Widely used iterative method to solve linear system of equations

⇒ Finds it via projections to the Krylov subspace span{b,Ab,A2b, . . .}
I Conjugate gradient only needs to evaluate Hessian-vector products
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Line Search

I We want to ensure that the KL divergence constraint is satisfied

⇒ KL might not be satisfied due to the quadratic approximation

⇒ At some iterations, the trust region given by δ can be too large

I We include a line search step

⇒ Backtracking line search with exponential decay

⇒ Enforce improvement in the approximation Lθk (θ) ≥ 0

⇒ Ensure the KL divergence constraint ES∼dπθk

[
DKL(θ‖θk)

]
≤ δ is met

I Trust Region Policy Optimization (TRPO) consists of

⇒ The natural policy gradient

⇒ Efficient Hessian-vector product computation via conjugate gradient

⇒ A line search to enforce the KL divergence
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Trust Region Policy Optimization (TRPO)

Input: Policy πθ, KL divergence target δ
for episode k = 0, 1, 2, . . . do

Generate an episode following πθk : S0,A0,R1, S1,A1, . . . , ST−1,AT−1,RT

Estimate policy gradient gk

gk = Eπθk

[
∞∑
t=0

γt∇θ log πθ(At |St) |θ=θk aπθk
(St ,At)

]

Use Conjugate Gradient to estimate xk = H−1
k gk

Conduct a line search with the proposed update

∆k =

√
2δ

gT
k xk

xk

Update parameters after line search

θk+1 = θk + αj∆k

end
Algorithm 3: Trust Region Policy Optimization (TRPO)
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Line Search for TRPO

Input: Update step ∆k =
√

2δ

gT
k
H−1
k

gk
H−1

k gk , step size decay α ∈ (0, 1)

for j = 0, 1, 2, . . . , L steps do
Compute proposed update θ = θk + αj∆k

if Lθk (θ) ≥ 0 and ES∼dπθk

[
DKL(θ‖θk)

]
≤ δ then

Set θk+1 = θk + αj∆k

Stop
end

end
Algorithm 4: Line Search for TRPO

Miguel Calvo-Fullana, Santiago Paternain Modern Policy Gradient Methods 29



Performance of Natural Gradient Based Algorithms

I Comparison of various RL methods on a MuJoCo walker task.1

1Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel “Benchmarking Deep
Reinforcement Learning for Continuous Control”, in International Conference on Machine
Learning, pp. 1329-1338, 2016.
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The Issues With Natural Policy Gradients

I Methods based on natural gradients are computationally expensive

I Even with the modifications made to TRPO it is still expensive

⇒ They are fundamentally second order methods

I Can we obtain similar performance with a first-order method?

⇒ Avoid Hessian-related computations

I Proximal Policy Optimization (PPO) attempt to do so

⇒ It is a first order approach based on heuristics

⇒ Matches or surpasses TRPO performance in practice

I Proximal Policy Optimization has two variants

⇒ Proximal Policy Optimization with KL penalty

⇒ Proximal Policy Optimization with clipped objective
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Proximal Policy Optimization with KL Penalty

I Recall the previous unconstrained optimization problem

θk+1 = argmax
θ

Lθk (θ)− βkES∼dθk

[
DKL(θ‖θk)

]
I Choosing a fixed value of βk is complicated

I PPO with KL penalty attempts to adjust the value of βk dynamically

⇒ This is done via a heuristic check at each iteration

I The policy adapts the value βk

⇒ Individual iterations can violate KL constraints as βk adapts

⇒ This is not much of an issue in practice as adaptation occurs fast
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Proximal Policy Optimization with KL Penalty

Input: Policy πθ, KL divergence target δ
for episode k = 0, 1, 2, . . . do

Generate an episode following πθ : S0,A0,R1, S1,A1, . . . , ST−1,AT−1,RT

Update policy according to

θk+1 = argmax
θ

Lθk (θ)− βkES∼dθk

[
DKL(θ‖θk)

]
if ES∼dθk

[
DKL(θk+1‖θk)

]
≥ 1.5δ then

βk+1 = 2βk
end
if ES∼dθk

[
DKL(θk+1‖θk)

]
≤ δ/1.5 then

βk+1 = βk/2
end

end
Algorithm 5: PPO with KL Penalty
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Proximal Policy Optimization with Clipped Objective

I Clipping PPO modifies the objective to penalize policies moving far away

⇒ Extremely simple to implement

I The update is given by the maximization of the objective function

θk+1 = argmax
θ

[
Eπθk

[
∞∑
t=0

min

(
πθ(At |St)

πθk (At |St)
aπθk

(St ,At),

clip

(
πθ(At |St)

πθk (At |St)
, 1− ε, 1 + ε

)
aπθk

(St ,At)

)]]
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Different Clipping Objectives

I Objective function vs interpolation factor between θk and θk+1

I The objective is penalized as the policy moves away from θk
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Proximal Policy Optimization with Clipped Objective

Input:Policy πθ, Clipping value ε
for episode k = 0, 1, 2, . . . do

Generate an episode following πθk : S0,A0,R1, S1,A1, . . . , ST−1,AT−1,RT

Update policy according to

θk+1 = argmax
θ

LCLIP
θk (θ)

Where LCLIP
θk

is given by

LCLIP
θk =

T−1∑
t=0

min

(
πθ(At |St)

πθk (At |St)
aπθk

(St ,At), clip

(
πθ(At |St)

πθk (At |St)
, 1− ε, 1 + ε

)
aπθk

(St ,At)

)
end

Algorithm 6: PPO with Clipped Objective
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Performance of PPO

I Performance of PPO on various MuJoCo tasks.2

2J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. “Proximal policy
optimization algorithms”, arXiv preprint arXiv:1707.06347, 2017.
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Recap: Modern Policy Gradient Methods

I These methods are based on the KL divergence between policies

⇒ This is an asymmetric measure and hence not a metric

I TRPO provides a fundamentally solid approach

⇒ However it is computationally expensive

I PPO is based on intuitive heuristics

⇒ In practice works surprisingly well

I Still, there is an important question that we have not answered

⇒ What is the right measure of similarity between two policies?

I We should use a true metric (Wasserstein distance)

⇒ Wasserstein Reinforcement Learning
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