Señales y Sistemas

Pretico 10 Diseño de Filtros en Tiempo Discreto

Cada ejercicio comienza con un smbolo indicando su dificultad de acuerdo a la siguiente escala: ♦ bsico, ★ medio, ★ avanzado, y * desafiante. Adems puede tener un nmero, como (1.21) que indica el nmero de ejercicio del libro del curso, *Señales y Sistemas*, Oppenheim/Willsky, 2nd.edition.

Referencia bibliográfica: Papoulis, a partir de la página 173.

★ Ejercicio 1

Se desea diseñar un filtro pasabajos (LPF) $H_a(j\omega)$ de ancho de banda ω_0 .

(a) Hallar la respuesta al impulso de este filtro, $h_a(t)$.

Se implementará este filtro en forma de un filtro en tiempo discreto $h_d[n]$ mediante el proceso de diseño por ventanas con los siguientes criterios:

- muestreo de $h_a(t)$ con frecuencia de muestreo $\omega_s > 2\omega_0$,
- ullet se dispone de 2N celdas de retardo,
- el filtro debe ser causal, y
- minimizar el error cuadrático medio en el truncamiento de coeficientes.
- (b) Hallar la expresión de $h_a[n]$ correspondiente al muestreo de $h_a(t)$ con ω_s .
- (c) Bosquejar $H_a\left(e^{j\theta}\right)$ en base a $H_a(j\omega)$. Dejar explícita la expresión del ancho de banda de $H_a\left(e^{j\theta}\right)$ en función de ω_0 .

Repetir las siguientes partes para una ventana rectangular $w_R[n]$ y una ventana triangular $w_T[n]$.

- (d) Hallar la expresión de la ventana w[n] correspondiente.
- (e) Hallar y bosquejar la expresión de $h_d[n]$.
- (f) Hallar y bosquejar la expresión de $H_d\left(e^{j\theta}\right)$.
- (g) Analizar las degradaciones (ripple, ancho de banda pasante, ...) y comparar entre ambas ventanas.

★ Ejercicio 2

Sea x(t) una señal de banda limitada $[-W_x,W_x]$ y módulo acotado por 1. Sea un filtro lineal de respuesta impulsiva h(t), y sea y(t) la respuesta a la entrada x(t) de ese filtro.

- (a) Hallar el ancho de banda de y(t).
- (b) Se consideran las señales muestreadas $x_1[n] = x(nT)$ e $y_1[n] = y(nT)$. Determinar el intervalo entre muestras T máximo para que las señales x e y se puedan recuperar a partir de sus muestras.
- (c) Se supone $T < T_{max}$. Mostrar que $y_1[n]$ es la respuesta a $x_1[n]$ de un filtro cuya respuesta impulsiva $h_1[n]$ se hallará.
- (d) Hallar la respuesta frecuencial $H_1(e^{j\theta})$ y bosquejarla, comparándola con $H(j\omega)$.
- (e) En particular, sea y(t) = x'(t), o sea que el filtro es un derivador. Hallar h(t).
- (f) Hallar $h_1[n]$. Expresar la derivada de x(t) en función de los valores x(nT).

★ Ejercicio 3

Determinar si los siguientes filtros distorsionan la fase.

(a)
$$y[n] = x[n] + 2x[n-1] + 6x[n-2] + 2x[n-3] + x[n-4]$$

(b)
$$y[n] = x[n] + 0.5y[n-1]$$