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Introduction

It is a non linear classifier as SVM, CART, RF, etc. This kind of methods allow nonlinear
boundary and are more flexible.

In k-NN classification, the output is a class membership. An object is classified by a majority vote
of its neighbors, with the object being assigned to the class most common among its k nearest

neighbors (k is a positive integer, typically small). If k = 1, then the object is simply assigned to
the class of that single nearest neighbor.

We can also apply k-NN to a regression problem. In k-NN regression, the output is the property
value for the object. This value is the average of the values of its k nearest neighbors.
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@ If k =1 (1-nn), then the object is simply assigned to the class of its nearest neighbor. The
boundary is very flexible. It is a model with low bias and high variance. and the train error
equals zero but the test error rate may be quite high.

@ If k grows, the model and then the boundary is less flexible, with high bias and low
variance. The boundary is close to be linear.

@ To avoid ties, it is better to choose an odd k.
@ The method does not rely on stringent assumptions about the data

@ The method works well for large n small d, but not for small n large d. For large n, the
points in Nk(x) are more likely to be close to x. The larger d, the farther away points from
each other (curse of dimensionality)

@ it is often recommended to standardize the data before constructing the k-nn estimator.

@ In general it uses euclidean distance, but obviously it depends of the dataset.

The k-NN classifier is defined as follow:

y(x) = % D vi=Ave{yilxi € Ni(x)}
x; € Nk (x)
. 1 3 0,5
F(x) :{ 0 §§3 g 0,5

The neighbor Ni(x) depends obviously of a distance, and so is the prediction. Often, the
classification accuracy of k-nn can be improved significantly if the distance metric (euclidean in
general) is learned with specialized algorithms such as Large Margin Nearest Neighbor.
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R code

library(class)

knn(train, test, cl, k = 1)
knnil(train, test, cl)
knn.cv(train, cl, k = 1)

Arguments:

@ train: matrix or data frame of training set cases.
@ test: matrix or data frame of test set cases.
@ cl: factor of true classifications of training set

@ k: number of neighbors considered.

Value (Output): Factor of classifications of the test set.

@ For each row of the test set, the k nearest (in Euclidean distance) training set vectors are
found, and the classification is decided by majority vote, with ties broken at random.

@ If there are ties for the kth nearest vector, all candidates are included in the vote.
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R code - Example

> head(iris3)
, , Setosa

Sepal L. Sepal W. Petal L. Petal W.
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, , Versicolor

Sepal L. Sepal W. Petal L. Petal W.
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, , Virginica

Sepal L. Sepal W. Petal L. Petal W.

1, 6.3 3.3 6.0 2.5
[2, 5.8 2.7 5.1 1.9
[3, 7.1 3.0 5.9 2.1
[4,] 6.3 2.9 5.6 1.8
s 6.5 3.0 5.8 2.2
s 7.6 3.0 6.6 2.1

train = rbind(iris3[1:25,,1], iris3[1:25,,2], iris3[1:25,,3])
test = rbind(iris3[26:50,,1], iris3[26:50,,2], iris3[26:50,,3])
cl =factor(c(rep("s",25), rep("c",25), rep("v",25)))
model=knn(train, test, cl, k = 3, prob=TRUE)
errortest=mean(model!=cl)
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Role of k

@ The smaller k, the lower bias and higher variance
@ The larger k, the higher bias and lower variance (reduce the effect of noise)
@ When k =1, the training error is zero (overfitting)

The best choice of k depends of the data set and it is computed generally by cross-validation.
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Role of k
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Role of k

Bayes Opimal Qassfier
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Choosing k...by cross validation
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Figura: Cross Validation Scheme. Here V = 4.

Let L= L1 U---ULy. At each iteration we consider

= Argmm— Z Error (5 ¥(£y))
v=1

where f, " is the classifier with parameter « trained on set £\ L.
In case of k-NN, parameter o equal to the number of neighbors k.
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Link with Bayes classifier

Bayes classifier assign to x class that maximizes posterior probability:

f(x) = ArgmaxP(y|X = x)
ye{0,1}

This probability can be approximated looking at the proportion of each class between the K

nearest neighbor of x, i. e
N
f(x) ~ Argmax k(x)

ke{o,1} N

where Ni(x) is the number of neighbor of x in class k.
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