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MDP Recap

I A Markov Decision Process is a tuple (S,A,R,P)

I P is a Markov transition probability if for any S ′ ⊆ S and R′ ⊆ R

P[St+1 ∈ S ′,Rt+1 ∈ R′|St ,At , . . . , S0,A0] = P[St+1 ∈ S ′,Rt+1 ∈ R′|St ,At ]

I We select the actions based on parameterized policies πθ(a|s)

⇒ We cannot work with general continuous functions

⇒ Parameterization is necessary

I Find the best policy within the functions that our parameterization defines

⇒ “Best” is defined by the value function

vπθ (s) = Eπθ

[
∞∑
t=0

γtRt+1

∣∣S0 = s

]

⇒ Recall that the expectation is with respect to all the rewards seen

⇒ We write Eπθ to denote the we are following the policy πθ(a|s)
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Maximizing the Value function

I Expanding the expectation, the value function is written as

vπθ (s) =
∞∑
k=0

∫
RkAkSk−1

γk rkΠk−1
j=0 p(sj+1, rj+1|sj , aj)πθ(aj |sj) dskdak−1drk

I Where the policy is parameterized by θ ∈ Rd

I We will update the parameters via gradient ascent

I Computing the gradient can be tricky (Today’s lecture)

⇒ Policy Gradient Theorem

I The gradient of v with respect to θ ∈ Rd is

∇θvπθ (s) =

(
∂v(θ)

∂θ1
, . . . ,

∂v(θ)

∂θd

)T

I To find the maximum, we update the parameters θ

θk+1 = θk + αk∇θv(θ), with αk > 0
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Policy Gradient for Continuing Task

I Recall that the expression of the gradient is

∇θvπθ (s) = (1− γ)−1ES∼ρθ,A∼πθ [qπθ (S ,A)∇ log πθ(A|S)]

I Where the distribution ρθ(s ′, s) is given by

ρθ(s ′, s) = (1− γ)
∞∑
t=0

γtp(St = s | S0 = s ′)

I And q(s, a) is the sate-action value function

qπθ (s, a) = Eπθ

[
∞∑
k=0

γkRt+k+1 | St = s,At = a

]
I To compute the gradient we are required to have good estimates of qπθ
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REINFORCE: Policy Gradient for Episodic Task

I REINFORCE is a Monte Carlo type method

I It uses one trajectory as a sample

I Basically run one trajectory and compute

θk+1 = θk + αk

T−1∑
t=0

∇θ log πθk (At |St)Gt

I Works because
∑T−1

t=0 ∇θ log πθk (At |St)Gt is unbiased

Eπθk

[
T−1∑
t=0

∇θ log πθk (At |St)Gt

]
= ∇θv(θk)

I However the variance of an estimate is important for convergence

Santiago Paternain, Miguel Calvo-Fullana Actor Critic 6



Example: The influence of the variance

I In this example we try to maximize the following function

f (x) = −1

2
‖x‖2

I The gradient of this function is ∇f (x) = −x
⇒ Estimate of the gradient is −xk + ξk with ξk ∼ N (0, σ2)

xk+1 = xk + α(−xk + ξk)

I The estimate is unbiased E[ξk ] = 0

I Convergence is influenced by the
variance

I We want estimates with small
variance
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Baselines

I We introduced baselines to the estimate ∇θ log πθ(At |St) (Gt − v(St))

I The new estimate is unbiased because E [∇θ log πθk (At |St)v(St)] = 0

I We argued that since vπθ (s) = Eπθ [Gt | St = s]

⇒ It is reasonable to expect that the variance is reduced

⇒ But we did not prove it

I Since qπθ is also related to the return

qπθ (s, a) = Eπθ [Gt | St = s,At = a]

I If instead of looking at the return we were to look at at qπθ

⇒ we should get a better estimate since we are “eliminating the noise ”
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What can we gain from knowing the q-function?

I Recall that the expression for the policy gradient for episodic tasks

∇θvπθ (s) = E [Gt∇θ log πθ(At |St) | St = s]

I The estimate that we have been using so far is

∇̂θv(s) = Gt∇θ log πθ(At |St)

I However notice that we can also write

∇θvπθ (s) = E [E [Gt | St ,At ]∇θ log πθ(At |St) | St = s]

= E [Q(St ,At)∇θ log πθ(At |St) | St = s]

I So we can also use the following estimate

∇̂θvq = Q(St ,At)∇θ log πθ(At |St)

I It is also an unbiased estimate E
[
∇̂θvq|St = s

]
= ∇θvπθ (s)
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What can we gain from knowing the q-function?

I Is this new estimate better in any sense?

∇̂θvq(θ) = Q(St ,At)∇θ log πθ(At |St)

I Let us compute the difference in covariance of the two estimates

Cov
[
∇̂θv(θ)

]
− Cov

[
∇̂θvq(θ)

]
= E

[
G 2

t ∇θ log πθ(At |St)∇θ log πθ(At |St)
>
]

−∇θv(θ)∇θv(θ)>

−E
[
Q(St ,At)

2∇θ log πθ(At |St)∇θ log πθ(At |St)
>
]

+∇θv(θ)∇θv(θ)>

I Then it follows that

Cov
[
∇̂θv(θ)

]
− Cov

[
∇̂θvq(θ)

]
= E

[(
G 2

t − Q(St ,At)
2
)
∇θ log πθ(At |St)∇θ log πθ(At |St)

>
]
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What can we gain from knowing the q-function?

I Working with ∇̂θvq(θ) is better if

Cov
[
∇̂θv(θ)

]
− Cov

[
∇̂θvq(θ)

]
≥ 0

I Conditioning on St ,At the previous expression yields

∆Var = E
[
E
[
G 2

t − qπθ (St ,At)
2 | St ,At

]
∇θ log πθ(At |St)∇θ log πθ(At |St)

>
]

I Let us show that the red expression is always non-negative

E
[
G 2

t − qπθ (St ,At)
2 | St ,At

]
= E

[
G 2

t | St ,At

]
− qπθ (St ,At)

2

I We have used that qπθ (St ,At) is a deterministic function given St ,At

I By definition we have that qπθ (St ,At) = E [Gt | St ,At ]

E
[
G 2

t − qπθ (St ,At)
2 | St ,At

]
= E

[
G 2

t | St ,At

]
− E [Gt | St ,At ]

2

= Var(Gt | St ,At) ≥ 0

I The variance of the estimate with the qπθ function is always reduced
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Introduction to Actor-Critic methods

I Having access to the q-function reduces the variance of our estimate

I This implies faster-convergence

I Why are they called actor-critic?

⇒ There is an actor: the agent choosing the policy

⇒ The critic is represented by the Q-function

⇒ It gives feedback on how good the action is for the given state

I Estimating the q-function is as easy as estimating the v -function

⇒ Monte-Carlo updates

⇒ TD updates

⇒ n-step and λ returns

I All of these methods can be used as well

⇒ Nothing really changes so we will go fast over them
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The q-Function

I The q-function for the state-action (s, a) ∈ S ×A and policy π is

qπ(s) = Eπ [Gt | St = s,At = a] = Eπ

[
T−1∑
k=0

γkRt+k+1 | St = s,At = a

]
I Instead of computing the expectation we can consider the average return

⇒ Every time we visit the state s we estimate its return

⇒ And we average all these

⇒ Law of large numbers guarantees convergence to the expected value

I The first algorithm that we will see is First Visit Monte Carlo

⇒ This is a tabular method ⇒ discrete state space
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First visit Monte Carlo

Input: Policy π(A|S) and starting distribution p(S0)
Initialize: q(s, a) = 0 for all s ∈ S and a ∈ A . (Value function is set to zero)
n(s, a) = 0 for all s ∈ S and a ∈ A . (Counter for visits set to zero)
for episode k = 0, 1, 2, . . . do

Generate an episode following π : S0,A0,R1,S1,A1, . . . , ST−1,AT−1,RT

Set G = 0
for time t = T − 1, . . . , 1, 0 do

G = γG + Rt+1 . (Compute return of states ST−1, . . . , S1, S0)
if (St ,At) /∈ {(S0,A0), (S1,A1) . . . , (St−1,At−1)} then

n(St ,At) = n(St ,At) + 1 . (Increase counter for visit)
q(St ,At) = q(St ,At) (n(St ,At)− 1) /n(St ,At) + G/n(St ,At) .

(Update mean)
end

end

end
Algorithm 1: First visit Monte Carlo
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First visit Monte Carlo

I For each state-action (s, a) we compute the return Gt given that
St = s,At = s

I First visit ⇒ we consider the return only the first time that we visit s, a

⇒ This means that for every episode we get a different return for s, a

⇒ And these returns are therefore i.i.d

⇒ They also have bounded variance

I So the law of the large numbers proves the convergence of the algorithm

I We can also do every-visit Monte Carlo

⇒ The returns are not independent in this case

⇒ We can still write it as a Stochastic Approximation problem

⇒ Similar to constant step Monte Carlo with a diminishing step-size
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Constant step Monte Carlo

I Instead of computing the average we can do SGD

I Let us define the following error for each state

F (q) =
1

2
‖q(s, a)− qπ(s, a)‖2

I Where q(s, a) is an estimate of the value function under the policy π

I We have found the q function when q(s, a) = qπ(s, a) ⇒ F (q) = 0

I We can use SGD to minimize the function F (q)

I Compute the gradient with respect to q(s, a)

∂F (q)

q(s, a)
= q(s, a)− qπ(s, a) = q(s, a)− Eπ [Gt | St = s,At = s]

I So we can do Stochastic Approximation

qk+1(St ,At) = qk(St ,At)− α (qk(St ,At)− Gt) = (1− α)qk(St ,At) + αGt

Santiago Paternain, Miguel Calvo-Fullana Actor Critic 17



Constant step Monte Carlo

Input: Stepsize α, Policy π(A|S) and starting distribution p(S0)
Initialize: q(s, a) = 0 for all s ∈ S and a ∈ A . (q function is set to zero)
for episode k = 0, 1, 2, . . . do

Generate an episode following π : S0,A0,R1,S1,A1, . . . , ST−1,AT−1,RT

Set G = 0
for time t = T − 1, . . . , 1, 0 do

G = γG + Rt+1 . (Compute return of state-action
(ST−1,AT−1), . . . , (S1,A1), (S0,A0))

q(St ,At) = (1− α)q(St ,At) + αG . (Update using SGD)
end

end
Algorithm 2: Constant step Monte Carlo
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Example

I Consider the MDP with uniform policy, i.e., for all s ∈ {A, B, C, D, E}

π(a = left) = π(a = right) = 0.5

I All transitions have zero rewards except from s = E, with a = right

A B C D E
0 10 0 0 0

START

I The q−function for each state-action pair is the probability of reaching
the terminal state on the right before the one on the left from the
neighboring state.
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Monte Carlo Actor-Critic

Input: Parametric Policy πθ(A|S), distribution p(S0),step-sizes αθ,αq

Initialize: q(s, a) = 0 for all s ∈ S and a ∈ A . (Value function is set to zero)
Initialize: θ0 = θ
for episode k = 0, 1, 2, . . . do

Generate an episode following π : S0,A0,R1,S1,A1, . . . , ST−1,AT−1,RT

for time t = T − 1, . . . , 1, 0 do

Gt =
∑T−1

t′=t Rt′+1 . (Compute return of states ST−1, . . . , S1, S0)
q(St ,At) = q(St ,At)(1− αq) + Gtαq

∇θv(θ) = ∇θv(θ) + q(St ,At)∇θ log πθk (At |St)
end
Update: θk+1 = θk + αθ∇θv(θ)

end
Algorithm 3: Monte Carlo Actor-Critic
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Example

I Consider the following short corridor

⇒ For each state there are two actions left or right

⇒ Transitions are normal but in the middle state they are reversed

⇒ All transitions give reward −1

⇒ Episode terminates when we reach G

I We want to solve this problem using a very simple parameterization

x(s, left) = [1, 0] x(s, right) = [0, 1]

I Basically we follow the same policy regardless of the state
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Example

I If we follow the same policy regardless of the state

I There is no deterministic policy that is optimal

I The optimal policy is something around 50% on each direction

I However it has to be biased to the right

I We start with a bad policy defined by θ1 = 0 and θ2 = 3

I This gives us πθ(right) ≈ 0.05
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Example

I We solve the previous example using REINFORCE and Actor Critic

I We select the step sizes to be αθ = 0.001 and αq = 0.01

I We trained 100 examples and averaged the learning curves

0 20 40 60 80 100 120 140 160 180 200

−60

−40

−20
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REINFORCE

AC

I In both cases we get π(right) ≈ 0.54

I Actor critic has better convergence properties
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Monte Carlo limitations

I We need to wait until the end of an episode to update the value function

⇒ Problem is that we can have episodes that are very long

⇒ What about continuing tasks? No episode at all

I We would like to operate step-by-step instead of episode-by-episode

⇒ This could accelerate learning but not possible with Monte Carlo

I Monte Carlo methods are simple to understand and use

⇒ Serve as good building blocks to more complex methods
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From episode-by-episode to step-by-step

I The q-function for the state-action (s, a) ∈ S ×A and policy π is

qπ(s, a) = Eπ [Gt | St = s,At = a] = Eπ

[
T−1∑
k=0

γkRt+k+1 | St = s,At = a

]
I Recall that Monte Carlo methods need to wait until the end of the episode

to update the value function

⇒ They operate in an episode-by-episode sense

I Now we look at Temporal Difference (TD) methods

⇒ They work in a step-by-step sense

I They update their estimated based on previous estimates

⇒ There is no need to wait for the final outcome of the episode

⇒ This concept is known as bootstraping

Santiago Paternain, Miguel Calvo-Fullana Actor Critic 26



Back to Bellman’s Equation

I The q-function also satisfies the Bellman’s equation

qπ(s, a) = Eπ [Rt+1 + γqπ(St+1,At+1) | St = s,At = a]

I Recall that it is the only function that satisfies Bellman’s equation

I Let us define the operator

B(q)
∣∣

(s,a)
= Eπ [Rt+1 + γq(St+1,At+1) | St = s,At = a]

I So we have that B(qπ)|(s,a) = qπ(s, a) ⇒ qπ is the only fixed point

I We can show that the operator is a contraction, i.e., for any q, q′∥∥B(q)− B(q′)
∥∥
∞ ≤ γ

∥∥q − q′
∥∥

I If the operator is a contraction and we apply it k times we have∥∥∥B(q)k − B(q′)k
∥∥∥
∞
≤ γ

∥∥∥B(q)k−1 − B(q′)k−1
∥∥∥

I Recursively this yields∥∥∥B(q)k − B(q′)k
∥∥∥
∞
≤ γk

∥∥q − q′
∥∥
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Back to Bellman’s Equation

I We have defined the operator

B(q)
∣∣

(s,a)
= Eπ [Rt+1 + γq(St+1) | St = s,At = a]

I For which qπ is a fixed point B(qπ) = qπ

I And if it is a contraction (left to be shown) then we have that∥∥∥B(q)k − B(q′)k
∥∥∥
∞
≤ γk

∥∥q − q′
∥∥

I Replacing q′ by qπ in the previous equation yields∥∥∥B(q)k − qπ
∥∥∥
∞
≤ γk ‖q − qπ‖

I Taking the limit of k →∞ establishes convergence for γ ≤ 1

I If we apply the Bellman operator to any q we will converge to qπ
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The Bellman Operator is a contraction

I We have defined the operator

B(q)
∣∣

(s,a)
= Eπ [Rt+1 + γq(St+1) | St = s,At = a]

I We need to show that it is a contraction

⇒ The proof is the same as the proof for TD(0) estimation of v
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A Stochastic Approximation

I We have defined the operator

B(q)
∣∣

(s,a)
= Eπ [Rt+1 + γq(St+1,At+1) | St = s,At = a]

I By its recursive application we can estimate qπ

I To compute the Bellman operator we need to compute an expectation

⇒ Not efficient ⇒ Let us try a stochastic approximation

I We want to find the fixed point of the Bellman operator B(q)− q = 0

I Let us use Robbins-Monro ⇒ Define F (q) = B(q)− q

I Say that we have St = s,At = a then the estimate of F is given by

F̂ (qk)
∣∣

(s,a)
= Rt+1 + γqk(St+1,At+1)− qk(St ,At)

I If we are able to get estimates of all the variables at the same time

qk+1 = qk + αF̂ (qk)

I Which is the classic stochastic approximation

⇒ We have convergence guarantees
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Tabular TD(0) for estimating qπ

Input: Policy π(A|S), starting distribution p(S0), step-size α
Initialize: q(s, a) = 0 for all s ∈ S and a ∈ A . (value function is set to zero)
for episode k = 0, 1, 2, . . . do

Initialize S0

Choose A ∼ π(A|S)
for each step of the episode t = 0, 1, . . . ,T − 1 do

Take action A and observe R and S ′

Choose A′ ∼ π(A′|S ′)
q(S ,A) = q(S ,A) +α[R +γq(S ′,A′)−q(S ,A)] . (Stochastic Approx)
S = S ′ . (Update State)
A = A′ . (Update Action)

end

end
Algorithm 4: Tabular TD(0)
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TD(0)

I Notice that the previous algorithm is actually asynchronous

I We only update one of the entries at the time

qk+1(St ,At) = qk(St ,At) + α (Rt+1 + γqk(St+1,At+1)− qk(St ,At))

= qk(St ,At) + αF̂ (q(St ,At))

I The proof assumes that we compute F̂ (q(St ,At)) for all states and actions

I Nonetheless, the proof can be extended for asynchronous updates1

1J.N. Tsitsiklis, “Asynchronous stochastic approximation and Q-learning”, in Machine Learning,
vol. 16, no. 1, pp. 185-202, 1994.
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Using TD(0) in Actor-Critic

Input: Parametric Policy πθ(A|S), distribution p(S0),step-sizes αθ,αq

Initialize: q(s, a) = 0 for all s ∈ S and a ∈ A . (q function is set to zero)
Initialize: θ0 = θ
for episode k = 0, 1, 2, . . . do

Initialize S
Choose A ∼ πθk (A|S)
for each step of the episode t = 0, 1, . . . ,T − 1 do

Take action A and observe R and S ′

Choose A′ ∼ πθk (A′|S ′)
q(S ,A) = q(S ,A) + αq (R + γq(S ′,A′)− q(S ,A))
∇θv(θ) = ∇θv(θ) + q(S ,A)∇θ log πθk (A|S)
S = S ′

A = A′

end
Update: θk+1 = θk + αθ∇θv(θ)

end
Algorithm 5: TD Actor-Critic
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Example

I Consider the following short corridor

⇒ For each state there are two actions left or right

⇒ Transitions are normal but in the middle state they are reversed

⇒ All transitions give reward −1

⇒ Episode terminates when we reach G

I We want to solve this problem using a very simple parameterization

x(s, left) = [1, 0] x(s, right) = [0, 1]

I Basically we follow the same policy regardless of the state
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Example

I If we follow the same policy regardless of the state

I There is no deterministic policy that is optimal

I The optimal policy is something around 50% on each direction

I However it has to be biased to the right

I We start with a bad policy defined by θ1 = 0 and θ2 = 3

I This gives us πθ(right) ≈ 0.05

Santiago Paternain, Miguel Calvo-Fullana Actor Critic 35



Example

I We solve the previous example using REINFORCE and Actor Critic

I We select the step sizes to be αθ = 0.001 for all algorithms

⇒ αq = 0.01 for Montecarlo and αq = 0.005 for TD

I We trained 100 examples and averaged the learning curves
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I In both cases we get π(right) ≈ 0.54

I Actor critic with TD has better convergence properties
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Remember Baselines?

I So far we have been talking about using the q-function to reduce the
variance of the estimate

I But baselines were used for the same reason ⇒ Can we use both?

⇒ Nothing prevents us from considering the following estimate

∇̂θva = ∇θ log πθ(At |St) (q(St ,At)− v(St))

I The reason for that is that E [∇θ log πθ(At |St)v(St)] = 0

I The difference between q and v is called the advantage function

a(St ,At) = q(St ,At)− v(St)

I It is a normalization with respect to the state

⇒ How much an action can improve over the value of the current state

⇒ Or the advantage of choosing a specific action
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Advantage function with TD

I Does that mean that we need to keep track both of q and v?

I Not really thanks to Bellman’s equation

a(s, a) = q(s, a)− v(s) = Eπ [Gt | St = s,At = a]− v(s)

= Eπ [Rt+1 + γv(St+1) | St = s,At = a]− v(s)

I Then we can estimate the gradient using

∇̂θva = a(St ,At)∇θ log πθ(At |St)

= (Rt+1 + γv(St+1)− v(St))∇θ log πθ(At |St)
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Advantage Actor-Critic

Input: Parametric Policy πθ(A|S), distribution p(S0),step-sizes ηα,αv

Initialize: v(s) = 0 for all s ∈ S . (Value function is set to zero)
Initialize: θ0 = θ
for episode k = 0, 1, 2, . . . do

Initialize S
Choose A ∼ πθk (A|S)
for each step of the episode t = 0, 1, . . . ,T − 1 do

Take action A and observe R and S ′

v(S) = v(S) + αv (R + γv(S ′)− v(S))
∇θv(θ) = ∇θv(θ) + (R + γv(S ′)− v(S))∇θ log πθk (A|S)
S = S ′

Choose A ∼ πθk (A|S)
end
Update: θk+1 = θk + αθ∇θv(θ)

end
Algorithm 6: A2C
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Asynchronos Advantage Actor-Critic (A3C)
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Asynchronos Advantage Actor-Critic (A3C)
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Outline

Recap of Policy Gradient

Estimating the q-Function: Montecarlo Methods

Estimating the q-Function: Temporal Difference Learning

Off-policy Actor Critic

Deterministic Policy Gradient
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On-Policy vs Off-Policy

I So far we have been doing On-Policy learning

I We use the same policy for actuation and training

I Learns about the policy that it is executing

I It is more natural as a framework

I Analysis is easier ⇒ so it is a better place to start
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On-Policy vs Off-Policy

I Off-Policy considers a different policy for training

I Executes one policy but it learns another one

I Learn about a policy while executing an exploratory policy

I Learn from demonstration or previous experience

I Learning multiple tasks from a single interaction with an environment

I Requires compensating for shift between behavior and target policy

⇒ It is called importance sampling

⇒ this increases variance, the more so when using multi-step updates
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A Different Objective

I Say we have termination at time t + T , then the value function is

vπ(s) = E [Rt+1 + . . .+ Rt+T | St = s]

I Let us denote by b(a|s) the behavior policy

I Assume that the MDP is ergodic

⇒ There exists a steady state distribution under b

db(s) = lim
t→∞

P(St = s|s0, b)

⇒ Intuition is that decisions have only a temporary effect

⇒ In the long run only the policy and the transition probability matters

I Under the assumption of said distribution we want to maximize

J(θ) =
∑
s∈S

db(s)vπθ (s)

I Sum of value functions weighted by how often we visit each state
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Off-Policy Actor Critic

I If our goal is to maximize the objective

J(θ) =
∑
s∈S

db(s)vπθ (s)

I We can use a gradient ascent scheme

∇θJ(θ) = ∇θ

(∑
s∈S

db(s)vπθ (s)

)
=
∑
s∈S

db(s)∇θvπθ (s)

I The behavior policy is independent of the learned policy
I Recall that the v -function satisfies that

vπθ (s) =
∑
a∈A

πθ(a|s)qπθ (s, a)

I Therefore the gradient of the v -function yields

∇θvπθ (s) =
∑
a∈A

∇θπθ(a|s)qπθ (s, a) +
∑
a∈A

πθ(a|s)∇θqπθ (s, a)

I The second term is difficult to estimate in an off-policy setting

g(θ) =
∑
s∈S

db(s)
∑
a∈A

∇θπθ(a|s)qπθ (s, a)
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The Policy Improvement Theorem

I We have defined the following approximation of the gradient

g(θ) =
∑
s∈S

db(s)
∑
a∈A

∇θπθ(a|s)qπθ (s, a)

I And we will use it to update the policy as

θk+1 = θk + αg(θk)

Theorem (Off-Policy Improvement2)

For small enough step-size α > 0 it follows that

J(θk+1) ≥ J(θk) and vπθk+1
(s) ≥ vπθk (s).

I Although we are not using the gradient it still improves the value function

2T. Degris, M. White and R. S. Sutton, “Off-Policy Actor-Critic”, In Proceedings ICML 2012.
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Proof of The Policy Improvement Theorem

I We have defined the following approximation of the gradient

g(θ) =
∑
s∈S

db(s)
∑
a∈A

∇θπθ(a|s)qπθ (s, a)

I And we will use it to update the policy as

θk+1 = θk + αg(θk)

I Use Taylor’s theorem to write

πθk+1 (a|s) = πθk (a|s) +∇θπθk (a|s)>αg(θk) + o(α2)

I Therefore we have that

πθk+1 (a|s)qπθk (s, a) = qπθk (s, a)πθk (a|s)

+ qπθk (s, a)∇θπθk (a|s)>αg(θk) + o(α2)
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Proof of The Policy Improvement Theorem

I Notice that we have

qπθk (s, a)∇θπθk (a|s)>αg(θk)

= αqπθk (s, a)∇θπθk (a|s)>
∑
s∈S

db(s)
∑
a∈A

∇θπθk (a|s)qπθk (s, a)

= α
∑
s∈S

db(s)
∑
a∈A

qπθk (s, a)2 ‖∇θπθk (a|s)‖2≥ 0

I Because for tabular problems all the updates are independent

I Putting everything together we have that

πθk+1 (a|s)qπθk (s, a) = qπθk+1
(s, a)πθk (a|s)

+ qπθk (s, a)∇θπθk (a|s)>(αg(θk)) + o(α2)

I Therefore, for small enough α we have that

πθk+1 (a|s)qπθk (s, a) ≥ πθk (a|s)qπθk (s, a)
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Proof of The Policy Improvement Theorem

I To show that J(θk+1) ≥ J(θk) and vπθk+1
(s) ≥ vπθk (s) we can use

πθk+1 (a|s)qπθk (s, a) ≥ πθk (a|s)qπθk (s, a)

I We will do only one of the proofs, they are the same

vπθk (s) =
∑
a∈A

πθk (a|s)qπθk (s, a) ≤
∑
a∈A

πθk+1 (a|s)qπθk (s, a)

=
∑
a∈A

πθk+1 (a|s)E
[
Rt+1 + γvπθk (St+1) | St = s

]
= EAt∼πθk+1

[
Rt+1 + γvπθk (St+1) | St = s

]
I Applying the relationship recursively

vπθk (s) ≤ EA∼πθk+1
[Gt | St = s] = vπθk+1

(s)
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Off-Policy Policy-Gradient Theorem

I We have defined the following approximation of the gradient

g(θ) =
∑
s∈S

db(s)
∑
a∈A

∇θπθ(a|s)qπθ (s, a)

Theorem (Off-Policy Policy-Gradient Theorem3)

Let us define the set of critical points of g(θ) and ∇θJ(θ)

Z = {θ | ∇θJ(θ) = 0} and Z̃ = {θ | g(θ) = 0} .

Then it follows that
Z̃ = Z

3T. Degris, M. White and R. S. Sutton, “Off-Policy Actor-Critic”, In Proceedings ICML 2012.
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Proof of the Off-Policy Policy-Gradient Theorem

I Recall the definitions

Z = {θ | ∇θJ(θ) = 0} and Z̃ = {θ | g(θ) = 0} .

I We will first show that Z ⊂ Z̃
I Assume that there exists some θ? ∈ Z such that θ? /∈ Z̃
I By the Policy Gradient Improvement Theorem it follows that

J(θ? + αg(θ?)) > J(θ?)

I So, θ? cannot be a local maximum of J(θ)
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Proof of the Off-Policy Policy-Gradient Theorem

I To prove the other inclusion let us show that if θ? ∈ Z̃ then ∇θJ(θ?) = 0

I Without loss of generality assume that we have m weights for state si then

g(θ?)i,j =
∑
s′∈S

db(s ′)
∑
a∈A

∂

∂θi,j
πθ(a|s ′)qπθ (s ′, a)

= db(si )
∑
a∈A

∂

∂θi,j
πθ(a|si )qπθ (si , a)= 0

I Assume that for si we have some k such that ∇θJ(θ?) 6= 0

∇θJ(θ∗)ik − g(θ?)ik =
∑
s′∈S

db(s ′)
∑
a∈A

πθ(a|s ′) ∂

∂θi,k
qπθ (s ′, a) 6= 0

I This term is the one that we decided not to consider
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Proof of the Off-Policy Policy-Gradient Theorem

I We have from the previous slide that

∇θJ(θ∗)ik − g(θ?)ik =
∑
s′∈S

db(s ′)
∑
a∈A

πθ(a|s ′) ∂

∂θi,k
qπθ (s ′, a) 6= 0

I Which implies that

∇θJ(θ∗)ik = db(si )
∑
a∈A

πθ(a|si )
∂

∂θi,k
qπθ (si , a) 6= 0

I This means that we can improve vθ?(si ) by modifying the probabilities

I θi,k only influences state si hence to improve the value at state si

m∑
j=1

∑
a∈A

∂

∂θis,j
πθ(a|s)qπθ (s, a) 6= 0

I Contradiction ⇒ So Z̃ ⊂ Z
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The Off-Policy Actor Critic

I Recall that we are using the following approximation of the gradient

g(θ) =
∑
s∈S

db(s)
∑
a∈A

∇θπθ(a|s)qπθ (s, a)

I And let us rewrite it as

g(θ) = Es∼db

[∑
a∈A

∇θπθ(a|s)qπθ (s, a)

]
I We can write then

g(θ) = Es∼db

[∑
a∈A

b(a|s)
πθ(a|s)

b(a|s)

∇θπθ(a|s)

πθ(a|s)
qπθ (s, a)

]
I Defining ρ(s, a) = πθ(a|s)/b(a|s) and using the log trick

g(θ) = Es∼db,a∼b [ρ(s, a)qπθ (s, a)∇θ log πθ(a|s)]
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The Off-Policy Actor Critic

I From the previous slide with ρ(s, a) = πθ(a|s)/b(a|s)

g(θ) = Es∼db,a∼b [ρ(s, a)qπθ (s, a)∇θ log πθ(a|s)]

I Similar to the policy gradient but are including the importance sampling

I Introducing a baseline and a stochastic approximation we have that

θk+1 = θk + αρ(St ,At)ψ(St ,At)
(
Gλt − v(st)

)
I where Gλt is the λ-return

Gλt = Rt+1 + (1− λ)v(St+1) + λρ(St+1,At+1)Gλt+1

I This only means that we are using TD(λ) for the estimation of the critic

I If we want to use TD(0) just set λ = 0 and then

Gt = Rt+1 + v(St+1)
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Off-Policy Actor Critic

Input: Policies πθ(A|S), b(A|S) starting distribution p(S0), step-sizes αv ,αθ
Initialize: v(s) = 0 for all s ∈ S and a ∈ A . (value function is set to zero)
θ0 = θ . (Initial parameters)
for episode k = 0, 1, 2, . . . do

Initialize S0

Choose A ∼ b(A|S)
for each step of the episode t = 0, 1, . . . ,T − 1 do

Take action A and observe R and S ′

v(S) = v(S) + αv [R + γv(S ′)− v(S)] . (Stochastic Approx)
∇θv(θ) = ∇θv(θ) + ρ(S ,A)(R + v(S ′)− v(S))∇θ log πθk (A|S)
S = S ′ . (Update State)
Choose A ∼ b(A|S)

end
θk+1 = θk + αθ∇θv(θ)

end
Algorithm 7: Off-Policy AC TD(0)
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Convergence: Sketch

I The algorithm is a stochastic approximation of of the defined function

g(θ) =
∑
s∈S

db(s)
∑
a∈A

∇θπθ(a|s)qπθ (s, a)

I And we have established two important results

vπθk+1
(s) ≥ vπθk (s)

⇒ Which means that in expectation the v -function increases with

θk+1 = θk + αĝ(θk)

I Because the value function is upper bounded then v converges

I It will converge to the points where g(θ) = 0

I Since the critical points of g(θ) are the same as those of J(θ)

I The algorithm converges to the set of critical points of J(θ)

Santiago Paternain, Miguel Calvo-Fullana Actor Critic 58



Outline

Recap of Policy Gradient

Estimating the q-Function: Montecarlo Methods

Estimating the q-Function: Temporal Difference Learning

Off-policy Actor Critic

Deterministic Policy Gradient
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Policies

I So far we have been considering mainly random policies

⇒ Gaussian πθ(a|s) = 1√
(2π)

exp(−‖a− µθ(s)‖2/2)

⇒ Soft-max πθ(a|s) = ef (a,s,θ)∑
a′∈A f (a′,s,θ)

I Random policies help with exploration

I They are more robust to modeling errors

I If we are sure our system is an MDP why not using deterministic policies?

I For exploration we can do off-policy training
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Policy Gradient Theorem

I For stochastic policies we have derived the policy gradient theorem

∇θv (θ) = (1− γ)−1Es∼ρθ,a∼πθ [∇θ log πθ(a|s)qπθ (s, a)]

I where the distribution ρ is defined as

ρθ(s) = (1− γ)
∞∑
t=0

γtp(st = s|s0, θ)

I We have discussed how to sample from the distribution ρθ

I And how to estimate the q-function ⇒ Actor-Critic Algorithms

⇒ We studied the off-policy Actor-Critic

⇒ Use an off-policy stochastic actor-critic to learn a determinstic policy
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Deterministic Policy Gradient

I Let us consider a deterministic policy a = µ(s, θ) and define as usual

vθ(s) = E

[
∞∑
t=0

γtRt+1|s0 = s

]

I Let ρµ(s) = (1− γ)
∑∞

t=0 γ
tp(st = s|s0)

I Then the gradient of the value function with respect to µ yields

Theorem (Deterministic Policy Gradient 4)

∇θv (θ) = (1− γ)−1Es∼ρµ

[
∇θµθ(s)∇aqµθ (s, a)

∣∣
a=µ(s)

]

4D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra and M. Riedmiller “Deterministic Policy
Gradient Algorithms” In Proceedings ICML 2014
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Proof of Deterministic Policy Gradient Theorem

I Let us start by using the Bellman’s equation to write

vθ(s) = E [Rt+1 + γvθ(St+1) | St = s,At = µθ(s)]

I Which in integral form yields

vθ(s) =

∫
R×S

(
r + γvθ(s ′)

)
p(r , s ′|s, µθ(s)) ds ′dr

I Let us compute the gradient with respect to θ

∇θvθ(s) =

∫
R×S

∇θ
(
r + γvθ(s ′)

)
p(r , s ′|s, µθ(s)) ds ′dr

+

∫
R×S

(
r + γvθ(s ′)

)
∇θp(r , s ′|s, µθ(s)) ds ′dr

I The first term just yields γ∇θvθ(s ′)

∇θvθ(s) = γ

∫
S
∇θvθ(s ′)p(r , s ′|s, µθ(s)) ds ′

+

∫
R×S

(
r + γvθ(s ′)

)
∇θp(r , s ′|s, µθ(s)) ds ′dr
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Proof of Deterministic Policy Gradient Theorem

I From the previous slide we have that

∇θvθ(s) = γ

∫
S
∇θvθ(s ′)p(r , s ′|s, µθ(s)) ds ′

+

∫
R×S

(
r + γvθ(s ′)

)
∇θp(r , s ′|s, µθ(s)) ds ′dr

I Using the chain rule we have that

∇θp(r , s ′|s, µθ(s)) = ∇ap(r , s ′|s, a)|a=µθ(s)∇θµθ(s)

I Rearrenging terms we have that

∇θvθ(s) = γ

∫
S
∇θvθ(s ′)p(r , s ′|s, µθ(s)) ds ′

+∇a

(∫
R×S

(
r + γvθ(s ′)

)
p(r , s ′|s, a) ds ′dr

) ∣∣
a=µθ(s)

∇θµθ(s)

I By Bellman’s equation the term in the parenthesis is qθ(s, a)

∇θvθ(s) = γ

∫
S
∇θvθ(s ′)p(r , s ′|s, µθ(s)) ds ′ +∇θµθ(s)∇aqθ(s, µθ(s))
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Proof of Deterministic Policy Gradient Theorem

I From the previous slide we have that Rearrenging terms we have that

∇θvθ(s) = γ

∫
S
∇θvθ(s ′)p(r , s ′|s, µθ(s)) ds ′ +∇θµθ(s)∇aqθ(s, µθ(s))

I Is a linear integral system of equations

⇒ same ideas as the previous policy gradient proof apply

∇θv (s0) =

∫
S
∇θµθ(s ′)∇aqµθ (s ′, a)

∣∣
a=µ(s′)

∞∑
t=0

γtp(st = s ′|s0 = s) ds ′

I This sum appears from applying the recursion

I Defining ρθ(s) = (1− γ)
∑∞

t=0 γ
tp(st = s ′|s0 = s)

∇θv (s0) = (1− γ)−1

∫
S
∇θµθ(s ′)∇aqµθ (s ′, a)

∣∣
a=µ(s′)

ρθ(s ′) ds ′

= (1− γ)−1Es∼ρµ

[
∇θµθ(s)∇aqµθ (s, a)

∣∣
a=µ(s)

]
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Policy Gradients

I The goal is to understand the relationship between

⇒ the stochastic policy gradient

∇θv (θ) = (1− γ)−1Es∼ρθ,a∼πθ [∇θ log πθ(a|s)qπθ (s, a)]

= (1− γ)−1Es∼ρθ [Ea∼πθ [∇θ log πθ(a|s)qπθ (s, a) | s]]

⇒ and the deterministic policy gradient

∇θv (s0) = (1− γ)−1Es∼ρµ

[
∇θµθ(s)∇aqµθ (s, a)

∣∣
a=µ(s)

]
I Look similar but not exactly the same, the red terms are different
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Policy Gradients

I We want to understand better the relationship between

Ea∼πθ [∇θ log πθ(a|s)qπθ (s, a) | s] and ∇θµθ(s)∇aqµθ (s, a)
∣∣
a=µ(s)

I Let us consider for simplicity Gaussian policies

πθ(a|s) =
1√

2πσ2
e−(a−µθ(s))2/(2σ2)

1 2 3 4 5 6 7
0

0.5

1

1.5

σ = 1
σ = 0.5
σ = 0.2

I We can think of a deterministic policy as a
gaussian with σ = 0

I More formally as a δ distribution

I A δ is an operator defined as

∫
f (x)δ(x) dx = f (0)
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Policy Gradients

I So let us consider a stochastic policy and then take σ → 0

I For a Gaussian distribution

πθ(a|s) =
1√

2πσ2
e−(a−µθ(s))2/(2σ2)

I The gradient of the log yields

∇θ log πθ(a|s) = ∇θ
(
−(a− µθ(s))2/(2σ2)

)
=

a− µθ(s)

σ2
∇θµθ(s)

I Recall that we are looking at the following two terms

Ea∼πθ [∇θ log πθ(a|s)qπθ (s, a) | s] and ∇θµθ(s)∇aqµθ (s, a)
∣∣
a=µθ(s)

I Replacing ∇θ log πθ(a|s) in the first expression yields

Ea∼πθ

[
a− µθ(s)

σ2
qπθ (s, a) | s

]
∇θµθ(s)
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Policy Gradients

I We reduce the analysis of the two expressions to compare

Ea∼πθ

[
a− µθ(s)

σ2
qπθ (s, a) | s

]
and ∇aqµθ (s, a)

∣∣
a=µθ(s)

I We are interpreting deterministic policies as the limit of a Gaussians

lim
σ→0

Ea∼πθ

[
a− µθ(s)

σ2
qπθ (s, a) | s

]
=

lim
σ→0

∫
A

a− µθ(s)

σ2
qπθ (s, a)

e−(a−µθ(s))2/(2σ2)

√
2πσ2

da

I Let us define η = a− µθ(s) and define

lim
σ→0

Ea∼πθ

[
a− µθ(s)

σ2
qπθ (s, a) | s

]
=

lim
σ→0

∫
η

σ2
qπθ (s, η + µθ(s))

e−(η)2/(2σ2)

√
2πσ2

dη
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Policy Gradients

I We are now comparing

lim
σ→0

Ea∼πθ

[
a− µθ(s)

σ2
qπθ (s, a) | s

]
and ∇aqµθ (s, a)

∣∣
a=µθ(s)

I From the previous slide we had that

lim
σ→0

Ea∼πθ

[
a− µθ(s)

σ2
qπθ (s, a) | s

]
=

lim
σ→0

∫
η

σ2
qπθ (s, η + µθ(s))

e−(η)2/(2σ2)

√
2πσ2

dη

I Define φ(η) = e−(η)2/(2σ2)
√

2πσ2
and notice that ∇ηφ(η) = − η

σ2 φ(η)

I Integrate by parts

lim
σ→0

Ea∼πθ

[
a− µθ(s)

σ2
qπθ (s, a) | s

]
= lim
σ→0
−φ(η)q(s, η + µθ(s))

∣∣∞
−∞

+

∫
φ(η)∇aqπθ (s, a)

∣∣
a=η+µθ(s)

dη
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Policy Gradients

I Recall that we are looking at the following two terms

lim
σ→0

Ea∼πθ

[
a− µθ(s)

σ2
qπθ (s, a) | s

]
and ∇aqµθ (s, a)

∣∣
a=µθ(s)

I From the previous slide we had that

lim
σ→0

Ea∼πθ

[
a− µθ(s)

σ2
qπθ (s, a) | s

]
= lim
σ→0
−φ(η)q(s, η + µθ(s))

∣∣∞
−∞

+

∫
φ(η)∇aqπθ (s, a)

∣∣
a=η+µθ(s)

dη

I limη→∞ η(η) = 0 and q is bounded

I The gaussian converges to the δ so the previous integral is

lim
σ→0

Ea∼πθ

[
a− µθ(s)

σ2
qπθ (s, a) | s

]
= ∇aqπθ (s, a)

∣∣
a=µθ(s)
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Deterministic Policy Gradient

I In summary the deterministic policy gradient

∇θv (θ) = (1− γ)−1Es∼ρµθ

[
∇θµθ(s)∇aqµθ (s, a)

∣∣
a=µ(s)

]
I Can be understood as the limit of the stochastic policy gradient

∇θv (θ) = (1− γ)−1Es∼ρθ,a∼πθ [∇θ log πθ(a|s)qπθ (s, a)]

I How can we get the estimate of the gradient?

⇒ There is an expectation ⇒ Stochastic Approximations

⇒ We would still need to compute ∇aqµθ (s, a)
∣∣
a=µθ(s)

⇒ Learn qµθ using function approximations

⇒ Computing the derivative of q with respect to a is easy

⇒ Use Off policy Actor-Critic to ensure proper exploration
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Off-Policy for Deterministic actor critic

I As we did before define the cost for the behavior policy b(A|S)

Jb(µθ) =

∫
S
ρb(s)vµθ (s) ds =

∫
S
ρb(s)qµθ (s, µθ(s)) ds

I Taking the gradient it follows that

∇θJb(µθ) =

∫
S×A

ρb(s)∇θµθ(a|s)qµθ (s, a) dsda

+

∫
S×A

ρb(s)∇θµθ(a|s)qµθ (s, a) dsda

I Because the policy is deterministic the expression yields

∇θJb(µθ) ≈
∫
S
ρb(s)∇θµθ(s)∇aqµθ (s, a)

∣∣
a=µθ(s)

ds

I We don’t need the impotance sampling
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