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MDP Recap

» A Markov Decision Process is a tuple (S, 4, R, P)
» P is a Markov transition probability if for any 8’ C S and R’ C R
P[St+1 S S,, Rt+1 c 'R'|St, At, ey SO,AO] == P[St+1 c S/, Rt+1 S R/|St, At]
> We select the actions based on parameterized policies 7y (als)
= We cannot work with general continuous functions
= Parameterization is necessary
>

Find the best policy within the functions that our parameterization defines

= "Best” is defined by the value function

VTre(s) = ]E‘n'e [ZVtRHJ‘SO = S:|

t=0
= Recall that the expectation is with respect to all the rewards seen

= We write Er, to denote the we are following the policy ms(als)
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Maximizing the Value function

» Expanding the expectation, the value function is written as

Vry () = Z/ Ve p(sje1s r41lsis a)mo(ajls)) dskdak—1dri

k AkSk— 1

» Where the policy is parameterized by 6 € R?
» We will update the parameters via gradient ascent
» Computing the gradient can be tricky (Today's lecture)

= Policy Gradient Theorem
» The gradient of v with respect to 6 € R? is /./

av(0) av(o)\ "
Vovr,(s) = RN
7o () ( 96, 904

» To find the maximum, we update the parameters 6

Ok+1 = Ok + akVov(0), with ax >0
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Policy Gradient for Continuing Task

> Recall that the expression of the gradient is
Vovey (5) = (1= ) Eswppavmy [drs (S, A)V log mo(A|S)]
» Where the distribution pg(s’, s) is given by
po(s',s) =1 =)D _A'p(Se=5]S=5")
t=0
» And q(s, a) is the sate-action value function
Gre (Sv a) =Enr, Z'Yth+k+1 | Si=5s5,Ar=a
k=0

» To compute the gradient we are required to have good estimates of gr,
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REINFORCE: Policy Gradient for Episodic Task

\4

REINFORCE is a Monte Carlo type method

» |t uses one trajectory as a sample

» Basically run one trajectory and compute
T-1
Ok+1 = Ok + ax Z Vo log 7r9k(At|St)Gt
t=0
» Works because 3"/ ' Vg log 7o, (A¢|S:) G: is unbiased
T-1
EWBk Z Vo |Og7T9k(Af|5t)Gt = Vev(ak)
t=0

» However the variance of an estimate is important for convergence
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Example: The influence of the variance

> In this example we try to maximize the following function
1.
f(x)=—=||x
() =~ x|

» The gradient of this function is Vf(x) = —x
= Estimate of the gradient is —xx + & with & ~ N(0, 0°)

Xkt+1 = Xk + a(—xk + &)

» The estimate is unbiased E[¢{x] = 0

» Convergence is influenced by the
variance

o=1

» We want estimates with small

. o=2
variance

o =10
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Baselines

\{

We introduced baselines to the estimate Vg log w9 (A¢|S:) (G — v(S:))
> The new estimate is unbiased because E [V log 7y, (A¢]St)v(S:)] = 0
> We argued that since vr,(s) = Er, [G: | St = 5]

= It is reasonable to expect that the variance is reduced

= But we did not prove it

> Since g, is also related to the return

q7"6(s7a) = ]E‘/rg [Gt | St = S,At = a]

v

If instead of looking at the return we were to look at at gr,

= we should get a better estimate since we are “eliminating the noise "
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What can we gain from knowing the g-function?

> Recall that the expression for the policy gradient for episodic tasks
Vg Vg (5) =E [GtVQ |0g 7T9(At|5t) | St = S]
» The estimate that we have been using so far is

Vov(s) = G:Vg log mo(At|St)
» However notice that we can also write

Vovrg(s) = E[E[G: | St, Ac]Ve log ma(Ae|St) | St = s]
=FE [(;?(St7 Af)Vg IOg7T9(At|St) | St = S]

» So we can also use the following estimate
Vove = Q(St, Ar)Vo log o (A:|St)

> It is also an unbiased estimate E [@9 vglSe = s} = Vo Vn,(5)
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What can we gain from knowing the g-function?

> Is this new estimate better in any sense?
Vove(0) = Q(St, Ar) Vo log mo(A:|St)
> Let us compute the difference in covariance of the two estimates
Cov [@gv(e)] — Cov [%vq(e)] =E [vag log 76 (A:] S¢) Vo log 7r9(At|St)T]
— Vev(0)Vav(0)"
“E [Q(St, A:)*V log 1o (Ac|S:) Vo log 7r9(At|5t)T]
+ Vov(0)Vev(0)"
» Then it follows that
Cov [@w(@)} — Cov [@avq(e)}

—E [(GE —Q(S:, At)Q) Vo log m6(A¢|S:) Vo log wg(At|5t)T]
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What can we gain from knowing the g-function?

» Working with Vovg(6) is better if

Cov [@gv(ﬁ)] — Cov [@qu(e)] >0

v

Conditioning on S;, A; the previous expression yields

AVar =E [E [Gf ey (St A | Se At] Vo log mo(Ac|S:) Vo |og7r9(At|st)T]

v

Let us show that the red expression is always non-negative
E[G? = Gny (St A)” | i, Al =E[G2 ] St Ad] = Gy (S A’

» We have used that gr,(S¢, At) is a deterministic function given S, A;
> By definition we have that gr,(S¢, A:) = E[G; | S, A]

E[G? = gn (St A | i, A =E[G2 ] S1,A] —E[G: | St A
= Var(Gt | St,At) 2 0

> The variance of the estimate with the g, function is always reduced
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Introduction to Actor-Critic methods

» Having access to the g-function reduces the variance of our estimate

v

This implies faster-convergence
» Why are they called actor-critic?

= There is an actor: the agent choosing the policy

= The critic is represented by the Q-function

= It gives feedback on how good the action is for the given state
» Estimating the g-function is as easy as estimating the v-function
= Monte-Carlo updates
= TD updates
= n-step and A returns

All of these methods can be used as well

v

= Nothing really changes so we will go fast over them
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The g-Function

» The g-function for the state-action (s,a) € S x A and policy 7 is
T-1
k
qﬂ—(s) :]Eﬂ— [Gt | St = S,At = a] = Eﬂ' Z’y Rt+k+1 ‘ St = 57At =a
k=0
> Instead of computing the expectation we can consider the average return
= Every time we visit the state s we estimate its return
= And we average all these
= Law of large numbers guarantees convergence to the expected value
> The first algorithm that we will see is First Visit Monte Carlo
= This is a tabular method =- discrete state space
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First visit Monte Carlo

Input: Policy w(A|S) and starting distribution p(So)
Initialize: g(s,a) =0 for all s € S and a € A > (Value function is set to zero)
n(s,a)=0foralls€Sand ac A > (Counter for visits set to zero)

for episode k =0,1,2,... do
Generate an episode following 7 : So, Ao, R1, S1,A1,...,51-1,Ar—1, Rt

Set G=0
for timet=T—-1,...,1,0 do
G=79G+ Ry1 > (Compute return of states St_1,..., 51, So)
if (va Af) ¢ {(507 A0)7 (515 Al) ey (Sfflr Affl)} then
n(Se, At) = n(St, A) + 1 > (Increase counter for visit)

q(St, Ae) = q(Se, Ar) (n(Se, Ae) — 1) /n(Se, Ae) + G/n(S:, A) >
(Update mean)
end
end

end
Algorithm 1: First visit Monte Carlo
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First visit Monte Carlo

» For each state-action (s, a) we compute the return G; given that
St=s5,Ar=s

> First visit = we consider the return only the first time that we visit s, a
= This means that for every episode we get a different return for s, a
= And these returns are therefore i.i.d

= They also have bounded variance

v

So the law of the large numbers proves the convergence of the algorithm
» We can also do every-visit Monte Carlo

= The returns are not independent in this case

= We can still write it as a Stochastic Approximation problem

= Similar to constant step Monte Carlo with a diminishing step-size
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Constant step Monte Carlo

v

Instead of computing the average we can do SGD

Let us define the following error for each state

F() = 5 lla(s2) — x(s,2)

Where q(s, a) is an estimate of the value function under the policy 7
We have found the q function when q(s,a) = gx(s,a) = F(q) =0
We can use SGD to minimize the function F(q)

Compute the gradient with respect to g(s, a)

OF(q)
q(s, a)

=q(s,a) — g=(s,3) = q(s,a) —E; [G: | St = 5, At = 5]

So we can do Stochastic Approximation

Qk+1(5t7At) = Qk(sn At) -« (Qk(Sh At) - Gt) = (1 - a)Qk(St: At) + aG;
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Constant step Monte Carlo

Input: Stepsize «, Policy 7(A|S) and starting distribution p(So)
Initialize: g(s,a) =0forallseSandac A > (q function is set to zero)
for episode k =0,1,2,... do
Generate an episode following 7 : So, Ao, R1, 51, A1, ..., 57-1,Ar—1, RT
Set G =0
for timet=T —1,...,1,0 do

G=79G+ Ri1 > (Compute return of state-action

(S7-1,A71-1),...,(51,A1), (S0, Ao))

q(S:, Ar) = (1 — @)q(S:, Ar) + aG > (Update using SGD)

end

end
Algorithm 2: Constant step Monte Carlo
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Example

» Consider the MDP with uniform policy, i.e., for all s € {A,B,C,D,E}

m(a = left) = m(a = right) = 0.5
» All transitions have zero rewards except from s = E, with a = right
—0-0-0-0-0—
.4— <> <> <« <« .
START
» The g—function for each state-action pair is the probability of reaching
the terminal state on the right before the one on the left from the

neighboring state.

0.8
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Monte Carlo Actor-Critic

Input: Parametric Policy m9(A|S), distribution p(So),step-sizes ag,aq
Initialize: g(s,a) =0 for all s € S and a € A > (Value function is set to zero)
Initialize: 6y =0
for episode k =0,1,2,... do
Generate an episode following 7 : So, Ao, R1, 51, A1, ..., 57-1,Ar—1, RT
for timet=T—-1,...,1,0 do
G = Zz;;l Riy1 > (Compute return of states St_1,..., S1,50)
q(St, Ar) = q(Se, Ar)(1 — aq) + Grag
Vov(0) = Vov(0) + q(St, A:) Vg log g, (Ae|St)
end
Update: Oxy1 = 0k + aoVov(0)

end
Algorithm 3: Monte Carlo Actor-Critic
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Example

» Consider the following short corridor
= For each state there are two actions left or right
= Transitions are normal but in the middle state they are reversed
= All transitions give reward —1

= Episode terminates when we reach G

S |=|—|a

» We want to solve this problem using a very simple parameterization
x(s,left) = [1,0] x(s,right) =10,1]

» Basically we follow the same policy regardless of the state
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Example

v

If we follow the same policy regardless of the state

S. =] G

v

There is no deterministic policy that is optimal

v

The optimal policy is something around 50% on each direction
» However it has to be biased to the right
We start with a bad policy defined by ;1 =0 and 6, =3

v

v

This gives us mg(right) = 0.05
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Example

» We solve the previous example using REINFORCE and Actor Critic
> We select the step sizes to be ap = 0.001 and oy = 0.01

> We trained 100 examples and averaged the learning curves

0 — —
—20 |-
—40 |- —
0 —— REINFORCE
—AC ]
—60 - —
L 1 L L L L L L 1 L L

! PR
0 20 40 60 80 100 120 140 160 180 200

> In both cases we get m(right) ~ 0.54

» Actor critic has better convergence properties
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Monte Carlo limitations

> We need to wait until the end of an episode to update the value function
= Problem is that we can have episodes that are very long
= What about continuing tasks? No episode at all

» We would like to operate step-by-step instead of episode-by-episode
= This could accelerate learning but not possible with Monte Carlo

» Monte Carlo methods are simple to understand and use

= Serve as good building blocks to more complex methods
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From episode-by-episode to step-by-step

v

The g-function for the state-action (s,a) € S x A and policy 7 is

T—1
qﬂ(573) =E- [Gt | St =5Ar = a] =E- Z’YkRHkJrl ‘ St = S, Ar=a
k=0

v

Recall that Monte Carlo methods need to wait until the end of the episode
to update the value function

= They operate in an episode-by-episode sense

v

Now we look at Temporal Difference (TD) methods
= They work in a step-by-step sense

v

They update their estimated based on previous estimates
= There is no need to wait for the final outcome of the episode

= This concept is known as bootstraping
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Back to Bellman's Equation

» The g-function also satisfies the Bellman's equation

Gr(s,a) = Ex [Res1 + vG=(Se1, Aer1) | St = s, A = 4]

v

Recall that it is the only function that satisfies Bellman's equation

v

Let us define the operator

B(q)‘(s?a) = E; [Res1 + vq(Ses1, Ae1) | St =5, Ar = 4]

v

So we have that B(gx)|(s,2) = g=(5,a) = g is the only fixed point

» We can show that the operator is a contraction, i.e., for any g, ¢’

1B(q) —B(a")||, <vlla—d|

If the operator is a contraction and we apply it k times we have

\{

HB(q)k - B(q')ka <y HB’(q)k_1 - B(q)<*

» Recursively this yields
HB(q)k - B(q’)ka <7*la—d|
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Back to Bellman's Equation

» We have defined the operator

B(9),.,) = Ex [Res1 +7a(Sei1) | St = 5, Ac = a]

v

For which g is a fixed point B(gx) = gx

v

And if it is a contraction (left to be shown) then we have that
By - B _ <+ la—
» Replacing g’ by g, in the previous equation yields

HB(q)k —az|| <*llg—gxll

[e')

v

Taking the limit of k — oo establishes convergence for v <1

v

If we apply the Bellman operator to any g we will converge to g,
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The Bellman Operator is a contraction

» We have defined the operator
B(q)|(sya) =Ex [RtJrl +7q(5t+1) | St = s, At = a]

» We need to show that it is a contraction

= The proof is the same as the proof for TD(0) estimation of v
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A Stochastic Approximation

» We have defined the operator

B(Cl)|( = Ex [Rer1 +7G(Se41, Aesr) | Se = 5, Ae = 3]

s,a)

» By its recursive application we can estimate g,

» To compute the Bellman operator we need to compute an expectation
= Not efficient = Let us try a stochastic approximation

> We want to find the fixed point of the Bellman operator B(q) — ¢ =0

> Let us use Robbins-Monro = Define F(q) = B(q) — q

» Say that we have S; = s, A; = a then the estimate of F is given by

":_(Qk)’(sya) = Rey1 + vqk(Se41, Aev1) — q(Se, Ar)
> If we are able to get estimates of all the variables at the same time
gk+1 = qk + Oéf:_(CIk)

» Which is the classic stochastic approximation

= We have convergence guarantees
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Tabular TD(0) for estimating g

Input: Policy w(A|S), starting distribution p(So), step-size «
Initialize: g(s,a) =0 for all s € S and a € A > (value function is set to zero)
for episode k =0,1,2,... do
Initialize So
Choose A ~ 7(A|S)
for each step of the episode t =0,1,..., T — 1 do
Take action A and observe R and S’
Choose A’ ~ wt(A'|S")
q(S,A) = q(S,A)+a[R+~q(S", A") — q(S, A)] > (Stochastic Approx)
s=5 > (Update State)
A=A > (Update Action)

end

end
Algorithm 4: Tabular TD(0)
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v

Notice that the previous algorithm is actually asynchronous

» We only update one of the entries at the time

Gr+1(St, At) = qi(Se, Ae) + @ (Res1 + vYqi(Ses1, Aer1) — qi(Se, Ae))
= qi(Se, Ar) + aF(q(Se, Ar))

The proof assumes that we compute F(g(S:, A)) for all states and actions

\{

Nonetheless, the proof can be extended for asynchronous updates®

v

1J.N. Tsitsiklis, “Asynchronous stochastic approximation and Q-learning”, in Machine Learning,
vol. 16, no. 1, pp. 185-202, 1994.
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Using TD(0) in Actor-Critic

Input: Parametric Policy 7o (A|S), distribution p(So),step-sizes ag,aq
Initialize: g(s,a) =0foralls€e Sandac A
Initialize: 6y = 0
for episode k =0,1,2,... do
Initialize S
Choose A ~ g, (A|S)
for each step of the episode t =0,1,..., T — 1 do
Take action A and observe R and S’
Choose A’ ~ g, (A’|S")
q(st) = q(st) + g (R + 'Yq(sl7 A,) - q(sv A))
Vov(0) = Vov(0) 4 q(S, A)Vg log g, (A|S)
s=9
A=A

> (g function is set to zero)

end
Update: Oxr1 = Ok + agVoV(@)

end
Algorithm 5: TD Actor-Critic
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Example

» Consider the following short corridor
= For each state there are two actions left or right
= Transitions are normal but in the middle state they are reversed
= All transitions give reward —1

= Episode terminates when we reach G

S |=|—|a

» We want to solve this problem using a very simple parameterization
x(s,left) = [1,0] x(s,right) =10,1]

» Basically we follow the same policy regardless of the state

Santiago Paternain, Miguel Calvo-Fullana Actor Critic 34



Example

v

If we follow the same policy regardless of the state

S. =] G

v

There is no deterministic policy that is optimal

v

The optimal policy is something around 50% on each direction
» However it has to be biased to the right
We start with a bad policy defined by ;1 =0 and 6, =3

v

v

This gives us mg(right) = 0.05
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Example

» We solve the previous example using REINFORCE and Actor Critic
> We select the step sizes to be ap = 0.001 for all algorithms

= ag = 0.01 for Montecarlo and a; = 0.005 for TD
» We trained 100 examples and averaged the learning curves

0

—20

— REINFORCE
40 —— MC-AC
—— TD-AC |

—60 -

! !
0 20 40 60 80 100 120 140 160 180 200

> In both cases we get m(right) ~ 0.54

» Actor critic with TD has better convergence properties
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Remember Baselines?

» So far we have been talking about using the g-function to reduce the
variance of the estimate

» But baselines were used for the same reason = Can we use both?

= Nothing prevents us from considering the following estimate
Vv = Vo log mo(AdlSe) (a(Se, Ae) — v(S2)

> The reason for that is that E [Vg log e (A¢|St)v(S:)] = 0

» The difference between g and v is called the advantage function
a(Se; Ae) = q(Se, Ae) — v(St)

> |t is a normalization with respect to the state
= How much an action can improve over the value of the current state

= Or the advantage of choosing a specific action
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Advantage function with TD

» Does that mean that we need to keep track both of g and v?

> Not really thanks to Bellman’s equation

a(s,a) =q(s,a) — v(s) =Ex [G: | St =5, Ar = a] — v(s)
=E; [Rep1 + yv(Se41) | St = s, Ac = a] — v(s)

> Then we can estimate the gradient using

@9 Vo = Q(St, At)Vg |Og 71'9(At|5t)
= (Reta + yv(Ser1) — v(St)) Vo log mo(Ae[ St)
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Advantage Actor-Critic

Input: Parametric Policy 7 (A|S), distribution p(So),step-sizes 7a, v
Initialize: v(s) =0forallse€ S > (Value function is set to zero)
Initialize: 6y =60

for episode k =0,1,2,... do

end

Initialize S

Choose A ~ g, (A|S)

for each step of the episode t =0,1,..., T — 1 do
Take action A and observe R and S’
v(S) = v(S) +av (R+v(S") — v(S))

Zg v(@) Vov(0) + (R +vyv(S') — v(S)) Vo log m, (A|S)
Choose A ~ g, (A|S)

end
Update: Oxy1 = 0k + angv(@)

Algorithm 6: A2C

Santiago Paternain, Miguel Calvo-Fullana
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Asynchronos Advantage Actor-Critic (A3C)

Global Network

' Policy ris) a (var |

Nevor|
y
Input (s) ﬁ

[ ( i ( -
w =& - 7

Worker 1 Worker 2 Worker 3 Worker n
Environment 1 | |E i 2‘ Envi 3 ... Environmentn
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Asynchronos Advantage Actor-Critic (A3C)

Asynchronous Methods for Deep Rei Learning
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On-Policy vs Off-Policy

v

So far we have been doing On-Policy learning

» We use the same policy for actuation and training

\{

Learns about the policy that it is executing
> It is more natural as a framework

> Analysis is easier = so it is a better place to start
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On-Policy vs Off-Policy

» Off-Policy considers a different policy for training

» Executes one policy but it learns another one

> Learn about a policy while executing an exploratory policy

» Learn from demonstration or previous experience

» Learning multiple tasks from a single interaction with an environment

» Requires compensating for shift between behavior and target policy
= It is called importance sampling

= this increases variance, the more so when using multi-step updates
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A Different Objective

» Say we have termination at time t + T, then the value function is

Vﬂ-(S) :E[Rt+1+...+Rt+T ‘ St :S]

v

Let us denote by b(a|s) the behavior policy
Assume that the MDP is ergodic

v

= There exists a steady state distribution under b

dp(s) = lim P(S; = s|sp, b)

t—o0

= Intuition is that decisions have only a temporary effect

= In the long run only the policy and the transition probability matters

v

Under the assumption of said distribution we want to maximize

J(0) = db(s)vry (5)

seS

v

Sum of value functions weighted by how often we visit each state
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Off-Policy Actor Critic

> If our goal is to maximize the objective
0) = 3" d()vsy (5)
seS

» We can use a gradient ascent scheme

Ved(0) =V, <Z dy(s vﬁe(s)) = ds(5)Vavry(s)

seS seS

» The behavior policy is independent of the learned policy
» Recall that the v-function satisfies that
Vro(s) = Y mo(als)dn, (s, a)
acA
> Therefore the gradient of the v-function yields
Vovr,(s) = Z Vomo(als)gnry (s, a) + Z mo(als)Voqnr, (s, a)
acA acA
» The second term is difficult to estimate in an off-policy setting

8(6) = 3" db(s) S Voo (als)an (s, 2)

seS ac A
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The Policy Improvement Theorem

> We have defined the following approximation of the gradient

g(0) =Y db(s) Y Voms(als)ar, (s, )

seS acA

» And we will use it to update the policy as

Ok+1 = Ok + ag(Ok)

Theorem (Off-Policy Improvement?)
For small enough step-size a > 0 it follows that

J(Ok+1) > J(0k) and Vroi () = Vr, (5)-

» Although we are not using the gradient it still improves the value function

2T, Degris, M. White and R. S. Sutton, “Off-Policy Actor-Critic”; In Proceedings ICML 2012:
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Proof of The Policy Improvement Theorem

> We have defined the following approximation of the gradient
g(0) = 3 do(s) 3 Vorro(als)qe, (5, 2)
seS acA
» And we will use it to update the policy as
Oks1 = Ok + ag(Ok)
> Use Taylor's theorem to write
o, (als) = e, (als) + ergk(a|s)Tag(9k) + o(a?)
> Therefore we have that

7T9k+1(a‘5)q7r9k (s,a) = Ao, (s,a)mo,(als)

+ Gry, (5, 2) Voo, (als) " ag(0k) + o(a”)
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Proof of The Policy Improvement Theorem

v

Notice that we have
Qre, (5? a)v9779k(a|5)TO‘g(9k)
= Oy, (s,a)Vomo, (‘_’ls)T Z d(s) Z Voo, (a|5)q7r9k (s,a)

seS acA

=« Z db(s) Z qre, (57 3)2 |\V97r9k(a|s)|\22 0

seS ac A

v

Because for tabular problems all the updates are independent
> Putting everything together we have that
7T9k+1(a|s)q7f9k (s,a) = Aro,., (s, a)me, (als)

+ Gry, (5, 2) Voo, (als) ' (ag(6k)) + o(a”)

v

Therefore, for small enough o we have that

TOs41 (a|s)q7r9k (s,a) =2 7T9k(a|5)q7r9k (s,a)
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Proof of The Policy Improvement Theorem

» To show that J(0k+1) > J(0k) and 2 () = vrg, (s) we can use

TOs41 (3|S)q7r9k (s,a) 2 7T9k(3|s)q7"0k (s,a)

» We will do only one of the proofs, they are the same

ngk(s) = Zﬂ'9k(a| qﬂe s, a) ZWWH 3|5)q779 (s,a)

acA ac A
= 3 701 (@S)E [Rea + vy, (Se1) | S0 = o]
acA

= Eacon,, [Rest +7mg, (Se1) | St = s
» Applying the relationship recursively

Vrg, () < IEAN,W+1 [G:]| St =s] = Vro, s (s)
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Off-Policy Policy-Gradient Theorem

> We have defined the following approximation of the gradient

g(0) = ds(s) Y_ Vemo(als)gr,(s, a)

seS acA
Theorem (Off-Policy Policy-Gradient Theorem?)
Let us define the set of critical points of g(0) and V¢J(0)
Z={0|VeJ(®) =0} and Z=1{0|g(0) =0}.

Then it follows that ~
Z=2Z

3T. Degris, M. White and R. S. Sutton, “Off-Policy Actor-Critic”; In Proceedings ICML 2012:
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Proof of the Off-Policy Policy-Gradient Theorem

» Recall the definitions
Z={0|VeJ(®)=0} and Z={0]g(0)=0}.
> We will first show that Z C £

v

Assume that there exists some §* € Z such that §* ¢ Z

v

By the Policy Gradient Improvement Theorem it follows that
J(O + ag(07)) > J(6F)

> So, 0 cannot be a local maximum of J(6)

Santiago Paternain, Miguel Calvo-Fullana Actor Critic 52



Proof of the Off-Policy Policy-Gradient Theorem

» To prove the other inclusion let us show that if 0* € Z then V,J(6*) =0

v

Without loss of generality assume that we have m weights for state s; then

)ij = Z dp(s) Z 89 ——mo(als")qn, (s, )

s'eS acA
= dp(si Z 69 mo(alsi)qr,(si,a)=0
acA
» Assume that for s; we have some k such that VeJ(G*) #0
Vod(0)ik — = ;Sdb(s anAm; als’) 80 B ) B

v

This term is the one that we decided not to consider
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Proof of the Off-Policy Policy-Gradient Theorem

» We have from the previous slide that

Vod(0" )ik — = ds(s') D> ma(als) ae ——qry(s’,a) #0

s'eS acA

v

Which implies that
X 1o}
Vo (07 )ik = db(Si);EAWG(&‘B:')&)TM%G(SM) #0

» This means that we can improve vy (s;) by modifying the probabilities

> 0; « only influences state s; hence to improve the value at state s;

S o als)ar (s.2) # 0

Jj= laE.A

Contradiction = So Z C Z

v
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The Off-Policy Actor Critic

» Recall that we are using the following approximation of the gradient
g(0) = ds(s) > Vemo(als)gn, (s, a)
seS acA
> And let us rewrite it as

&(0) = Esva, [Z Vomo(als)qn, (s, a)]

acA

» We can write then

£(6) = Eene, [Z b(als) T2l2e) Vomolals) o, a)}

2 a|s> wo(als)

v

Defining p(s, a) = mo(a|s)/b(als) and using the log trick

g(0) = Esdy,a~b [p(5, @) gr, (s, a) Vo log me(als)]
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The Off-Policy Actor Critic

v

From the previous slide with p(s, a) = m(a|s)/b(a|s)

g(0) = Esdy,a~b [p(5, 2) g, (s, a) Vo log mo(als)]

v

Similar to the policy gradient but are including the importance sampling

v

Introducing a baseline and a stochastic approximation we have that
0k+1 = 0[( + ozp(St, At)’l/J(St, At) (Gt)\ — V(St))

> where G} is the \-return

G = Rest + (1= A)v(Ser1) + Ap(Ses1, Aes1) G

v

This only means that we are using TD(\) for the estimation of the critic
> If we want to use TD(0) just set A = 0 and then

Gt = Re1 + v(Se41)
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Santiago Paternain, Miguel Calvo-Fullana

Off-Policy Actor Critic

Input: Policies mg(A|S), b(A|S) starting distribution p(So), step-sizes a,,ao
Initialize: v(s) =0foralls€ Sandae A > (value function is set to zero)

6o =10 > (Initial parameters)
for episode k =0,1,2,... do
Initialize So

Choose A ~ b(A|S)

for each step of the episode t =0,1,..., T — 1 do
Take action A and observe R and S’
v(S) = v(S) + av[R +yv(S") — v(S)] > (Stochastic Approx)
Vo V(Q) ng(@) + p(S,A)(R + V(S/) — V(S))Ve log o, (A|5)

S= > (Update State)
Choose A ~ b(A|S)

end
0k+1 =0k + Vg V(@)

end
Algorithm 7: Off-Policy AC TD(0)

Actor Critic




Convergence: Sketch

v

The algorithm is a stochastic approximation of of the defined function

g(0) = ds(s) Y Vems(als)qr, (s, 2)

seS acA

v

And we have established two important results
O E)

= Which means that in expectation the v-function increases with
Ok+1 = Ok + ag(0k)

» Because the value function is upper bounded then v converges

v

It will converge to the points where g(0) =0

v

Since the critical points of g(f) are the same as those of J(#)

\4

The algorithm converges to the set of critical points of J(6)
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Outline

Recap of Policy Gradient

Estimating the g-Function: Montecarlo Methods

Estimating the g-Function: Temporal Difference Learning

Off-policy Actor Critic

Deterministic Policy Gradient
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Policies

v

So far we have been considering mainly random policies

= Gaussian mg(als) = (1277) exp(—|la — wa(s)|?/2)

ef(a,s,@)
e flds,0)

Random policies help with exploration

= Soft-max me(als) =

v

v

They are more robust to modeling errors

v

If we are sure our system is an MDP why not using deterministic policies?

v

For exploration we can do off-policy training
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Policy Gradient Theorem

v

For stochastic policies we have derived the policy gradient theorem

Vo (0) = (1= 7) "Eswpg oy [Vo log mo(als)gn, (5, 2)]

» where the distribution p is defined as
pa(s) = (1 =)D _¥'p(st = s|s0, )
=0

v

We have discussed how to sample from the distribution pg

v

And how to estimate the g-function =- Actor-Critic Algorithms
= We studied the off-policy Actor-Critic

= Use an off-policy stochastic actor-critic to learn a determinstic policy
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Deterministic Policy Gradient

> Let us consider a deterministic policy a = (s, 8) and define as usual

vo(s) = E [vafmso = ]
t=0

> Let pu(s) = (1 —7) 0 7p(s: = slso)
» Then the gradient of the value function with respect to u yields

Theorem (Deterministic Policy Gradient *)

Vov (0) = (1 - ’7)_1E5~PM [vgue(s)v‘aqué’ (S’ a) |a:u(s)]

“D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra and M. Riedmiller “Deterministic Policy
Gradient Algorithms” In Proceedings ICML 2014
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Proof of Deterministic Policy Gradient Theorem

> Let us start by using the Bellman’s equation to write
VQ(S) =K [Rt+1 + ’ng(St+1) | St =S, At = ,LLQ(S)]

» Which in integral form yields
WS = [ () b5l o)) o e
RxS
> Let us compute the gradient with respect to 6
Vove(s) = / Vo (r+vve(s"))p(r,s'|s, pe(s)) ds'dr
RXS
[ () Vap(r, s, uo(s) o
RXS
» The first term just yields vVovy(s’)
Vovo(s) =7 [ Touo(s)plr. s, po(s))

+/ (r+~ve(s")) Vap(r,s'|s, po(s)) ds'dr
RXS
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Proof of Deterministic Policy Gradient Theorem

» From the previous slide we have that
Vou(s) = [ Tovals p(r. s, o)) &
s
+/ (r+fyve(s/)) Vgp(r,s/|s,,ug(s)) ds’dr
RxS
> Using the chain rule we have that

Vop(r, 5/‘57 po(s)) = Vap(r, 5/‘57 3)‘3:#9(s)v9M0(5)

» Rearrenging terms we have that
Vou(s) =7 [ Tov(splr. |5, u(s)) o
s
+V, (/ (r+~va(s)) p(r,s'|s, a) ds'dr) ’r 5 (S)Vg,ug(s)
RxS —He
» By Bellman’s equation the term in the parenthesis is go(s, a)

Vove(s) = 7/5VoVe(S')p(nS/laue(S)) ds’ + Voo(s)Vaqo (s, 10 (5))
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Proof of Deterministic Policy Gradient Theorem

v

From the previous slide we have that Rearrenging terms we have that

Vovo(s) = / Vovo(s)p(r, 5[5 110(5)) 5’ + Vopia(s)Vad (s, ia(s))

> Is a linear integral system of equations

= same ideas as the previous policy gradient proof apply
Vov(s) = / Voio(s )Vaqu, (s, a)’a:H(S,)Z v'p(s: = s'|so = s) ds’
S t=0

» This sum appears from applying the recursion

Defining po(s) = (1 7) X% ' plse = /[ = s)

v

vgv(SO):(l_y)*/veug(s’)vaq,m(s’,a)\a:#(s,)pg(s’)ds’
S

= (1 - 7)71Es~pu [VGNQ(S)Vaq#G (57 a)‘a:,u(s)]
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Policy Gradients

> The goal is to understand the relationship between

= the stochastic policy gradient

Vov (0) = (1 %) Eapg ary [V l08 70(a[3)dr, (5. )]
— (1= ) " Eampy [Eanry [V log mo(als)ar, (5. ) | 5]

= and the deterministic policy gradient

Vov (s0) = (1= 7) "Eonp, [Veue(S)Vaqug (s a)lazu(s)}

> Look similar but not exactly the same, the red terms are different
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Policy Gradients

» We want to understand better the relationship between

Eanny [Vologma(als)gnr, (s,a) | s]  and  Voua(s)Vaqu, (s, a)|

a=p(s)

» Let us consider for simplicity Gaussian policies

mo(als) =

—_— =1
—o=05
15| I —o=02
05| J/\x\
#
2 3 4

|

1

o ho()12/(207)
2mwo2

» We can think of a deterministic policy as a
gaussian with ¢ =0

» More formally as a ¢ distribution

» A ¢ is an operator defined as /f(x)é(x) dx = f(0)

Santiago Paternain, Miguel Calvo-Fullana
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Policy Gradients

v

So let us consider a stochastic policy and then take o — 0

» For a Gaussian distribution

ro(als) = ——— (@ H0()?/25?)
2mo?
» The gradient of the log yields
4
Vologma(als) = Vo (~(a - 10()*/(26) = 21 7, s)
> Recall that we are looking at the following two terms
Eary [Vo log mo(als)dry (5.2) [ 5] and Vouo(s)Vaap,(s.2)],

> Replacing Vg log mg(als) in the first expression yields

Epor, | 22 /lo( )

oz Gre(s:a) | 's| Vopo(s)
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Policy Gradients

> We reduce the analysis of the two expressions to compare

a— (s
Eonry [%()qﬂe(s,a) | s] and Vaque(s,a)’

a=pp(s)

» We are interpreting deterministic policies as the limit of a Gaussians

lim anﬂe {QLW(S)%G(S7 a) | s} =

o—0 0'2

2 2
. MG( ) —(a—=po(s))°/(20%)
lim / ————Qr,(s,8) ————— da
o—0 A O’ q 9( ) 1/27-(-0-2

> Let us define n = a — up(s) and define

a— pe(s) _
e [ -
—(77) /(20?)

. n
[ g (s, ,
im /0’2q H(S T/+/‘0( )) W d’)

o—0
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Policy Gradients

» We are now comparing

o—0 a=pg(s

lim Ea~7r9 {%()qﬂe(s a) | s} and  V.qu, (s, a)|

v

From the previous slide we had that

- Me( ) _
;lgno]EaNﬁg { e Gry (s, a) | s} =
(/@)

—d
\V2mo? K

and notice that V,¢(1) = — 5 ¢(n)

o—0

lim / %qm (s, + 1o(s))

— (7 2 {12
Define 6(n) = = r

> Integrate by parts

v

i, Bory |24 (5,2) 5] = fim, o)atsn+ o)

o—0
+/Q5(77)v2‘1q71'6 (Sv a)|a:n+u9(s) d77
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Policy Gradients

v

Recall that we are looking at the following two terms

im Eoery {ﬂ
o—0

Gry (s, a) | s} and  V.qu, (s, a)|

a=pg(s

> From the previous slide we had that

+/ ¢(n)v3q7"e (S’ a)|a:n+u9(s) d7]

o—0

im, Bory |24 (5,0) 5] = fim, ~o)atsn+ o))

\4

limy—on(n) = 0 and q is bounded

» The gaussian converges to the § so the previous integral is

. a— S
i, Eovry [ 240, (500 5] = Ve 52)

o—0 a=pg(s)
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Deterministic Policy Gradient

> In summary the deterministic policy gradient

Vov (6) = (1=7) v, |Vono($)Vauy(5.2)],_, |
> Can be understood as the limit of the stochastic policy gradient
Vov (6) = (1 =) Esnppanry [Vo log m(als)gn, (s, a)]

» How can we get the estimate of the gradient?
= There is an expectation = Stochastic Approximations
= We would still need to compute V,qy, (s, a)|a:M(s)
= Learn g, using function approximations
= Computing the derivative of g with respect to a is easy

= Use Off policy Actor-Critic to ensure proper exploration
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Off-Policy for Deterministic actor critic

> As we did before define the cost for the behavior policy b(A|S)
o) = [ po(s)vig(e) s = [ pule)ay (5. o(s))
» Taking the gradient it follows that
Vodo(ho) = [ po(s)Vora(als)aig (5, ) dsda
SxA

> Because the policy is deterministic the expression yields

Vodo(0) % | o(s)Voro &)Vt (5.2)|_,, )
> We don't need the impotance sampling
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